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 Abstract  

 The immune system is used to recognize and fight foreign agents that invade the body. It 

detects the pathogen and acts as the first line of defence, clearing the majority of microbial 

assaults. In the clinical trial study which is conducted by GSK, 213 consented individuals 

participated and they followed for about two to six visiting measurements after they had 

taken either of the two Human Papilloma Virus (HPV) vaccines at study start.  The main 

objective of the study was to investigate the statistical method which can be used to compare 

the B-cell responses over time after the HPV vaccines administered in the presence of zero 

inflated data and to assess the effect of the two HPV vaccines.  

In this study there were excess zeros, about 30.65% of the responses have zero value. The 

variance of the data was much higher than its mean that is, about 2574 times larger than its 

mean. Several count models were fitted to select the model which best fits the data, these are: 

Poisson, Negative Binomial (NB), Zero-Inflated Poisson (ZIP), Zero-Inflated Negative 

Binomial (ZINB), Poisson mixed, NB mixed, ZIP mixed and  ZINB mixed regression models. 

Each of these models was compared by likelihood ratio test (LR) and the information 

criteria’s and it was found that the ZINB mixed model was the best.  

Moreover, in this study it was found that NB, ZINB, NB mixed and ZINB mixed regression 

models were better fitted the data than Poisson, ZIP, Poisson mixed and ZIP mixed. Some 

observations were found to be potential outliers; however in this study similar result was 

found before and after excluding the outlying observations. In both models, treatment (HPV-

vaccine) and the interaction between treatment with linear and quadratic time effect were 

found to be significantly associated with the production of B-cells. 

In conclusion the zero-inflated negative mixed models with correlated random intercept fits 

best the data.  

 

Key words:  B-cells; HPV; Poisson regression model; Negative binomial (NB) regression 

model; Zero-inflated Poisson (ZIP ) regression model; Zero-inflated negative binomial 

(ZINB)regression model; Poisson mixed regression model; NB mixed regression model; ZIP 

mixed regression model; ZINB mixed regression model.
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1.0. Introduction 

The immune system uses an innate and adaptive immunity to recognize and fight foreign 

agents that invade the body, such as bacteria, fungi, and viruses. The innate immune system 

detects the pathogen and acts as the first line of defence, clearing the majority of microbial 

assaults. It has no specific memory, but is responsible for activating adaptive immunity. The 

adaptive immune response generates exquisitely specific lethal effect or responses to foreign 

antigens as well as long-lived cells with memory of the insult. Antibody-mediated humoral 

immunity such as B lymphocytes (or B-cell) and T lymphocytes (or T-cells), clears virus 

particles from body fluids and can prevent viral re-infection, while cell-mediated immune 

responses are essential for the clearance of virus-infected cells and the generation of immune 

memory [1].   

Human Papilloma Virus (HPV) is the name for a group of viruses that includes more than 

100 types. Of which more than 40 of them can be transmitted through sexual contact. The 

types of HPV that infect the genital area are called genital HPV. More than half of sexually 

active individuals will have the virus at some point in their lives; however most people never 

know it since HPV often exhibits no symptoms and goes away on its own. Genital HPV is the 

most common sexually transmitted infection (STI) in the United States. About 20 million 

Americans aged from 15 to 49 currently have HPV at least half of all sexually active men and 

women get genital HPV at some time in their lives [2].  

Infection with a high-risk type of HPV is considered necessary for the development of 

cervical cancer, but by itself it is not sufficient to cause cancer because the vast majority of 

women with HPV infection do not develop cancer. Cervical cancer is the leading cause of 

cancer mortality among women in developing countries. Approximately 500,000 new cases 

of cancer are estimated, leading to about 239,000 deaths each year. More than 99% of 

cervical cancer cases are linked to genital infection with HPV, which is the most common 

viral infection of the reproductive tract worldwide and infects an estimated 660 million 

people. While HPV infection resolves spontaneously in the majority of people, it can develop 

into chronic infection and, in some women, cervical cancer.  The disease represents a major 

health inequity, as 80% of cervical cancer victims live in developing countries. However, 

developed countries have greatly reduced deaths from cervical cancer through screening 

programmes that allow early detection and treatment. These programmes are expensive and 

difficult to implement in low-income (developing) countries. The peak incidence of HPV 
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infection occurs in adolescents and young women, while cervical cancer typically follows 20 

to 30 years later [3]. 

The prevalence of HPV infection is highest in Africa. Among women with HPV infection, 

compared to HPV-positive women in Europe, HPV-positive women in Africa are relatively 

less likely to be infected with HPV-16, but they are more likely to be infected with the other 

types of HPV. Vaccines against HPV infections have the potential to be a more practical and 

cost–effective way to reduce the incidence of cervical cancer [3].   

This paper is organized as follows. In Section 1.1 and Section 1.2, the objective and 

description of the data will be presented respectively. In Section 2.0, we will explain the 

methods which will be used to analyse the data. The results will be presented in Section 3.0. 

At last, the discussion and conclusion will be discussed in Section 4.  

1.1. Objective  

The objective of this paper is to investigate a statistical method which can be used to compare 

the B-cell responses over time after administration of two HPV vaccines, in presence of zero 

inflated data and also to examine the vaccine effect. This will be done through the selection 

of an appropriate model out of several count data models.  

1.2. Data description 

 This data comes from a GSK clinical trial and it was collected one month after the last 

vaccine administered and then every six months for the next four years. There are 213 

individuals who consented to receive either of the vaccines. The response variable is the 

number of B-cells produced per million of cells and the covariates are time of measurement 

and treatment received by the subject. The measurements take place every six months (that is 

in the first, seventh, twelfth, eighth, twenty fourth, and the thirty sixth months). Note that 

there was no measurement on month thirty. About 30.65% of the responses have zero values 

(i.e. no production of B-cells per million cells). Even though the design is a balanced design, 

the data is an imbalance data due to the missingness. 920 observations were observed out of 

the 1278 intended observations leading to 358 missed observations.  
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2.0. Methodology  

2.1. Exploratory data analysis  

An exploratory data analysis (EDA) was carried out to explore the data. To this effect various 

data exploration techniques were used such as: individual profile, mean and median evolution 

plots in order to see how the number of B-cells evolves over time. The variance structure   

was also used to see how the measurements of the B-cells vary over time. In addition, a 

scatter plot was used to explore the correlation structure of the measurements at the different 

time points and to identify the potential outliers in the data. 

