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Abstract

Recurrent events data have been increasingly important in clinical studies where individuals

experience an event more than once. Cancer patients commonly experience recurrent of tu-

mors. There is a growing interest in the analysis of recurrent events data in order to assess the

relationship of relevant predictors to the rate in which events are occurring. Several statistical

methods have been proposed to analyze such type of data. Often analyzing the time-to-first

event survival analysis ignores possible subsequent events and results bias. The aim of this

study is to compare different marginal and random effect survival methods to analyze time

to multiple recurrences of bladder cancer and enable for future prediction. A total of 615

bladder cancer patients were followed up between the years 1974-2011 in different hospitals in

Rotterdam and 1280 observations were recorded. Zero to a maximum of 15 recurrences were

observed during this follow up time.

In this report, mainly four marginal and random-effect models, extended from the proportional

Cox model were fitted. The Andersen-Gill, marginal and conditional models were compared

from the marginal model family. The main differences among them lies on the time scale

and risk set formulations. Counting process, ’gap’ and total time scales were used to fit the

models. These models only correct the standard errors for their assumption of independence

between events from the same patient. Further, a gamma shared frailty model to account

for intra-cluster correlation or unobserved heterogeneity is fitted. The predictive accuracy and

discriminative ability of the models were compared using concordance probability (C-index).

Results indicate that, the Andersen-Gill and the conditional models provided approximately

similar and unbiased results compared to the marginal model. The frailty model has the

highest estimated concordance probability than the other models suggesting that it has the

highest predictive accuracy and discriminatory power. Gender, tumor multiplicity, and number

of previous recurrence events were identified as important prognostic factors.

In summary, the Andersen-Gill and the frailty models were proposed as the most appropriate

methods to model the recurrent event data. Thus, one can use either of the models for pre-

dicting absolute risks of bladder cancer depending on his/her interest.

Key words: Andersen-Gill, Bladder cancer, Concordance probability, Counting process, Cox

model, Frailty model, Marginal model, Recurrent event
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1 Introduction

1.1 Background

A great deal of research is currently underway to develop risk prediction models to ac-

curately estimate the absolute risk of a specific disease. Absolute risk is the probability

that an individual with given risk factors will develop the disease over a defined period

of time. Prediction models combine patient characteristics to predict medical outcomes

and to support decision making. Developing such statistical models will help clinicians

identify individuals at higher risk of specific disease, allowing for earlier or more frequent

counseling of behavioral changes to decrease risk [1]. These types of models are also useful

for designing future intervention in individuals at high risk of the disease in the general

population. In clinical studies, both single and repeated events are commonly used to

develop risk prediction models for a particular disease.

Repeated event processes, where individual subjects or units under consideration experi-

ence the same or different types of events more than once over time are called recurrent

events. In many scientific investigations, the outcome variable of interest is a recurrent

event. Recurrent event data are ubiquitous across a great range of diverse fields such as

medicine, public health, insurance, social science, economics, manufacturing and reliabil-

ity [2]. Many epidemiological and medical studies involve recurrent events. For example,

patients at risk for cerebrovascular events may experience transient ischemic attacks,

patients with heart problem may have several myocardial infarctions, cancer patients

may experience recurrent superficial tumors [3], repeated occurrence of asthma attacks in

asthmatic patients, individuals with chronic disease may experience repeated episodes of

hospitalization and so on. For each of the above examples, the event of interest differs,

but nevertheless may occur more than once per subject. A logical objective for such kind

of data is to assess the relationship of relevant predictors to the rate in which events are

occurring, allowing for multiple events per subject [4]. Recurrent events are also observed

in bladder cancer patients.

A bladder is a hollow organ in the lower abdomen (pelvis). It collects and stores urine

produced by the kidneys. Cancer occurs when normal cells undergo a transformation

whereby they grow and multiply without normal controls [5]. Bladder cancer, therefore,

is a disease in which malignant cancer cells form in the tissues of the bladder. As more

and more cells are produced, the tumor increases in size. According to National Cancer

Institute, there are three types of bladder cancers that begin in cells in the lining of the

bladder. These cancers are named for the type of cells that become malignant cancers:

Transitional Cell Carcinoma (TCC): a cancer that begins in cells in the innermost tissue
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layer of the bladder. These cells are able to stretch when the bladder is full and shrink

when it is emptied. Most bladder cancers begin in the transitional cells. Squamous

cell carcinoma: Cancer that begins in squamous cells, which are thin, flat cells that

may form in the bladder after long-term infection or irritation and the third type is,

Adenocarcinoma: cancer that begins in glandular (secretory) cells that may form in the

bladder after long-term irritation and inflammation [6].

A cancer that is confined to the lining of the bladder is called superficial bladder cancer.

In North America, South America, Europe, and Asia, the most common type of urothelial

tumor diagnosed is transitional cell carcinoma; TCC constitutes more than 90% of bladder

cancers in those regions [7].

The stage of a bladder cancer is a standard summary of how far the cancer has spread.

It is one of the most important factors in selecting treatment options and estimating a

person’s outlook for recovery and survival (prognosis). The staging system normally used

in bladder cancer is called TNM, which stands for ’Tumor’ (size of the tumor), ’Node’ (if

it has spread to the nearby lymph nodes) and ’Metastasis’ (if the cancer has spread to

other parts of the body). There are usually four pathologic stages of bladder cancer: In

stage 0, abnormal cells are found in tissue lining the inside of the bladder. These abnormal

cells may become cancer and spread into nearby normal tissue. Stage 0 is divided into

stage 0a (Papillary Carcinoma) and stage 0is (Carcinoma in Situ), depending on the type

of the tumor. In stage I, cancer has formed and spread to the layer of tissue under the

inner lining of the bladder. In stage II, cancer has spread to either the inner half or outer

half of the muscle wall of the bladder. Stage III cancer has spread from the bladder to

the fatty layer of tissue surrounding it and may have spread to the reproductive organs.

Stage IV, cancer has spread from the bladder to the wall of the abdomen or pelvis [6, 8].

Figure 1 below shows the different stages in the bladder cancer [9].

In addition to stages, the grade of the bladder cancer provides important information

and can help guide treatment. The tumor grade is based on the degree of abnormality

observed in a microscopic evaluation of the tumor. The three bladder cancer grades are

[10]:

• Grade 1 cancers have cells that look very like normal cells - they are also known

as ’low grade’ or ’well differentiated’ and tend to grow slowly and are not likely to

spread

• Grade 2 cancers have cells that look more abnormal - also called ’medium grade’ or

’moderately differentiated’ and may grow or spread more quickly than low grade.
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Figure 1: A diagram showing the different tumor stages in the bladder

• Grade 3 cancers have cells that look very abnormal - are ’high grade’ or ’poorly

differentiated’ and are more quickly growing and more likely to spread.

Smoking cigarettes, chemical exposures at work and diet are some of the factors that

increase the person’s risk of developing bladder cancer. Moreover, several studies support

that males have the highest chance to develop the cancer than females. According to

Steinberg and Katz, bladder cancer affects three times as many men as women. Women,

however, often have more advanced tumors than men at the time of diagnosis. Whites,

both men and women, develop bladder cancers twice as often as other ethnic groups.

Bladder cancer can occur at any age, but it is most common in people older than 50 years

of age. The average age at the time of diagnosis is in the 60s. However, it clearly appears

to be a disease of aging, with people in their 80s and 90s developing bladder cancer as

well [5].

