
De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee universiteiten in twee landen: 
de Universiteit Hasselt en Maastricht University

Universiteit Hasselt | Campus Diepenbeek | Agoralaan Gebouw D | BE-3590 Diepenbeek
Universiteit Hasselt | Campus Hasselt | Martelarenlaan 42 | BE-3500 Hasselt

2010
2011

FACULTY OF SCIENCES
Master of Statistics: Biostatistics

Masterproef
Statistical modelling of solicited symptoms in vaccine
clinical trials

Promotor :
Prof. dr. Dan LIN

Promotor :
Dr. EMMANUEL ARIS
Dr. FABIAN TIBALDI

Bedilu Alamirie Ejigu 
Master Thesis nominated to obtain the degree of Master of Statistics , specialization
Biostatistics



De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee universiteiten in twee landen: 
de Universiteit Hasselt en Maastricht University

Universiteit Hasselt | Campus Diepenbeek | Agoralaan Gebouw D | BE-3590 Diepenbeek
Universiteit Hasselt | Campus Hasselt | Martelarenlaan 42 | BE-3500 Hasselt

2010
2011

FACULTY OF SCIENCES
Master of Statistics: Biostatistics

Masterproef
Statistical modelling of solicited symptoms in vaccine
clinical trials

Promotor :
Prof. dr. Dan LIN

Promotor :
Dr. EMMANUEL ARIS
Dr. FABIAN TIBALDI

Bedilu Alamirie Ejigu 
Master Thesis nominated to obtain the degree of Master of Statistics , specialization
Biostatistics





Interuniversity Institute for Biostatistics and Statistics
and Statistical Bioinformatics

Statistical Modeling of Solicited Symptoms
in Vaccine Clinical Trials

By

Bedilu Alamirie Ejigu

Internal supervisor: prof.dr. Dan Lin
External supervisors: dr. Emmanuel Aris

dr. Fabian Tibaldi

Thesis submitted in partial fulfillment of the requirements for the Degree of Master of
Science in Biostatistics of Hasselt University

September, 2011



Certification

I declare that this thesis was written by me under the guidance and counsel of my supervisors.

......................................................... Date.........................

Bedilu Alamirie Ejigu Student

We certify that this is the true thesis report written by Bedilu Alamirie Ejigu under our supervision and

we thus permit its presentation for assessment.

......................................................... Date.........................

prof.dr. Dan Lin Internal Supervisor

......................................................... Date.........................

dr. Emmanuel Aris External Supervisor

......................................................... Date.........................

dr. Fabian Tibaldi External Supervisor

i



Dedication

I dedicate this thesis

to my lovely family, who scarified their life opportunities to educate me and provided me endlessly in

both financial and moral support

And

to Vlaamse InterUniversitaire Raad (VLIR) for giving me the chance to study MSc. in biostatistics

ii



Acknowledgements

Next to God for his unlimited blessing in my entire career, my gratitude goes to my supervisor’s dr.

Emmanuel Aris, dr. Fabian Tibaldi and prof.dr. Dan Lin for their guidance and constructive suggestions.

This work may not be fruitful without my friendly supervisors with their professional advices. It has been

a pleasure to work with Emmannuel and Fabian. Both of them were devoted throughout the entire thesis

phases with their professional remarks, repetitive checking with patience and constructive comments.

My gratitude’s will extend to Vlaamse InterUniversitaire Raad (VLIR). VLIR is the first organization

that provides me academically opportunity to enhance my skills in the field of statistics. In addition to

financial support, VLIR enabled me to create professional network with different researchers.

I would like to thank all my master courses professors namely; prof.dr. Geert Verbeke, prof.dr. Geert

Molenberghs, prof.dr. Noel VeraVerbeke, prof.dr. Ziv Shkedy, prof.dr. Faes Christel, prof.dr. Paul

Janssen, prof.dr. Marc Aerts, prof.dr. Helena Guys, prof.dr. Tomasz Burzykowski, prof.dr. Marc Buyse,

prof.dr. Ariel Alonso, dr. Jose Cortinas Abrahantes and prof.dr. Luc Duchateau.

Special thanks also to all my friends who wish my academic success, especially Yonas G/michael, Birhanu

Teshome, Grima Minalu and D/n Mehreteab Fantahun for their invaluable comments. I owe my deepest

gratitude to my colleagues Fistum Megersa (Fiaro) and Mekdes Abera for their advice and sharing their

life experience during those days we spent together.

Last but not least, I wishes to express my love and gratitude to my beloved families; for their unlimited

advice, pray and endless love, through my life.

Bedilu Alamirie Ejigu

September 10, 2011

Diepenbeek, Belgium

iii



Summary

In many clinical trials, in order to characterize the safety profile of a subject with a given treatment, multiple

measurements are taken over time. Mostly, measurements taken from the same subject are not independent.

Thus, in cases where the dependent variable is categorical, the use of logistic regression models assuming

independence between observations taken from the same subject is not appropriate. In this report, marginal

and random effect models that take the correlation among measurements of the same subject into account

were fitted. The models were applied to data obtained from a phase-III clinical trial on a new meningococcal

vaccine. The goal is to investigate whether children injected by the candidate vaccine have a lower or higher

risk for the occurrence of specific adverse events than children injected with licensed vaccine, and if so, to

quantify the difference. We extended the random intercept partial proportional odds model and generalized

ordered logit model which assumes identical variability for different category levels by introducing category

specific random terms. This is very appealing to study the association between different category levels.

Since three outcomes (Pain, Redness, Irritability) are measured on the same child, in addition to analyzing a

single outcome variable at a time, joint mixed models for a set of different outcomes were studied to see the

association between outcomes. Further, whether the new vaccine has identical effect across different outcomes

or not, were investigated based on the joint model and non-significant result was obtained.

In conclusion, in both marginal and random effects model, significant difference between the two vaccines were

found for at least moderate and severe intensity levels of pain adverse event and all and at least moderate

intensity levels of redness. For irritability adverse event, significant difference between the two vaccines were

not observed.

Key word: Generalized estimating equations, Generalized linear mixed models, Generalized ordered logit

models, Joint generalized mixed models, Meningococcal vaccine, Partial proportional odds models
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1 Introduction

1.1 Background

Pharmaceutical companies develop vaccines which contains an agent that resembles a disease-causing

microorganism in order to improve immunity to a particular disease. When a company aims to bring a

new vaccine product to market, the safety profile of the vaccine is assessed in different ways to ensure that

it is safe. In most cases, the clinical safety evaluation of the vaccine is performed regarding two specific

aspects (Bergsma et al, 2011). First, the occurrences of a certain number of local or general symptoms

are checked pro actively via diary cards recording the occurrence or absence of the symptom during a

certain number of days after the injection. These symptoms are usually called solicited symptoms. To

properly assess the safety profile of the new vaccine, subjects injected with the vaccine are evaluated for

different adverse event outcomes such as pain, redness and irritability over time.

In most cases, for ease of recording a standard intensity scale that expresses the level of adverse event is

often used and contains a certain number of possible intensity of the symptom. Subjects are then asked

to fill in their maximum daily intensity of each reported solicited symptom during the entire solicited

symptom follow-up period in the diary card. Based on such scales, one can then establish the vaccine

and outcome relationship and test whether subjects injected by the candidate vaccine have a lower or

higher risk for the adverse event than subjects injected by the licensed vaccine.