2.2. Statistical methodology  

Even though there are several statistical models, some models may not be appropriate to deal 

with some specific types of data. Their use is solely depending on the types and nature of the 

data. In this study, the variable of interest is a count data, which is most often characterized as 

non-normal distribution. We will discuss statistical methods which can be used to model 

count data in the next subsections. 

2.2.1. Poisson regression model 
 
The standard Poisson distribution is a fundamental distribution to understand regression 

counts models. It was developed to model discrete count data, since it is easy to interpret in 

many aspects. According to [4], the apparent simplicity of Poisson comes with two restrictive 

assumptions. First, the variance and mean of the count variable are assumed to be equal. In 

reality, however, the variance is usually much larger than the mean. Although Poisson 

regression models are widely used to handle count data, it may not be well suitable to handle 

some types of count outcomes such as an over dispersed or under dispersed data. The other 

restrictive assumption of Poisson models is that occurrences of the event are assumed to be 

independent of each other. 

Poisson regression assumes a Poisson distribution, characterized by a substantial positive 

skewed with variance equals mean. It tends to fit such data better than the linear regression 

model.  However, if the variance is larger than the mean, it induces deflated standard errors 

and inflated the standardized normal (i.e. Z-normal) value,  resulting in Type I errors and 

these makes Poisson regression less adequate [5]. Some researchers suggest that, when there 
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is an overdispersion which is not a rise from an excess zeros, it is better to use other models, 

such as negative binomial which can taker of the overdispersion problem [6]. 

Let Y  be a random variable, which has a Poisson distribution. Its density function is given by: 

                   )1(,2,1,0,
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natural logarithmic link function which leads to Poisson regression model. Suppose: 
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And itime  is the time point in months at which iY is measured, that is  

.36,24,18,12,7,1itime s' are the regression coefficients.  

2.2.2. Negative binomial regression model 

The negative binomial is a conjugate mixture distribution for count data. When the Poisson 

model assumption fails, negative binomial regression model may fit better, and address the 

overdispersion problem. However, this is true only if it is not attributed to excess zeros. As 

we have discussed in section 2.2.1, a severe limitation of the standard Poisson models 

assumption is, the variance of the data is equal to the mean of the data. Hence, at a fixed 

mean the variance cannot decrease as additional predictors enter the model.  

Like Poisson regression, negative binomial regression model also examines predictive 

relationships with a count dependent variable. The standard Poisson regression accounts for 

observed differences among the observations; however negative binomial regression includes 

a random component that involves unobserved variance among observations. The inclusion 

of this random component prevents the incorrect Poisson assumption that is all differences 
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among subjects in the dependent variable are equally explained. In an overdispersed data this 

random component results more accurate standard errors and z-statistics for the regression 

coefficients than using the standard Poisson regression [5]. 

Overdispersion might happen due to some relevant explanatory variables are not included in 

the model. A mixture model is a flexible way to account for such problem at a fixed setting of 

the predictors used, given the mean of the distribution of Y is Poisson, but the mean itself 

varies according to some distributions. Suppose i has a gamma distribution with mean

  iiiYE  |  and variance ,/)|(var kY iii   iiY |  to be a Poisson with conditional mean 

  .| iiiYE   It can be shown that the marginal distribution of iY follows a negative binomial 

distribution with probability density function: 

                              iiiiiii dfyYfyYf  )()|()(    
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With mean,
 iiYE )(  and variance, )1()var( 1 kY iii  . The index 1k is called the 

dispersion parameter. As 1k approaches to zero, the variance and mean becomes identical. 

Hence the negative binomial distribution will reduce to Poisson distribution. In such cases the 

data can be modelled easily by Poisson regression model. If 1k > 0, the variance will exceed 

the mean, that is )()var( ii YEY  ,  and  the distribution allows for overdispersion [8]. One 

important characteristic of this distribution is, it accounts naturally for overdispersion. As a 

result negative binomial regression model has greater flexibility than the highly restrictive 

Poisson model [9].  

Although the negative binomial model can solve an overdispersion problem, it may not be 

enough flexible to handle when there are excess zeros. In such cases, one can use the zero-

inflated Poisson or zero inflated negative binomial model to solve the problem [10]. 

2.2.3. Poisson and negative binomial mixed regression models 

In the case of Poisson, the random parameter can follow Gaussian, gamma, or inverse 

Gaussian distributions. Gamma is the preferred random distribution to use since it is 

conjugate to Poisson distribution. This has also an additional feature, which allows an 

analytic solution of the integral in the likelihood. Other random distributions do not have 



6 
 

such favourable features [11]. A model may contain a random intercept and/or slope; 

however in this study we will deal with the most common, random intercept model. These 

models are a simple extension of the Poisson and NB models. They include a random 

intercept in addition to the fixed effect in the Poisson or negative binomial regression model. 

The effect of adding a random component to the linear predictor is shown in eq. (4).  Most of 

a time the Gaussian or normal distribution is used to characterize the intercept randomness. 

As a result the Poisson regression mixed model can be given as: 

                 ii

T

ijij njmivX ,.....,2,1,,....,2,1,)ln(                      (4) 

where 
T

ijpijij xxX ),....,,1( 11  is a 1px  matrix of explanatory variable and   is 1px  vector of 

regression parameters, m  is the number of subjects  in  is the number of measurement for the 

thi  subject and    is a random intercept, which is assumed to be normally distributed with 

mean zero and variance .2

b
  

In the case of the negative binomial mixed model, the mean, ij is expressed in a similar way 

as eq. (4). The only difference is the response variable is assumed to have a negative binomial 

distribution [11]. 

Poisson-normal (or mixed) model can be used to fit longitudinal data. However when there is 

overdispersion in the data, it may not be enough flexible. In order to include the extra 

variability which is not taken in to account by the normal-random effect [12] extended this 

Poisson-normal model to a combined model which includes an overdispersion parameter, 

which has a gamma distribution. They have also discussed that the combined model (negative 

binomial mixed model)  contributes more to the likelihood than only considering either the 

Poisson normal (or mixed) model or the negative binomial model. 

In our case let )(~ ijij PoissonY  , then the Poisson regression mixed model can be given as  
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where ijtime  is the thj  time measurement of the thi  individual,  ij is the predictive value of 

the thj  measurement of the thi  individual, s'  are the regression coefficients and iktreat  is 

the thk
 
treatment assign to the thi  individual and  iv  is the random intercept as it is defined in 

eq. (4). 
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 2.2.4. Zero-inflated regression models 

There are situations where a major source of overdispersion is a preponderance of zero counts, 

and the resulting overdispersion cannot be modelled accurately with negative binomial model. 