Bladder cancer has the highest recurrence rate of any malignancy. Although most patients

with bladder cancer can be treated with organ-sparing therapy, most experience either

recurrence or progression, creating a great need for accurate and diligent surveillance.

Due to its high recurrence and progression rate, bladder cancer is the most expensive

cancer to treat on a per patient basis [5, 7].

1.2 Objective

The main objective of this study is to compare different marginal and random effect

(conditional frailty) models to provide absolute risk prediction of recurrent events in

bladder cancer patients. The report also focuses on validating the predictive ability of

the models for future predictions.
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1.3 Organization of the thesis

This report is partitioned into several sections. Under the methods and materials section,

a brief description of the dataset in Section 2.1 and statistical methods used to fit the

recurrent events in Section 2.2-2.3 are provided. Different marginal and random effect

model (frailty model) are discussed under Section 2.3.1 and 2.3.2 respectively. Section

2.4 deals with how to handle missing covariates in the dataset and Section 2.5 methods

of evaluating the prediction models are discussed. Results from marginal models and ran-

dom effect models are presented under Section 3.2 and Section 3.3 respectively. Finally,

discussion and conclusions are provided in Section 4.

2 Methods and Materials

2.1 Data Description

The dataset employed under this study is recurrent event data collected from a bladder

cancer study conducted at different hospitals in Rotterdam with followed-up period be-

tween the years 1974 and 2011. In this study, all patients had primary bladder tumors

when entering the study and these tumors were removed. A total of 615 patents, were fol-

lowed during the study and 1280 observations were recorded. Most patients had multiple

recurrences of tumors during the study. The new tumors were removed at each visit. The

outcomes of interest were recurrences of new cancer tumors during the follow-up periods

and the time to the recurrence event. For patients with multiple recurrences of the tumor,

times between successive recurrences were recorded in days (Time). Furthermore, for each

patient, some potentially important demographical and clinical covariates were recorded

including: gender (Sex), age at time of operation (Age), tumor size groups (≤3cm, 3-5cm

and ≥ 5cm), tumor multiplicity (solitary or multiple tumors), pathologic stage (Stage),

pathologic grade (Grade), Metastasis (yes or no) and presence of Carcinoma in Situ (CIS).

Every patient has a unique identification number (Pat-ID), where each event within a pa-

tient was ordered by an indicator (Sequence). Another important covariate, number of

previous recurrences at each event, was also included in the analysis. An indicator vari-

able, Event, represents the status of every observation, ”1” if tumor recurrence observed

and ”0” if the event is censored due to several reasons. For simplicity it is assumed that

the censoring mechanism was independent of the recurrent event process in this study.
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2.2 Modeling Recurrent Events with Cox-PH Models

2.2.1 Ordinary Cox Model

The Cox proportional hazard model has become by a wide margin the most used procedure

for modeling the relationship of covariates to the survival or other censored outcomes. The

mathematical notations of the standard Cox model can be briefly illustrated as: LetXij(t)

be the jth covariate of the ith subject, where i = 1, . . . , n and j = 1, . . . , p and

Xi denotes the covariate vector for subject i. The Cox model specifies the hazard for

individual i as:

λi(t) = λ0exp(Xi(t)β) (1)

where λ0 is an unspecified nonnegative function (the baseline hazard), and β is a vector

of coefficients. When the hazard ratio of pair of subjects with fixed covariate vectors Xi is

constant over time, the model is known as proportional hazard model. For untied failure

time data, Cox in 1972, proposed the estimation of β based on the partial likelihood

function [11]:

PL(β) =
n∏

i=1

∏
t:Yi(t)=1

{
exp(Xi(t)β)∑

j Yj(t)exp(Xj(t)β)

}dNi(t)

(2)

where Yj(t) is equal to 1 if the jth subject is at risk of a failure event just prior to time

t, and is equal to 0 otherwise. Ni(t) is the number of observed failures for subject i and

dNi(t) denotes the increment in Ni(t) over the time interval [t, t+ dt). Differentiating the

log partial likelihood with respect to β gives the score equation, U(β), and the maximum

partial likelihood estimator for β is obtained by solving the score equation, U(β) = 0.

The solution β̂, is consistent and asymptotically normally distributed with mean β, the

true parameter vector and variance I−1(β̂), the inverse information matrix.

2.3 Cox Models for Multivariate Failure Events

Multivariate failure time data arise when each study subject can potentially experience

several events. There is an increasing interest and need to apply survival analysis to

datasets with multiple events per subject. This includes both the cases of multiple events

of the same type and events of different types [9]. The analysis of multiple events per

subject cannot be approached by a standard Cox model, where the assumption of inde-

pendence of observations is not valid. In order to account for intra-subject correlation,

extensions of the above Cox proportional models are used [12]. Apart from the major

reason to extending the Cox model (i.e. the intra-subject correlation), there are other
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concerns such as: discontinuous intervals of risk, stratum (several recurrences) by covari-

ate interactions and the structure of the risk sets [11, 12]. The primary difference in the

Cox model used for analyzing recurrent event data versus nonrecurrent (one time interval

per subject) data is the way several time intervals on the same subject are treated in the

formulation of the likelihood function maximized for the Cox model [4]. i.e. for recurrent

survival data, a subject with more than one time interval remains in the risk set until

his/her last interval, after which the subject is removed from the risk set. In contrast,

for single event data, each subject is removed from the risk set at the time of failure or

censorship.

Several approaches to handling multiple recurrence events data have been proposed in

literatures [11, 12, 13, 14]. The multiple events data can be further classified into ordered

and unordered data. For ordered data, there is a natural ordering of the multiple failures

within a subject, which includes recurrent events data as a special case [14]. To analyze

such types of data, many researchers estimate and compare event rates using the chi-

square test or event times until the occurrence of the first event, or the overall event time

using the Cox model. Such conventional methods are inefficient because they use only

parts of the available information in the data [15].

2.3.1 Marginal Models

The three most common marginal model approaches for analyzing ordered outcomes (i.e.

multiple events of the same type) are: the independent increment, Andersen-Gill, (AG)

[16], the marginal, Wei, Lin, and Weissfeld (WLW) [17] and the conditional, Prentice,

Williams and Petersen (PWP) models [18]. These methods offer great flexibility in the

formulation of strata and risk sets, and have a well-developed estimator of variance.

All the three are ”marginal” regression models in that β is determined from a fit that

ignores the correlation between the events followed by a correction of the variance. The

main difference between these models is the definition of risk sets and stratification of

the baseline hazard function. The three models need different time intervals and strata

representations in defining the risk sets. A hypothetical subject having two events and

censored at the last time interval under each model is shown in Table 1.

6



Table 1: Risk set representation of a hypothetical subject for marginal models

Interval Event Stratum

Counting Process,(AG)

(0,10] 1 1

(10, 30] 1 1

(30, 42] 0 1

Conditional (PWP)

(0,10] 1 1

(0, 20] 1 2

(0, 12] 0 3

Marginal (WLW)

(0,10] 1 1

(0, 30] 1 2

(0, 42] 0 3

The models allow for population average estimation of covariate effect and the analysis

of these models is based on the following three steps [11, 12]:

• Decide on a model (issues such as covariate selection, inclusion of strata, etc.) and

structure the data set accordingly.

• Fit the data as an ordinary Cox model, ignoring the possible intra-subject correlation

(i.e. treating multiple events from a subject as independent).

• Replace the standard variance estimate with one which is corrected for the possible

correlations.

