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Abstract 

The frequent occurence of missing data in scientific studies is not uncommon. In 

longitudinal clinical  studies  for instance, one would expect, in a “dream land” 

scenario, a complete profile for each study subject. Unfortunately, this is rarely the 

case. Plagued therefore with the issue of missingness, it becomes vital to understand 

the mechanism that led to the missing data to be able to perform analyses that will 

lead to valid inference. Under the missing at random (MAR) assumption, likelihood 

based methods which admit ignoring the missing process as well as Multiple 

Imputation are valid. On the other hand the non-ignorable missing not at random 

(MNAR) process necessitates the need for models that explicitly incorporate the 

dropout mechanism. Unfortunately these models are usually based on very strong 

and unverifiable assumptions which are difficult to implement, and sensitive to 

misspecifications. The objective of this thesis was to compare the effectiveness of 

recommended methods for MAR scenarios like Direct Likelihood, and Multiple 

Imputation under MNAR scenarios, and also study the possible impact of correlation 

on the different methods based on simulations. Results provide evidence that 

ignorable analysis produce reasonably stable results even when the assumption of 

MAR is violated. There was also no significant effect of correlation on the results. 

 

Key words: Missing at random, missing not at random, direct likelihood multiple 

imputation. 
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1 INTRODUCTION 

Generally, most scientific studies rely on data-based research, and as such are faced 

with issues of missing data which are often not intended, and are beyond the control 

of the investigator. In a data matrix where the rows represent the units, cases or 

subjects, and the columns represent variables measured for each unit; we are faced 

with the issue of missing data if some of the entries in the data matrix are not 

observed. According to Molenberghs and Kenward (2007), missing data often arises 

in studies performed on human subjects such as in clinical trials, epidemiological 

studies, sample surveys, psychometry and econometrics, where not all planned 

measurements are achieved for various reasons. In surveys and epidemiological 

studies, incompleteness could result from reasons such as refusal by respondents to 

answer certain items on a questionnaire (item nonresponse) or refusal to participate 

(total nonresponse) failure to reach the selected subjects and/or ask all questions 

Wang and Fan (2004).  In clinical trials, even with the best design and monitoring to 

yield complete data, the loss of an experimental unit is possible through dropout, or 

failure to show up for a planned visit (Sotto, 2009). 

The pattern in which missing data occurs defines which values in the data set are 

observed and which are missing. A monotone pattern of missingness arises when 

there are no measurements for a study unit at a specific time and thereafter (dropout 

or attrition). On the other hand, non monotone missingness refers to missing values 

with no defined arrangement, but rather occurring intermittently within the set of 

variables. This study will focus on monotone missingness. 

 The missing data mechanism on the other hand concerns the reasons for 

missingness, and whether these reasons are related to the values observed or 

unobserved in the data set. These reasons are often unknown or outside the control of 

the investigator, hence assumptions about the process generating them need to be 

made. Rubin (1976), introduced an important classification scheme for missing data 

mechanisms. It consists of;  

a. Missing completely at random (MCAR) occurring when the missingness is 

independent of both unobserved and observed data. For instance, a patient 
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who fails to show up for a planned visit because he/she is travelling for non-

health reasons could be considered to be MCAR. 

b. Missing at random (MAR) occurs when the missingness depends on 

observed data, and not on the unobserved measurements. For example, a 

patient could be MAR if after three consecutive visits with good outcome, 

he/she lapses at the forth visit and as a result drops out at the fifth visit due 

to their poor health condition. 

c. Missing not at random (MNAR) where the probability of a measurement 

being missing depends on the unobserved data. For example, it may happen 

that a patient improves till the third visit, then worsens between the third 

and the fourth visit and consequently drops out at the fourth visit. He/she is 

MNAR because the reason for missingness is related to the yet-to-be 

observed worsening condition (sotto, 2009). 

