
De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee universiteiten in twee landen: 
de Universiteit Hasselt en Maastricht University

Universiteit Hasselt | Campus Diepenbeek | Agoralaan Gebouw D | BE-3590 Diepenbeek
Universiteit Hasselt | Campus Hasselt | Martelarenlaan 42 | BE-3500 Hasselt

2010
2011

FACULTY OF SCIENCES
Master of Statistics: Biostatistics

Masterproef
Longitudinal analysis of an AB/BA cross-over study in
diabetes type 1

Promotor :
Prof. dr. Cristina SOTTO

Promotor :
Mr. JAVIER CASTAÑEDA

Maeregu Woldeyes Arsido 
Master Thesis nominated to obtain the degree of Master of Statistics , specialization
Biostatistics



De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee universiteiten in twee landen: 
de Universiteit Hasselt en Maastricht University

Universiteit Hasselt | Campus Diepenbeek | Agoralaan Gebouw D | BE-3590 Diepenbeek
Universiteit Hasselt | Campus Hasselt | Martelarenlaan 42 | BE-3500 Hasselt

2010
2011

FACULTY OF SCIENCES
Master of Statistics: Biostatistics

Masterproef
Longitudinal analysis of an AB/BA cross-over study in
diabetes type 1

Promotor :
Prof. dr. Cristina SOTTO

Promotor :
Mr. JAVIER CASTAÑEDA

Maeregu Woldeyes Arsido 
Master Thesis nominated to obtain the degree of Master of Statistics , specialization
Biostatistics





 
 

 

      

 

                                   

 

  

      Longitudinal Analysis of an AB/BA Cross-Over Study in Diabetes Type 1 

 

BY 

Maeregu Woldeyes Arsido 

 

 

Internal Supervisor 

Prof. dr.  SOTTO Cristina 

 

 

External Supervisor 

CASTAÑEDA Javier 

 

Thesis submitted in partial fulfilment of the requirements for the degree of 

Master of Science in Biostatistics 

 

 

                                                                                     September, 2011



i 
 

Certification 

 

This is to certify that this report was written by Maeregu Woldeyes Arsido under our 

supervision. 

 

·····················································   Date ······························· 

              Maeregu Woldeyes Arsido                Student 

 

 

 

·····················································   Date ······························· 

               Dr. SOTTO Cristina                           Internal Supervisor 

 

 

 

·····················································   Date ······························· 

               CASTAÑEDA Javier                          External Supervisor 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

      

Acknowledgements 

 

First and foremost, I thank the almighty God for being with me in all aspects to realize my 

dream. 

 

This report has benefited vastly from inspiring communication and joint work with my 

supervisors. I am grateful to Prof. dr. Sotto Cristina for her valuable guidance, intensified 

explanations and encouragement. I have learnt much from working with you. Thank you so 

much. I am heartily thankful to my external supervisor Castaneda Javier whose guidance and 

support enabled me to understand the subject. I have learnt much from your practical 

experiences. I never forget your brotherhood approach.  

 

I wish to express my gratitude to VLIR scholarship for the financial support. I am thankful all 

my professors at center for statistics, Hasselt university.  I would also thank my home country 

friends and relatives in Hasselt. Especially, I thank Birhanu Teshome a final year phd student 

at Hasselt university for his valuable support. Finally, I would like to thank all my family for 

their continued encouragement and support. 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Abstract 

 

Background: Type 1 diabetes is a chronic disease that occurs when the pancreas does not 

produce enough insulin to properly control blood sugar levels. There are several methods to 

deliver insulin to a person with type 1 diabetes. Pump therapy is well established as a “gold 

standard” for insulin delivery, offering improvements over multiple daily injections. In this 

study, we focus on investigating the effect of real-time continuous glucose monitoring 

(CGM).  

Methods: Subjects were randomized to Sensor ON or Sensor OFF arms for 6 months, after a 

1 year run-in period. Following a 4 month washout period, the subjects crossed over the other 

study arm for 6 months. The primary end point was Glycated hemoglobin (HbA1c). The 

linear mixed model in the particular case of two-treatment two-period cross-over design with 

repeated measurements within each period for each subject was employed. Dependence 

among such measurements, within and between periods was handled by modelling the 

covariance structure.  

Results: An overall significant treatment effect was found in favour of the sensor therapy. 

The evolution of treatment effect over time is not different between the two periods. 

Conclusion: The results established adding real-time continuous glucose monitoring (CGM) 

to the existing pump therapy can enable better metabolic control. 

 

 

KEY WORDS: Autocorrelation; Cross-Over design; Diabetes; Linear Mixed Model; period;  

                            Pump therapy; Sensor therapy.      
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1.  Introduction 

Type 1 diabetes is a chronic disease that occurs when the pancreas does not produce enough 

insulin to properly control blood sugar levels. The disease is caused by a complete lack of 

insulin. Since people with type 1 diabetes can't make their own insulin, the discovery of 

insulin in 1921 is considered as an event that changed diabetes mellitus from a death sentence 

to a survivable disease (Elaine and Katja 2010). The disease is difficult to control and patients 

typically develop long-term vascular and neural problems. According to World Health 

Organization (WHO), there are 220 million people in the world are affected with diabetes in 

the year 2011 and this is projected to increase to 366 million by 2030. More than 80 percent 

of diabetes-related deaths occur in low and middle-income countries. Currently, over 90 

percent of the cases are known to be type 2 diabetes, which is caused by inefficient use of 

insulin, excessive body weight and physical inactivity.  

 

The major problem in type 1 diabetes patients is the maintenance of the amount of blood 

glucose concentration within physiological limits. Hyperglycemia (high blood glucose) is the 

culprit behind all the complications related to type 1 diabetes. The closer to the normal blood 

glucose level are held, the less likely complications are. To maintain blood glucose level, 

type 1 diabetes patients must take insulin every day. There are several methods to deliver 

insulin to a person with type 1 diabetes. The most common methods include syringes, insulin 

pens, insulin pumps and continuous glucose monitoring (CGM). The first two methods 

essentially do the same thing that is insulin is injected multiple times a day. But, insulin pens 

gave advantages over syringe method with respect to ease of handling and accuracy.  

 

An alternative to insulin injections is the insulin pump, sometimes called Continuous 

Subcutaneous Insulin Infusion (CSII). The pump delivers a continuous low (basal) dose of 

insulin through a cannula (a flexible plastic tube), which attaches to the body through a small 

needle inserted into the skin. An advantage of the CSII method is greater flexibility with 

meals, exercise, and daily schedule. Though CSII offers improvements over multiple daily 

insulin injections, it suffers from severe shortcomings. Amongst them,  infections at the site 

of needle insertions can occur and stoppage of pump for any reason can lead to diabetic 

ketoacidosis (DKA) in less than half a day. Therefore, blood sugar must be monitored on a 

regular basis to deliver insulin.  
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Continuous glucose monitors (CGM) allow people with diabetes to see their glucose levels 

continuously using a subcutaneous sensor, a transmitter, and a receiving device (Gilliam 

2009). Accessibility of glucose values enables recognition of previously undetected glucose 

levels, direction and rate of change, and glucose trends. Recently, Raccah et al (2009) also 

demonstrated that in patients previously nave to CSII, are switched to insulin pump, those 

with a sensor augmented pump system had a better opportunity for haemoglobin A1c (HbA1c) 

improvements. While glucose sensors can talk directly to insulin pumps, problems with 

automatically calculating the amount of insulin to dispense mean patients must still make 

these decisions. In this way such combined devices still fall short of being a true “artificial 

pancreas.” A number of alternative insulin delivery methods exist. Insulin inhalers are now 

approved for use and insulin patches may be on the horizon.  

 

This study focuses on the comparison of insulin pump (CSII) with real-time continuous 

glucose monitoring (CGM). The general objective of the study is to compare the efficacy of 

the two therapeutic methods of treatment on type 1 diabetic patients. Specifically, we 

investigate a direct comparison of the benefit of Sensor augmented pump therapy compared 

to pump therapy alone using two measurements on each patient at two different treatment 

periods. The evolution of treatment effect can be studied using all the repeated measurements 

within each treatment period. Further, specific time point comparisons may also be interest. 

  

The report is organized as follows. In Section 2, the data set used in the analyses is 

introduced. Section 3 discusses the methods and design of the study. We provide a 

perspective on the cross-over design, reviewing the main developments and related issues.  

Linear mixed model methodology in the context of cross-over design is formulated in Section 

3.2, followed by method of sensitivity analysis for missing data which is in Section 3.6. 