This report will focus on the analysis of repeated categorical measurements concerning solicited symptoms

coming from vaccine clinical trials. Specifically, the safety profile of a candidate vaccine for meningococcal

disease which is a life-threatening illness caused by strain of bacteria called Neisseria meningitides will

be assessed. Currently different vaccines such as Menactra, Menveo and Mencevax are available against

Meningococcal infection(http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ ).

The safety of the candidate vaccine for meningococcal disease is evaluated by comparing the level of

redness, pain and irritability adverse events measured by ordinal scale at each followup day to the ones of

a licensed vaccine. We will consider here a 4-day follow-up period, the day of vaccination being denoted

as day 1 and taken as a reference day in further analysis. Analysis methods presented hereafter will

take the ordinal and correlated nature of the data due to repeated measures from the same subject using
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two model families: the marginal model family which is characterized by the specification of the mean

function and the random effects family that focuses on the expectation conditional upon the random

effects studied. The analysis will be done for primarily measured ordinal outcome as well as for the

dichotomized outcome (Section 1.3). Generalized estimating equation (Liang and Zeger, 1986) from

marginal models are usually preferred to evaluate the overall adverse events as a function of treatment

group and visiting day. While, in a random effects approach (Berslow and Clayton, 1993), the response

rates are modeled as a function of covariates and parameters specific to a subject. The two model families

do not only differ in the questions they address, but also in the way they deal with the dependencies

between the observations. This difference way of handling the within child association leads the two

models families for different purpose as mentioned by different authors (Laird and Ware, 1982; Agresti,

2002; Fitzmaurice et al, 2004). As a result, interpretation of the regression model parameters are different.

A brief review on these models will be presented in Sections 2.1 and 2.2. For the partial proportional

odds random intercepts model which assume identical baseline variability within the subject being in

different categories of the outcome, extensions that allow to have different random effect variability at

each category proposed. The advantage of the extended model over the commonly used random effects

model is that, it enables us to study the association between different category levels of the solicited

symptoms (i.e. low, at least moderate and severe levels of intensity).

The three outcomes redness, pain and irritability are measured from the same child, to study the safety

profile of the candidate vaccine. Thus, in addition to analyzing one single outcome variable at a time,

joint mixed models (Fieuws and Verbeke, 2004) for a set of different outcomes are studied to see how the

association between outcomes evolves over time. Moreover, in order to test whether the treatment effect

is similar across different outcomes or not, the binary outcome joint model studied.

This report is organized as follows: Section 1.2 presents the objective of the thesis followed by Section

1.3 that describes the data set. Section 2 emphasizes on the statistical methodologies used to analyze

repeated categorical data. A brief review of quasi-likelihood based marginal and likelihood based random

effect models for binary and ordinal outcome variable with some terminologies used, will be presented

under this section. Results for the considered case study are presented in Section 3. Finally, Section 4

summarizes results of the analysis and discuss some extensions of the models used.
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1.2 Objective of the Thesis

The main goal of this thesis is, to use statistical techniques to investigate whether children injected by the

candidate vaccine have a lower or higher risk for the occurrence of specific adverse events (Pain, Redness,

Irritability) than children injected with licensed vaccine. And if there is a difference, to describe how

does this difference between treatment groups develops over time, based on a case study from a phase-III

clinical trial.

Moreover, instead of modeling one adverse event at a time, modeling jointly all the observed adverse

event at a time is secondary objectives of the study. In general, we aim to analyze repeated categorical

measurements concerning solicited symptoms coming from vaccine clinical trials and to evaluate statistical

techniques for such type of data.

1.3 Case Study: Phase-III Clinical Trial

The data used in this report come from a phase III clinical trial evaluating the safety profile of a new

vaccine for meningococcal infection. In the study, children with ages from 12 to 15 months are randomly

assigned to the candidate and licensed vaccine with 3:1 ratio respectively. Children after recruitment in

the study were injected with the vaccine at the upper left thigh at day 1, and the parents of the children

were asked to fill in diary cards indicating whether or not their children experienced either pain, redness,

or irritability during the follow-up period of 4 days (Bergsma et al, 2011 ). The level of solicited symptom

(Pain, Redness, or Irritability) were measured using ordinal scale. Pain and redness were measured only

at injection site. Table 1 below summarizes definition of solicited adverse event intensities.

For confidentiality reasons, only part of the data are used in this report. Further, only subjects with

no missing values are taken into account here. The data used in this report were collected from 1880

children, of which 1381 (73.46%) were assigned to the active treatment group (candidate vaccine for

meningococcal) and the remaining 499 (26.54%) were assigned to the control group (licensed vaccine).

Data from different children were assumed to be independent, but due to repeated measurements (of

same child) over time, correlation is expected to exist.

The primarily collected data consist of ordinal outcomes Yij for the observed solicited symptoms (Table

1) where Yij is the outcome for the ith child (i=1,2,... 1880) at measurement day j ( j=1,2..4). In order

3



Table 1: Variable Description

Adverse Event Intensity Description

Pain 0 Absent

1 Minor reaction to touch

2 Cries/protests on touch

3 Cries when limb is moved/spontaneously painful

Redness 0 Absent

1 Diameter of redness ≤10 mm

2 Diameter of redness 10 - 30 mm

3 Diameter of redness ≥30 mm

Irritability 0 Behavior as usual

1 Crying more than usual/no effect on normal activities

2 Crying more than usual/interferes with normal activities

3 Crying that cannot be comforted/interferes with normal activities

to compare the effect of the treatment group at a certain level of intensity with the other level of intensity

dichotomization will be done to the outcome variable Yij as follows.

• To model all observed symptom versus no symptom:

Wij =

{
1 if Yij ≥ 1,

0 otherwise.

• Observing at least moderate intensity levels of the symptom versus less than moderate levels:

Xij =

{
1 if Yij ≥ 2,

0 otherwise.

• Severe intensity level of the adverse event versus lower than severe adverse event:

Zij =

{
1 if Yij = 3,

0 otherwise

At the time of vaccine injection (first day), 67.3%, 57.7%, and 41.3% of the children, who enrolled for the

candidate vaccine showed all intensity levels of symptom for pain, redness, and irritability, respectively

(Table 10, Figure 1). The respective observed percentages treated by the licensed vaccine are 66.7%,

62.1%, and 44.3%, respectively. In both, groups of children, assigned to the candidate and licensed

vaccine, the proportions of observing those symptoms seem to decrease over time and at the last occasion

(day 4) 7.4%, 17.1%, and 17.8% of children in the candidate vaccine and 9.8%, 23.0%, and 23.0% of the
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children for control group showed pain, redness, and irritability. Figure 1 shows the overall percentage of

observing those solicited symptoms at each visiting day by treatment group. For example, at first day,

the percentage of children who showed pain symptoms of any intensity level seems to be similar in both

treatment groups (Figure 1, left top panel). The graphical exploration reveals that the new vaccine for
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Figure 1: Percentage of observed solicited symptoms by treatment group at each day

meningococcal disease seems to somewhat results in slightly less occurrence of adverse events as compared

with the licensed vaccine. However, statistical testing taking in to account the repeated nature of the

data is needed to confirm this observation. Several models handling the correlated nature of the data are

explained in the next Section.