Schafer and Graham (2002) indicated that missing data creates difficulty in scientific 

research, and induces additional complexity in data analysis, because most data 

analysis was not designed for them. It is worth mentioning that the manner in which 

missingness is handled can have substantial implications on the conclusions because 

failing to cater for missingness may lead to biased and unreliable conclusions. Based 

on assumptions on the missing data mechanism by Rubin (1976), simple ad-hoc 

methods like complete case analysis (CC) and  last observation carried forward 

(LOCF) which edit the data to lend an appearance of completeness are often 

implemented. These ad-hoc edits unfortunately, usually do more harm than good, 

producing solutions that are often bias, lacking in power, and unreliable. However 

research has paved the way for more flexible and reliable “state of the art” methods 

such as likelihood-based, Bayesian methodologies, Weighted Generalized Estimating 

Equations, and Multiple Imputation (Baraldi and Enders, 2010).  

Generally the likelihood and Bayesian approaches admit ignoring the missing process 

under MAR. On the other hand, the missingness process cannot be ignored under a 

MNAR scenario, which is often referred to as the non-ignorable situation. With these 

results, certainly the scope of viable alternatives for analysis is narrowed down, but 

because these are based on unverifiable assumptions of the missing data 

mechanisms, it is difficult to determine which missing data mechanism is in play. 
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More so the non ignorable MNAR, missingness cannot be fully ruled out based on the 

observed data, thus necessitating the need for models that explicitly incorporate the 

dropout mechanism, like the selection models and pattern mixture models, see 

Molenberghs and Verbeke (2005). Unfortunately these models are usually based on 

very strong and unverifiable assumptions that maybe difficult to implement, and 

sensitive to misspecifications (Jansen et al., 2006). Plagued therefore with this 

difficulty, the researcher might turn to sensitivity analysis which considers different 

methods under varying missing data scenarios, and compare results. 

The objective of this thesis is to compare the effectiveness of recommended methods 

for MAR scenarios like Direct Likelihood, and Multiple Imputation under MNAR 

scenarios, and also study the possible impact of correlation on the different methods 

based on simulations. The following paragraph gives an overview of the organization 

of this thesis. 

Focusing on missingness in the response, this thesis first presents in section 2, a brief 

perspective of incomplete longitudinal data, and some fundamental concepts of 

missing data, and methods for handling missingness under the MAR assumption.  

Section 3 elaborates on the simulation study, data generation and analysis. The 

results of the simulation analysis are presented in section 4. Finally discussion 

conclusion and recommendations are presented in section 5.  

 

 

 

 

 

 

 

 

 



4 

 

2 INCOMPLETE LONGITUDINAL DATA 

Generally, longitudinal studies often entail monitoring the effect of an experimental 

treatment via measurements of a particular variable repeatedly over time, with time 

being a covariate of interest. The duration and number of measurements are usually 

preplanned and are equal for all subjects (balanced data). The entire subjects’ profiles 

are often of importance in evaluating the effectiveness of an experimental treatment. 

In a “dream land” scenario we would expect a complete profile for each study subject; 

completers. Unfortunately, this is unsurprisingly rarely the case. Plagued therefore 

with the issue of missingness, the approach to cater for incompleteness and the 

choice of statistical method may have important implications on the resulting 

conclusion. Consequently, this section considers some fundamental concepts and 

commonly used methodologies in the area of incomplete data. 

2.1 LAY OUT 

To better appreciate the notion of the various modeling frameworks, let’s consider a 

longitudinal study where there is incomplete data. A full data density is as below: 

     	ƒ(��		,��\�,	)                                                                                                    (1) 
 

	��		and �� respectively represent vectors for the joint distribution of the ith subject’s 
outcomes and missingness indicators.	�	and		 are the respective parameter vectors 

describing the response and the missingness processes respectively. The choice of 

factorization of (1) characterizes the various modeling frameworks.  

Under a selection model (SeM) framework, (1) is factorized into a marginal model for 

the measurements and a conditional model for the non-response given the 

measurements (Rubin, 1976; Little and Rubin, 1987), that is, 

             ƒ(��		��\�,	) =  ƒ(��		\�)ƒ(��\��		, 	)                                                    (2) 
 

The selection models are an obvious choice for clinicians, who often are interested in 

the marginal effect (�) of the independent variables on the response. 