Results of the data are illustrated in Section 4, paying special attention to modelling the 

covariance structure. Finally a general discussion and concluding remarks are given in 

Section 6.  
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  2.  The Data Set 

The data set considered in this study was obtained from a randomized controlled cross-over 

trial conducted in 2011 on Sensor–augmented insulin pump efficacy in type 1 diabetic 

patients. The study was conducted in seven European countries (Austria, Denmark, 

Netherlands, Luxemburg, Italy, Spain and Slovenia). The data set contains information from 

two patient populations. The first one was based on the intention-to-treat (ITT) approach and 

the second population was based on the per protocol (PP) approach. The ITT principle 

provides unbiased comparisons among the treatment groups, since none of the patients is 

excluded and the patients are analyzed according to the randomization scheme. The PP 

approach restricts the comparison of the treatments to the ideal patients, that is, those who 

adhered perfectly to the clinical trial instructions as stipulated in the protocol. There are 153 

randomized patients in total corresponding to the ITT population while 90 patients were 

found to satisfy the PP principle in the two treatment periods. Patients were visited three 

times within a period and the primary end point was measured at each visit. The design of the 

study is presented in Section 3.1. Further, baseline variables and related information are 

recorded. A more elaborative definition of these variables is given below. 

2.1   Primary End Point and Baseline Covariates 

The primary end point was Glycated hemoglobin (HbA1c). It is a form of hemoglobin which 

is measured primarily to identify the average plasma glucose concentration over prolonged 

period of time.  HbA1c serves as a marker for average blood glucose levels over the previous 

months prior to the measurement. According to American Diabetes Association, HbA1c 

greater than or equal to 48 mill mol per litter (≥6.5%) serves as criterion for the diagnosis of 

diabetes. In diabetes mellitus, higher amounts of HbA1c indicate poorer control of blood 

glucose levels. The available treatments are Sensor augmented pump therapy and pump 

therapy alone. The two treatments are given for each patient in two different periods (Section 

3.1). The baseline covariates include: baseline HbA1c measured before period one, Diabetes 

duration at randomization (Diabdur) measured in years, Diabetes related complications 

(DRCO) categorized as no complication or complication, type of insulin at randomization 

(Instype) categorized as type 1 or type 2, Age group (Agegroup) categorized as pediatric or 

adult.  

 

 

 

http://en.wikipedia.org/wiki/Hemoglobin
http://en.wikipedia.org/wiki/Blood_plasma
http://en.wikipedia.org/wiki/Glucose
http://en.wikipedia.org/wiki/Concentration
http://en.wikipedia.org/wiki/Diabetes_mellitus
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3.  Study Design and Methods 

3.1   AB/BA Cross-Over Design 

The study design was based on a cross-over clinical design on subjects suffering from type 1 

diabetes disease. In a cross-over design each subject is randomized to a sequence of 

treatments, with the aim of comparing the effect of individual treatment assignment. Cross-

over designs are most suited to investigate treatment differences for ongoing or chronic 

diseases. Senn (1993) and Pocck (1983) discussed that cross-over designs are highly effective 

in a disease that show fairly stable condition. The feature that distinguishes the cross-over 

design from parallel group design is that measurements on different treatments are obtained 

from each subject. This feature brings with it the advantage that the treatments are compared 

„withinsubjects‟, treatment differences can be obtained without subjective effect. 

 

Although the use of repeated measures on the same subject with different treatment brings 

with it great advantages, Jones and Kenward (2003) emphasised potential disadvantages. The 

most known disadvantage for cross-over clinical trials is the presence of a carry-over effect. 

Carry-over is the possibility that the effect of a treatment given in one period might be 

present at the start of the following period. Though carry-over effect arises in a number of 

ways, all their effect is to bias the comparative effect of individual treatments. To deal with 

carry-over, a wash-out period is typically used to allow the active effects of a treatment given 

in one period to be washed out of the body before each subject begins the next period of 

treatment. In addition to carry-over, drop-outs are disadvantages of cross-over trials. For 

more explanation on these effects we refer to Senn (1993), Jones and Kenward (2003).  

 

The simplest and the most common cross-over design is the AB/BA cross-over design. In an 

AB/BA cross-over design, patients are allocated at random to receive in a first period, either 

treatment A followed by treatment B in a second period, or treatment B followed by 

treatment A. Each subject serves as his or her own control, assuming that study conditions are 

the same from one observation period to the next. We introduce the AB/BA cross-over design 

with application of therapeutic treatment on type 1 diabetic patients. To give a consistent 

symbolic representation of the treatments, we use Sensor augmented pump therapy (Sensor 

ON) as treatment A and insulin pump therapy (Sensor OFF) as treatment B. Based on this 

representation, sequence AB means „ONOFF‟ and sequence BA means „OFFON‟.  
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The total study duration for the patient was 17 months, including a run-in period, two 6-

month treatment periods, and a four month washout period. Subjects who satisfied the initial 

screening criteria entered a one month run-in period. Eligible patients were randomized to 

receive either „Sensor ON‟ or „Sensor OFF‟ for six months of the first period. The subjects 

then switched over to the alterative therapy for a further six months of the second period. Of 

the total 185 subjects recruited in the study, 153 were randomized to the treatments: 77 were 

randomized to sequence ONOFF and 76 were randomized to OFFON sequence. The primary 

end point HbA1c was measured at three visits at each period.  

3.2   Linear Mixed Models 

The defining feature of a longitudinal data model is its ability to study changes over time 

within subjects and changes over time between groups. Cross-over designs in which repeated 

measurements within treatment periods are an example of such studies. The model can handle 

these patterns of correlation and variation. First we will describe the standard linear mixed 

model. Then after, the linear mixed model in the context of cross-over design will be given.   

  

Linear mixed models are often appropriate for representing clustered and therefore dependent 

data or when data are collected hierarchically or when data are gathered over time on the 

same individuals. The general form of linear mixed models is given by: 

          Yi = Xiβ + Zibi + εi , 

where Yi is the 𝑛𝑖- dimensional response vector for subject 𝑖. 𝑋𝑖  and 𝑍𝑖  are the design 

matrices of the predictor variables and the random effect variables respectively, β is  the 

vector of fixed effects, bi  is the vector of random effect parameters and follows 𝑏𝑖  ~ 𝑁 0, D  

and  𝜀𝑖  is an n-dimensional vector of residual components that follows: 𝜀𝑖  ~ 𝑁 0, Σi . 𝐷 is a 

general (𝑞 × 𝑞) covariance matrix for random effects with (𝑖, 𝑗) element corresponding to 

𝑑𝑖𝑗 = 𝑑𝑗𝑖  and Σi  corresponds to (𝑛𝑖 × 𝑛𝑖) covariance matrix for the error terms. 𝑏𝑖  and 𝜀𝑖   

are independent. For more explanation, we refer to Verbeke and Molenberghs (2000).  

 

The distinguishing features of cross-over designs are time-changing covariates that include 

individual treatments and other within-individual covariates might change over time. Because 

of the problems with carry-over effect, there has been disagreement about the appropriate 

parameterization of AB/BA design.  
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One possible general model following Jones and Kenward (1989) can be formulated as: 

       Yijk = μ + λg + πk + τj[k] + other. fixed + si + other. random + εijk   . . . (1) 

 
where in the fixed effect part 𝜇 is the intercept, λg  is the carry-over effect of sequence g for 

g=1, 2, πk  is the effect of period 𝑘, τj[k] is the treatment effect of j in period 𝑘, si  are 

independent and identically distributed as 𝑁(0, 𝜍𝑠
2) denoting random effect of subject 𝑖 and 

εijk  are independent and identically distributed as 𝑁(0, 𝜍2) denoting within subject errors. 

All random effects are independent of each other. A problematic aspect of this 

parameterization for the AB/BA design is the inclusion of the carry-over effect (see Section 

3.1).  

3.3   End-of-Period Analysis 

Though measurements were taken at three visits in each period, we can analyze the last 

measurement of period one and the last measurement of period 2 to study the treatment 

effect. The primary end point, HbA1c is a continuous variable which is taken to be normally 

distributed (Appendix B Figure 8). A period difference was calculated for each subject. To 

construct a statistical model, we assume that 𝑌𝑖𝑗𝑘  is the response variable that can be 

represented by a linear mixed model of the form:    

                                      Yijk = μ + πk +  τj[k]  + Si + εijk  , 

where each parameter had the same meaning as in model 1 in Section 3.2. The representation 

of the model did not include carry-over effect, we hope that a four month wash-out period 

employed in the design possibly avoid the carry-over effect. The interaction between period 

and treatment was also avoided, since interaction of treatment with period intrinsically 

aliased with carry-over effect (Jones and Kenward 2003). In addition, such an interaction 

may emanate from subjects being affected by some factors other than treatment, and/or when 

the effect of a treatment level might depend on the current state of the subjects (Senn 1993). 