5



2 Statistical Methodology

The types of model for data analysis highly depend on the nature and measurement scale of the outcome

variable. In this study, the level of measurement of the variable of interest is ordinal (Table 1). Ordinal

data are a specific form of categorical data, where the order of the categories is of importance. Models

for binary data have been extended to ordinal categorical outcomes (Aitchison and Silvey, 1957; Genter

and Farewell, 1985; Agresti, 2002).

Due to repeated measurements taken from the same subject over time, observations can not be considered

as independent. Thus, in such cases, the use of binary (or multinomial) logistic regression model assuming

independence of observations taken from the same subject may not be appropriate. In the subsequent

Sections, appropriate marginal and random effect models that account for the correlated nature of the

data will be presented. Specifically, generalized estimating equations from the marginal model family

and mixed effect logistic regression models, partial proportional odds random effects model, generalized

ordered logit random effects model and joint generalized linear mixed models from random effects model

families will be discussed.

2.1 Marginal Models

In the marginal models settings, the responses are modelled marginalized over all other responses (Molen-

berghs and Verbeke, 2005). Generalized estimating equations (GEE) introduced by Liang and Zeger

(1986) is an intuitively appealing way to model longitudinal data in marginal models framework. The

interest in standard GEE focuses on the relationship between the covariates and the probability of re-

sponse while response correlation is treated as a nuisance parameter. Since the time dependence between

the responses within subject is not the focus of the research question, it is regarded as a nuisance char-

acteristic of the data. Thus, second-order GEEs (Zhao and Prentice, 1990) and GEE with odds ratio

(Liang et al, 1992) will not be discussed further in this report. All the considered marginal models are

based on the standard GEE (GEE1) methods.

6



2.1.1 Marginal Models for Binary Outcomes

To illustrate the model mathematically in the context of the data set, consider the binary response

Wij for the ith subject at the jth assessment day. In the model formulation, time-varying covariate day

(represented asDayij) as well as the fixed covariate treatment group (Trti) will be considered as predictor

variables. The distribution of the binary outcome Wij is assumed Bernoulli (the same for Xij , Zij) with

probability of success at jth occasion for the ith subject, µij = E(Wij)=P (Wij = 1|Dayij , T rti). This

distribution of each Wij determines how Var(Wij) depends on µij . The mean response for child i at

follow-up day j is related to the covariates via the logistic model as follow;

logit(µij) = β0 + β1jDayij + β2Trti (1)

where, Trti takes the value 1 when the subject is assigned to the candidate vaccine and zero otherwise.

Dayij has four levels and equal to 1 when Wij observed at day j for subject i, zero otherwise (the first

day (day 1) taken as a reference day). The parameter β’s here have population averaged interpretations,

specifically β1j is the log odds of observing the outcome Wij=1 instead of Wij=0 at visiting day j under

the control group. The parameter β0 is the intercept of the model, β2 is the log odds ratio of the response

between the two treatment group at a given day.

Once we have specified the marginal model (1) for each outcome Wij , we need to choose the correlation

structure among Wij . For the assumed working correlation structure, the GEE method uses the data

to estimate the correlations. Even if the guess about the correlation structure is poor, valid standard

errors are obtained which result from an adjustment of GEE method using the empirical dependence of

the actual data exhibit (Liang and Zeger, 1986; Agresti, 2002).

In addition to model (1), to see the effect of the treatment at each visiting day and to test the homogeneity

of this effect at each follow up day, the following model will be fitted.

logit(µij) = β0 + β1jDayij + β2Trti + β3jTrti ∗Dayij (2)

In GEE, estimates of the parameter β are obtained by solving the generalized estimating equations

S(β) =

N∑
i=1

∂µi

∂β′ (A
1/2
i Ri(α)A

1/2
i )−1(wi − µi) = 0 (3)

7



where Ai is a diagonal matrix with the marginal variance ν(µi)=V ar(wi) on the main diagonal and

Ri(α) is the working a correlation matrix that depend on the unknown parameter vector α.

Liang and Zeger(1986) showed that using the method of moments concept, when the marginal mean has

been correctly specified and when the mild regularity condition hold, the estimator β̂ obtained by solving

the score equation (3) is consistent and asymptotically normally distributed with mean β and asymptotic

variance covariance matrix.

2.1.2 Marginal Models for Ordered Categorical Data

Lipsitz, Kim, and Zhao (1994) described how to extend GEEs to multinomial data. When the response

categories are ordered, the use of this ordering yield more parsimoniously parameterized models. Further,

the resulting odds ratios based on the dichotomized outcome (Section 1.3) may depend on the cut point

chosen to dichotomize the outcome (McCullagh, 1980; Hosmer and Lemeshow, 2000). Models that use

cumulative probabilities like proportional odds models, adjacent categories logits and Continuation ratio

logits (McCullagh, 1980; Ananth and Kleinbaum, 1997; Agresti, 2002) are possible choices for modelling

ordinal data. Continuation-ratio model is suited when the underlying outcome is irreversible 1 and

adjacent-category model designed for situations in which the subject must ’pass through’ one category

to reach the next category (Liu and Agresti, 2005) are not used in this analysis.

Proportional Odds Model (POM)

The unique feature of proportional odds model (POM) is that the odds ratio for each predictor is taken

to be constant across all possible collapsing of the response variable. When the assumption is met, odds

ratios in a POM are interpreted as the odds of being lower or higher on the outcome variable across the

entire range of the outcome (Scott et al, 1997). In POM, reversing the direction of the response levels

will change the direction of the effects but not their magnitude or significance (McCullagh, 1980; Hosmer

and Lemeshow, 2000).

Let µijk be the probability of the ith subject at the jth visiting day being in the response category k, µijk

=P(yij = k). Further, let the cumulative probability of the response in category k or above represented

1Irreversible in the sense that upon attaining a certain level of one outcome, subject’s response cannot revert to a lower
level.
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by Πijk =P (Yij ≥ k). The lowest outcome which corresponds to a baseline level, Πij0 = µij0 + µij1

+ ..+µijk =1; Πij1 = µij1 + ..+µijk; Πij2 = µij2 + ..+µijk; Πijk = µijk. The POM is represented as

follows;

logit(Πijk) = β0k + β1jDayij + β2Trti (4)

where, k is the level of the ordered category. The parameter β0k is the intercept for category k, usually

considered as nuisance parameters of little interest (Agresti, 2002). Model (4) assumes an identical effect

of the predictors for each cumulative probability. Specifically, the model implies that odds ratios for

describing effects of explanatory variables on the response variable are the same for each of the possible

ways of collapsing the response to a binary variable. Violation of this assumption leads to an incorrect

model. In the considered case study, this assumption does not hold (see Section 3.1.2 and 3.2.2).

In summary, marginal models for longitudinal data separately model the mean response and within

child association among the repeated responses. The aim is to make inference about the mean response,

whereas the association is regarded as a nuisance characteristics of the data that must be accounted for to

make valid inferences about changes in the population mean response. This separate specification of the

mean and within child association has an important implication on parameter interpretation. Since the

GEE approach does not specify completely the joint distribution, likelihood-based methods to compare

models and to conduct inferences about the parameter are not available. To draw inference in a quasi-

likelihood approach, Boos (1992), Rotnitzky and Jewel (1990) illustrates a generalization of score tests

for different models including models based on GEE.