The marginal models can overcome this assumption of independence for the estimation of

the variance of β by an appropriate correction based on a grouped jackknife estimate [4,

11, 15]. Grouped jackknife values are defined as Ji = β−β(i), where β(i) is the result of the

fit that includes all of the individuals except individual i. It is denominated as grouped

because in the multiple event case, one individual contributes several observations, and

removing a subject implies removing a group of observations. Full description of how to

compute the grouped jackknife values directly from Newton-Raphson iteration method

is found in [11]. The computed variance can be viewed as sandwich estimators and the

resulting robust covariance matrix estimator is given by VR = I−1(U)I−1. These sandwich

estimates are familiar from robust variance estimation in generalized estimating equations

(GEE) proposed by Liang and Zeger [19]. This grouped jackknife estimate is typically

more variable than the ordinary variance of the Cox model, since it is a robust variance

estimate that adequately addresses the repeated event correlation. In the next sections,

brief descriptions and differences of the three marginal approaches are discussed.

7



I. The Andersen-Gill Models

This model, also known as independent increment model, is a derivation of the Cox

proportional hazard model as a counting process [14, 18]. The method is the simplest, but

makes the strongest assumptions. Each subject is represented as a series of observations

(rows of data) with time intervals as: (entry time, first event], (first event, second event],...,

(mth event, last follow up]. The intensity process for subject i is:

Yi(t)λ0(t)exp(Xi(t)β) (3)

The difference with the standard Cox model lies in the definition of the at-risk indicator

Yi(t). For survival data, the individual ceases to be at risk when an event occurs and

Yi(t) takes value zero, but for the Andersen-Gill model for recurrent events, Yi(t) remains

one as events occur, i.e. individuals are assumed to be under risk for all their events until

censoring. Under this model, the risk of a recurrent event for a patient follows the usual

proportional hazards assumption and is unaffected by earlier events that occurred to the

patient unless terms that capture such dependence are included explicitly in the model as

covariate [16, 20]. No extra strata or strata by covariate interaction terms are introduced

for the multiple events. The Andersen-Gill formulation of the Cox proportional hazards

model has a number of advantages, including the ability to accommodate left-censored

data, time-varying covariates, multiple events and discontinuous intervals of risks.

II. The marginal or WLW Models

Wei, Lin and Weissfeld proposed a marginal approach to the analysis of multivariate

failure time data. In this model, the ordered outcome dataset is treated as if it were an

unordered competing risk case. The number of strata in the analysis will be equal to the

maximum number of events a patient reports in the study. Every subject will have one

observation in each stratum. The hazard function for the jth event for subject i is:

Yij(t)λ0j(t)exp(Xi(t)βj) (4)

In most applications the analysis has been on the ”time from study entry” scale, since

all the intervals start from zero the model can in this case be fit without recourse to the

counting process style of input [15]. Unlike the AG model, this model allows a separate

underlying hazard for each event and for strata by covariate interactions, as shown by the

notation βj. In the WLW model the at-risk indicator for the jth event, Yij(t), is one until

the occurrence of the jth event, unless, of course, some external event causes censoring.

When either of those occurs, it becomes zero, indicating that subject is no longer at risk

after the last given event [11, 21].
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III. The Conditional or PWP Models

The model is proposed by Prentice, Williams and Petersen. This model clearly defines

the order of the events. The model is known as conditional because, a subject is not at

risk for the kth event until he/she has experienced event k − 1. Like the Andersen-Gill

model, the counting process time scale (conditional I model) or time between successive

events, i.e. the ”gap” time scales (conditional II model) can be used. Both the conditional

models are similar in formulation of risk set but they only differ in the time scale they

used in fitting the model. However, unlike Andersen-Gill model, each event is assigned to

a separate stratum. The use of time-depending strata means that the underlying hazard

function may vary from event to event, unlike the AG model, which assumes that all

events are identical [11, 12, 17]. The hazard function for the jth event for subject i is:

Yij(t)λ0j(t)exp(Xi(t)βj) (5)

The primary difference between the WLW and PWP models is in the definition of the

at-risk indicator and the definition of the strata in the analysis. In the PWP model the

at-risk indicator, Yij(t), is defined as 0 until the j− 1st event and only then becomes one.

Once the jth event occurs, Yij(t) becomes 0 again. The PWP model can be seen as a

stratified AG model with event-specific baseline hazards and a restricted risk set.

In summary, the schematic form of the risk set formation in the different marginal models

is presented in Figure 2. Each arrow represents a stratum or an event.

Figure 2: Schematic form of the three marginal models
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In general, the AG model and the PWP model can be used in the analysis of repeated

failure outcomes of the same type, while the approach by the WLW model can be applied

to both multiple events of the same type and different types as long as there is not a pre-

determined ordering. The WLW model has a semi-restricted risk set that allows subjects

to be at risk for as many events as the maximum number of events reported per subject

in the study, even if most of the subjects only had one event. However, this leads to

overestimation of the covariate effects [12, 22]. When the model is correctly specified (no

important covariates are omitted) the PWP model and the AG model estimate unbiased

covariate effect and require similar sample size to obtain the same precision in the estima-

tion, while the WLW model estimates biased covariate effect and requires a larger sample

size. The PWP model and the AG model are considered to be more efficient than the

WLW model [11]. The most appropriate modeling strategy should be chosen based on

the type and nature of the multiple events structure [21]. Apart from marginal models,

random effect models are widely used in modeling multiple failure time data, including

recurrent events. The frailty model is a well known random effect model and in the next

section a brief description of this method is provided.

2.3.2 Random Effect Models: The Frailty Model

An important issue in analysis of recurrent events data is how to account for the de-

pendence of the events in an individual and any unobserved heterogeneity of the event

propensity across individuals [23]. This is due to the fact that the recurrent events of an

individual are possibly correlated because of underlying characteristics of the individual.

The heterogeneity of the event rates across individuals may not be fully reflected in the

measured baseline variables [24]. The marginal models, discussed above, are variance-

correction models since they all do not require specification of the magnitude of the

correlation of the recurrent events in an individual. They simply adjust for this correla-

tion by using a robust variance estimator. In contrast to the marginal models, frailty or

random effects models incorporate heterogeneity and event dependency into the estimator

by making assumptions about the frailty distribution and incorporating it into the model

estimates and thus present a more promising alternative [24]. The underlying logic of

frailty models is that some subjects are intrinsically more or less prone to experiencing

the event of interest than are others, and that the distribution of these effects can be at

least approximated. i.e. individuals have different frailties, and that those who are most

frail will die earlier than the others [24, 25].