The reverse factorization of (1) into a marginal model for non-response and a 

conditional model for the measurements given the non response, 

           ƒ(��		��\�,	) =  ƒ(��		\	��, �)ƒ(��\		)                                                      (3) 
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characterizes the Pattern-mixture models (PMM). In contrast with SeM, the 

parameter � in a PMM denotes pattern specific effects of independent variables on 

the response. 

Finally, if (1) is factorized such that the measurements and the missing data processes 

are considered independent, conditioned on a set of latent variables or random 

effects (	�� ),  
 

       ƒ(��		��\�,	) =  ƒ(��		\��	, �)ƒ(��\��		, 	)                                                    (4) 
 

Then a shared parameter model (SPM) results. Here, � represents the effect of 
independent variables, given the random effects. 

2.2 METHODS OF HANDLING MISSING DATA 

The intent of any analysis is to make valid inferences regarding a population of 

interest. Missing data threatens this goal, if the missing data creates a biased sample. 

Therefore, it is important to respond to a missing data problem in a manner which 

reflects the scientific question. Significant developments have been made in recent 

years regarding methodologies which handle responses to these problems and biases. 

Unfortunately, these methodologies are often not available to many researchers for 

reasons like the lack of familiarity and computational challenges, thus researchers 

often resort to ad-hoc approaches which may ultimately do more harm than good 

(Little & Rubin, 1987; Schafer and Graham, 2002). These ad-hoc approaches include 

complete case analysis (CC), last observation carried forward (LOCF), simple forms 

of imputation (conditional or unconditional mean imputation). However more 

reliable and “state of the art” methods such as direct likelihood, Bayesian analyses, 

multiple imputation, weighted generalized estimating equations and expectation 

maximization algorithms have been recommended by several authors (Schafer and 

Graham, 2002; Molenberghs and Kenward, 2007; Rubin et.al., 2007). Bearing in 

mind that under certain assumptions the missingness process can be ignored, a 

sensible choice on the modeling process is important. 

Since the main focus of this thesis is to compare the effectiveness of Direct Likelihood 

and Multiple Imputation under MNAR scenario, the following sections will present a 

general perspective of MAR and Ignorability. 
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2.3 MISSING AT RANDOM AND IGNORABILITY 

This notion of non-response introduced by Rubin (1976) helps clarify under what 

conditions it could be possible to ignore the missing data process and still make valid 

inferences. In this section the concepts of Ignorability, direct likelihood and multiple 

imputation will be presented. 

2.3.1 IGNORABILITY 

The Likelihood-based methods commonly involve maximization of full data 

likelihood. However, faced with missingness, inference must be based on what is 

observed. Rubin (1976) stated that under precise assumptions, likelihood-based 

inference is valid when the missing data mechanism is ignored. Molenberghs and 

Verbeke (2005) formally showed that, once appropriate account is taken of what has 

been observed, there remains no dependence on unobserved data (at least in terms of 

probability models). Thus, as stated by Kenward and Molenberghs (1998), if the 

parameter describing the measurement process (����) is functionally independent of the 

parameter describing the missingness process (����), then a separability or parameter 

distinctness condition is satisfied (within the likelihood framework), and  under such 

a condition MCAR and MAR are ignorable (while an MNAR is non-ignorable). This 

implies that ���� can be estimated directly from the observed data while ignoring the 

missingness process (unless the missingness process is of scientific interest). This is a 

task easily done by standard software procedures that allow for missing values. 

Worthy to mention is that contrary to Likelihood and Bayesian inference, the 

frequentist inference is ignorable only under MCAR (Molenberghs and Verbeke, 

2005).    