In such scenarios, one can use zero-inflated Poisson or zero-inflated negative binomial model 

to fit the data. The first concept of a zero–inflated distribution originated from the work of 

[13, 14] who examined the characteristics of mixed Poisson distributions [15].  

According to [16], Zero-inflated techniques permit the researcher to answer two questions 

that pertain to low base rate-dependent variables: (a) what predicts whether or not the event 

occurs, and (b) if the event occurs, what predicts frequency of occurrence? In other words, 

two regression equations are created: one predicting whether the count occurs and a second 

one predicting the occurrence of the count. Moreover, zero-inflated models have a statistical 

advantage to standard Poisson and negative binomial models in that they model the 

preponderance of zeros as well as the distribution of positive counts simultaneously [10].  In 

Section 2.2.4.1 and Section 2.2.4.2 zero-inflated Poisson and zero-inflated negative binomial 

models will be discussed briefly respectively.  

2.2.4.1. Zero-inflated Poisson regression model 

In Poisson model, counts are assumed to be generated with mean of      according to the   

probability function in eq. (1). A characteristic of the Poisson distribution as it present in 

Section 2.2.1 above, the  mean of the distribution is equal to the variance; however when 

there is an excess zeros, probability of zero in the standard model will be less than the 

expected. Therefore, in such situation the standard Poison and negative binomial models are 

not suitable models. In such cases, a ZIP or ZINB models can be used to account the excess 

zeros. The zero values in the ZIP model can be viewed as comprising two parts. One portion 

of the zero counts arises from the inflated part of the distribution and the other portion comes 

from what would be expected given a Poisson distribution with parameter  .  

When there is an excess zeros and high variability in the non-zero outcomes, ZIP models is 

less adequate than ZINB models. ZINB models will be described briefly in the next section 

2.2.4.2. 

Suppose     is used to denote a ZIP variate, which is assumed to be generated according to 

the following probability density function: 
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where i  is the mean of the non-zero outcomes that can be modelled with the associated 

explanatory covariates using a natural logarithmic link function as: 
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2.2.4.2. Zero-inflated negative binomial regression model 

Zero-Inflated Negative Binomial (ZINB) regression Model is an extension of the NB 

regression model that was discussed in section 2.2.2. As the number of zeros in the count 

distribution is excessive, then the ZIP or ZINB model will be more accurately fit the data 

than the negative binomial or Poisson model. If overdispersion is not accounted by the ZIP 

model, then there may be other aspects of the distribution that contribute to overdispersion, in 

such case the ZINB model is more appropriate [16]. 

The main difference between ZIP and ZINB model is that the Poisson distribution for the 

count data is replaced by the negative binomial distribution. The probability function of a 

ZINB is a simple modification of the ZIP.  

Suppose     is used to denote a ZINB variate, which is assumed to be generated according to 

the following probability function: 
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Where i is the mean of the non-zero response that can be modelled with the associated 

explanatory covariates using a natural logarithm link function is defined as eq. (7) and     is 

the probability of an excess zeros, which can be estimated by the logistic regression it is also 

defined as eq. (8) [18]. 

The ZINB model is a special case of a two-class finite mixture model like the ZIP model with 

mean and variance, iii pYE )1()(  and ))(1()var(
2

k
pY i

iii


   respectively.  

In our case i  and ip  are linked with covariates as eq. (9).  

2.2.5. Zero- inflated mixed regression models 

In healthcare research, count variables with many zeros are quite common in such case a 

standard Poisson or negative binomial regression models may not be appropriate since it 

underestimates the zero counts. Moreover, when there is an excess zeros in a cross sectional 

data we can use the ZIP or ZINB models; however in the case of the cluster and longitudinal 
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data such models are not appropriate instead the  zero-inflated mixed (i.e. ZIP mixed or  

ZINB mixed ) models are appropriate. Each of these models will be discussed in section 

2.2.5.1 and 2.2.5.2 respectively.      

2.2.5.1. Zero-inflated Poisson mixed regression model 

A zero-inflated Poisson (ZIP) model was developed by [19] to deal with counts which have 

extra zeros; however it has limitations for longitudinal and/or clustered count data. Recently, 

zero-inflated Poisson mixed (ZIP mixed) models have been developed that accommodates 

both correlated and extra-zero count data [20]. 

A ZIP mixed is an extension of ZIP by taking the clustering effect into account. Its 

corresponding density function is given by: 

i

ij

ij

ij

y

ij

ij

ijijijij

ijijijij

nj

mifor
ify

y
p

ypp

pyYP ij

,...2,1

)11(,,.....2,1
0,

!

)exp(
)1(

0),exp()1(

)|( ,



















 




  

where m  is the number of individuals included in the study and    is the number of 

measurements of the i
th

 individual [20]. The mean and variance of the ZIP random variable 

are given by  ijijij pYE )1()(   and )1()1()var( ijijijijij ppY    

In the regression setting, both ij  and ijp parameters are related to covariate vectors ijX  and 

ijZ  as follow: 

i

i

T

ij

i

T

ij

ij

i

T

ijij

njmifor
uZ

uZ
p

vX

,..1,,.....2,1
)exp(1

)exp(

)log(















             (12) 

 Where 11),....,,1(),....,,1( 1111 qxandpxarezzZandxxX T

ijqijij

T

ijpijij   vectors of known 

covariates for the Poisson and logistic parts, respectively, from the i
th

 individual. 

11),...,(),....,,( 10110 qxandpxareand T

qij

T

pij    are Poisson and logistic 

regression parameter vectors associated with covariates     and ijZ  Here, ijp  is considered to 

be a mixing parameter for the mixture of a binary and a Poisson process. i and i are 
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random effects and are assumed to be normally distributed, i ~ (0, 2

u ) and i ~ (0,   
 ). In 

our case ij and ijp  are linked with covariates as: 

    
2,16...,,2,1...,2,1,213,...,2,1

,)ln(

,

2

4

2

43210




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iijikijijikijikij 
 .(13) 
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



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  where     and    is the random intercepts of   the Poisson and binomial models respectively, 

ijtime  is the thj  time measurement of the thi  individual,  ij is the predictive value of the thj  

measurement of the thi  individual,     are the regression coefficients and iktreat  is the thk
 

treatment assign to the thi  individual.  