2.2 Generalized Linear Mixed Models

In many clinical/biomedical researches the longitudinal responses are not necessarily continuous. As

a result, the general linear models and general linear mixed models might not apply. Thus, when the

longitudinal responses are discrete, Generalized Linear Models (McCullagh and Nelder, 1989) are required

to relate changes in the mean responses to covariates. Generalized linear Mixed Models (Berslow and

Clayton, 1993) are obtained from GLMs by incorporating random effects in to the linear predictors. Such

random effect models can account for a variety of situations, including subject heterogeneity, unobserved

covariates and have conditional interpretation with subject-specific effects (Liu and Agresti, 2005 ). The
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assumptions made in GLMMs are (i) conditional on the subject-specific random effect (bi) and covariates

(Dayij , T rti) the distribution of Yij belongs to exponential family (ii) the random effect bi follows a

normal distribution with a mean 0 and variance σ2
bi

and (iii) conditional on bi the repeated measures yij

are independent. In the context of the case-study, the generalized linear mixed model formulations for

the binary and ordinal outcomes are presented in the following Subsections.

2.2.1 Random Effect Models for Binary Outcomes

For the considered dichotomized version of the outcome (Section 1.3), µij the conditional mean of Wij ,

given the random effect and known covariates (µij =E(Wij |Dayij , T rti, bi)) is linked to the linear pre-

dictor through a logit link function as follows:

logit(µij) = β0 + β1jDayij + β2Trti + bi (5)

where bi is subject specific parameter for the ith child, β1j and β2 are used to measure similar effect

as mentioned in model (1) but now conditional upon the given child. The parameter β2 interpreted as

the log odds ratio comparing a child injected with the candidate vaccine with another child injected by

the licensed vaccine, both having identical covariate and random-intercept values to observe all intensity

levels of pain. Unlike the linear mixed model (Laird and Ware, 1982), under non-linear mixed models,

fixed effects only reflect the conditional effects of the covariates. The conditional mean as a function of

treatment group and visiting day is given by:

E(Wij |bi) =
exp(β0 + bi + β1jDayij + β2Trti)

1 + exp(β0 + bi + β1jDayij + β2Trti)

Zeger et al (1988) derived an approximative relationship for the population averaged parameters (from

GEE) and subject specific parameters with random effect in the linear predictor given by:

β̂RE

β̂M
=

√
c2σ2

bi
+ 1

where β̂RE and β̂M are parameter estimates based on random effect and marginal models respectively, σ2
bi

is the variance of the random intercepts and c2 = 16
√
3/15π. Hence, from this relationship it is clear that,

conditional effects are usually larger than marginal effects, and increase as the variance (σ2
bi
) increase.

The estimated standard deviation (σ̂bi) for the random intercept used as a summary of the degree of
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heterogeneity of a population. σ̂bi equal to zero implies that the logistic normal model (5) simplifies to a

logistic regression model treating all observations as independent. The size of estimated variance (σ̂2
bi

)

used to determine the scale on which the fixed effects should be judged. Moreover, the random part can be

interpreted using measures of dependence. This is due to the fact that, unobserved heterogeneity between

subject induces within subject dependence. Thus, in logit random intercept model, correlation(ρ) of the

latent responses at any two occasion j and j′ given by ρ = σ2
bi
/(σ2

bi
+ π2/3) ( Fitzmaurice et al, 2009).

2.2.2 Random Effect Models for Ordinal Outcomes

When proportional odds assumption is met and child specific parameter estimates are of interest, POM

discussed in Section 2.1.2 can be easily fitted in random effects modeling framework by introducing

random effects specific to child in model (4). In this model, the ordinal nature of the response is taken

into account by considering the cumulative probabilities, 1= Πij0(=P(yij) ≥ 0) ≥ Πij1(=P(yij) ≥ 1) ...

≥ Πijk(=P(yij) ≥ k). The model can be written as follows:

logit(Πijk) = β0k + β1jDayij + β2Trti + bi (6)

where bi is the random effect specific to child i and β0k is the intercept for category k. The parameters β1j

and β2 represents conditional log-odds ratios of the grouped categories superior to the cutoff (k) compared

to the categories inferior to k. To relax the strong assumption of identical log-odds ratio for the outcome

by the covariate association in POM, partial proportional odds model (PPOM) and generalized ordered

logit model (GOLM) have been developed and can be easily fitted using NLMIXED procedure (SAS code

given in Appendix).

Partial Proportional Odds Model (PPOM)

When the proportional odds assumption applies to some but not all of the covariates, the partial propor-

tional odds model (7) can be used. In this model only the effect of treatment allowed to vary across the

category levels, while the effects of day fixed at each category as done in POM.

logit(Πijk) = β0k + β1jDayij + β2kTrti + bi (7)

where, Πijk is the cumulative probability of the outcome (Yij ≥ k) conditional upon other covariates, k
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is the level of the ordered category, β1j is the effect of the Dayij at the kth category level of the outcome

and β2k measure the log odds effect of the treatment at kth category level of the outcome given children

in both treatment groups having identical covariate and random-intercept, bi is child specific parameter

to the ith child and β0k is the intercept for category k. The covariates and random effects determine

conditional mean Πijk and the regression coefficients β can be therefore interpreted as conditional effects

of covariates (child-specific), given the random effects bi. For instance, the parameter β2k interpreted as

the log odds ratio comparing a child injected with the candidate vaccine with another child injected by

the licensed vaccine, both having identical covariate and random-intercept values on the kth category of

the outcome.

Generalized Ordered Logit Model (GOLM)

This general model permits to each covariate to have different effect at each category of the outcome.

For the ordinal outcome variable Yij with predictors treatment group (Trti) and the measurement day

(Dayij), the cumulative log odds are modeled as

logit(Πijk) = β0k + β1jkDayij + β2kTrti + bi (8)

where, Πijk, β2k, β0k and bi have the same meaning as mentioned under model (7), now β1jk has also

category specific estimate like β2k. Model (7) is special cases of model (8) when the effect of day is similar

at each category. The disadvantage of model (8) is the larger number of parameters to be estimated as

compared with previous one. But, this higher in number of parameter can not be considered as a

disadvantage in a situation when model (8) better fits the data.

We can extend model (7) and (8) which assume identical baseline variability within the child being in

either of the categories, by allowing to have different random effects bik at each category.

logit(Πijk) = β0k + β1jkDayj + β2kTrti + bik (9)

Where bik is the random intercepts for each category of the model and the vector of these random effects

assumed to follow a multivariate normal distribution with mean vector zero and (co)variance matrix D
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(i.e. bik ∼ N (0,D)). where D is k x k general covariance matrix with elements drs.

D =


d11 · · · d1k
...

. . .
...

dk1 · · · dkk

 (10)

The elements of the matrix, drs represents the (co)variance between bir and bis (r=1,2,3; s=1,2,3). The

advantage of the extended model over model (7) and (8) is that, it enables us to study the association

between different category level using bik covariance matrix. All the considered random-effects models are

fitted by maximization of the marginal likelihood, obtained by integrating out the random effects. Since

the likelihood function does not have a closed form in this case, model fitting is not an easy task. Numer-

ical approximations will be used (Molenberghs and Verbeke, 2005) to maximize the marginal likelihood.

The adaptive Gaussian quadrature which estimates the likelihood by approximating the integral with

Newton-Raphson optimization technique will be applied to fit the model using the NLMIXED procedure

in SAS.