The subject effect introduced in the model, Sjk  are declared as random to incorporate the 

information from subjects on the treatment comparisons. Brown and Kempton (1994) 

suggested that additional information on treatment comparisons can be recovered from 

between patients and may be used to increase the precision of the estimate. For estimation 

purpose, restricted maximum likelihood (REML) can be used. 
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3.4   Inference: Likelihood Ratio Tests (LRT) 

The likelihood ratio test (LRT) is a statistical test used to compare hierarchically nested 

models. A relatively more complex model is compared to a simpler model to see if it fits a 

particular data set significantly better. In linear mixed model, a likelihood ratio can be 

derived for fixed effects and variance components. For variance components, LRT based on 

restricted maximum likelihood can be derived for comparing nested models with different 

covariance structures. Valid LRT are also obtained under maximum likelihood estimates.  

Suppose that the null hypothesis of interest is now given by 𝐻0: 𝛼 ∈ Θ𝛼,0  , for some subspace 

Θ𝛼,0 of the parameter space Θ𝛼  of the variance components 𝛼. Let 𝐿𝑅𝐸𝑀𝐿  denote the restricted 

maximum likelihood (REML) likelihood function and −2𝑙𝑛𝜆𝑁 be the likelihood ratio test 

statistic which is defined as: 

                       −2𝑙𝑛𝜆𝑁 = −2𝑙𝑛  
𝐿𝑅𝐸𝑀𝐿 ( 𝜃 𝑅𝐸𝑀𝐿 ,0)

𝐿𝑅𝐸𝑀𝐿 ( 𝜃 𝑅𝐸𝑀𝐿 )
 , 

where 𝜃 𝑅𝐸𝑀𝐿,0 and 𝜃 𝑅𝐸𝑀𝐿  are the maximum likelihood estimates obtained from maximizing 

𝐿𝑅𝐸𝑀𝐿  over Θ𝛼,0 and Θ𝛼 , respectively. It then under some regulatory conditions, −2𝑙𝑛𝜆𝑁 

follows, asymptotically under 𝐻0, a ch-squared distribution with degrees of freedom equal to 

the difference between the dimension of  Θ𝛼  and the dimension of Θ𝛼,0. One of the regulatory 

conditions under which the ch-square approximation is valid is that 𝐻0 is not in the boundary 

of the parameter space Θ𝛼 . In case if 𝐻0 is on the boundary of the parameter space Θ𝛼 , the 

LRT for testing 𝐻0 is often a mixture of chi-squared distribution rather than the classical 

single chi-squared distribution (Verbeke and Molenberghs 2000).  

 

LRT for fixed effects based on maximum likelihood can be derived for comparing nested 

models with different mean structures. The LRT based on REML estimation methods is not 

recommended for model reduction of mean structures as it needs same error contrasts 

(Verbeke and Molenbergs 2000). Suppose that the null hypothesis of interest is given by 

𝐻0: 𝛽 ∈ Θ𝛽,0 , for some subspace of Θ𝛽,0 of the parameter space Θ𝛽  of the fixed effects 𝛽.  

Let 𝐿𝑀𝐿  denote the ML likelihood function and −2𝑙𝑛𝜆𝑁  be the likelihood ratio test statistic 

which is defined as: 

                      −2𝑙𝑛𝜆𝑁 = −2𝑙𝑛  
𝐿𝑀𝐿 ( 𝜃 𝑀𝐿 ,0)

𝐿𝑀𝐿 ( 𝜃 𝑀𝐿 )
 , 

where 𝜃 𝑀𝐿,0 and 𝜃 𝑀𝐿  are the maximum likelihood estimates obtained from maximizing 𝐿𝑀𝐿  

over Θ𝛽,0 and Θ𝛽 , respectively.  
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It then, −2𝑙𝑛𝜆𝑁 follows, asymptotically under 𝐻0, a ch-squared distribution with degrees of 

freedom equal to the difference between the dimension 𝑝 of  Θ𝛽  and the dimension of Θ𝛽,0. 

3.5   Diagnostic Checks for Outliers 

A statistical model represents how one thinks the data were generated. Following model 

specification and estimation, it is of interest to explore the model-data agreement by raising 

questions such as to what extent the model assumptions are satisfied, to refine the model 

components if needed and to identify data points or groups of cases particularly influential on 

the analysis. We are not interested in a model that is either overly stable or overly sensitive. 

Changes in the data or model components should produce corresponding changes in the 

model output.  

 

Unlike in linear models, diagnostics in mixed models is not straight forward. Two kinds of 

residuals can be considered in a conditional and unconditional sense. The marginal residual 

reflects how a specific profile deviates from the overall population mean. Alternatively, the 

subject specific residual (conditional residual) measures how much the observed value 

deviates from subject‟s own predicted regression line. The estimated random effect b 𝑖  can 

also be used as residuals, since they reflect how much a specific profile deviate from the 

population averaged profile. Further, linear mixed models involve two kinds of covariates, a 

matrix of fixed effects and a matrix of random effects. Therefore, it is not clear how leverages 

should be defined, partially because the matrices are not necessarily of the same dimension 

(Verbeke and Molenberghs 2000). In linear models for uncorrelated data, changes in the 

fixed effect estimates, residuals, residual sums of squares, and the variance-covariance matrix 

of the fixed effects can be computed based on the fit to the full data alone. By contrast, in 

mixed models data points can affect not only the fixed effects but also the covariance 

parameter estimates on which the fixed-effects estimates depend. 

3.5.1   Residual Diagnostics Analysis 

A residual is the difference between an observed quantity and its estimated or predicted 

value. Following Schabenberger (2004) we can define marginal residuals rm  as the difference 

between the observed data and the estimated (marginal) mean, rm = yi − xi
,
β . A conditional 

residual is the difference between the observed data and the predicted value of the 

observation, rci = yi − xi
,
β − zi

, bi. These residuals are not suited for outliers and potentially 

influential data points, since the true residuals will exhibit correlations.  
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To account for the unequal variance of the residuals, various studentization are applied. Once 

the residuals are studentized, it can be compared to ±2 yardstick which remains useful in 

mixed models.  

3.5.2   Influence Diagnostics 

Once potential outliers are detected, the next step is to see how influential they are to our 

analysis. Quantifying influence in mixed models is done by the following procedure. First, 

the model is fitted to the data and estimates of all parameters are obtained. Second, one or 

more data points are removed from the analysis and updated estimates of model parameters 

are computed. Third, based on full and reduced data estimates, quantities of interest are 

contrasted to determine how the absence of the observations changes the analysis. The 

influence statistic used for linear mixed model can be overall influence, change in parameter 

estimates, change in precision estimates, etc. An overall influence statistic measures the 

change in the objective function being minimized. In linear mixed models fitted by maximum 

likelihood (ML) or restricted maximum likelihood (REML), an overall influence measure is 

the likelihood distance which is also referred as likelihood displacement, given as:  

 

 𝐿𝐷(𝑈) = 2{𝑙 𝜑  − 𝑙(𝜑  𝑈 )} 

𝑅𝐿𝐷(𝑈) = 2{𝑙𝑅 𝜑  − 𝑙𝑅(𝜑  𝑈 )} , 

Where 𝜑  and 𝜑  𝑈  are the parameter estimates based on Full data and reduced data 

respectively.  𝑙 𝜑   is the loglikelihood function based on the full data set at the full data 

estimates. 𝑙(𝜑  𝑈  is the loglikelihood function based on the full data at the reduced data 

estimates. Once global measures suggest that the points in U are influential, the next is to 

determine the nature of that influence. Where U denote quantities obtained without the 

observations in the set U. The points can affect the estimates of fixed effects, the estimates of 

the precision of the fixed effects, the estimates of the covariance parameters, etc. Cook‟s 

distance and covariance ratio were used to capture the change in the entire parameter vector 

and the effect on the precision of the estimate. Large values of Cook‟s distance indicate that 

the change in the parameter estimate is large relative to the variability of the estimate. Data 

points that have a small Cook‟s distance can still greatly affect hypothesis tests and 

confidence intervals, if their influence on the precision of the estimates is large. For more 

explanation on diagnostics in linear mixed models, we refer to Schabenberger (2004). 
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3.6   Sensitivity Analysis for Missing Data 

 As we described in Section 2, ITT means that all patients randomly allocated to treatments in 

clinical trial should be analyzed together as representing that treatments, whether or not they 

completed, or indeed received that treatments. Verbeke and Molenberghs (2000) suggested 

that if one is working within a pragmatic setting, the event of dropout, for example, may well 

be a legitimate component of the response. There are common approaches to analyze data 

with dropouts. The common methods used to analyze incomplete data are imputation 

methods such as last observation carried forward (LOCF), multiple imputation and other non-

imputation methods such as likelihood-based approaches. The choice of the method depends 

entirely on the mechanism (s) generating the missing values. Little and Rubin (1987) make 

important distinctions between different missing value processes. 