2.2.5.2. Zero-inflated negative binomial mixed regression model 

Zero-inflated negative binomial mixed model is an extension of the ZINB model. Unlike to 

the ZINB model it takes into account the clustering effect. If the overdispersion  problem  is 

not only arising from excess zeros, a ZINB mixed model is used to overcome the problem , 

which is attributed to the non-zero count data  in a clustered or longitudinal data . In such 

cases the count variable     follows a ZINB distribution, which is given by:  
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where m  and in   are the same as they defined in eq.(11) and 1k  is an overdispersion 

parameter [21]. Both      and     parameters are related to covariate vectors              in a 

similar fashion as eq. (12) model.  
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2.2.6. Goodness of fit 

2.2.6.1. Likelihood ratio test  

The maximum likelihood estimation method is used to assess the adequacy of any two or 

more than two nested models by using the likelihood ratio test. it compares the maximum 

likelihood under the alternative hypothesis with the null hypothesis. For instance, the null 

hypothesis can be the overdispersion parameter is equal to zero (i.e. the Poisson distribution 

can be fitted well the data) and the alternative hypothesis can be the data would be better 

fitted by the Negative binomial regression (i.e. the overdispersion parameter is different from 

zero). The likelihood ratio test is defined as:             

where   and    are the log likelihood of models under the alternative and null hypothesis 

respectively. This has a chi-square distribution. As a result this test of statistics will be 

compare with the tabulated chi-square with a degree of freedom, the difference between the 

degree of freedom of the model under null hypothesis and the alternative hypothesis 

respectively. This method is not appropriate for models which are not nested one on the other, 

in such situation; we will use another method such as the Akakie information criteria (AIC) 

and Bayesian information criteria (BIC) [22].  

In this study a likelihood ratio was used to compare the Poisson with the negative binomial 

and zero-inflated Poisson with zero-inflated negative binomial since Poisson is nested on 

negative binomial and zero-inflated Poisson is nested in zero-inflated negative binomial; 

However this will not be used to compare Poisson or negative binomial with the zero inflated 

Poisson and negative binomial as long as these models are not nested one on the other.   

2.2.6.2. Information criteria 

 If there are several models to be compared in order to select the best model which fits the 

data instead of using the likelihood ratio test, it can be easily select by using the Akakie 

information criteria (AIC) and Bayesian information criteria (BIC).  

2.2.6.3. Akakie information criteria (AIC) 
 

AIC is the most common means of identifying the model which fits well by comparing two or 

more than two models. It is trying to balance the goodness of fit against the complexity of the 

model It is similar as of the coefficient of multiple determination (  ); however, it penalized 

by the number of parameter included in the model (i.e. the complexity of the model). Unlike 
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the  , the good model is the one which has the minimum AIC value. It is given by the 

following formula 

                                                 

Where   are the log likelihood of a model that will compare with the other models and k is the 

number of    parameter in the model including the intercept [22].  

Unlike the Akakie information criteria the Bayesian information matrix (BIC) takes in to 

account the size of the data under considered.  It is given by: 

                

where   are the log likelihood of a model that will compare with the other models, n is the 

sample size of the data and k is the number of parameters in the model including the intercept.  

2.2.7. Software 

 In this study, SAS (version 9.2) and R (2.10) were used to analyse the data. In addition all 

hypotheses were tested at 0.05 level of significance.    

3.0. Results 

3.1. Exploratory data analysis 

To have an insight on the data, an exploratory data analysis was conducted. In this study the 

mean of B-cells produced per million cells was 420.396, which is much smaller than the 

variance, 1035753.998. This indicates that there is an over dispersion. In such case the 

standard Poisson regression model is not an appropriate model to fit the data. In addition the 

median of the data was 161.50, which is smaller than the mean. 

Figure 1 presents the distribution of the number of B-cells produced per million cells in each 

group. Since there is large number of zero outcomes, the histograms are highly picked at the 

very beginning (about the zero values) in both groups. However large observations (i.e. large 

number of B-cells) are less frequently observed. This leads to have a positively (or right) 

skewed distribution in each group. This could be fitted better by count data models which 

takes into account excess zeros like zero-inflated models. 
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Panel A:Histogram of the number of B-cells in group I 

Panel B:Histogram of the number of B-cells in group II 

Figure 1: Histogram of the B-cells found per million of cell by group 

The mean profile B-cell produced over time (months) of the two treatment groups, group I 

and group II are presented in Figure 2. It indicates that there is a higher treatment effect in 

group II than in group I. Especially at month 7, the treatment in group I and group II produces 

high number of B-cells as compared to other time point measurements. In general this Figure 

indicates that the average production of B-cells by the two group vaccines is increasing until 

the first time measurement (7th month) and then starts to decline.   

Figure 2: mean profile of B-cells over time with respect to the two group I and group II 
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As there is a high variability in the data, the median would be better in explaining the 

measure of central tendency of the data than the mean since mean is highly affected by 

extreme observations. The median function of the measurement across the different time 

points of the two vaccine groups is shown in Figure 3. The median measurement at each time 

point is much smaller than the corresponding mean measurement in Figure 2. 

 

Figure3: median structure of the B-cells over time with respect to the two groups: group I 

and group II 

The individual profile plot present in Figure 10A (Appendix) shows that there is a substantial 

between and within variability of the B-cells production. Thus, it is better to consider models 

which take into account the heterogeneity nature of the data.  

To assess the variability across the different time points, a variance structure was used.  As is 

shown in Figure 4, there is a high variability of producing B-cells over time. Especially in the 

seventh month, it picks up and then starts to decline and then it starts to rise up again. Then 

after it remains constant over the rest time measurements (in the 24th and 36th month 

measurement). It suggests that as the random intercept model may not be enough. We should 

include also random slopes. The variance functions for the two treatment (vaccine) groups are 

also summarized in Figure 1A (Appendix). The plot shows as there is high variability over 

time, particularly individuals who received a group II vaccine.   
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Figure 4: Variance structure of the data  

The scatter plot matrix of the number of B-cells observed at each time point is shown in 

Figure 2A (Appendix). It shows that as there are potential outlying observations in the data. 

In addition, the histogram in the diagonal of the scatter plot matrix shows that the response 

variable is not normally distributed rather it is positively (or right) skewed. We have also 

shown the mean evolution and variance structure for the non-zero outcomes Figure 3A 

(Appendix) in order to assess the variability in the non-zero outcomes. It shows that the 

variance at each time point is substantially higher than the mean. This gives us a clue as there 

is an overdispersion in the non-zero value of the response variable.  