2.3.2  DIRECT LIKELIHOOD 

It is worth mentioning that likelihood based methods (such as the Generalized Linear 

Mixed Models) can be applied to incomplete data after prior treatment of the missing 

values via CC or LOCF. Here, since the missing values are no longer present, the 

likelihood approach is based on the full-data likelihood. In contrast to this view, in 

this section for incomplete longitudinal data (with no manipulations), any method 



7 

 

within the likelihood framework would require working with the observed-data-

likelihood (Sotto, 2009). Recall that under ignorability (when the separability 

condition is met), under a MAR assumption for instance, only available cases can be 

used (observed-data-likelihood) for analysis. Thus, Verbeke and Molenberghs (2000) 

and Sotto (2009), pointed out that if the focus of inference lies on the response 

process parameter, estimation of the (conditional) non-response model (given the 

observed measurements) can altogether be ignored. Moreover, standard software 

procedures are available that allow for incomplete observations, hence, a fairly simple 

approach that permits the amount of information in the data to be maintained, 

leading to more valid (efficient) inference (Verbeke and Molenberghs, 2000). 

However, in scenarios where missingness (for instance, dropout) needs to be 

addressed, either by means of a dropout model for WGEE or by an imputation model 

for multiple-imputation-based GEE, then the missing data mechanism is not 

ignorable (Sotto, 2009).  

2.3.3  MULTIPLE IMPUTATION 

Introduced by Rubin (1978), and stated by Molenberghs and Kenward (2007), 

multiple imputation (MI) has become an important approach for dealing with 

statistical analysis of incomplete data. According to Molenberghs and Kenward 

(2007), the key idea is to replace each missing value with a set of M plausible values 

(Bayesian draw) from the conditional distribution of the unobserved values, given the 

observed ones such that the imputed values properly represents the information 

about the missing value that is contained in the observed data for the chosen model. 

This will result to a set of M complete datasets, which are then analyzed using 

standard complete data methods, and the results from the M analysis have to be 

combined into a single inference. The model used to perform the imputation is the 

imputation model, while that used to analyze the complete datasets is the substantive 

model. MI in its basic form requires the missing mechanism to be MAR, though the 

technique has been applied in MNAR settings as well (Molenberghs, Kenward and 

Laseffre 1997). 

Given a vector of repeated measures �� = (��� , ���) with  ��� being the observed and 

��� the missing components, described by the parameter vector		�, during 

imputation, we aim at filling the missing data with draws from the conditional 
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distribution�(��� ���⁄ , �). Since � is unknown, an estimate for it say		��, is first 
obtained from the data, after which we use ����� ���⁄ , ��� to impute the missing data. 

This means that we are generating samples from the distribution of  �,�  thus sampling 

uncertainty is catered for. With the imputed values, incomplete data are augmented 

to complete data, which are then used to obtain estimates of � and its variance		�� =
�� ! ����. These steps are repeated multiple times, say M times, producing   ���, and 

��� , for  " = 1,… ,%. In pooling the results of the analysis of the M complete data 

sets into a single inference, an average of the estimates are taken, and are given by: 

                   

�� = 1
% & ���					�'(	)*+,"�+)(	-� ,�'.)	/,-)'	�0				1 = 2+ 4% + 1

% 56.
8

�9:
 

Where            

2 = & ���

%
8

�9:
		�'(		6 = &

;��� − ��= ;��� − ��=′

% − 1
8

�9:
 

with W being the average within imputation variance, and B the between imputation 

variance (Rubin, 1986) cited by (Wayman,  2003;  Molenberghs and Verbeke, 2005;   

Sotto,  2009). MI is an attractive method because of its ease of use, available 

software, and also its high efficiency even for small values of M, with 3-5 imputations 

sufficient to obtain excellent results (Molenberghs and Verbeke, 2005). 

3 THE SIMULATION STUDY 

A simulation is an imitation of some real process. The act of simulating something 

generally entails representing certain key characteristics or behaviors of a selected 

physical or abstract system. In this study we define two stages. Below the data 

generation mechanism is presented. 