Several complex frailty models are available. In this paper, the simplest model, the shared

frailty model is considered due to its simplicity. In this model, all the records within each
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patient share a common frailty, each unit belongs to precisely one category, and frailties

of different categories are independent [13, 24, 25]. In this particular bladder cancer data,

the common frailty is shared by the recurrent events of an individual. Thus, the shared

frailty model is given by:

hi(t) = h0(t)exp(β
TXi(t) + wi) (6)

where hi(.) is the hazard function for the ith individual; h0(.) is the baseline hazard, β

is the fixed effects vector, Xi is the vector of covariates and wi is a vector containing

the unknown random effects or frailties for the ith subject [25]. The wi’s, i=1,..., n are

independent and identically distributed sample from a density fW (.). The frailty model

can be rewritten as:

hi(t) = h0(t)uiexp(β
TXi(t)) (7)

where ui = exp(wi) is known as the frailty for the ith subject. Model (6) and (7) are

conditional hazard models given the ui’s. Furthermore, distributional assumptions has to

be made for the frailty and usually are chosen from the class of positive distributions; in

applied work, the most widely used are the gamma and Gaussian distributions. However,

the one-parameter gamma distribution with mean 1 and variance θ frailty is being by far

the most frequent due to the flexibility of the distribution and is represented as [24-26]:

fU(u) =
u

1
θ
−1exp(−u

θ
)

θ
1
θΓ(1

θ
)

(8)

with Γ(.) represents the gamma function. This gives the following interpretation: indi-

viduals with ui > 1 (ui ≤ 1) are frail (strong) (higher risk, lower risk, respectively). The

parameter θ provides information on the variability (the heterogeneity) in the population

of groups [27, 28]. In a semi-parametric approach, the Cox regression models assume that

the baseline hazard is unspecified. Furthermore, the frailties (wi) are viewed as unob-

servable data. Under the idea of shared gamma frailty model, it is difficult to maximize

the likelihood to estimate the parameters (β, θ) as it contains the unobserved frailty term

and the unspecified hazard [25, 28]. However, such kind of problem of estimation can

be approached by Expectation-Maximization (EM) algorithm. Though, this algorithm

is slow, computationally intense and the implementation has not appeared in any of the

widely used available packages [11]. Instead, another approach resulting with similar es-

timation of the parameters is through adaptation of the partial likelihood approach for

the Cox model known as the penalized Cox partial likelihood method. Since the frailties

are assumed to be a random sample from the frailty density, a penalty term is subtracted

from the partial likelihood in order to account for that. This method of estimation is

easier to implement. The details how the EM algorithm and penalized partial likelihood

approaches work are discussed in [25, 26].
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2.4 Handling Missing Covariates

The construction of a prognostic or prediction models ideally requires a large database

with complete information on all potential prognostic factors [29]. However, often missing

covariate data occur and complicates analysis. These missing covariates may introduce

bias and lead to misleading conclusions if handled inappropriately. Many strategies for

handling missing covariates when fitting a Cox proportional hazards model have been

proposed [30, 31, 32]. These include:

• simple deletion approaches of complete case analysis, where only the cases with

complete data for all collected variables are analyzed,

• available case analysis, where the cases with complete data for the variables in the

fitted model are analyzed utilizing the largest possible data set,

• variable omission, where the incomplete variable is excluded from the model.

• utilizing all data, include analyzing the missing data as a separate category (i.e create

extra level for missingness for categorical variables)

• single imputation, in which a single value is substituted for each missing value and

• multiple imputation (MI), where more than one independently completed data sets

are obtained.

In this bladder cancer dataset, three categorical variables (tumor size, multiplicity and

CIS) have missing values where tumor size has the highest percentage of missing (62%).

The most commonly used approaches for dealing with missing data are complete case

analysis and available cases. However, these methods were not suitable in this context

because only 37% of the observations were complete, which might result in great loss

of power and biased estimates. Omission of the important incomplete covariates may

also result in poor model prediction ability. The other approach is including the missing

data as a separate category, even though this method uses all the cases in the data,

it is not recommended in several literatures since the method almost always results in

biased estimates and inefficiency [33, 34]. Single and multiple imputation, can provide

unbiased estimates under the assumption of missing at random (MAR). This means that

the probability of missingness does not depend on unobserved information. However,

single imputation method commonly results in underestimation of standard errors since

it imputes all the missings only once and does not incorporate uncertainty.

Thus, multiple imputation is the most widely used technique to draw valid statistical in-

ference in the presence of missing data. However, the assumption of missing at random is
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not commonly testable. In MI, where each missing value is replaced with a set of m (>1)

independent values to give m separate complete datasets, incorporates uncertainty of the

missing data that cannot be achieved with single imputation (m = 1). The m completed

datasets are analyzed individually using standard statistical methods and the results com-

bined into one summary estimate. The parameter estimates of interest are averaged and a

variance estimate is obtained that incorporates both the within and between imputation

variability [33]. In this report, MICE (multiple imputation by chained equations) tech-

nique in R package with m=5 was used in each model to handle the missingness observed

in the three covariates.

2.5 Evaluation of Prediction Models

When the purpose of a survival regression model is to predict future outcomes, the predic-

tive accuracy of the model needs to be evaluated before practical application [35]. There

are various ways to assess the performance of statistical prediction models. The usual

statistical approach is to quantify how close predictions are to the actual outcomes using

explained variation (R2) and goodness-of-fit statistics [36, 37]. Discrimination is the most

commonly applicable approach that quantifies the ability of the model to correctly classify

subjects into subgroups in which each individual belongs [38, 39]. A C- (concordance)

statistic has been widely used to assess and compare prediction models with respect to

their ability to discriminate individual risks.

The C-index is defined as the proportion of all usable patient pairs in which the predictions

and the outcome are concordant. It measures predictive information derived from the set

of predictor variables in the model [38]. Usable patient pairs means that, pairs should be

either event vs event or event vs censored, but not censored vs censored, these pairs are

unusable pairs in calculating the C-index. For Cox proportional model, given comparable

or usable pairs (i, j), if Ti > Tj & βTxi > βTxj then (i, j) is concordant pair where as if

Ti > Tj & βTxi < βTxj then (i, j) is disconcordant pair [40, 41]. Thus, the Harrell
′
s C

index is computed as ratio of number of concordant pairs and number of comparable pairs

[42]. C-statistics of the model can also be computed from the Somers
′
Dxy rank correlation

for censored response variable since C and Dxy are related by: Dxy = 2 ∗ (c− 0.5) [40]. A

concordance probability of 1.0 represents a model that has perfect discrimination, whereas

a value of 0.5 indicates that the predictions are no better than chance [43, 44]. In this

report, the discriminative ability of the marginal and random-effect models for the first

four recurrent events were assessed by computing their concordance probabilities.
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2.6 Model Development and Diagnosis

The key of fitting any of the three marginal models for multiple events data is the cre-

ation of an appropriate data set. The dataset were arranged accordingly for each model.

The ”counting process” data input for Andersen-Gill and conditional I models, the ”gap”

time scale for the conditional II model and the ”time from study entry” scale for marginal

(WLW) model were used in the analysis. The assumption of non-informative censor-

ing, that is, patient′s follow-up time is independent of his/her event times is considered

throughout the report. Further, in the presence of tied events, Efron correction method

for ties were applied. For simplicity, patients that have no events and 0 days of follow-up

are removed from the analysis since they add nothing to the likelihood. The covariate

stage contains only one observation in its fourth level (stage IV), in the statistical analy-

sis, it is merged to the stage II. The continuous variable age was centered at 65, ease of

computation of the baseline hazard rate. The covariates gender (female), age, tumor size

(<3 cm), tumor multiplicity (solitary), stage (0), grade (G1) and carcinoma in situ (no)

with possible interactions were included in the full model, where levels in the bracket are

taken as reference group for corresponding covariates. Variable reductions were performed

using manual backward selection at 5% level of significance. However, clinically important

variables are kept in the model even though they are not statistically significant. In all

analysis, multiple imputation with five independently completed datasets were analyzed

and results are averaged out.

Apart from all the variables listed above, the number of previous recurrence (# of

prev.rec.) was calculated as one minus the number of recurrence (sequence) at differ-

ent time intervals for each patient. This covariate was included only in the Andersen-Gill

model to see the effect of previous recurrences on the future recurrences. This covariate

was not included in the other marginal models since the ordering of the recurrence events

were accounted for the variable sequence or stratum number at each time interval.