3.1. Statistical data analysis 

The variable of interest in this study was the number of B-cells produced per million cells. 

Such data can be well fitted by the count models rather than the linear regression model.  In 

this study we have considered different possible count data models. Likelihood ratio test (LR), 

Akaike information criterion (AIC) and Bayesian information criterion (BIC) were used to 

compare the candidate models to identify the most parsimonious model.  

3.1.1. Model comparison  

In order to select an appropriate model which fits the data well, eight different models were 

considered namely: the standard Poisson, negative binomial, Poisson mixed, negative 

binomial mixed, zero-inflated Poisson, zero-inflated negative binomial, zero-inflated Poisson 

mixed and negative binomial mixed models.  

3.1.1.2. Fixed effect models 

Table 1 presents the parameter estimates with their corresponding standard error of the 

Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial 
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regression models with their corresponding  deviance (-2l), AIC and BIC values. The 

overdispersion parameter (
1k ) is significantly different from zero in both NB and ZINB 

regression models. Hence there is an overdispersion problem in the data. As a result of this 

the standard error of the standard Poisson regression model is smaller than the standard error 

of the other models. Especially when compared to the NB regression model, the standard 

error of the standard Poisson regression model is very small. Thus, the z-statistic will be 

inflated consequently the covariates may wrongly interpreted.  

As one can be seen from this Table 1, all covariates included in the standard Poisson model 

such as: treatment, linear time and the interaction between treatment with linear and quadratic 

time effect are significantly associated with the B-cells production; however in the case of the 

NB model only linear and quadratic time effects are significantly associated. This is due to 

the fact that the standard Poisson regression model does not take in to account overdispersion; 

however it can be handled by the NB model if it is not arise from an excess of zero 

observations. ZIP and ZINB regression models were better fitted than Poisson and NB 

respectively based on their corresponding AIC as well as BIC. The parameter estimate of 

time main effect is positive in Poisson and negative binomial regression models; however it is 

negative in the zero-inflated regression model. 

A likelihood ratio test was used to compare the nested models, standard Poisson and ZIP 

regression models with NB and ZINB respectively. It was found that NB and ZINB 

regression models were well fitted the data than the standard Poisson and ZIP respectively 

since their LR, 774198)1(2 X  and 492957)1(2 X  both were highly significant (p-

value<0.0001). This also supported by the information criteria’s (Table 1). The 

overdispersion parameter ( 1k ) in the ZINB regression model is significantly different from 

zero since there is a high variability in the non-zero outcomes. In such scenario, it would be 

better to use the model which takes into account the excess zeros and high variability due to 

non-zero outcomes. The zero-inflated negative binomial (ZINB) regression model was found 

to be the most parsimonious model which fits the data better than the other possible candidate 

models. Since it has the smallest AIC (10277) as well as BIC (10339) values as presented in 

Table 1. 
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Table 1: Parameter estimates of Poisson, NB, ZIP and ZINB regression models  

Parameters Poisson model 

estimates(s.e.) 

NB model 

estimates(s.e.) 

ZIP model 

estimates(s.e.) 

ZINB model 

estimates(s.e.) 

Poisson/negative binomial  part 

intercept 5.1908(0.0070)* 4.4402(0.3469) 6.3821(0.00818)* 6.4693( 0.2241)* 

treat 0.6828(0.0088)* 0.7992(0.5255) 1.1737(0.01056)* 1.3133  (0.3283)* 

time 0.1119(0.0009)* 0.1998(0.0473)* -0.0011(0.00106)* -0.0145 (0.02700) 

Treat*time -0.0206(0.0012)* -0.03774(0.0714) -0.0914(0.00137)* -0.1089 (0.03884)* 

Time2 -0.0036(0.00003)* -0.0052(0.0012)* -0.0007(0.00003) -0.0003(0.00067) 

Treat*tim2 0.0004(0.00004)* 0.0009(0.0017) 0.00214(0.00004)* 0.0025(0.00096)* 

1k  0 4.8143(0.2195)* 0 1.0944(0.05845)* 

Logistic(inflated) part 

intercept ------------- ------------ 1.0052(0.22420)* 1.0235(0.2258)* 

treat ----------- ------------- 0.7028(0.35460)* 0.7080(0.3588)* 

time ------------ ------------ -0.2647(0.03247)* -0.2694(0.0330)* 

Treat*time ------------ ------------- -0.1769(0.05398)* -0.1810(0.0557)* 

Time2 ------------      ------------- 0.00628(0.00088)* 0.0064(0.00089)* 

Treat*tim2       -----------       ------------- 0.00437(0.00142)* 0.0045(0.00146)* 

 

 

-2l=774198 

AIC =774210                      

BIC=774239 

-2l=10921 

  AIC = 10935          

BIC= 10968 

- 2l=503208 

  AIC =503232 

  BIC =503290 

-2l=10251 

AIC=10277   

BIC=10339 
 

3.1.1.3. Mixed effect models 

Table 2 summarizes the parameter estimates and their corresponding standard errors of the 

Poisson mixed, negative binomial mixed, zero-inflated Poisson mixed and zero-inflated 

negative binomial mixed regression models. Each model contains one random component in 

each of the count part (Poisson or negative binomial part). The overdispersion parameter in 

the NB mixed and ZINB mixed regression models were significantly different from zero; 

however the magnitude of the overdispersion was higher in the NB mixed regression model 

than ZINB mixed.  

The AIC and BIC values of the models presented in Table 2 was smaller as compared to the 

corresponding models in Table 1. Hence including a random component increases the fitness 

of the models. Especially the AIC and BIC value of the Poisson mixed and ZIP mixed 

regression models were greatly reduced; however, in the case of the NB mixed and ZINB 

mixed regression models reduced relatively small. From this we can say that keeping the 

longitudinal nature of the data in the NB and ZINB regression models may not be a serious 

issue; however in the case of the Poisson and ZIP is a crucial thing. 

From Table 2 the Poisson mixed regression model has a very small standard error than NB 

mixed. This will result a high probability of committing Type I error (wrongly rejecting the 
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null hypothesis when it is true). Thus, some covariates will wrongly interpret as they have an 

association with the response variable in fact they are not. The negative binomial mixed and 

zero-inflated negative binomial mixed regression models were better fitted the data than the 

standard Poisson mixed and zero-inflated Poisson mixed based on their corresponding AIC 

and BIC values. This was further confirmed by the likelihood ratio test (p<0.0001). The AIC 

(10160) as well as BIC (10207) values of the ZINB mixed regression model was the smallest 

as compared with other models presented in Table 2. Hence this model fits better than the 

other models.  