 

 A completely random (MCAR) dropout corresponds to independence of the dropout process 

and the unobserved and observed outcome. If the dropout is independent of unobserved 

outcome conditional on the observed outcome, then the dropout process is missing at random 

(MAR). A non-random dropout (MNAR) is one in which dropout is dependent on the 

unobserved outcome. We will fit a model based on LOCF method and then sensitivity 

analysis would be carried out to investigate whether the chosen methods were appropriate for 

the missingness mechanism observed in the data.  Assume that the density of the data is given 

by 𝑓(𝑦𝑖 , 𝑑𝑖 |𝜃, 𝜑) , where the parameter vectors 𝜃 and  𝜑 describe the measurement and 

missingness processes, respectively. The missingness mechanisms are based the factorization 

of the density of the data; 

 

                    𝑓(𝑦𝑖 , 𝑑𝑖|𝜃, 𝜑)=    𝑓(𝑦𝑖 |𝜃) 𝑓(𝑑𝑖 |𝑦𝑖 , 𝜑), 

 
where the first factor is the marginal density of the measurement process and the second one 

is the density of the missingness process conditional on the outcomes. This factorization 

forms the so called selection modelling approach, on which we want to base our sensitivity 

analysis. In cases where dropout could be related to the unobserved response (MNAR), 

dropout is no longer ignorable, implying that treatment effect can no longer be tested or 

estimated without explicitly taking in to account the dropout model.  
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We assume that the probability for dropout at occasion 𝑗  𝑗 = 2, … , 6 , given the subject was 

still in the study at the previous occasion, follows a logistic regression model, in line with 

Diggle and Kenward (1994), 

𝑙𝑜𝑔𝑖𝑡 𝑃 𝐷𝑖 = 𝑗 |𝐷𝑖 ≥ 𝑑, 𝑦𝑖  = 𝜑0 + 𝜑1𝑦𝑖𝑗 + 𝜑2𝑦𝑖 ,𝑗−1 , 

where 𝐷𝑖  is a scalar dropout indicator and it is assumed that 𝑑𝑖 ≥ 2. 𝑦𝑖𝑗  is the current 

observation predicted from the assumed model, 𝑦𝑖 ,𝑗−1 is the previous observation; and 𝜑1 is 

the parameter estimate of 𝑦𝑖𝑗 , 𝜑2 is the parameter estimate of 𝑦𝑖 ,𝑗−1 . Following Verbeke and 

Molenberghs (2000), the model describes a binary outcome conditional on covariates. 

4.  Results 

 4.1   Exploratory Data Analysis (EDA) 

We start with exploratory data analysis to get more insight in to the structure of the data. Any 

outstanding features were identified by creating and inspecting graphs. Individual and group 

profiles were assessed to highlight any patterns relevant to the scientific question and identify 

unusual individuals or observations. The individual profiles help to understand the general 

trend over time within subjects.  

 

The individual profiles and average evolution shown in Figure 1 plots HbA1c against time 

points for ITT population. The first three time points corresponds to period 1 and the other 

three time points are in period 2. The profiles were obtained from a randomly selected 20 

subjects from 153 subjects. Variability between subject increases from period 1 to period 2. 

For most subjects, the variability of measurements at the beginning of the study was smaller 

than at the end of the study. Variability between subjects was much greater than variability 

within subjects. There seems to be some outlier measurements in period 2 as compared to 

period 1. The average evolution indicates, there seems no difference between treatment 

groups at the beginning of the study. But over time differences start to appear as subjects 

receiving „Sensor ON‟ treatment showed a downward HbA1c level while, the „Sensor OFF‟ 

treatment group had constant HbA1c level throughout period 1. In the „washout‟ period in 

which no treatments were given, HbA1c increases for „Sensor ON‟ group. In period 2, the 

same pattern can be seen as period 1, in which HbA1c decreases for „Sensor ON‟ group. The 

plot over time may indicate significant interaction between time and treatment. 



12 
 

                                                                                                                 

Figure 1: Individual profiles of selected patients (left) and Average evolution (right) for ITT 

population. 
 

Individual profiles and average evolution by treatment sequence were also plotted for PP population 

as shown in Figure 2. The general pattern observed was the same as the ITT profile analysis. 

However, the variability between subjects in PP was more stable than ITT throughout the two periods.    

            

 

Figure 2:  Individual profiles of selected patients (left) and Average evolution (right) for PP. 

  

The summary statistics of the response of interest (HbA1c) at each time point is presented in 

Appendix A, Table 7. The average HbA1c and the standard deviation in ITT are consistently 

greater than those of PP population.  
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Further, the variability increases with time point in both cases. We noted that several 

measurements are missing for some subjects. We then need to explore the extent of 

missingness in the data. 

4.2   Exploring Missingness Patterns 

The problem of dealing with missing values is common in the analysis of longitudinal or 

repeated measurements data. Indeed, it is common in clinical trials, but the effects are more 

sever in cross-over design (Senn 1993). As can be seen in Table 1, from the total number of 

subjects (153) at the time of randomization, 137 subjects or 89.54 percent of the subjects had 

complete measurements. A total of 16 subjects did not complete the study, from which 14 

subjects or 9.15 percent were dropouts.  There are six dropouts at early stage of the study in 

the first period of first time point. We need to account these patterns of missingness to 

analyze the data under the intent-to-treat (ITT) principle. 

 

Table 1: Overview of missingness patterns and their corresponding frequencies 

                               „O‟   indicates observed and „M‟ indicates missing. 

                                                                    Visit time Point 
Month 1 Month 3 Month 5 Month 6 Month 8  Month 10 Number   Percent 

                                                                    Completers   
       O       O       O      O      O        O 137 89.54 

                                                                    Dropouts   
O O O O O M 1 0.65 

O O O O M M 3 1.96 

O O O M M M 2 1.31 

O O M M M M 2 1.31 

O M M M M M 6 3.92 

                                                                   Total dropout 14 9.15 

                                                 Non-monotone missingness               2        1.31 

 

4.3   End-of-Period Analysis 

The results of end-of-period analysis (measurement at the end of each period) are presented 

in Table 2. The estimated treatment difference for ITT population was -0.4340 with standard 

error of the treatment difference 0.0593.  The P-value < 0.0001 showed that a significant 

treatment difference was obtained. This signifies that the estimate of HbA1c on Sensor ON 

group is less than on Sensor OFF group by 0.4340, which indicates that the efficacy of the 

first treatment (Sensor ON) is better than the second treatment (Sensor OFF). The estimated 

95% confidence interval : 
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                           −0.4340 ± 1.96 0.0593 = [−0.550,−0.3177]. 

The estimated treatment difference for PP population was -0.5218 with a standard error of   

0.0773 and significant p-value =0.0001. Like ITT, the PP analysis also showed that the 

Sensor augmented therapy improved the biological function. The estimated confidence 

interval would be: 

 −0.5218 ± 1.96 0.077 = [−0.673, −0.371]. 

 

 As can be seen from the covariance parameters in Table 2, the subject variance (the between) 

component is larger than the residual variance (the within) component. This is an indication 

that the cross-over trial design is an appropriate choice for the Sensor augmented therapeutic 

treatment on type 1 diabetic patients. By declaring patient as a random, the variability of 

within patient contrast is reduced. For example, for ITT the standard error of the treatment 

difference for fixed patient effect was 0.1047. The standard error was reduced to 0.0593 by 

declaring patient as a random; which means the precision of the estimated treatment 

difference was improved by 48 percent. 

 

Table 2: Parameter Estimates from End-of-period analysis. (S.E = standard Error) 

  ITT Population PP Population 

Effect Parameter Estimate S.E P-value Estimate SD P-value 

Intercept 𝜇 8.4731 0.08343 0.0001 8.2454 0.0889 0.0001 

period 𝜋 -0.0037 0.06395 0.8054 0.0142 0.0773 0.8541 

treat 𝜏 -0.4340 0.06394 0.0001 -0.5218 0.0773 0.0001 

Least square Means       

Sensor ON        𝜏1 8.0373 0.07393 0.0001 7.7308 0.0780 0.0001 

Sensor OFF       𝜏2 8.4712 0.07393 0.0001 8.2525 0.0780 0.0001 

Variance components       

subject 𝛿𝑠
2 0.5601 0.0864  0.2808 0.0651  

residual 𝜍2 0.2841 0.0347  0.2655 0.0400  

Overall treatment effect 

 𝜏1  -  𝜏2 -0.4340 0.0593 0.0001 -0.5218 0.0773 0.0001 

 

The variability of the measurements analyzed above can also be verified from Appendix B 

Figure 7. A randomly selected 20 subjects over the treatment group at the end of each period 

showed that larger variability between subjects and smaller within variability. It can be seen 

that subject‟s HbA1c showed decreasing trend when the subject crossed to the „Sensor ON‟ 

treatment type. 
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4.4   Linear Mixed Model 

In the analysis presented in Section 4.3, measurements from the end of each period were 

analyzed to compare the treatments. However, the data fall within the realm of continuous 

longitudinal data and hence can be modelled by use of linear mixed model. Fitting linear 

mixed models implies that an appropriate mean structure as well as covariance structure 

needs to be specified. An appropriate covariance model is essential to obtain valid inferences 

for the parameters in the mean structure.  