After fitting the models, it is reasonable to test the underlying assumption of the propor-

tionality of the Cox model for valid interpretation. Possible violation of proportional haz-

ard assumptions were checked formally and graphically by looking the trends of Schoenfeld

residuals against time for each predictor separately. This assumption was checked for all

the models considered in this report.
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2.7 Software and Tools

All the statistical analysis are carried out using SAS version 9.2 and R version 2.13.1

statistical packages. The survival, Design and mice libraries from R package are used

to fit the Cox models, to compute the concordance probability and to perform multiple

imputation respectively. Alpha= 5% level of significant is used throughout the report.
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3 Results

3.1 Exploratory Data Analysis

A total of 615 patients were included in the analysis and the main characteristics of patient

at entry level and at different recurrent events were summarized in Table 2. Patient and

tumor characteristics at time to first recurrence are summarized as follows: the average

age of the patients is 65 years with standard deviation of 12.2. From total patients, 495

(almost 80%) are male patients and only 20% are females. In 193(68%) of the patients,

the maximum diameter of the tumor is less than 3 cm, 54(19%) had 3-5 cm and 38(13%)

had greater than 5 cm tumor diameters. However, for 330(54%) of the patients, the tumor

size is missing. More patients have solitary tumor 313(68%) than multiple tumors (37%).

For 119 patients, the tumor multiplicity are not measured. Moreover, 62% of the patients

are in stage 0 and only one patient in stage IV. More patients (41%) are in grade 2 and

only 4% had carcinoma in situ. Similarly, the distribution of the covariates on the second,

third and fourth recurrence are presented in Table 2.

Individual patients experienced from zero to fifteen recurrences during follow-up. Out of

615 patients, 338 (55%) did not show any recurrence during the follow-up period. The

bladder cancer recurred at least once in 277 patients (Table 3) and the highest recurrence

events (14 and 15 times) were observed in two patients. Moreover, Table 3 shows a

summary of follow-up times and number of patients with or without event for the first

five consecutive recurrent events. The median follow-up time to the first recurrent event

was 24 months and starts decreasing for the higher subsequent recurrent events.
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Table 2: Patient characteristics in #(%) at different recurrent events

1stevent 2ndevent 3rdevent 4thevent

Gender:

Male 495(80.5) 207(75.5) 110(74.8) 58(73.4)

Female 120(19.5) 67(24.5) 37(25.2) 21(26.6)

Age:

<65 338(55.0) 143(52.2) 86(58.5) 45(57.0)

≥65 277(45.0) 131(47.8) 61(41.5) 34(43.0)

Tumor-size group:

<3cm 193(67.7) 70(89.7) 39(86.7) 25(92.6)

3-5cm 54(19.0) 5(6.4) 3(6.7) 1(3.7)

≥5cm 38(13.3) 3(1.1) 3(6.7) 1(3.7)

Missing 330 196 102 52

Tumor multiplicity:

Solitary 313(63.1) 97(43.3) 44(36.1) 24(33.8)

Multiple 183(36.9) 127(56.7) 78(63.9) 47(66.2)

Missing 119 50 25 8

Pathologic stage:

0 384(62.4) 182(66.4) 112(75.7) 64(81.0)

I 208(33.8) 58(21.2) 16(11.5) 12(15.2)

II 22(3.6) 34(12.4) 19(12.8) 3(3.8)

IV 1(0.1)

Pathologic Grade:

G1 171(27.8) 84(31.0) 49(33.3) 29(36.7)

G2 252(41.0) 113(41.2) 58(39.5) 39(49.4)

G3 192(31.2) 77(28.1) 40(27.2) 11(13.9)

Carcinoma in situ:

No 540(96.0) 240(91.30) 132(95.0) 73(93.6)

Yes 23(4.0) 23(8.8) 7(5.0) 5(6.4)

Missing 52 11 8 1
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Table 3: Summary of time between consecutive recurrent events

Follow-up time(months) # of patients with

Min Max Median event censored Total

1st recurrence 0.13 303.3 24.2 277 338 615

2nd recurrence 0.23 276.2 17.3 147 127 274

3rd recurrence 0.63 244.2 15.4 79 68 147

4th recurrence 5.3 313.1 13.3 45 34 79

5th recurrence 1.4 220 13.4 33 12 45

As observed in Table 2 above, for three covariates some observations were not measured

or available. The missimgness of the data with respect to the covariates were explored for

further data analysis purpose. Below Table 4 shows the missing patterns for the covariates

used in the models. Out of 1280 records, only 471(37%) of the data were complete and

lots of missing values were observed on the covariate tumor size (62%).

Table 4: Missing data pattern

Group Sex Age Stage Grade Tumor size Multiplicity CIS Freq.(%)

1 O O O O O O O 471 (36.8)

2 O O O O O O M 15(1.2)

3 O O O O O M O 3(0.2)

4 O O O O O M M 1(0.1)

5 O O O O M O O 559(43.7)

6 O O O O M O M 23(1.8)

7 O O O O M M O 171(13.4)

8 O O O O M M M 37(2.9)

% missing out of total incomplete cases 62 17 6

O= Observed, M=Missing

Before modeling the multiple failure times for the recurrent events, it is important to see

the variation in the recurrence pattern between male and female patients in each of the

first four failure events without adjusting for the other covariates. Figure 3 presents the

cumulative hazards for the first four consecutive events by gender. It clearly suggests

that the risk of a new event does not remain constant. It is observed that females have

higher risk than males in the first recurrence, while no clear difference is obsered in the

other events. However, such plots totally ignore the dependency of the recurrent events.

The dependency of the events and other important covariates are investigated in the next

section of marginal and random-effect model formulations.
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Figure 3: Cumulative hazard for the first four consecutive events by gender

3.2 Marginal Models

The Andersen-Gill model which assumes that the data are a set of independence incre-

ment was fitted to model the multiple recurrent events. The independent assumption here

means that each recurrence event is not conditioned by previous recurrences. Univariate

analysis based on Andersen-Gill model was carried out (result not presented) and except

the covariates CIS and age, all were identified as important prognostic factors. Further,

all the covariates were included in the multivariate analysis to see the effect of the factors

collectively. The functional form of the continuous variable age was assessed including

restricted cubic spline function but models were not improved and only the linear rela-

tionship was kept in the model. Results of the final model fit after possible reduction

of some non-significant covariates were presented in Table 5. Since the model does not

allow strata or strata by covariate interactions, the hazard functions have constant effects

across all events. The model-based standard errors (not presented here) are smaller than

the robust standard errors; this is due to the fact that the robust standard errors account

for the dependency between recurrence events coming from the same patient. The results

from this analysis indicate that the number of previous recurrence, gender, tumor mul-
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tiplicity and stage have statistically significant effects on the recurrence of the bladder

cancer.