In GLMMs, although in practice one is usually primarily interested in estimating the parameters in

the marginal distribution for Yij , it is often useful to calculate estimates for the random effects bi as

well. They reflect between-subject variability, which makes them helpful for detecting special profiles

(i.e. outlying individuals). Moreover, estimates for the random effects are needed whenever interest is in

prediction of subject-specific evolutions.

2.2.3 Joint Generalized Linear Mixed Models

Consider the situation where the adverse events such as pain, redness and irritability after injecting a

vaccine are measured simultaneously. Most statistical models for repeated data are restricted to the

analysis of one single outcome variable. Those approaches are not flexible when the research question

focuses on: (i) association structure of different outcomes (ii) to test homogenous effect of a covariate

across different outcomes, (iii) to draw joint inferences about the different outcomes. In order to answer

such type of research question, Fieuws and Verbeke (2004, 2005, and 2006) provided detailed explanation

on joint modeling. Their approach emphasizes to model the different outcomes jointly using random-

effects models, random effects are assumed for each outcome process, and by imposing a joint multivariate

distribution on the random effects, the different processes are associated. In Section 2.2, a generalized
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linear mixed model (5) was used to analyze binary and repeatedly measured outcomes. Joint models

considered here assume GLMMs for each outcome and these models are combined through specification

of a joint multivariate distribution for all random effects. Let W1ij , W2ij and W3ij denote the three

binary outcomes (Pain, Redness, Irritability) for subject i at visiting day j. Each of the three outcomes

can be described by using GLMMs as mentioned before, and the joint model can be written as:
logit[P (W1ij = 1|Dayij , T rti, b1i)] = β0 + β1jDayij + β2Trti + b1i Pain

logit[P (W2ij = 1|Dayij , T rti, b2i)] = α0 + α1jDayij + α2Trti + b2i Redness

logit[P (W3ij = 1|Dayij , T rti, b3i)] = γ0 + γ1jDayij + γ2Trti + b3i Irritability

(11)

where β0 + b1i, α0 +b2i and γ0 + b3i are outcome specific intercepts for each subject; β1j , α1j , γ1j ,

β2, α2 and γ2 have similar interpretation as mentioned for model (5); b1i , b2i and b3i represent the

random effects related to each outcome that used to accommodate the repeated nature in the data, and

to associate the three outcomes by imposing the vector of these random effects assumed to follow a

multivariate normal with mean zero and (co)variance D as given in (10). When the interest is inference

for the association between the three outcomes, the variance-covariance matrix of the modeled outcomes

needs to be calculated (Faes et al, 2008). The approximate variance-covariance matrix of the three binary

outcomes for child i at visiting day j can be given by:

Vij =

 ν21ijσ
2
b1i

+ ν1ij ρ12ν1ijν2ijσb1iσb2i ρ13ν1ijν3ijσb1iσb3i

ρ21ν2ijν1ijσb2iσb1i ν22ijσ
2
b2i

+ ν2ij ρ23ν2ijν3ijσb2iσb3i

ρ31ν3ijν1ijσb3iσb1i ρ32ν2ijν3ijσb3iσb2i ν23ijσ
2
b3i

+ ν3ij


and the correlation between the two outcomes induced by the correlation between two random effects,

ρmn (m= 1,2,3; n=1,2,3) approximately equal to:

corr(Wmij ,Wnij) =
ρmnνmijνnijσbmiσbni√

ν2mijσ
2
bmi

+ νmij

√
ν2nijσ

2
bni

+ νnij
(12)

Where, ν1ij=µ1ij(b1i = 0)[1 − µ1ij(b1i = 0)], ν2ij=µ2ij(b2i = 0)[1 − µ2ij(b2i = 0)], ν3ij=µ3ij(b3i =

0)[1 − µ3ij(b3i = 0)], with µpij= exp(β0 + β1jDayij + β2Trti)/[1 + exp(β0 + β1jDayij + β2Trti)], with

p=1, 2 , 3 (1=pain, 2=redness, 3=irritability). Note that, the computed correlation based on this

approximation is always smaller or equal to the correlation ρmn among the two random effects (Faes et

al, 2008) and incase of conditional independence (ρmn=0), the approximate correlation corr(Wmij ,Wnij)

also equals zero.

Moreover, the binary outcome joint model (11) extend to the more general ordinal outcome model (8)
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and the joint generalized ordered logit model (13) is fitted using SAS NLMIXED procedure.

logit (P (Ymij ≥ k|Daymij , T rtmi, bmi)) = β0mk + βmkjDaymij + βmkTrti + bmi (13)

where Ymij is the observation for child i at visiting day j for the mth outcome with m=1, 2, 3 (1= pain,

2=redness, 3= irritability). Trti is an indicator variable equal to 1 for children treated by the candidate

vaccine, and 0 otherwise. Hence exp(βmk) represents the multiplicative effect of the candidate vaccine

on the odds of observing symptoms with level of intensity ≥ k for the mth adverse event, for children in

both treatment group have identical covariate and random-intercept values at kth category of the mth

outcome. The model intercept β0mk and the effect of measurement day (βmkj) allows adverse event

specific intercept as well as visiting day.

2.3 Model Selection and Diagnosis

Model selection and the assessment of goodness of fit are important issues for inference in both quasi-

likelihood and likelihood modelling approaches. Even though, GEE is an increasingly important method

for correlated data, likelihood based model selection and goodness fit test are not available. To assess

the overall goodness-of-fit of the regression model for correlated data using GEEs, different extension

to Hosmer and Lemeshow (1980) methods are proposed (Barnhart and Williamson, 1998; Horton et al,

1999; Pan, 2002; Lee and Qaqish, 2004; Lin, 2010 ).

Likewise, diagnostics methods to identify observations or clusters which have a disproportionately large

influence on the estimated regression parameters are not well established. Preisser and Qaqish (1996),

introduce deletion diagnostics which account for the leverage and residuals in a set of observations to

determine their influence on regression parameter estimates and fitted values. The effect of deleting an

entire cluster(child) information on parameter estimates will be assessed for model (1). The studentized

Cook distance statistic also computed to measure the influence of deleting an entire cluster on the overall

model fit using PROC GENMOD SAS procedure.

For the random effect models, since they are likelihood based; Aikakes Information Criterion(AIC),

likelihood ratio tests and max-scaled R2 are used to compare different models. The max-scaled R2
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(Frees, 2004), defined as R2
ms = R2/R2

max, where

R2 = 1−
(
exp(L0/N)

exp(Lβ/N)

)2

and R2
max =1 − [exp(L0/N)]2. Here, L0 and Lβ are the log likelihood of the model with only model

intercept and all covariates in the model including the intercept respectively. N represents the number of

observations.

In order to test the proportional odds assumption and to compare other nested models, a likelihood

ratio test is calculated by subtracting the value of -2loglikelihood associated with full model from that

of the reduced (nested to the full) model. Further, since the null hypothesis value of the variance of the

random intercepts is at the boundary of the parameter space (H0 : σ2
bi

= 0), the null distribution of

the test statistics is a mixture of χ2
(0) and χ2

(1) distributions, each with equal weight 0.5 (Verbeke and

Molenberghs, 2000). All models were fitted using SAS version 9.2.1 and hypothesis tests were done at

5% significance level.

3 Analysis of the Case Study

In this section, the data introduced in Section 1.3 are analyzed and results of the analysis based on the

two model family will be discussed. Recall that the aim of the study is to test whether there is a difference

between the candidate and licensed vaccine in terms of percentage of subjects who showed any level of

solicited symptom (Pain, Redness, Irritability) taking in to account the repeated nature of the data, and

if there is a difference, to describe how does this difference between treatment groups develops over time.