Table 2: Parameter estimates of Poisson mixed, NB mixed, ZIP mixed and ZINB mixed 

regression models  

Parameters Poisson mixed model 

estimates (s.e.) with 

one random int. 

NB mixed model 

estimates (s.e. ) 

with one random 

int. 

ZIP  mixed model 

estimates (s.e.) 

with one random 

int.  

ZINB mixed 

model estimates 

(s.e.)   with one 

random int. 

Poisson/negative binomial  part 

intercept 4.5937(0.1301)* 4.3416(0.3509)*    6.2301(0.0908)* 6.3472(0.2089)* 

treat 0.6350(0.1867)* 0.6826(0.5312)    1.1187(0.1295)* 1.0001(0.3050)* 

time 0.1164(0.0010)* 0.2078(0.0472)*    -0.0250(0.0012)* -0.0222(0.0240) 

Treat*time -0.0166(0.0013)*   -0.0300(0.0711)    -0.1038(0.0016)* -0.093(0.0346)* 

Time2 -0.0037 (0.00003)*   -0.0054(0.0012)* -0.0003(0.00003)* -0.0001(0.0006) 

Treat*tim2 0.0005(0.00004)*    0.0008(0.0017) 0.0025(0.00004)* 0.0023(0.0009)* 
1k             0 4.6846(0.2247)*                0 0.7068(0.0436)* 

        1.8409(0.1919)*    0.1249(0.0827) 0.8628(0.08538)* 0.4543(0.0749)* 

Logistic(inflated) part 

intercept -------------  ------------ 1.0050(0.2243)* 1.0317(0.2252)* 

treat -----------  ------------ 0.7035(0.3546)* 0.6415(0.3541) 

time ------------  ------------- -0.2670(0.0325)* -0.2684(0.0327)* 

Treat*time ------------    ------------ -0.1714(0.0539)* -0.1699(0.0542)* 

Time2 ------------              ------------- 0.0064(0.0009)* 0.0064(0.0009)* 

Treat*tim2             -----------              -------------    0.0042(0.0014)* 0.0042(0.0014)* 
 

 
-2l=389061 

AIC =389075 

BIC=389098 

 

-2l=10917 

 AIC =10933 

BIC=10960 

-2l=188152 

AIC=188178           

BIC=188222 

-2l=10132 

AIC= 10160 

BIC=10207 

 

The parameter estimates and their corresponding standard errors of the ZIP and ZINB mixed 

regression models with one and two random components, and their corresponding AIC and 

BIC values is presented in Table 3. The overdispersion parameter estimates in both of the 

ZINB mixed regression models were significantly different from zero. Hence there was a 

high variability in the non-zero outcomes. As a consequence of this the standard errors of 

both ZIP mixed regression models were much smaller than those of the ZINB mixed. This 

leads to the inflation of type I error. All covariates included in both logistic (inflated) and 
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Poisson part of any ZIP mixed models were significantly associated with the production of B-

cells; however the linear and quadratic time effects were not significantly associated with the 

production of B-cells in the negative binomial part of both ZINB mixed models. 

The AIC and BIC values of the ZIP mixed and ZINB mixed regression models present in 

Table 3 are smaller than those of ZIP and ZINB mixed present in Table 2 as well as ZIP and 

ZINB models present in Table 1 respectively. Hence as the random components were added 

to each part of the zero-inflated models, the fitness of the models was improved. As we can 

see from Table 3, both of the ZINB mixed regression models have a smaller AIC as well as 

BIC value as compared to those of ZIP mixed. Therefore the ZINB mixed regression models 

which have two random intercepts were appeared to fit the data better than the ZIP mixed 

models. This was also supported by the likelihood ratio test (P<0.0001). The ZINB mixed 

models with correlated random components have the smallest AIC (10123) as well as BIC 

(10177) values as compared to all other possible models considered. This could be considered 

as the parsimonious model.  

 Table 3: Parameter estimates of ZIP mixed and ZINB mixed models with two random 

intercepts 

Parameters ZIP mixed model 

estimates with 

uncorrelated 

random int. 

 

ZINB mixed  

model estimates 

(s.e.) with 

uncorrelated 

random int. 

 

ZIP mixed 

model estimates 

with correlated 

random int. 

 

ZINB mixed    

model estimates 

with correlated 

random int. 

Poisson/negative binomial  part 

intercept 6.2136(0.0906)* 6.3345(0.2086* 6.229(0.0913)* 6.2220(0.2086)* 

treat 1.1496(0.1292)* 1.0182(0.3048)* 1.0871(0.1305)* 1.1121(0.3048)* 

time -0.0250(0.0012)* -0.0208(0.0240) -0.0250(0.0012) -0.0172(0.0238) 

Treat*time -0.1038(0.0016)* -.0949(0.0345)* -0.1037(0.0016)* -0.098(0.0344)* 

Time2 -0.0003(0.00003)* -0.0002(0.0006) -.0003(0.00003)* -0.0003(0.0006) 

Treat*time2 0.0025(0.00004)* 0.0023(0.0009)* 0.0025(0.00004)* 0.0024(0.0009)* 
1k  0 0.7064(0.0435)* 0 0.6989(0.0428)* 

         0.8584(0.0845)* 0.4540(0.0748)* 0.8770(0.0878)* 0.5012(0.0809)* 

Logistic(inflated) part 

intercept 1.1002(0.2556)* 1.1637(0.2622)* 1.0459(0.2500)* 1.1097(0.2597)* 

treat 0.7545(0.3936)* 0.7465(0.4020) 0.7412(0.3828)* 0.8283(0.4002)* 

time -0.2974(0.0366)* -0.3079(0.0376)* -.2912(0.0359)* -0.302(0.0372)* 

Treat*time -0.1902(0.0576)* -0.1924(0.0589)* -.1805(0.0562)* -0.204(0.0586)* 

Time2 0.0070(0.0010)* 0.0073(0.0010)* 0.0069(0.0010)* 0.0071(0.0010)* 

Treat*time2 0.0048(0.0015)* 0.0048(0.0016)* 0.0045 (0.0015)* 0.0051(0.0015)* 

        0.6377(0.2306)* 0.7478(0.2617)* 0.5466(0.2046)* 0.7537(0.2602)* 

           ----- ------ -0.5778(0.1099)* -0.546(0.1196)* 

 