Table 5: Parameter estimates and robust standard errors for marginal models

AG Conditional I Conditional II Marginal

Male -0.242(0.097)* -0.166(0.090)* -0.128(0.091) -0.463(0.187)*

Age -0.003(0.004) -0.001 (0.003) -0.004(0.003) -0.001(0.005)

Multiplicity 0.475(0.105)* 0.424(0.103)* 0.458(0.096)* 0.788(0.127)*

Tumor size (3-5cm) -0.131(0.170) 0.004(0.169) 0.005(0.170) -0.356(0.237)

Tumor size (≥5cm) 0.092(0.238) 0.187(0.243) 0.198(0.231) -0.177(0.205)

Stage I -0.231(0.138) -0.220(0.136) -0.125(0.120) -0.467(0.172)*

Stage II -1.249(0.268)* -1.328(0.270)* -1.198(0.263)* -1.356(0.314)*

Grade 2 0.069(0.111) 0.030(0.104) 0.071(0.093) 0.126(0.137)

Grade 3 0.210(0.161) 0.180(0.152) 0.219(0.132) 0.252(0.212)

# of prev.rec 0.269(0.017)*

* is significant at 5% level of significance

Since the Andersen-Gill model is based on a strong assumption of independence, a second

conditional model, which assumes that a patient cannot be at risk for a subsequent recur-

rent events without having experiencing the previous event, was fitted. First conditional

model (conditional I) which takes the same time format as the Andersen-Gill model and

second conditional model (conditional II) with gap time were fitted. conditional II model

is very useful for modeling the time between each of the recurring event rather than the

full time course of the recurrent event process. The final models based on conditional I

and conditional II models are displayed in Table 5. The models have common covariate

effect across the events, since time-depending strata was not incorporated. This means

that the underlying hazard function is assumed to be the same from event to event. Unlike

the Andersen-Gill model, both the conditional models account for the order of the recur-

rent events properly in the model formulation. As observed from Table 5, the same sets

of covariates were found statistically significant with slight differences in their parameter

estimates.

The fourth model considered is a marginal (WPW) which assumes every subject to be

at risk as the maximum number of recurrent events occurred in the study (k=16) even

if a patient has one recurrence. i.e., every subject has 16 observations, one in each

stratum. This model uses different time scale in that, the time for each event starts at

the beginning of follow up (zero) for each patient. It considers each event separately and

models all the available data for the specific event. The last column of Table 5 shows

the parameter estimates and corresponding robust standard errors for this model. The
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parameter estimates (in absolute value) and the robust standard errors obtained from

this model are larger compared to the estimates obtained from the AG and PWP models.

That is, the WPW model overestimates the covariate effects due to the fact that every

subject has as many records as the maximum number of event occurred in the data.

It is necessary to investigate the hazard rates in the different recurrent events since covari-

ates might have different effects across the events. For this reason, further the conditional

(PWP) and marginal models were fitted again but considered here with time-depending

strata. That is, covariates or hazard functions have event specific interpretations. Due to

the small numbers of participants who had more than four recurrent events in the study,

event-specific analysis for both PWP and WLW models were done by limiting the maxi-

mum number of recurrences to four (k= 4). In such kind of analysis, the estimates in the

first stratum are exactly the same as time to the first recurrent analysis. Estimates from

the second stratum corresponds to the analysis of time to the second recurrence and so on

(result not presented here). Here, it is important to test a linear hypothesis that checks

whether covariates have identical effects across the four strata (interactions between the

strata and each covariates). This null hypothesis can be stated as:

H0 : βi1 = βi2 = βi3 = βi4 = β

Where, βi1 is the effect of covariate i on the first stratum. If these tests for identical

effect are significant then the hazard function has different effect on each event. However,

the test indicates that no evidence of heterogeneity in the effect risk factors across the

recurrent event (p-value were greater than 0.12 in all cases). However, the cumulative

hazard functions that correspond to the fit of the stratified conditional model can reveal

important features of the data. The resulting plot, presented in Figure 4, shows that

the time to the first recurrent event has slightly different (smaller) cumulative hazard

than the other gap times. Second, third and fourth recurrent events do not show clear

differences in their cumulative risks, supporting the hypothesis tested above. Higher

recurrence events and hazard function after 15 years were not presented in the plot since

very few information are present in each event and after this period.

3.2.1 Comparison of Marginal Models

Even though the Andersen-Gill model is easy to formulate and interpret, it is based on the

strong assumption that multiple event times for an individual are mutually independent.

To capture such dependence, the variable, number of previous recurrence, was included in

the models as covariate. Inclusion of the event strata (order of the events) in conditional

I and II models did not show great changes in the parameter estimates as compared to
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Figure 4: Cumulative hazard for the first four events

Andersen-Gill models. The Andersen-Gill and conditional I models enable to model the

full time course of the recurrent event processes while conditional II models only the time

between successive event. Furthermore, the Andersen-Gill and PWP model estimates are

unbiased and more efficient than WPW model. For instance, the estimated hazard ratio

(exp(β)) for gender is: 0.79, 0.85, 0.88 and 0.63 from AG, conditional I, conditional II

and marginal models, respectively. The hazard ratio for the covariate differs somewhat

for each of the four approaches, with the marginal model giving a much different result

from those obtained in the other three approaches.

The global test for proportionality assumption for the four models were assessed. Results

show that the tests were not significant in all the models except the marginal model,

indicating that the PH assumption is satisfied. A sample plots of Schoenfeld residuals

against each predictor variables for Andersen-Gill model (Figure A1 in appendix) show

constant trend along the horizontal line around zero. The two conditional models are

appropriate to account for the ordering of events properly and to see the effect of the

covariates on the different strata (event).

In addition, the concordance probabilities for the first four recurrence events were com-

puted separately and presented in Table 6. These concordance probabilities are used here

to evaluate the discriminatory power and the predictive accuracy of the marginal models.

Since, the C-statistics are estimated as a function of the regression parameters of the cor-
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responding models and the covariate distribution only, they are asymptotically unbiased.

However, when the parameter estimates are biased, the estimated C-statistics will be bi-

ased. As observed in Table 6, the discriminatory power of the Andersen-Gill, conditional I

Table 6: Concordance probability per recurrence event

AG Conditional I Conditional II Marginal Frailty-gap Frailty-CP

1st recurrence 0.600 0.596 0.605 0.585 0.822 0.840

2nd recurrence 0.562 0.565 0.565 0.638 0.732 0.735

3rd recurrence 0.582 0.587 0.583 0.699 0.741 0.738

4th recurrence 0.543 0.541 0.554 0.748 0.748 0.741

and II models are almost similar for each event. For instance, based on the Andersen-Gill

model, the concordance probability can be interpreted as; for randomly selected pair of

subjects having the first recurrence, the predicted survival and the observed survival are

concordant with probability of 0.6. For the marginal model, the C-statistics is higher for

the 2nd, 3rd and 4th recurrences, this is because the estimated parameters are higher for

this model as observed from Table 5.

In summary, the Andersen-Gill and the two conditional models have comparable predictive

accuracy and discriminatory power. Moreover, the proportionality hazard assumption

was satisfied in these models. While the marginal model has biased (overestimated)

results. The Andersen-Gill model has important additional covariate (number of previous

recurrence) and easy to interpret, thus, further interpretation and prediction can be done

using this model. The model is also the best choice since the recurrent events are identical

and event order does not bring great change.

3.3 Random-Effect Models: Frailty Model

All the marginal models fitted so far are handling the correlation between recurrent events

from the same patient by only correcting the variance. In order to account for the depen-

dency between the recurrent events or unobserved heterogeneity among patients properly,

a semi-parametric random-effect, frailty model is fitted. Under these models, it is assumed

that, conditional on some unobserved frailty random variable, the time to recurrence of

tumor would follow a Cox proportional hazards model. Multiple recurrence events from

each individual share a common frailty random variable, which accounts for the within-

individual correlation. A counting process and gap time scale were used to fit the frailty

models and the models are compared. Depending on the timescale selected, the interpre-

tation of the time evolution will be entirely different in the different frailty models.
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The parameter estimates, standard errors for the frailty models with counting process

and gap time were presented in Table 7. As observed from the table, different parameter

estimates for the covariates and variance of the frailty term were obtained from the two

models. The variance of the frailty term (θ) was estimated to be 0.445 and 0.719 under

the gap and counting process time scales, respectively. Gender, multiplicity and stage

were found statistically significant in both models but the number of previous recurrent

was significant only in the counting process frailty model.