Section 3.1 focuses on results based on GEEs and Section 3.2 presents results from random effect models.

3.1 Marginal Models

3.1.1 Marginal Models for Binary Outcomes

For the dichotomized version of the adverse events (according to Section 1.3), standard GEE models was

fitted to assess difference between the candidate and licensed vaccine. Since the number of measurements

taken from each subject is not large (4 measurements per subject), unstructured working correlation

which is more realistic and flexible is considered. Due to few number of counts to observe at least

moderate and severe redness (Table 10), when we fitted model (2) using this working correlation, GEEs

16



score statistic algorithm failed to converge for day covariate. Autoregressive working correlation was then

chosen based on the quasi-likelihood information criterion(QIC) value of the model and the difference

between model based and empirical based standard errors.

In order to test whether there is a difference between the two treatment groups over the visiting day, the

saturated model (2) was fitted and the interaction effect was found to be non significant (Table2; Table

12) for any intensity levels of pain, redness, or irritability, except for severe redness for which results

could not be obtained. This non-significant result for the interaction effect implies that, the effect of the

treatment does not depend on the visiting day.

Model (1) was then fitted to assess the overall effect of treatment group and follow-up day on the outcome

variable by testing the hypothesis H0 : β2=0 and H0 : β12 = β13 = β14=0, respectively. Among all the

fitted models for all intensity levels of solicited symptom versus no solicited symptom (Wij), a significant

difference between the treatment groups were observed only for redness (Table 2). There is no statistically

significant difference between the two treatment groups to observe all intensity levels of pain or irritability

at 5% level of significance (Table 2). Note that, observing any solicited symptom highly depend on the

visiting day. Summary of Parameter estimates for the fitted model (1) on the log scale, with their

Table 2: Summary of score test results for models observing any solicited symptom

Fitted Tested All pain All Redness All Irritability

Model Effect χ2 df P-value χ2 df P-value χ2 df P-value

Model(1) day 1097.00 3 0.0001 792.12 3 0.0001 449.15 3 0.0001

Trt 2.53 1 0.112 9.50 1 0.002 2.39 1 0.122

day 606.60 3 0.0001 494.69 3 0.0001 103.86 3 0.0001

Model(2) Trt 4.02 1 0.084 10.45 1 0.001 1.35 1 0.245

Trt *day 5.75 3 0.124 2.00 3 0.572 6.50 3 0.089

d.f.= Degrees of freedom

respective 95% CI provided in Table 11, Table 13 and Table 14 (Appendix A) for all, at least moderate

and severe intensity levels, respectively. At a given visiting day, on average, the odds of observing all

intensity levels of redness for children injected with the candidate vaccine is exp(−0.259)=0.77 times

those children injected by the licensed vaccine (Table 3). Thus, children assigned to the licensed vaccine

are 1.30 (1/0.77) times more likely to show any level of redness than children injected with the candidate
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vaccine controlling for the follow up day. There is no significance difference between children injected by

the two treatment groups to observe severe intensity level of redness (Table 14). Results for estimated

odds ratio along with their 95% CI based on model (1) and for which β2 was statistically significant are

summarized in Table 3. The odds ratio for all and at least moderate intensity levels of redness reduced

by 23% and 30% for children injected with the candidate vaccine as compared with those injected by

the licensed vaccine, respectively. Since the interaction effect based on model (2) is not significant for at

Table 3: Estimated odds ratios(OR) with their respective 95% confidence intervals based on model (1)

All redness Moderate redness Moderate pain Severe pain

Parm OR 95% CI OR 95% CI OR 95% CI OR 95% CI

β0 1.73 (1.49, 2.01) 0.09 (0.07, 0.11) 0.42 (0.35, 0.51) 0.07 (0.05, 0.10)

β12 0.16 (0.14, 0.18) 2.60 (2.16, 3.12) 0.49 (0.43, 0.55) 0.43 (0.30, 0.60)

β13 0.43 (0.39, 0.48) 1.34 (1.08, 1.66) 0.12 (0.09, 0.15) 0.14 (0.07, 0.26)

β14 0.95 (0.86, 1.04) 0.44 (0.33, 0.59) 0.04 (0.03, 0.06) 0.09 (0.04, 0.20)

β2 0.77 (0.66, 0.91) 0.70 (0.54, 0.91) 0.64 (0.52, 0.80) 0.33 (0.21, 0.54)

least moderate intensity levels of pain (Xij) and redness (Table 12), to see the overall difference between

the two treatment group to observe at least moderate level of adverse event, model (1) was fitted.

Significant differences between the two treatment groups were found only for pain and redness adverse

events to observe at least moderate levels of intensity (Table 13). On average, the odds of observing at

least moderate intensity levels of pain and redness for children enrolled under the candidate vaccine are

exp(−0.445) = 0.64 and exp(−0.374) = 0.70 times those children who were injected with the licensed

vaccine respectively (Table 3). Thus, the odds ratio for at least moderate and severe intensity levels of

pain reduced by 36% (1-0.64) and 67% for children injected with the candidate vaccine as compared with

those injected by the licensed vaccine, respectively. To identify observations which have large influence

on the estimated regression parameters, different diagnostic statistics were explored based on model (1)

for at least moderate intensity levels of pain. The effect of deleting ith child information (cluster i) on

the estimated treatment effect parameter is very small (Table 15). The global influence of the cluster

on all the predicted values and influence of the cluster on its own predicted value assessed by computing

the cluster cook distance and Cluster difference on fitted value respectively, influential clusters were not

observed (Figure 2). Furthermore, from Figure 2, we can see that, computed Pearson residual values for

observations taken from children who received the licensed vaccine are smaller (in absolute value) while
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Figure 2: Different model diagnostics plot for generalised estimating equations

the cluster leverage and leverage values (bottom right panel of Figure 2) of those observation higher as

compared with observations from the candidate vaccine. In addition to assessing influential observations,

Figure 2 is presented here, in order to provide insight for the readers that GEEs model diagnostics

techniques are available as mentioned in Section 2.4.

In summary, from the fitted binary marginal model, we observed that, there is a significance difference

between the two treatment groups in terms of percentages of children who experienced all and at least

moderate intensity levels of redness, and at least moderate and severe intensity levels of pain. The differ-

ence between treatment groups become high for severe intensity level of pain as compared with the other

intensity levels of solicited symptoms. The odds ratios for severe intensity levels of pain reduced by 67%

(1-0.33) for children injected with the candidate vaccine as compared with those injected by the licensed

vaccine. Significant difference between the two treatment groups were not found for all intensity levels

of pain symptom and severe intensity level of redness. Concerning irritability adverse event, significant

difference was not observed between the two treatment groups for all, at least moderate and severe inten-

sity levels irritability. Moreover, the non-significant interaction effect in all the considered adverse event

models implies that, the odds ratio of treatment effect can be considered constant over the follow-up day.
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3.1.2 Marginal Models for Ordinal Outcomes

When the responses are ordinal the usual χ2 test of independence ignores the ordering information to test

whether there is association between the response and treatment. To test the general association between

the two treatment groups and their response at the end of the study, a general Cochran-Mantel-Haenszel

statistics had been performed and significant (p-value=0.001) result was obtained. The assumption of

proportional odds (identical log odds ratios across different categories) was tested using score test and

significant result was observed (χ2(8)= 34.07, p-value=0.0001). Furthermore, from a separate analysis,

it was found that the effect of the candidate vaccine on the outcome vary across different categories