3.1 DATA GENERATION 

 Using the SAS IML procedure, 5000 simulations were run and data generated based 

on a data generating model which consists of a measurement model on one hand, and 

a dropout model given the measurement model on the other hand. For the 

measurement process, since we have a continuous outcome  we assume a multivariate 
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normal, a special case of the linear mixed effect model (Verbeke and Molenberghs 

2000, cited by Janssen 2005) : 

                                                                         �� = >�?+	@�                                                   (5) 
 Where		�� is a n-dimensional response vector for subject	,,	1 ≤ , ≤ B, N is the 

number of subjects, >�	is an (n x p) known design matrix,  ? is the p-dimensional 

vector containing the fixed effects, @�~B(0, ��) with �� a covariance matrix having a 

AR(1) covariance structure. The Diggle-Kenward logistic regression model for the 

dropout process was used. (Diggle and Kenward 1994, cited by Molenberghs and 

Kenward 2007). This model allows the conditional probability for the dropout at 

occasion E given that the subject was still observed at the previous occasion to depend 

on the history (F�G), and possibly the unobserved current outcome, but not on future 

outcome		0�H, I > E.  The model is represented as below: 

KL/,+MN�O� = E\O� ≥ E, F�G, 0�Q, R�S = T� + T:0�QU: +	TV0�Q .             (6) 

 From the above equation, O� is the occasion at which dropout occurs, and it is greater 

than 1, thus all first measurements were observed. Setting T: = 0	in equation above 
resulted in a MNAR dropout process, and TV = 0 resulted in a MAR dropout process. 

Based on the hypothetical data (Table 1), starting values for the parameters and their 

standard deviations were defined, with the parameter of interest (Treatment by time 

interaction) having an estimate of 12 with a standard error of 5. Data was generated 

from a normal distribution. The correlation (W) between outcome measurements was 

defined as low (0.1), medium (0.5), and high (0.8), in order to investigate the effect of 

correlation on the applied methods. 

3.2 HYPOTHETICAL DATA 

The simulated dataset consisted of two groups of patients, treated and untreated, 

with a group size of 50. Four measurements were taken for 4 weeks. The variable of 

main interest was the treatment by time interaction. The hypothetical data for 2 

patients in the treatment arm, where response=1 for observed and 0 for missing, is 

presented on table 1. 
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Table 1: Hypothetical Dataset 

ID WEEKS TREATMENT RESPONSE 

1 1 1 1 

1 2 1 1 

1 3 1 0 

1 4 1 0 

2 1 1 1 

2 2 1 1 

2 3 1 1 

2 4 1 0 

 

3.3 DATA ANALYSIS 

 The generated datasets were first explored to see the percentage missing, and the 

evolution of the subject profiles. In accordance with Verbeke and Molenberghs 

(2000), Molenberghs et al., (2004), Janssen et al., (2006), Molenberghs and 

Kenward (2007), the SAS procedure MIXED, can be used for missing data analysis 

without the need for any data manipulation when the separability condition is met, 

thus the MIXED procedure was used to fit a mixed model first to the complete data, 

then the data resulting from the MAR and MNAR processes. Multiple imputation 

with 3 imputations was used to complete the datasets, and the completed data sets 

were then analyzed with the MIXED procedure. The AR (1) covariance structure that 

was used for the data generation was maintained at the analysis stage. The 

MIANALYSE procedure was used to combine inferences from the imputed datasets, 

into a single inference, according to Rubin’s formula. All analysis was repeated three 

times under three different correlations. Results were compared based on the mean 

of the parameter estimates, and the standard errors around the mean. Scatter and 

box plots were also used to better visualize results. In the sections that follow, results 

from the analysis are presented. 



11 

 

4 RESULTS 

4.1 EXPLORATORY DATA ANALYSIS 

The generated data sets were explored before analysis, to see the evolution of the 

subjects in the study. Figure 1 presents the evolution of individual profiles under the 

complete data, MAR and MNAR scenarios, for simulation number 2000. A histogram 

of the response under MNAR and MAR scenarios are shown in Fig 1 and 2 of the 

appendix respectively, they show that there is no departure from normality in the 

datasets; this was further confirmed by the Shapiro-Wilk test which showed no 

departure from normality. 