Table 7: Parameter estimates for frailty models

Gap-time CP+- time

Male -0.256(0.121)* -0.312(0.134)*

Age -0.004(0.004) -0.001(0.005)

Multiplicity 0.471(0.11)* 0.501(0.119)*

Tumor size (3-5cm) 0.001(0.188) -0.04(0.189)

Tumor size (≥5cm) 0.229(0.257) 0.226(0.271)

Stage I -0.121(0.131) -0.189(0.14)

Stage II -1.357(0.301)* -1.51(0.315)*

Grade 2 0.10(0.107) 0.069(0.111)

Grade 3 0.287(0.154) 0.269(0.167)

# of prev.rec -0.006(0.021) 0.098(0.026)*

θ 0.445 0.719

* significant at 5% level of significance, + Counting process

The frailty model with counting process time scale has higher predictive accuracy for

the first recurrence event as compared to the gap time (Table 6). This model without

the frailty term is exactly the same as the Andersen-Gill model. Thus, to make the

two models comparable, the frailty model with counting process time scale is selected

for further interpretation. A variance of zero (θ = 0) would indicate that the frailty

component does not contribute to the model. A likelihood ratio test (LRT) for the

hypothesis H0 : θ = 0 was used to assess the significance of the frailty term by fitting a

model with and without the frailty terms. The LRT resulted with a chi-square of 42.0

which is tested with a mixture of two chi-squares with zero and one degrees of freedom,

yielding a high significant p-value <0.0001. The correlation between recurrent events from

the same patient can be estimated by ρ = θ/(θ + 2)= 0.264. Since the frailty term was

significant, in general, the covariate coefficients are not expected to be the same in the

Andersen-Gill and frailty models. The two models can result in same parameter estimates

when the within recurrent events correlation is zero.
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3.4 Risk Prediction Models

From both, the Andersen-Gill and the frailty models, gender, tumor multiplicity, stage

and number of previous recurrence were identified as important risk factors for recurrence

of bladder cancer. Interpretation in terms of hazard ratio and 95% confidence intervals

for the risk factors can be made from the results presented in Table 8.

Table 8: Hazard ratio with 95% CI for AG and frailty models

Andersen-Gill Frailty

HR 95% CI HR 95% CI

Male 0.785 (0.649, 0.948) 0.732 (0.563, 0.952)

Age 0.997 (0.99, 1.004) 0.999 (0.99, 1.008)

Multiplicity 1.608 (1.306, 1.98) 1.65 (1.299, 2.097)

Tumor size (3-5cm) 0.877 (0.625, 1.231) 0.961 (0.657, 1.405)

Tumor size (≥5cm) 1.097 (0.667, 1.802) 1.253 (0.704, 2.231)

Stage I 0.794 (0.606, 1.04) 0.828 (0.629, 1.09)

Stage II 0.287 (0.17, 0.485) 0.221 (0.119, 0.409)

Grade 2 1.072 (0.863, 1.332) 1.071 (0.861, 1.332)

Grade 3 1.234 (0.901, 1.69) 1.308 (0.944, 1.813)

# of prev.rec 1.308 (1.265, 1.354) 1.103 (1.048, 1.161)

Based on the Andersen-Gill model, male patients have 22% reduction in risk of having

recurrence than female patients. Patients with multiple tumor have higher risk of recurring

bladder cancer, 61%, as compared to patients with solitary tumor. Further, compared

to patients with stage 0 tumor cancer, patients in the stage II tumor group had 71%

reduction in the risk of having the bladder cancer again. The hazard ratio of number of

previous recurrence was estimated to be 1.31 with 95% CI of (1.27, 1.35). This means that,

for a unit increase in the number of previous recurrence, the risk of recurring the cancer

tumor increased by 31% (see Table 8). When using the frailty model, however, reported

hazard ratios carry this usual interpretation only if comparing two hazards conditional on

a given frailty term u. For example, one would interpret the hazard ratio for the covariate

gender as; all other things equal (including the frailty u), the hazard ratio for male is 0.73

times the hazard for females. Comparing two individuals with the same level of frailty

and controlling for the other covariates, the risk of having recurrence for a patient with

multiple tumor is 1.65 times higher than a patient with solitary tumor. The rest hazard

ratios hold similar interpretation. As observed from the estimated hazard ratios from the

two models, the frailty model has slightly wider confidence intervals. However, the frailty

model has higher discriminatory power than the other marginal models (see Table 6).

The cumulative hazard plots in Figure 5(b) during the follow up shows that both models
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have the same estimated cumulative hazard in the first five years of the study.

Using the risk factors, one of the important outcomes of the models is patient-specific

survival or cumulative risk curves. That is, given the state of a patient’s disease at present,

the expected future or ”natural history” survival for that patient can be predicted. The

estimated baseline cumulative risk of bladder tumor recurrence during the follow up for

male and female patients aged 65 years with solitary tumor and < 3cm tumor diameter,

in stage 0, grade 1 and with no previous recurrence are compared. The plot of the baseline

cumulative hazard presented in Figure 5(a) indicate that female patients have the higher

risk of having bladder cancer recurrence than male patients throughout the follow up.

The estimated survival probability for these male and female patients at one year is 0.81

and 0.76 respectively.
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Figure 5: (a) Baseline cumulative hazard for males and females aged 65 years having solitary tumor,

<3cm tumor diameter, in stage 0, grade 1 with no previous recurrence. (b) Cumulative hazard plot for

tumor recurrence over the course of the follow-up among 615 patients for AG and Frailty models.
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4 Discussion and Conclusion

A great deal of research is currently underway to develop risk prediction models to esti-

mate the probability that an individual, given risk factors, will develop a specific disease

over a defined period of time. Development of these risk prediction models are common

practices in clinical studies on either a single or multiple event of interests. Bladder cancer

recurrence event is one typical example that a tumor occurs more than once per subject

over the follow up time. In this report, 1280 records from 615 bladder cancer patients

followed-up during the study period are analyzed. Patients experience 0 to a maximum of

15 recurrence. Observations from the same patient are expected to be correlated, and the

ordinary Cox proportional models are not appropriate methods. Different marginal and

random-effect approaches which are extensions of the Cox models have been proposed to

analyze such data.

In this study, Andersen-Gill, Wei-Lin-Weissfeld (marginal), Prentice-Williams-Peterson

(conditional I and II) and gamma shared frailty models were applied to the analysis of

recurrence events in bladder cancer patients. In these models, factors such as: gender,

tumor multiplicity, stage and number of previous recurrence were identified as important

prognostic factors to the recurrence of bladder cancer. No significant difference was found

in the effects of these risk factors across the recurrent events. Even though event-specific

effect of the covariates was not significant, such analysis enables one to investigate the

effect of each risk factors across the strata. However, this approach is inefficient when the

number of covariates and events are large, because too many parameter to be estimated.

The major concerns of the different marginal models are the definition of the risk sets

and the choice of time scales. In the WLW model, each individual is considered to be

at risk of all recurrent events from the start of the observation period while the PWP

models assume that an individual is at risk of the kth event only if the person experienced

the (k − 1)th event. The Andersen-Gill model is different from the PWP and WLW

models in its assumption of a common hazard and covariate effect across strata. Fitting

all the different marginal models to the analysis of recurrent events are recommended as

they provide somewhat different insight. If one is only interested in the overall rate for

recurrences of the same nature, the easiest and appropriate method is to use AG model.