 

-   =188135 

  AIC = 188163 

  BIC = 188210 

-   =10115 

AIC= 10145 

BIC=10195 

 

-   =188106  

AIC=188136 

BIC=188136 

-   =10091 

AIC= 10123 

BIC= 10177 
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3.1.2. Zero-inflated negative binomial mixed regression model  

Table 4 summarizes the parameter estimates and their corresponding standard errors of the 

zero-inflated negative binomial mixed (ZINB mixed) regression model. This model is a 

mixture of two regression models one is for the logistic (inflated) part and the other is for the 

count data (negative binomial part). As is shown in Table 4 treatment, linear time, quadratic 

time and the interaction between treatment with linear and quadratic time effect were 

significantly associated with the production of the B-cells in the logistic (inflated) part; 

however in the negative binomial part the linear and quadratic time effects were not 

significant. In addition the overdispersion parameter is significantly different from zero (p-

value<.0001) this confirm that there was an overdispersion with an excess zeros in the data.  

Table 4: Parameter estimates of the zero-inflated negative binomial mixed regression models 

parameters  Parameter estimates           Standard error Pr > |t| 

                      Negative binomial part 
intercept 6.22200 0.20860 <.0001 

treat 1.11210 0.30480 0.0003 

time -0.017160 0.02384 0.4724 

Treat*time -0.09828 0.03435 0.0046 

Time2 -0.00026 0.00059 0.6590 

Treat*time2 0.002374 0.00085 0.0056 
1k  0.69890 0.04277 <.0001 

        0.50120 0.08086 <.0001 

Logistic(inflated) part 
intercept 1.10970 0.25970 <.0001 

treat 0.82830 0.40020 0.0397 

time -0.30210 0.03720 <.0001 

Treat*time -0.20380 0.05857 0.0006 

Time2 0.00711 0.00100 <.0001 

Treat*time2 0.00510                0.00150 0.00110 

        0.75370 0.26020 <.0001 

           -0.54570 0.11960 0.0042 

 

The number of B-cells produced was positively associated with the treatment and interaction 

between treatment with linear and quadratic time effect; however it was negatively associated 

with treatment by time interaction in the negative binomial part of the model. Thus the main 

effect is interpreted by taking into account the interaction effect. Thus there was different 

production of B-cells at the different time measurements. Group II vaccine was superior than 

group I at all time measurements for instance, at the first measurement time (at one month), 
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the group II vaccine was producing 2.7156 times higher than the one produced by group I. A 

similar interpretation can be drawn at all other time points. The random intercepts in the 

logistic and negative binomial part of the model were negatively correlated. Thus as the one 

increases the other decreases and vice-versa. In contrast the negative binomial part, all 

covariates were significantly associated with the B-cell production in the logistic part. Here 

also the main effect interpretation is given by taking in to account the interaction effect.  

Therefore the final model which fits best the data can be written as follows: 
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Thus the final estimated model was:  
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3.2. Model diagnostics  

To check the predicting power and to identify the potential outlying observations of the data 

different diagnostic plots were used, namely: Plot of the observed versus predicted, the 

average evolution of the observed and predicted number of B-cells produced over time of 

measurement, the normal q-q plot and the plot of Pearson residual against the predicted 

values. In addition, the scatter plot of the two random components was used to check the 

potential outlying observations. Figure 6 shows that the mean profile of the observed and 

predicted values of the final model (ZINB mixed model) which was relatively well fitted as 

compared to other models such as zero-inflated poison mixed (ZIP mixed) is presented in 

Figure 5A (Appendix) and negative binomial mixed (NB mixed) is presented in Figure 6A 

( Appendix). 

 Figure6: The average plot of the predicted (red) and observed response (blue) of the ZINB mixed model 

There is a much difference between the predicted and observed values of the B-cells 

produced of the NB mixed model. Thus, the NB mixed model was not fit the data very well 

that may be due to the presence of excess zeros in the data. As one can see, there is a visible 

difference in the first and second measurement time points (i.e. the 1
st
 and 7

th
 month) in 

almost all possible fitted models. ZINB mixed regression model was selected as best model; 

however, there seems a potential outlying observations as we can identify from the scatter 

plot matrix in Figure 2A (appendix), plot of Pearson versus predicted values presented in 

Figure 8A (appendix), plot of the two random intercepts presented in pane lA of Figure 9A 

(Appendix) and plot of observed versus predicted values of the ZINB mixed regression 

model in panel A of Figure11A (appendix). To end this problem 16 possible potential outliers 

was discarded and the data was fitted again. The zero-inflated negative binomial mixed 

regression model was also found as a better model fits the data with AIC (9727.1) and BIC 
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(9780.9). The parameter estimates of ZINB mixed model before and after excluding the 

outlying observation are summarized in Table 5. 

Table 5: Parameter estimates of the ZINB mixed models with and without outlier  

parameters ZINB mixed model without  

Outlier estimates (s. e.)          

ZINB mixed model of the 

full data estimates (s. e.)          

Negative binomial  part 

intercept 5.9555(0.1982)* 6.2220(0.2086)* 

treat 1.0375(0.2931)* 1.1121(0.3048)* 

time 0.01014(0.0230) -0.01716(0.0238) 

Treat*time -0.1057(0.0333)* -0.0983(0.0344)* 

Time2 -0.0008(0.0006) -0.0003(0.0006) 

Treat*time2 0.0027(0.0008)* 0.0024(0.0009)* 

k 0.6630(0.0419)* 0.6989(0.0428)* 

        0.3328(0.06563)* 0.5012(0.0809)* 

Logistic (inflated) part 
intercept 1.1305(0.2609)* 1.1097(0.2597)* 

treat 0.8000(0.4010)* 0.8283(0.4002)* 

time -0.3021(0.0373)* -0.3021(0.0372)* 

Treat*time -0.1932(0.05831)* -0.2038(0.0586)* 

Time2 0.00707(0.0010)* 0.0071(0.0010)* 

Treat*time2 0.00484(0.0015)* 0.0051(0.0015)* 

        0.7470(0.2625)* 0.7537(0.2602)* 

                            -0.3975(0.1055)* -0.5457(0.1196)* 

 

Table 5 shows the parameter estimates of the models before and after excluding the outlying 

observations are not much apart they are almost similar. In addition, all covariates significant 

in one model are also significant on the other. Thus In this study the ZINB mixed regression 

model is robust to outliers.  