 

              Figure 1A: Individual profile for the simulated complete dataset. 

 

                          Figure 1b: Individual profile for the MAR scenario. 
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                         Figure 1c: Individual profile for the MNAR scenario. 

From the figures above we can see that all subjects enter the study from the first week 

and dropout only occurs thereafter. From the plots it is evident that one can hardly 

distinguish MAR from MNAR, thus the need for a sensitivity analysis as advocated by 

Molenberghs and Kenward (2007). The MAR data had 50.24% missingness, while the 

MNAR data had 54.66% missingness.  

4.2 STATISTICAL ANALYSIS 

4.2.1 DIRECT LIKELIHOOD 

The SAS procedure proc MIXED was used to analyze the generated data, since we 

had continuous repeated measurements and a Gaussian data according to 

Molenberghs and Kenward (2007). Table 2 below shows the mean of estimates, and 

standard errors around the mean in square brackets under the three different 

scenarios, using data generated with a correlation of 0.8 

Table 2: Mean estimates (standard errors) from Direct Likelihood analysis of the 

complete,  MAR and MNAR datasets. 

Parameter Completers MAR MNAR 

Intercept 9.96 (5.04) 9.94 (5.11) 10.17 (5.11) 

Time 13.99 (1.58)* 14.00 (1.77)* 13.78 (1.79)* 

Treatment -1.95 (7.19) -2.02 (7.29) -1.90 (7.29) 

Treatment*Time 12.00 (2.33)* 12.06 (2.57)* 11.95 (2.65)* 

*Significant at 5%  level 
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From Table 2 above, we see that results are slightly different under the different 

conditions. A closer look at the treatment by time interaction, we see that there is a 

gradual increase in standard error as we move from the completers through MAR to 

MNAR, and a decrease in the estimates. Also the difference between the MAR and 

MNAR is not alarming. One may attribute this slight difference to the differences in 

the simulated datasets, and maybe the differences in percentage missingness. 

Fig 2 below shows no clear deviation from each other as points fall almost on the 

same line.  

 

Figure 2: Three dimensional Plot of mean estimates of Treatment by time 

interaction for Completers, MAR and MNAR. 

4.2.2 MULTIPLE IMPUTATION 

The missing values in the data were first completed by multiple imputation which 

caters for the variability around the missing values, and thus do not suffer from the 

issues of overestimating the precision by treating imputed and observed data on 

equal footing. The completed datasets were then analyzed with the MIXED 
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procedure, and results combined with the MIANALYSE procedure. Table 3 below 

presents these results. 

 

Table 3: Mean estimates (standard errors) from Direct Likelihood analysis of the 

complete data, MAR and MNAR datasets after Multiple Imputation. 

Parameter Completers MAR MNAR 

Intercept 9.96 (5.04) 9.96 (5.00) 10.18 (5.10) 

Time 13.99 (1.58)* 13.98 (1.45)* 13.78 (1.45)* 

Treatment -1.95 (7.19) -1.96 (7.13) -1.91 (7.10) 

Treatment*Time 12.00 (2.33)* 12.01 (2.19)* 11.96 (2.15)* 

*Significant at 5% level 

Results from multiple imputation under MAR and MNAR were also similar as can be 

seen from  Table 3, and they are also very close to results from the completers, thus 

indicating that MI can be used under both scenarios, though not totally ruling out 

sensitivity analysis as a tool to gain more power and assurance when making 

inferences. As mentioned earlier, the very slight differences in the values could be 

attributed to differences in the simulated data and the percentage missing values. 

4.3 DIRECT LIKELIHOOD AND MULTIPLE IMPUTATION 

UNDER VARYING CORELATION. 

In an attempt to examine the effect of correlation on the different methods, the data 

were generated under varying correlations, and the methods were implemented. 

Since data were generated at every occasion with a different correlation, it is obvious 

that totally different values will be generated, thus for a better visualization of the 

results, box plots of the interaction between treatment and time will be presented. 