When the main interest lies on the gap time, conditional II model is the best choice. The

WLW model has been criticized because of its failure to accommodate the ordered nature

of the recurrent events. Thus, the conditional models will be the appropriate choice when

the event order is very important.

All the marginal approaches are based on a ”marginal” regression models after correcting
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the standard errors and the estimated coefficients carry ”population average” interpre-

tations. The common estimates of the covariate effect are unbiased and approximately

similar from the AG and the two conditional models, while the parameter estimates and

the robust standard errors were inflated (overestimated) in the case of WLW model.

However, the conditional II model has the smallest standard errors.

One aim of this study is to propose an appropriate model to predict recurrent rates for

new patients, thus, the predictive accuracy and discrimination ability of the models were

compared. The Harrell
′
s C-index (concordance probability) at the first four recurrence

events shows that the models have comparable discriminatory ability (ranges from 0.54

to 0.61) except the marginal model, since the parameter estimates from this model are

biased.

The last method considered here for analyzing recurrence event times is the random-effect,

gamma shared frailty model. It is a natural way of modeling dependent data. The frailty

model with counting process time scale is the same as the AG model with a random effect.

This random effect induces dependence among the multiple event times. Results of these

models show different (larger) parameter estimates and standard errors. Further, a test for

the significance of the frailty terms indicates the presence of unobserved variation among

patients. Multiple events from same patients share a common frailty. The estimated

intra-cluster correlation between observations of a patient is 0.264. Compared to the

marginal models, the frailty models have better predictive accuracy and discriminatory

ability. It has an estimated concordance probability of 0.84 to discriminate patients with

first recurrence into subgroups. The interpretations of the hazard ratio in the marginal

and frailty models are quit different in that, the hazard ratio in the frailty models can

hold the the usual interpretation within patients sharing the same frailty ui.

There are some limitations in this study. The models did not include some important

patient and tumor characteristics, such as smoking status and number of tumors which

might be associated with bladder recurrence, for lack of such information in the dataset.

The models predictive ability is assessed or validated internally due to the absence of

external dataset or large dataset. Thus, external validation of the models is needed in

future investigation.

In conclusion, appropriate approaches to model multiple recurrent events for bladder

cancer patients were assessed and compared. Among the marginal models, the Andersen-

Gill, and from the random-effect models, the gamma shared frailty model with counting

process time scale are identified as the most suitable approaches based on their predictive

and discrimination ability. The Andersen-Gill model have marginal-wise interpretation

while the frailty model is conditional on patient level.
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6 Appendix

Plots of scholfeld residuals based on Andersen-Gill model for checking the proportionality

hazard assumptions.
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Figure 6: Schoenfeld residuals for some selected variables with ± 2 standard errors

Some R codes used to fit the models

library(foreign)

library(survival)

library(rms)

library(CPE)

library(Design)

library(mice)

library(survcomp)
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data1<- read.spss("D:/thesis work/trial/missing.sav", to.data.frame=TRUE)

names(data1)

Agem<-data1$Age-65

##### Multiple imputation####

data2<- mice(data1,m = 5,seed=1000,Method =c(

"","","","","","","","","","",

"","","polyreg","logreg","logreg","",""))

data3=complete(data2,1)

data4<-complete(data2,2)

data5<-complete(data2,3)

data6<-complete(data2,4)

data7<-complete(data2,5)

#### 1. AG model

AG1<-with(data2,coxph(Surv(Tstart, Tstop, event)~ as.factor(SexNum)+

Agem+ as.factor(MultiplicityNum)+as.factor(tumorsizegroupNum)+

as.factor(Stage)+ as.factor(Grade)+ cluster(Pat_ID), x=T))

AG2<-summary(pool(AG1))

AG3<-round(summary(pool(AG1)),4)

#### 2. Conditional I model

CI1<-with(data2,coxph(Surv(Tstart, Tstop, event)~ as.factor(SexNum)+

Agem+ as.factor(MultiplicityNum)+as.factor(tumorsizegroupNum)+

as.factor(Stage)+ as.factor(Grade) + cluster(Pat_ID)+

strata(Sequence), x=T, y=T))

CI2<-summary(pool(CI1))

CI3<-round(summary(pool(CI1)),4)

#### 3. Conditional II model

CII1<-with(data2,coxph(Surv(Time, event)~ as.factor(SexNum)+ Agem+

as.factor(MultiplicityNum)+as.factor(tumorsizegroupNum)+

as.factor(Stage)+ as.factor(Grade) + cluster(Pat_ID)+

strata(Sequence), x=T, y=T))

CII2<-summary(pool(CII1))

CII3<-round(summary(pool(CII1)),4)

#4. Marginal WLW model with new dataset

M1<-with(datamm2,coxph(Surv(Time_nth_rec, event)~ as.factor(SexNum)+

Agem+as.factor(MultiplicityNum)+as.factor(tumorsizegroupNum)+

as.factor(Stage)+ as.factor(Grade) + cluster(Pat_ID)+

strata(Sequence), x=T, y=T))
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M2<-summary(pool(M1))

M3<-round(summary(pool(M1)),4)

### 5. frailty model with gap time

frailty1<-with(data2,coxph(Surv(Time, event)~ as.factor(SexNum)+ Agem+

as.factor(MultiplicityNum)+as.factor(tumorsizegroupNum)+

as.factor(Stage)+ as.factor(Grade) + no_prev_rec+

frailty(Pat_ID, dist="gamma", sparse=FALSE), x=T, y=T))

frailty2<-summary(pool(frailty1))

frailty3<-round(summary(pool(frailty1)),4)

### 6. frailty model with CP time scale

frailty.CP<-with(data2,coxph(Surv(Tstart, Tstop, event)~ as.factor(SexNum)+

Agem+as.factor(MultiplicityNum)+as.factor(tumorsizegroupNum)+

as.factor(Stage)+ as.factor(Grade) +no_prev_rec+

frailty(Pat_ID, dist="gamma", sparse=FALSE), x=T, y=T))

frailty.CP2<-summary(pool(frailty.CP))

frailty.CP3<-round(summary(pool(frailty.CP)),4)

#### sample code for computing the C-statistics for AG model

ag1<-coxph(Surv(Tstart, Tstop, event)~ as.factor(SexNum)+ Agem+

as.factor(MultiplicityNum)+as.factor(tumorsizegroupNum)+

as.factor(Stage)+ as.factor(Grade)+ no_prev_rec +

cluster(Pat_ID), x=T,y=T, data=data3)

AG.X<-ag1$x[data3$Sequence==1,]

pi.AG<-AG.X%*%ag1$coef

surv<-Surv(data6$Time, data3$event)[data3$Sequence==1,]

c=rcorr.cens(pi.AG, surv) #1st recurrence

35



Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:

The frailty model versus the Andersen-Gill model for the prediction of 

recurrent events

Richting: Master of Statistics-Biostatistics

Jaar: 2011

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de 

Universiteit Hasselt. 

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt 

behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -, 

vrij te reproduceren, (her)publiceren of  distribueren zonder de toelating te moeten 

verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de 

rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat 

de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt 

door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de 

Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de 

eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen 

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze 

overeenkomst.

Voor akkoord,

Baye, Fitsum Megersa  

Datum: 12/09/2011