(Table 4: Figure 6) which is an indication for the violation of proportional odds assumption. Therefore,

Table 4: Estimated odds ratio for the candidate vaccine at different level of intensity

Modeled Level of Intensity

All Moderate Severe POM

Adverse Event OR 95%CI OR 95%CI OR 95%CI OR 95%CI

Pain 0.86 (0.72,1.02) 0.64 (0.52,0.80) 0.33 (0.21,0.54) 0.77 (0.65,0.91)

Redness 0.77 (0.66,0.91) 0.70 (0.54,0.91) 0.96 (0.58,1.59) 0.75 (0.64,0.88)

Irritability 0.86 (0.72,1.02) 0.78 (0.58,1.03) 0.79 (0.46,1.36) 0.85 (0.72,1.02)

drawing valid inference based on parameter estimates obtained by fitting model (4) may not be valid. For

instance, based on POM, subjects injected with the licensed vaccine are 1.30 (1/0.77) times more likely

to show pain adverse event than subjects injected with the candidate vaccine controlling other factors.

While, based on a separate analysis, this odds ratio increases to 1.56 (1/0.64) and 3.03 (1/0.33) to observe

at least moderate and severe intensity levels of pain, respectively (Table 4). Since the procedure PROC

GENMOD in the current version of SAS 9.2.1 does not allow to deal with partial POM and GOLM in

the marginal modelling framework, model (7) and model (8) will be fitted using NLMIXED procedure

(SAS code given in Appendix). Hence, analysis for a more general ordinal models that allow the effect

of the vaccine to vary across different category levels as needed will be done under Section 3.2.2 in the

random effects model framework.
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3.2 Generalized Linear Mixed Models

Analysis in Section 3.1 focused on modeling the marginal distributions of clustered responses within child,

treating the joint dependence structure as a nuisance. In this section results based on an alternative

approach using child (cluster) level terms in the model will be discussed. Given the discrete nature of

time varying covariate (day) a random intercept model which adjusts only the intercept but does not

modify the fixed effects was considered.

3.2.1 Random Effect Models for Binary Outcomes

When the proportion of observing any symptom during the visiting time is less for some subjects and

higher for the others, marginalized proportions may poorly estimate the true proportions. In such cases,

random effect models that incorporate additional parameters bi for each child can provide better estimates.

To investigate the difference between the treatment groups in terms of percentage of children experiencing

solicited symptoms, as a starting point the saturated model with interaction terms, model (14)

logit(µij) = β0 + β1jDayij + β2Trti + β3jTrti ∗Dayij + bi (14)

was fitted, but we kept main effect model (5), since the estimated interaction effects are non-significant

and change in log-likelihood are small. Moreover, the likelihood ratio tests that compare the saturated

model (14) with model (5) supports that model (5) better fits the data than model (14) for different

intensity levels of solicited symptoms (Table 5). Table 6 summarizes the estimated odds ratio with their

95%CI obtained by fitting model (5) for pain adverse event. The estimated odds ratios of 0.449 and

Table 5: Summary of likelihood ratio tests that compare model (5) versus model (14)

Test Modeled outcome of Pain Modeled outcome of redness Modeled outcome of irritability

Result All Moderate Severe All Moderate Severe All Moderate Severe

LRT 5.6 2.1 5.3 2.2 1.7 7.7 3.2 5.8 6.1

d.f 3 3 3 3 3 3 3 3 3

p-value 0.133 0.552 0.151 0.532 0.637 0.053 0.362 0.122 0.107

LRT=likelihood ratio tests, d.f =degrees of freedom

0.162 for treatment (Table 6) can be interpreted as the odds ratio comparing a child injected with the

candidate vaccine with another child injected by the licensed vaccine, both having identical covariate
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and random-intercept values to observe at least moderate and severe intensity levels of pain, respectively.

Significant treatment difference is not observed in observing all intensity levels of pain for a given child,

similar conclusion was drawn in the marginal model discussed earlier.

Table 6: Summary of ML odds ratios estimate for the random effects model (5) for Pain adverse event

All Moderate Severe

Parameter OR 95%CI OR 95%CI OR 95%CI

β0 4.807 (3.561, 6.488) 0.167 (0.113, 0.244) 0.002 (0.001, 0.008)

β12 0.196 (0.160, 0.237) 0.262 (0.204, 0.340) 0.230 (0.121, 0.432)

β13 0.020 (0.016, 0.027) 0.027 (0.018, 0.040) 0.038 (0.014, 0.105)

β14 0.003 (0.002, 0.005) 0.006 (0.003, 0.011) 0.021 (0.006, 0.069)

β2 0.748 (0.549, 1.020) 0.449 (0.301, 0.677) 0.162 (0.069, 0.407)

σ2
bi

6.25 7.73 13.42

The variance of the random intercept (σ2
bi

) reflects the heterogeneity between subjects in observing a

certain level of symptom. For instance, σ2
bi

= 7.73 represents the baseline variability of observing at

least moderate intensity levels of pain between children and this variability become higher for severe

intensity level of pain (σ2
bi

= 13.42). Thus, based on the estimated variance of the random intercept, the

residual intraclass correlation of the latent responses is estimated as 0.701 (7.73/(π2/3 + 7.73)) for at

least moderate intensity levels of pain and 0.803 for severe intensity level of pain.

Similar analyses were done for redness and irritability adverse events. Summary results in terms of odds

ratio are presented in Table 7 for redness adverse event. A significant treatment difference for a given

Table 7: Maximum likelihood odds ratios estimate for redness adverse event

All Moderate Severe

Parameter OR 95%CI OR 95%CI OR 95%CI

β0 3.078 (2.268, 4.178) 0.004 (0.002, 0.008) 0.0004 (0.0001, 0.002)

β12 0.892 (0.742, 1.072) 6.756 (4.781, 9.545) 4.496 (2.416, 8.365)

β13 0.183 (0.150, 0.223) 1.740 (1.234, 2.452) 1.731 (0.894, 3.351)

β14 0.027 (0.021, 0.035) 0.241 (0.155, 0.374) 0.061 (0.012, 0.305)

β2 0.585 (0.422, 0.811) 0.482 (0.282, 0.825) 1.074 (0.515, 2.23)

σ2
bi

7.40 12.50 8.01

child was found for all intensity levels of redness and for observing at least moderate intensity level of
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redness, but not for severe intensity level of redness (Table 7). For irritability adverse event, there is no

significant difference between the candidate and licensed vaccine at all, in agreement with the marginal

model (1) results.

The distribution of subject specific parameter estimates are presented in Figure 5 (Appendix B). The

figure shows that, child specific parameter estimates to observe all intensity levels of redness are fairly

distributed from -2.71 to 3.56 with mean 0.08. While, for moderate and severe intensity levels, more than

75% of the parameter estimates fall between -0.33 to -0.188 and -0.024 to -0.025, respectively. Thus, the

estimated child specific parameters are near to zero of at least moderate and severe intensity levels of

redness as compared with subject specific parameters for all intensity levels of redness.