4.4.1   Modelling the Covariance Structure 

In a cross-over design, subjects are administered the treatment in each period in a randomly 

assigned sequence of treatments. After the subject receives the treatment, a longitudinal series 

of measurements are taken on each subject on each period. The dependence among such 

measurements, within and between periods, is important in developing models to account for 

the structure of the cross-over study. Lindsey (1993) and Byrom et al (1999) argue that where 

it is possible, modelling stochastic dependence among longitudinal measurements directly by 

construction of the covariance matrix is more appropriate than doing it indirectly by random 

coefficients related to time. 

In modelling these data we need to take into account two types of covariance patterns among 

measurements from the same subject: there are dependences (1) among measurements in the 

same treatment period, and (2) among measurements from different treatment periods. The 

approach considered is to fit a model with a direct product covariance structure to specify the 

within subject variance-covariance matrix from two periods, thus to examine the between and 

within period correlation. Let say the variance of measurement error at first period is 𝜍1
2 and 

period two measurement error variance is 𝜍2
2. The covariance between the two periods is 

given by  𝜍12
2 . The unstructured UN) period covariance (V) can be written of the form:   

 

                                      













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







2
212

12

2
1

V   

  

The within period correlation structure can be handled by first order autoregressive structure 

AR (1) with parameter  𝜌.   



16 
 

The AR (1) structure assumes that the covariance between two measurements 𝑌𝑖𝑗  and 𝑌𝑖𝑘  

from the same subject 𝑖 in the same period at time point 𝑗 𝑎𝑛𝑑 𝑘 is the form 𝜌|𝑡𝑖𝑗 −𝑡𝑖𝑘 | and the 

within period matrix ( ) can be written as: 
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from these two set of matrices, we can construct the within subject matrix, a direct product 

covariance structure (Galecki 1994).   
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Thus, the above model assumes the two periods share a common within period correlation as 

measured by AR (1). Some other within period covariance structure can also be compared 

with AR (1), if they improve the fit of the model. We compared the direct product covariance 

of unstructured with AR (1) and unstructured with compound symmetry (CS). The CS 

assumes the same covariance between pairs of measurements within period. Table 3 below 

presents the covariance parameter estimates with AIC (Akaike information criteria) under 

UN AR (1) and UN CS. Smaller AIC indicates a better fit. It can be seen that the AIC 

for UN AR (1) is less than with that of  UN CS. The model with UN AR (1) better 

fits the data and we use AR (1) to account within period covariance for the remainder of 

analysis. 
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The two periods are independent if the covariance between the periods is zero and the matrix 

V has the form:  
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 which can be tested by the null hypothesis  𝐻0: σ12 = 0.  The estimate of these parameters 

in our data can be seen in Table 3. The estimate of the covariance parameter: σ12 = 0.0086 

with  𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.5749. We can conclude that there is no significant correlation between 

periods.  

 

Table 3: Covariance parameter estimates under two direct product structures, S.E=standard 

error  

            UN AR (1)            UN CS 

Effect Estimate     S.E P-value  Estimate   S.E P-value 

𝜍1
2 0.2522 0.0224 0.0001  0.2377 0.0203 0.0001 

σ12  0.0086 0.0153 0.5749  -0.0049 0.0138 0.7214 

𝜍2
2 0.2754 0.0281 0.0001  0.2456 0.0232 0.0001 

𝜌 0.4143 0.0487 0.0001  0.2365 0.0528 0.0001 

Fit statistic: AIC        

                       1491.7                     1529.6 

 

The within subject matrix can be reduced, since the insignificant σ12  was removed. The 

subjects were declared as a random to account for heterogeneity among subjects. Thus, the 

correlation of all measurements in the two periods can also be handled by random subject 

effect (𝜍𝑠
2).  Further, the within subject matrix, discussed above assumes the two period share 

the same within period AR (1) structure. However, there is no guarantee that these should 

take a particular simple form. Jones and Kenward (2003) assumed the stability of a 

conventional cross-over design to imply that the patterns of variances and correlations that 

we observed in one treatment period will be similar to these in a second treatment period. 

This is a very strong assumption and we then assume that the covariance structure in each 

period is different. Later it will be tested whether the two periods are homogenous or not. 

Now, the AR (1) structure assumes that the covariance between two measurements 𝑌𝑖𝑗  and 



18 
 

𝑌𝑖𝑘  from the same subject 𝑖 is the form 𝜌1

|𝑡𝑖𝑗 −𝑡𝑖𝑘 |
 if the measurements are in period 1 and 

𝜌2

|𝑡𝑖𝑗 −𝑡𝑖𝑘 |
 if the measurements are in period 2.  

We had two periods and three measurements within each period. Then, the within subject 

matrix can be presented of the form:  
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  4.4.2   Modelling the Mean Structure 

In this Section, it is interest to explore the effects of baseline covariates on the response 

variable 𝐻𝑏𝐴1𝑐. In cross-over design covariates might not be used if their inclusion did not 

improve the precision of the treatment effect. Senn (1993) claimed that the baseline 

measurement before each period was the only genuine covariate that changes with treatment. 

However, the covariates might be related to the patient‟s response and then the possibility 

exists that some of the between-subject variability can be accounted for by the covariate 

values. In this way the between subject variance might help to increase the precision of 

treatment effect. We then investigate the effect of each baseline covariate on the patient‟s 

𝐻𝑏𝐴1𝑐 level in the presence of treatment and period. Let  𝐻𝑏𝐴1𝑐𝑖𝑗𝑘𝑙  be the measurement on 

subject 𝑖 in period 𝑗, for j=1, 2, treatment type 𝑘, for k=1, 2 at time in month 𝑙, for 𝑙=0, 3, 6, 

10, 13 and 16. We then have a preliminary model as follows: 

 

𝐻𝑏𝐴1𝑐𝑖𝑗𝑘𝑙 = 𝛽0 + 𝛽
1
𝑇𝑟𝑒𝑎𝑡𝑘 + 𝛽

2
𝑃𝑒𝑟𝑖𝑜𝑑𝑗 + 𝛽

3
𝐻𝑏𝐴1𝑐𝐵𝑖 + 𝛽

4
Diabdur𝑖 + 𝛽

5
𝑡𝑖𝑚𝑒𝑙 + 

                  𝛽6𝐷𝑅𝐶 + 𝛽7Instype𝑖 + 𝛽8𝐴𝑔𝑒𝑔𝑟𝑜𝑢𝑝 +  𝛽9𝑇𝑟𝑒𝑎𝑡𝑘 . 𝑡𝑖𝑚𝑒𝑙 + 𝛽10𝑃𝑒𝑟𝑖𝑜𝑑𝑗 . 𝑡𝑖𝑚𝑒𝑙 +

                       𝛽11𝑃𝑒𝑟𝑖𝑜𝑑𝑗  . 𝑇𝑟𝑒𝑎𝑡𝑘 + 𝛽12𝑃𝑒𝑟𝑖𝑜𝑑𝑗  . 𝑇𝑟𝑒𝑎𝑡𝑘 . 𝑡𝑖𝑚𝑒𝑙 + 𝑆𝑖 + 𝜀𝑖𝑗𝑘𝑙  . . . . . . . . . . . . . . F   

 

Where  𝛽𝑔 , 𝑔 = 0, . .  , 12 are fixed effect parameters, 𝑆𝑖 : the random subjects effect and 𝜀𝑖𝑗𝑘𝑙   are 

random error terms. The assumptions for the random terms are 𝜀𝑖𝑗𝑘 𝑙  are independent and 
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normally distributed with zero mean and variance 𝜍2
1 for period 1 and 𝜍2

2 for period 2. 𝑆𝑖  

are independent and normally distributed with zero mean and variance 𝜍𝑠
2. 

4.4.3   Model Reduction 

The preliminary model (F) in Section 4.3.2 is bound to yield a large number of parameters, 

hence the need for parsimony. Further, overparametrization of the covariance structure leads 

to inefficient estimation and potentially poor assessment of standard errors for estimates of 

the mean response profile (fixed effects), whereas a too restrictive specification invalidates 

inference about the mean response profile when the assumed covariance structure does not 

hold (Altham 1984). Since inference for the mean structure depends on covariance structure, 

reduction of the covariance structure has been done first.  