See tables 1-5 of the appendix for mean estimate and standard errors. 
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Figure 3: Box plot of the mean estimates of treatment by time interaction for the 

complete data under different correlations. 

 

From figure 3 above, we see that the correlation has no major effect on the  direct 

likelihood method, as all the estimates are approximately around 12 (red horizontal 

line) which is the expected, and do not deviate from each other. It is worth 

mentioning that though the estimates do not deviate from each other, the outlying 

observations gradually decrease as we move from the low to high correlation and 

variability decreases at high correlation. 
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Figure 4: Box plots of the mean estimates for MAR and MNAR data 

under different correlations. 

 

As for the complete case, we see from Figure 4 above, the same trend as we move 

from low to high correlation. Also we still see that the mean estimates are pretty 

stable and not deviating very much from each other. 

For the case of Multiple Imputation, as can be seen from Figure 5, there are no 

deviations, and the outlying observations gradually reduce as we move towards a high 

correlation with an increase in precision of the estimates seen with a decrease in 

variability as depicted by the size of the boxes as we move from low to high 

correlations. 
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Figure: 5 Box Plots of the mean estimates for MAR and MNAR after 

analysis with Multiple Imputation. 
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5 DISCUSSIONS AND CONCLUSIONS 

Missing data are ubiquitous in quantitative research studies, and often occurs in 

situations which are beyond the control of the researcher. Due to its pervasive nature, 

some methodologists have described missing data as “one of the most important 

statistical and design problems in research” (Azar, 2002). In longitudinal clinical 

studies for instance, a special case of missingness occurs when there is a loss in 

subjects’ measurements at a specific point in time and thereafter, commonly termed 

dropout or attrition. Consequently, it becomes vital to understand the mechanism 

that led to the missing data to be able to perform analyses that will lead to proper 

inference. Thus, the decision to use a particular method can be based on a 

researcher’s specific questions and/or preference for certain analytic techniques.  

Rubin (1976), and Little and Rubin (2002) showed that under precise assumptions, 

likelihood-based inference is valid when the missing data mechanism is ignored. 

Molenberghs and Verbeke (2005) formally showed that, once appropriate account is 

taken of what has been observed, there remains no dependence on unobserved data 

(at least in terms of probability models). Furthermore Kenward and Molenberghs 

(1998) showed that it is better to use the observed information matrix rather than the 

expected. They further advocated for the use of methods such as likelihood based and 

multiple imputation as they offer a general framework from which valid inferences 

could be developed under MAR. These methods do not only enjoy the much wider 

validity, but also have the advantage that they are easy to implement without any data 

manipulation given the availability of appropriate software. 

On the other hand departures from MAR should be considered, in any analysis, and 

the possible consequence of such departures on the conclusions reached, since it is 

usually difficult to justify beforehand the assumption of MAR. This leads to more 

general MNAR models which explicitly incorporate the dropout mechanism. 

Unfortunately the inferences they produce are typically highly dependent on the un-

testable and often implicit built-in assumptions regarding the distribution of the 

unobserved measurements given the observed ones Janssen et al. (2006).  

Considering the fact that likelihood based methods and multiple imputation are valid 

and easy to implement under the assumption of MAR, this thesis through a 

simulation study focused on the effectiveness of these methods under the MNAR 
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scenario given the fact that they require modeling processes that are difficult and 

sensitive to misspecifications. 

Results from the ignorable analysis under non ignorable conditions were quite stable 

as presented in table 2. Though simulations are necessarily limited, the results fall in 

line with those of Molenberghs, Kenward and Laseffre (1997) who applied multiple 

imputation in MNAR settings and found stable results, and Janssen et al (2006) who 

argued that even when the MAR assumption are violated, results are stable under 

ignorable analyses because these analysis constrain the behavior of the unseen data 

to be similar to that of the observed data. There was also no significant effect of 

correlation on the results as the box plots show no deviation in the distribution of the 

mean estimates from all analysis.  