 The ZINB mixed model estimate obtained after excluding the outliers is given by: 
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The Plot of the observed versus predicted values based on the two estimated models, (i.e. 

obtained before and after excluding the outlier) are presented in Figure 11A (appendix). The 
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points were relatively lying on the straight line after excluding the outlier. This also 

supported by  the mean evolution plot in Figure 4A (Appendix) that is the observed and 

predicted mean evolution after excluding the outliers is more closer than before excluding the 

outlier. The q-q plot of Pearson error of the two conditions is plotted in Figure 7A 

(Appendix). It shows that the variability is smaller after the outliers are excluded, the error 

varies from -2 to 4 in the full data; however it varies from -0.5 to 2 after excluded the outliers.  

4.0. Discussion and conclusion 

In this clinical trial study 213 consented individuals were participated. Individuals who 

participated in the study followed from two to six measurement times after the individual has 

taken either of the two HPV vaccines. The main objective of the study was to investigate a 

statistical methodology to compare the B-cell responses per million of cells over time after 

the two HPV vaccines has been administered and to assess the two HPV vaccines effect in 

producing the B-cells, in the presence of zero inflated data. From the exploratory data we 

could identify that as there is an excess zeros and high variability in the non-zero B-cells 

produced values. The mean of the B-cells produced was much lower than the variance. This 

might occur due to an excess of zeros and high variability of the non-zero outcomes. Since 

the number of zero outcomes was about 30.65% of the observed data and a high variability in 

the non-zero observations was also identified from the variance function.  

The data had about 358 missing observations. The missing mechanism was treated as missing 

at random (MAR). Under the likelihood or Bayesian approach this missing mechanism is ignorable 

[23]. In this study the data was analysed by a likelihood approach using the SAS procedure 

NLMIXED. 

The best model was selected from different possible models namely: Poisson, negative 

binomial, zero-inflated Poisson, zero-inflated negative binomial, Poisson mixed, negative 

binomial mixed, zero-inflated Poisson mixed and zero-inflated negative binomial mixed 

model with one and two random intercepts. The comparison was conducted by using 

likelihood ratio test (LR), Akakie information criteria (AIC) and Bayesian information 

criteria (BIC). Likelihood ratio test (LR) was used to compare any two nested model such as 

Poisson with Poisson mixed, negative binomial, negative binomial mixed model, and zero-

inflated Poisson  with zero-inflated Poisson (ZIP), zero-inflated Poisson mixed (ZIP mixed), 

zero-inflated negative binomial and zero-inflated negative binomial mixed models; however 

any two non-nested models was compared by either AIC or BIC.  
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Of these the zero-inflated negative binomial regression mixed model with two random 

intercepts was selected as the best model. When the random components were introduced to 

each of the models, the goodness of fit was improved. Since the data has excess zeros the 

standard Poisson and negative binomial regression models were not appropriate this is due to 

the fact that the number of zeros in the data were beyond the model could predict. 

Consequently the standard error of the parameter estimates of the standard Poisson model 

was too small as compared with models that take in to account the variability in the data such 

as the Poisson mixed negative binomial, zero-inflated and other models. As a result, all 

covariates were significantly associated with B-cell production. This would lead to a wrong 

conclusion due to the inflation value of the Z-statistic; however in the case of negative 

binomial the standard error of the parameter estimates were too big as compared to the 

standard Poisson model.  

In this study, it was found that NB, ZINB, NB mixed and ZINB mixed regression models 

were better fitted the data than ZIP and ZIP. This may be due to the high variability of the B-

cells productions. ZIP mixed regression model with two random intercepts was better fitted 

the data than the standard Poisson and ZIP regression models. Furthermore zero-inflated 

negative binomial mixed regression model with two correlated random intercepts, one is for 

the logistic (inflated) part and the other is for the negative binomial part of the model was 

found to be the best. The data was also fitted again after removing the potential outlying 

observations in order to study their effect on the model that would be selected. In addition, to 

examine their impact on the parameter estimates of the model. In this case also ZINB mixed 

regression model with two correlated random intercepts was selected as the best. 

The parameter estimates of the final model before and after excluding the outlying 

observations were close to each other. Thus in this study the zero-inflated negative binomial 

mixed (ZINB mixed) regression model was robust to the outlying observation. The different 

diagnostic tools such as the plot of the predicted Vs observed of the B-cells, Pearson Vs 

predicted value of the B-cells, endorsed  that  the new model fits best the data. In both final 

models, treatment (HPV-vaccine) and the interaction between treatment with linear and 

quadratic time effects were found to be significantly associated with the production of the B-

cells. Hence the two HPV-vaccine effects are different in different time points.  
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In conclusion the zero-inflated negative binomial mixed model with two correlated random 

intercepts was better fitted with data which is characterized by excess zeros and high 

variability in the non-zero outcome.  

From this study we can recommend that as this study is a small study, the result may not be 

generalizable, that is its external validity may not be valid. So that it would be better to 

examine in a large data set.   
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6.0. Appendix A  
 

 

Panel A Variance function of the response for group I vaccine 

 

Panel B Variance function of the response for group II vaccine 

Figure 1A: Variance structure of   group I (panel A) and group II (panel B)  

Figure2A: scatter plot matrix of the number of beta cell produced at each measurement time 
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Figure 3A:  Plot of the mean and variance function over time 

Panel A: Before excluding an outlier Panel B: After excluding an outlier 

Figure 4A: Mean evolution of the number of B-cells produced per million cell before and after excluding outlier 

Figure5A: mean evolution plot of predicted and observed B-cells of the ZIP mixed model 
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Figure 6A: Mean evolution plot of observed Vs predicted value of the negative binomial mixed model  

 

 Panel 

A: Q-Q plot of the full data                                         Panel B: Q-Q plot after excluding the outlier 

Figure7A: Q-Q-plot before (panel A) and after excluding the outlier (panel B) 
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Figure8A: plot of Pearson residuals versus predicted value of the full data 

 

 
Panel A: Plot of the random intercepts before 

excluding the outlier 

 
Panel B: Plot of the random intercepts after excluding an 

outlier 

Figure9A: Plot of the random intercepts before (panel A) and after excluding the outlier (panel B) 

 

 Figure 10A: individual profile plot  
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Panel A: Before excluding an outlier  

 

Panel B: after excluding an outlier 

Figure 11A: The plot predicted versus observed values  
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