 

We can test whether we really need random subject components. The null hypothesis to test the need 

for random subject effect is given by:  𝐻0 : 𝜍𝑠
2 = 0. Since testing this hypothesis is on the 

boundary of the parameter space of the alternative hypothesis as we discussed in Section 3.4, 

asymptotic chi-squared null distribution for the likelihood ratio test statistic is not valid.  

Therefore a mixture of chi-squared distribution under 0 (model with no random effect) and 1 

(model with random subject effect) degree of freedom (𝜒0:1
2 ) can be used. The loglikelihood 

from model under 𝐻0  is equal to 1550.7 and loglikelihood from model with random subject 

effects is equal to 1493.6. Likelihood ratio test is give by 1550.7 – 1493.6 = 57.1, with  𝑃 −

𝑣𝑎𝑙𝑢𝑒 = 0.0001, which is extremely significant to reject the null hypothesis and we retain 

the random subject effect in the model.   

 

As discussed in Section 4.3.1, the within covariance structure of the two periods are assumed 

to be heterogeneous. We then require test for homogeneity of covariance structure across 

periods. That is, it tests whether varying the covariance parameters by the period effect 

provides a significantly better fit compared to a model in which different periods share the 

same parameter. The null hypothesis to be tested is given by: 𝐻0:  𝜌1 = 𝜌2  𝑎𝑛𝑑 𝜍1
2 = 𝜍2

2.  

Based on the restricted maximum likelihood, the likelihood ratio test statistic between the 

heterogeneous covariance structure model and model under 𝐻0  is equal to 25.6 with 2 degrees 

of freedom. The corresponding 𝑃 − 𝑣𝑎𝑙𝑢𝑒 =   0.0001 is significant. Hence, there is 

insufficient evidence to accept the assumption of equal covariance structure among the two 

periods. We then conclude that the final covariance structure would be: different first order 

autoregressive correlations for each period and random subject effects component. 
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The final covariance structure for the model has been selected; the test discussed above 

becomes available for the fixed effects in the preliminary mean structure. We employed LRT 

using ML estimation for reduction of mean structures keeping the same covariance structure. 

The null hypothesis  𝐻0: 𝛽7 = 0  tests the significance of the baseline covariate, insulin type 

(Instype). The LRT from the full (F) model in Section 4.4.2 and the same model under 𝐻0 

was found to be 2.4 and  𝑃 − 𝑣𝑎𝑙𝑢𝑒 =   0.1213  with 1 degree of freedom, resulting failure 

to reject 𝐻0, implying no effect of insulin type. The LRT for the baseline covariates age group 

(Agegroup) and diabetes related complications (DRC) are 3.2 and 1.8 with their 

corresponding 𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠 of 0.0765 and 0.1797 respectively each with 1 degree of freedom. 

There is no significant effect of these covariates either.  

 

The next step was to test period related covariates, this enables us to understand whether 

effects are changing across period or the same effects can be obtained in each period. Higher 

order interaction effects were evaluated first then after the main effects were evaluated and 

removed if they are insignificant. The null hypothesis 𝐻0: 𝛽12 = 0, tests whether the evolution 

of the treatment effect in each period was different. The calculated LRT= 0.2 and 𝑃 −

𝑣𝑎𝑙𝑢𝑒 =   0.6547 with 1 degree of freedom. We do not reject 𝐻0 and conclude that no effect 

of period by treatment by time. This indicates the treatment evolution in each period is the 

same. The other period related factor is period by time interaction which can be tested using 

the null hypothesis  𝐻0: 𝛽10  = 0. The calculated LRT= 1.3 and  𝑃 − 𝑣𝑎𝑙𝑢𝑒 =   0.2542 with 1 

degree of freedom. We do not reject 𝐻0 and conclude that no effect of period by time 

interaction. Again we can conclude that the time trend was the same in each period. The null 

hypothesis 𝐻0: 𝛽11 = 0 tests the effect of treatment in each period. The LRT= 26.9 and  

𝑃 − 𝑣𝑎𝑙𝑢𝑒 =   0.0001 with 1 degree of freedom. Since this is a significant test, we reject the 

null hypothesis and conclude that different treatment effect observed in each period. Period 

by treatment significant mean, we do not test period as a main effect since the effect is 

apparent from the interaction term. All the other remaining effects are significant and the so 

obtained final model can be written of the form: 

 

𝐻𝑏𝐴1𝑐𝑖𝑗𝑘𝑙  =  𝛽0 + 𝛽
1
𝑇𝑟𝑒𝑎𝑡𝑘 + 𝛽

2
𝑃𝑒𝑟𝑖𝑜𝑑𝑗 +  𝛽

3
𝐻𝑏𝐴1𝑐𝐵𝑖  +  𝛽

4
𝐷𝑖𝑎𝑏𝑑𝑢𝑟𝑖  +  𝛽

5
𝑡𝑖𝑚𝑒𝑙 + 

                                     𝛽6𝑇𝑟𝑒𝑎𝑡𝑘 . 𝑡𝑖𝑚𝑒𝑙 +  𝛽7𝑃𝑒𝑟𝑖𝑜𝑑𝑗  . 𝑇𝑟𝑒𝑎𝑡𝑘 + 𝑆𝑖 + 𝜀𝑖𝑗𝑘𝑙  . 
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4.4.4   Results from Final Model  

The parameter estimates and standard errors from the final model are shown in Table 4. The 

same procedures were followed for model building and reduction in PP population data. The 

same type of covariates and covariance structure were obtained. A significant treatment effect 

was obtained in both cases. Since treatment by time was found to be significant with p-value 

= 0.0001, the marginal interpretation of the treatment would depend on the interaction term. 

The parameter estimate of the interaction for ITT was -0.0851 with standard error 0.0124. 

This implies HbA1c level will reduce over time in subjects receiving „Sensor ON‟ therapeutic 

method. The reduction was in line with end of period analysis in Section 4.3 and can be 

observed from the average evolution profile by treatment group. The corresponding 95% 

confidence interval can be estimated as: −0.0851 ± 1.96 0.0124 = [−0.1094,−0.0608]. 

The estimated period by treatment interaction was -1.0212 with standard error 0.1959. This 

parameter estimate also implies that average HbA1c levels  decrease when the „Sensor ON‟ 

therapeutic method was applied in the first period compared to „Sensor ON‟ was given  in the 

second period.  

 

Inference can be made not only over time, but also at specific time points might be interest. 

For example, from Figure 1 exploratory analysis of HbA1c on „Sensor ON‟ treatment group 

starts to decrease at the first month of the study. At month 3, HbA1c continues to decrease 

further and it starts to increase after month 6.  The interest was to test whether the reduction 

of HbA1c from month 3 to month 6 is statistically significant. The approximate F-statistic of 

contrast between the two time points is equal to 1.94 with 𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.164. The 

decrement of HbA1c level from month 3 to month 6 using „Sensor ON‟ treatment is not 

significant. However, the mean difference between the two treatment groups at month 3 (F-

statistic= 13.73, 𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.0002) and at month 6 (F-statistic= 21.20, 𝑃 − 𝑣𝑎𝑙𝑢𝑒 =

0.0001) were significant. As can be seen in Table 4, the positive estimate of the baseline 

HbA1c measure indicates that patients who have large HbA1c at baseline will also have large 

subsequent HbA1c score, which in turn imply worse health condition of the patient. While 

the negative estimate of diabetic duration (in years) may imply that subjects who developed 

type 1 diabetes earlier, the less controlled their blood sugar, implies the higher the risk of 

complications.  
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 The estimated treatment evolution in PP population was -0.0999 with standard error  0.0151. 

The 95% confidence interval could be: −0.0999 ± 1.96 0.0151 = [−0.1295,−0.0703]. It 

can be seen that the estimate is greater than the ITT in absolute value although the difference 

is not large. The PP population is more sensitive to show treatment efficacy. This is in line 

with Garrett (2003) who questioned the conservative nature of the PP. The author illustrated 

that there can be occasions where the PP analysis produces an unbiased estimate for a 

particular model chosen. The more widely accepted principle in the literatures suggest that 

the most liable analysis of a trial is based on ITT, which consists of considering all 

randomized patients, regardless of any protocol violations. According to the influential ICH 

E9 guideline issued in 1998, direct comparison of these two populations was more 

complicated, since the two principles play different roles. Accordingly, for superiority trials 

the ITT strategy is used in the primary analysis.   

 

Table 4: Parameter estimates from linear mixed model for ITT and PP (S.E=standard error). 