It is worth mentioning that though results are stable, once data has been missing, no 

modeling method whether MAR or MNAR can fully recover the lack of information 

that occurs due to incompleteness of the data. As a recommendation, it may be of 

interest to extend this study under varying percentage of missingness, and study the 

impact on inference. 

In conclusion, the use of ignorable likelihood methods is attractive in analyzing 

incomplete data, and might be used for primary analysis purpose since according to 

Rubin, Stern and Vehovar (1995), the assumption of MAR is often to be regarded as a 

realistic one in well-conducted experiments, while MNAR models should be used in a 

sensitivity analysis to explore the impact of deviations from the MAR assumption on 

the conclusions. 
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Appendix. 

              

 

 

Fig 1 Histogram of response for the MNAR data 

 

 

Fig 2 Histogram of response for the MAR data 
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Table :1 Mean estimates (standard errors) of Completers under different correlations 

 X = Y. Z X = Y. [ X = Y. \ 
Parameter Estimate(s.e) Estimate(s.e) Estimate(s.e) 

Intercept 9.99 (5.34) 9.93 (6.26) 9.96 (5.04) 

Time 13.98 (2.10)* 14.04 (2.02)* 13.99 (1.58)* 

Treatment -1.86 (7.63) -1.98 (8.86) -1.95 (7.19) 

Treatment*Time 11.96 (2.99)* 11.94 (2.86)* 12.00 (2.33)* 

*Significant at the 5% level 

 

Table :2 Mean estimates (standard errors) of  MAR under different correlations 

 X = Y. Z X = Y. [ X = Y. \ 
Parameter Estimate(s.e) Estimate(s.e) Estimate(s.e) 

Intercept 9.91 (5.60) 9.93 (5.72) 9.94 (5.70) 

Time 14.03 (2.31)* 14.04 (2.20)* 14.01 (1.64)* 

Treatment -1.93 78) -2.10 (8.09) -2.02 (8.06) 

Treatment*Time 12.03 (3.30)* 12.06 (3.20)* 12.06 (2.31)* 

*Significant at the 5% level 

 

Table :3 Mean estimates (standard errors) of MNAR under different correlations 

 X = Y. Z X = Y. [ X = Y. \ 
Parameter Estimate(s.e) Estimate(s.e) Estimate(s.e) 

Intercept 10.19 (5.62) 10.20 (5.72) 10.17 (5.68) 

Time 13.66 (2.36)* 13.72 (2.23)* 13.77 (1.67)* 

Treatment -1.77  (8.04) -1.91 (8.16) -1.89 (8.05) 

Treatment*Time 11.88 (3.45)* 11.89 (3.23)* 11.95 (2.38)* 

*Significant at the 5%  level 
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Table :4 Mean estimates (standard errors) of MAR MI under different correlations 

 X = Y. Z X = Y. [ X = Y. \ 
Parameter Estimate(s.e) Estimate(s.e) Estimate(s.e) 

Intercept 9.96  (5.28) 9.97 (5.55) 9.96  (5.79) 

Time 14.00 (1.96)* 14.00 (1.90)* 13.95 (1.66)* 

Treatment -1.82  (9.22) -2.03 (7.82) -1.96  (8.20) 

Treatment*Time 11.95 (2.78)* 11.99(2.76)* 12.01  (2.37)* 

*Significant at the 5% level 

 

 

Table :5 Mean estimates (standard errors) of MNAR MI under different correlations 

 X = Y. Z X = Y. [ X = Y. \ 
Parameter Estimate(s.e) Estimate(s.e) Estimate(s.e) 

Intercept 10.23 (5.20) 10.19(5.50) 10.18 (5.81) 

Time 13.65 (1.91)* 13.73(1.84)* 13.77 (1.69)* 

Treatment -1.69 (7.41) -1.86(7.81) -1.91 (8.22) 

Treatment*Time 11.83 (2.76)* 11.86(2.70)* 11.96 (2.44)* 

 *Significant at the 5% level 
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