  Intention-to-treat (ITT)    Per-Protocol (PP) 

Effect Parameter Estimate S.E P-value  Estimate S.E P-value 

Intercept 𝛽0 2.1217 0.5435 0.0001  3.0028 0.6143 0.0001 

Treatment 𝛽1 0.9771 0.1890 0.0001  1.1733 0.2274 0.0001 

period 𝛽2 0.1639 0.1243 0.1880  0.1193 0.1463 0.4152 

Baseline  𝛽3 0.7541 0.0611 0.0001  0.6479 0.0689 0.0001 

Diabetic duration 𝛽4 -0.0120 0.0034 0.0006  -0.0108 0.0035 0.0034 

Time 𝛽5 0.0124 0.0088 0.1576  -0.0024 0.0106 0.8219 

Treatment. Time 𝛽6 -0.0851 0.0124 0.0001  -0.0999 0.0151 0.0001 

Treatment. period 𝛽7  -1.0212 0.1959 0.0001  -1.2690 0.2219 0.0001 

 Covariance Parameters 

Subject  effect 𝜍𝑠
2  0.1390 0.0248   0.0771 0.0212  

Autocorrelation 1 𝜌1  0.1570 0.0765   0.1091 0.1006  

Measurement error 1 𝜍1
2  0.2014 0.0169   0.1665 0.0178  

Autocorrelation 2 𝜌2  0.5976 0.0467   0.6299 0.0584  

Measurement error 2 𝜍2
2  0.3437 0.0358   0.3203 0.0438  
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5.  Model Adequacy 

The adequacy of the final linear mixed model can be checked for both ITT and PP 

populations. Influential outlier investigation can be done, but removal of outlying subject 

opposes the principle of ITT; this was done for PP model (Section 5.1). Results for sensitivity 

analysis of missing data were presented (Section 5.2) for the ITT model. 

 5.1   Diagnostics for Outliers 

To detect unusual observations we use the range of the studentized residuals. From Appendix 

B Figure 11, the histogram for marginal and conditional residuals can be seen. The marginal 

residuals are useful to detect the fixed effect components. Conditional residuals are useful to 

detect the random effect components.  In both cases, residuals are observed outside the 

yardstick of [-2, 2], which needs further investigation for influence. Results from restricted 

likelihood distance (RLD), given in Figure 3, indicate that subject with id # Eur0309019 

influenced the REML solution more than the other subjects. 

 

 Subjects with id # Eur0308022, # Eur0307011, # Eur0309029 and # Eur0306021 had 

relatively high restricted likelihood distance. Since RLD is an overall influence diagnostic, 

we require Cook‟s D and COVRATIO to diagnose specific effects. Subjects with the largest 

effect on the fixed effects estimates are # Eur0309019, # Eur0307011 and # Eur0306021 

Appendix B (Figure 10). Except for subject # Eur03060211, the other subjects have 

COVRATIO values less than one, implying the precision of the parameters was not affected 

after the subjects were removed from the analysis. The stability of the precision of estimate 

was important, since hypothesis tests or confidence intervals about β may not be distorted. 

Influence diagnostic regarding the covariance parameters are shown in Appendix B (Figure 

10). Again the influence of subject # Eur0309019 far exceeds that of other subjects in these 

data. This is expected since its restricted likelihood distance is substantial, while its impact on 

the fixed effects was rather moderate. The large value Cook‟s D of covariance parameters 

shows this subject‟s impact on the covariance parameter estimates.  
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Figure 3: Restricted likelihood distance. 

     

These estimates are not altered extremely by the removal of each subject. The covariance 

parameter estimates can also be evaluated deleting each subject in turn. The influence plots 

for the random subject effect and AR (1) for the first period are shown in Figure 4. As 

expected the suspected subject # Eur0309019 altered the covariance parameter.  
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Figure 4: Fixed effect deletion estimates and covariance parameter deletion estimates. 

 

We can see that the three subjects that have highest overall influence measure (RLD) appear 

to have large values of Cook‟s distance. Further, subject # Eur0309019 consistently altered 

the fixed effect solution and the covariance parameters. We then study the observed and 

predicted profile over time for this subject and the other three subjects that influenced the 

REML solution. As can be seen from Figure 5, the four subjects predicted profiles are not 

well fitted.    

  

 

      



26 
 

      

 

Figure 5: Observed and predicted profile of 4 subjects having highest restricted likelihood 

distance. 

 

The overall average profile is shown in Appendix B Figure 12 and can be used to observe 

how the influential subject can influence the evolution.  The prediction was fitting pretty well 

to the data. The influential ability of the subjects discussed above could not be reflected in the 

overall evolution. This may be reasonable that only few subjects are evolving differently as 

compared to the crowd of the subjects. The results of model with and without the influential 

outlying subjects are presented in Table 5. Though there is no dramatic change as a result of 

excluding the influential subjects, some change occurred in parameter estimates and standard 

error. The estimated HbA1c was -0.0999 for treatment evolution over time. Exclusion of the 

said subjects mean the estimate was -0.0936. The precision of the estimate 0.0151 was almost 

unchanged.  As discussed above, the impact on covariance parameter estimates was relatively 

large as compared to the impact on the fixed effect estimates. For example the estimate of 

random subject effect 0.0771 was reduced to 0.0704 with exclusion of the subjects. The 

estimated AR (1) correlation parameters are reduced from 0.1091 to 0.0939 in period 1 and 

from 0.6299 to 0.5512 in period 2. 
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Table 5: Parameter estimates with outlying subjects and without outlying subjects ,S.E=standard error 

               With outliers        Without outliers 

Effect  Estimate S.E P-value  Estimate S.E P-value 

Intercept 𝛽0 3.0028 0.6143 0.0001  3.1812 0.5917 0.0001 

Treatment 𝛽1 1.1733 0.2274 0.0001  1.1898 0.2196 0.0001 

period 𝛽2 0.1193 0.1463 0.4152  0.1468 0.1403 0.2961 

Baseline  𝛽3 0.6479 0.0689 0.0001  0.6250 0.0665 0.0001 

Diabetic duration 𝛽4 -0.0108 0.0035 0.0034  -0.0118 0.0035 0.0012 

Time 𝛽5 -0.0024 0.0106 0.8219  -0.0071 0.0105 0.4992 

Treatment. Time 𝛽6 -0.0999 0.0151 0.0001  -0.0936 0.0149 0.0001 

Treatment. period 𝛽7  -1.2690 0.2219 0.0001  -1.3229 0.2137 0.0001 

Covariance Parameters 

Subject  effect 𝜍𝑠
2  0.0771 0.0212   0.0704 0.0196  

Autocorrelation 1 𝜌1  0.1091 0.1006   0.0939 0.1001  

Measurement error 1 𝜍1
2  0.1665 0.0178   0.1618 0.0173  

Autocorrelation 2 𝜌2  0.6299 0.0584   0.5512 0.0696  

Measurement error 2 𝜍2
2  0.3203 0.0438   0.2476 0.0338  

5.2   Sensitivity Analysis for Missing Data Mechanism  

In this Section, the results of the methodology discussed in Section 3.6 are presented. We 

consider the relation of the dropout to the current and previous observations. The fitted 

dropout model can be written in form: 

 

         𝑙𝑜𝑔𝑖𝑡 𝑃 𝐷𝑖 = 𝑗 |𝐷𝑖 ≥ 𝑑, 𝑦𝑖  = −10.010 + 0.140𝑦𝑖𝑗 + 0.517𝑦𝑖 ,𝑗−1,        (1) 

 

Where 𝑦𝑖𝑗  is the current observation (unobserved) predicted from the assumed model, 𝑦𝑖 ,𝑗−1 

is the previous observation; and 𝜑1 = 0.140 is the parameter estimate of 𝑦𝑖𝑗 , 𝜑2 = 0.517 is 

the parameter estimate of 𝑦𝑖 ,𝑗−1. By setting the hypothesis 𝐻0: 𝜑1 = 0 we claim that dropout 

is no longer allowed to depend on the current measurement. The likelihood ratio test statistic, 

comparing the maximized likelihood under model (1) with the maximized likelihood under 

the same model with 𝜑1 = 0, equals 𝐿𝑅𝑇 = 1.354, which is highly insignificant (P-value 

=0.2446) on 1 degree of freedom. To test the hypothesis corresponding to  𝐻0: 𝜑1 = 𝜑2 = 0, 

this means dropout is independent of outcome (MCAR). The likelihood ratio test statistic, 
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comparing the maximized likelihood under model (1) with the maximized likelihood under 

the same model with   𝜑1 = 𝜑2 = 0,  equals 𝐿𝑅𝑇 = 138.68, which is highly significant (P-

value < 0.0001) to reject the null hypothesis on 1 degree of freedom. Since dropout do not 

depends on unobserved measurement, we then conclude that the sensitivity analysis support 

MAR dropout mechanism. 

 

The model can be refitted using methods that are valid under MAR assumptions. In line with 

the ITT principle, imputation by LOCF is prominently used.  However, Molenberghs and 

Kenward (2007) suggested that the likelihood based-ignorable analysis is fully consistent 

with ITT. It consists in applying likelihood-based models like linear, generalized linear and 

non-linear mixed models to longitudinal data without modeling the missingness process. The 

disadvantage in LOCF is that it depends on unrealistic assumptions, such as constant subject 

profile over time and its validity under MCAR. While the likelihood approach can be seen as 

a proper way to accommodate information on a subject efficiently, the method is valid only 

under MAR. An alternative to method which handles missingness under MAR mechanism is 

the Multiple Imputation (MI). MI was used to acknowledge the uncertainty of missing value 

by filling 4 times to generate 4 data sets which are analyzed using standard procedures and 

the results were combined into a single inference. Results from LOCF, likelihood based-

ignorable analysis and MI are shown in Table 6.  

 

The application of the methods in our data set indicates that LOCF had more conservative 

estimates than likelihood based approach. For example, the treatment difference over time 

using LOCF was -0.0851 with standard error 0.0124; using likelihood based approach, the 

treatment difference over time was -0.09118 with standard error 0.0132. The estimate using 

multiple imputations yields -0.0881 with standard error 0.0128. It can be seen that the 

estimates from multiple imputation and likelihood method are closer. Considering the 

standard error of the parameters from Table 6, the precision were overestimated in LOCF 

method which is another disadvantage of the method. To assess the impact of each of the 

missing data mechanism more clearly, the estimated mean profiles by treatment group are 

shown in Figure 6. All in all, the graph suggests that there is little difference among the 

mechanisms with the data at hand. All the mechanism reflects the marginal superiority of 

treatment 1 (Sensor ON). However caution should be taken with complete case analysis 

(CC), which is a result of deleting subjects having incomplete measurements. 

 



29 
 

 

 We have discussed that the aim of ITT is to hold overall balance with respect to the 

treatment groups. Unless to compare the impact of removing subjects with that of imputing 

the incomplete measurements, complete case analysis is biased since it undermines any 

randomization justification.   

 

     

   

Figure 6: Estimated mean profile by treatment group obtained under missing mechanisms 
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Table 6: Parameter Estimates and standard error, Estimate (S.E) under missing mechanism: 

Last observation carried forward (LOCF), direct-likelihood and Multiple Imputation (MI). 

                

  LOCF Direct-likelihood       MI 

Effect        Estimate(S.E)      Estimate(S.E)         Estimate(S.E) 

Intercept 2.1217 (0.5435)  2.1672 (0.5450)  2.1399 (0.5374) 

Treatment 0.9771 (0.1890)  1.0010 (0.1992)  0.9682 (0.1957) 

period 0.1639 (0.1243)  0.1486 (0.1298)  0.1050 (0.1276) 

Baseline  0.7541 (0.0611)  0.7500 (0.0612)  0.7590 (0.0602) 

Diabetic duration -0.0120 (0.0034)  -0.0118 (0.0034)  -0.0116 (0.0034) 

Time 0.0124 (0.0088)  0.0122 (0.0093)  0.0083 (0.0091) 

Treatment. Time -0.0851 (0.0124)  -0.09118 (0.0132)  -0.0881 (0.0128) 

Treatment. period -1.0212 (0.1959)  -1.0399 (0.2032)  -1.0194 (0.1986) 

Covariance Structure 

Subject  effect 0.1390 (0.0248)  0.1343 (0.0246)  0.1274 (0.0243) 

Autocorrelation 1 0.1570 (0.0765)  0.1481 (0.0781)  0.1811 (0.0763) 

Measurement error 1 0.2014 (0.0169)  0.2072 (0.0177)  0.2097 (0.0181) 

Autocorrelation 2 0.5976 (0.0467)  0.5792 (0.0499)  0.6167 (0.0444) 

Measurement error 2 0.3437 (0.0358)  0.3587 (0.0382)  0.3971 (0.0410) 

 

6.  Discussion and Conclusion 

This study was focused on evaluating the impact of real-time continuous glucose monitoring 

(CGM) on type 1 diabetic patients.  A randomized cross-over design was used to evaluate the 

inherent impact of sensor therapy in children and adults with type 1 diabetes with pump 

therapy without sensor as a control. The main advantage of this design is that treatments are 

compared within subjects such that difference between treatment measurements cannot be 

biased by any subject effect from the comparison, ordinarily greatly increasing precision. In 

this study, a special case of cross-over design with two-treatment and two-period was 

considered in which a four-month washout period was used to avoid carry-over effect. The 

study comprises two type of study population: Intent-to-treat and per-protocol population. 

The ITT implies all randomized patients are included in the analysis regardless of any 

protocol violation, whereas PP only includes patients who adhered to the protocol. 
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We have illustrated a significant treatment difference between the two therapeutic methods 

under different methodological scenarios. First, two measurements from a subject were taken, 

one measurement from the end of each period. The results showed that subjects benefited 

from the sensor therapy technology. The subjects were declared as random to estimate and to 

recover the between subject variability in the comparison of the treatments. The larger 

estimated between subject variability as compared to within subject variability might be a 

witness that cross-over design was appropriate for the data for effective comparison of 

treatments. Though measurements from the end of each period were analyzed to yield 

significant treatment effect, the data fall within the realm of continuous longitudinal data and 

hence can be modelled by use of linear mixed models.  

 

 Modelling stochastic dependence among longitudinal measurements directly by construction 

of the covariance matrix has been done. Two types of covariance pattern among 

measurements from the same subject were taken in to account. The dependences among 

measurements in the same treatment period were handled by a first-order autoregressive 

covariance structure and unstructured covariance matrix was introduced for the period factor 

to account for the between period dependence. The test for period dependence showed no 

significant correlation between the two periods.  Random subject effects were introduced to 

handle the correlation of all measurements in a subject. Different autoregressive covariance 

structures were introduced for each period. A test of homogeneity was carried out to reduce 

the number of parameters; to test if the same within period covariance structure can be 

assumed. However, the test for homogeneous covariance structure was rejected.  

 

Following the final covariance structure, several covariates were removed from the model to 

obtain a parsimonious mean structure. The estimate of the treatment effect over time showed 

that HbA1c level was significantly reduced for subjects using the sensor therapy as compared 

to the same subject using therapy without sensor. It was revealed that the evolution of the 

treatment groups remain the same in the two periods. The trend of time effect was not also 

different across period. In addition, analysis at specific time points was carried out to test the 

single treatment effect and the effect of the treatment at specific time points.   

 

The adequacy of the final linear mixed model was checked with respect to outlier diagnostics 

for the PP model. Sensitivity analysis for missing data was done for The ITT population. 

Following some suspect outliers based on residual analysis, restricted likelihood distance was 
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used as an overall measure of influence. Few influential subjects were identified though their 

influence on the fixed effect and precision were not apparent. A separate individual profile 

for those influential subject showed that the predicted mean profile deviates from the 

observed mean profile, even though this could not be reflected in the overall evolution. The 

model analysis without outlying subjects showed that the impact on covariance parameter 

estimates was relatively large as compared to the fixed effect estimates. A sensitivity analysis 

based on logistic regression of dropout model showed that the missingness in the ITT data 

was missing at random. Selected models were refitted based on this assumption and the 

subsequent comparison of the models revealed that the parameter estimates and the standard 

errors were not too different. This might be due to the fact that only ten percent of the 

subjects had incomplete measurements. 

 

In conclusion, the various analyses showed that the sensor therapy treatment was more 

effective than the pump therapy without sensor. Patients receiving this modern technology 

can effectively reduce their HbA1c level to improve their diabetic condition. Therefore the 

technology can help type 1 diabetic patient to control the HbA1c level continuously and to 

dispense insulin as needed. 
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8.  Appendices 

 

8.1 Appendix A: Tables  

 

     Table 7: Summary statistics of each visit point within a period 

    V1HbA1c, V3HbA1c& V5HbA1c are in period 1 and V6HbA1c, V8HbA1c  

     & V10HbA1c are in period 2. 

 
 

                  ITT                   PP  

Time point #obse. Mean Std  #obse. Mean Std  

V0HbA1c 153 8.394 0.624 90  8.320 0.573 

V3HbA1c 147   8.30 0.829 90  8.103 0.711 

V6HbA1c 144 8.240 0.888 90  8.028 0.730 

V10HbA1c 142 8.462 0.925 90 8.289 0.841 

V13HbA1c 139 8.301 0.950 90 8.079 0.739 

V16HbA1c 138 8.209 0.999 90 7.956 0.832 

 

 

 

 

     8.2 Appendix B: Figures 

             

Figure 7: Measurements at the End of each period over treatment group. 
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For ITT population                                        For PP population 

 

Figure 8: Normally distributed HbA1c difference between End -of- each period 

 

 

 

Figure 9: Predicted average evolution by treatment sequence (ITT) 
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Figure 10: Diagnostic plots for fixed effect and covariance Parameters. 

 

 

    

Figure 11: The conditional studentized residual and the marginal studentized residual. 
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Figure 12: Observed and Predicted average evolution for PP population. 
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