The estimated variance of the random intercept is relatively large, σ2
bi

=7.4 and σ2
bi

=12.5 for all and at

least moderate intensity levels of redness, respectively. This implies that there is substantial variability

in the propensity to experience a certain levels of adverse event, since approximately 95% of the children

have a baseline risk of showing all levels of redness and at least moderate level of redness symptoms that

vary from (1.5% to 99.85%) and (0.3% to 99.96%), respectively. One can visualize this baseline variability

from Figure 3. Figure 3 displays a plot of E(Wij |Trti, bi) and E(Wij |Trti)versus the visiting day using
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Figure 3: Conditional (dotted line) and marginal(solid line) probability of observing all redness

model (5) for randomly selected 16 children using their subject specific estimate (dashed line), a plot of
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model (5) with bi=0 (bold dashed line) and a plot of marginal probability of observing all intensity levels

of redness based on model (1) (solid line). The Figure reveals that, there is substantial variability between

children at day 1 (day of the vaccination). Furthermore, predicted probability based on model (1) lower

at day 1 and day 2 and higher at visiting day 3 and day 4 (solid line) as compared with model (5) by

setting the random terms zero (bold dashed line). When subject specific logistic plots are compared to

the population average plot it is apparent that, the estimated probability ranges from 0.003 to 0.97 for

random effects model and 0.18 to 0.57 for the marginal model (1).

3.2.2 Random Effect Models for Ordinal Outcomes

The assumption of proportional odds across different categories were tested using the likelihood ratio

test, by comparing model (6) with model (7) and model (8). In line with the marginal model results, the

test suggests that, proportional odds assumption was not satisfied (p-value=0.0015). Therefore, partial

proportional odds model (7) and generalized ordered logit model (8) were fitted for the ordered outcomes

(SAS code given in Appendix). Table 17, provides summary of goodness of fit measures for different

random effect models which are valid under different assumptions as described in Section 2.2.2. The

AIC, -2ll value and R2
ms suggests that the extended model (9) better fits the data (Table 17). The

estimated ORs with their respective 95%CI obtained by fitting model (7), model (8) and model (9) in

the case of partial proportional odds model for children with zero random effects term are summarized

in Table 8. The results show that, when we fitted the extended model (9) in the case of PPOM using

category specific random effect terms, over model (7) which assumes only the same baseline variability

at each category, the difference between the two treatment groups increase for high cutoff (Table 8).

For instance, based on model (7), the odds ratio comparing a child injected with the candidate vaccine

with another child injected by the licensed vaccine, both having identical covariate and random-intercept

values at 3rd category of the outcome is 0.326, while based on model (9) it is 0.065.

The results for the fixed effects parameters from the three models generally agree in terms of indicating

children injected with candidate vaccine are less likely to show at least moderate and severe intensity

levels of pain as indicated by less than one odds ratio (Table 8). Since, the 95%CI confidence does not

include 1 for the effect of treatment at category 2 and 3, this differences between the two treatment
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Table 8: Maximum Likelihood Estimates and Approximate 95% Confidence Intervals for PPOM based on
model (7) and model (9) and GOLM with random intercept for pain adverse event

Model (7) Model (8) Model (9) for PPOM

Parameters OR (95%CI) OR (95%CI) OR (95%CI)

Fixed part:Odds Ratios

β21 Treatment at category 1 0.750 (0.561, 1.003) 0.751 (0.562, 1.001) 0.765 (0.545,1.073)

β22 Treatment at category 2 0.513 (0.367, 0.719) 0.523 (0.371, 0.732) 0.401 (0.239,0.672)

β23 Treatment at category 3 0.329 (0.188, 0.576) 0.344 (0.198, 0.593) 0.065 (0.015,0.292)

Random part:Variances

σ2
bi

Var(bi) 5.46 5.55

σ2
bi1

Var(bi1) 7.618

σ2
bi2

Var(bi2) 12.710

σ2
bi3

Var(bi3) 40.468

Treatment at category k (k=1,2,3) refers OR of the candidate vaccine on outcome category k

groups are statistically significant at 5% level of significance. Approximately similar residual intra class

correlation was obtained for the latent responses and was estimated as 0.63 (σ2
bi
/(π2/3 + σ2

bi
)) for both

model (7) and model (8).

Extensions for Random Effect Models with Ordinal Outcomes

Even though, it is very computationally intensive due to the increased number of random effects, to

allow different category specific random terms and to study the association between category levels, the

extended model (9) is fitted for pain adverse event. A significant (p-value=0.001) positive association

(ρ12 = 0.33) between the first and the second category level random effects was observed from the

estimated (co)variance matrix. This suggests the correlation between the first category (all intensity

levels of pain) and the second category (at least moderate intensity levels of pain) for child i at visiting

day j less or equal to the correlation between the two random effects (ρ12 = 0.33). While, since the

third random effect term is independent (with p-value ≥0.39) with the first and the second category level

random effects term, significant association between severe intensity level with the other category levels

were not observed. The estimated random effects (co)variance matrix (* refers significantly different

from zero at 5% level of significance) which reflects the baseline heterogeneity between children at each
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category of the outcome is

D =

 7.618∗ 5.69∗ −1.495

12.71∗ −0.33

40.46∗


The variability between children at severe intensity level of pain (σ2

bi3
=40.468) is higher as compared with

the variability observed in at least moderate (σ2
bi2

=12.71) and all intensity levels of pain (σ2
bi1

=7.618).

This relatively large baseline heterogeneity between children implies that, there is substantial category

specific variability in the propensity to experience a certain levels of adverse event. For instance, ap-

proximately 95% of the children have a baseline risk of showing at least moderate levels and severe level

of pain symptoms that vary from (0.007% to 98.83%) and (0% to 99.86%), respectively. Based on the

estimated category specific variance of the random intercepts, the estimated intra class correlation for

the latent responses becomes 0.70, 0.79 and 0.93 at category 1 (all), category 2 (at least moderate) and

category 3 (severe), respectively.

3.2.3 Joint Generalized Linear Mixed Models

In order to examine the effect of the treatment on the joint process of the three solicited symptoms and the

association between these outcomes, model (11) is applied to the case study. The joint model was fitted

in SAS using NLMIXED procedure with initial values obtained from the univariate analyses. Summary

of maximum likelihood estimates based on model (11) for the three solicited symptoms are presented in

Table 18. Figure 4 shows the predicted probability of observing all intensity levels of solicited symptoms

at each visiting day. Further, in order to compute the correlation between different outcomes for child i

at visiting day j based on equation (12), first the random effects co(variance) matrix (D) considered and

ρmn found not significantly different from zero (with p-value≥ 0.76) from the D matrix. In the D matrix

* refers significantly different from zero.

D =

 6.25∗ < −0.0001 < −0.0001

7.395∗ < 0.0001

10.306∗


Since outcome specific random effect terms are independent (ρmn=0) as shown in the D matrix, the

corr(Wmij ,Wnij) in equation (12) becomes zero. Thus, for child i at visiting day j, the three outcomes

of interest (Pain, Redness and Irritability) are independent. This independence was also supported by

identical parameter estimates obtained by fitting both the univariate model (5) and joint model (11) (See
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Figure 4: Predicted probability at each visiting day for the three adverse event

Table 18, Table 16). Even though, most scholars used joint models to study the association between

outcome variables, if each outcome has the same covariate, it is possible to test whether the covariate

effect is similar across different outcomes. Thus, in order to do this, the reduced form of model (11) which

assumes β2 = α2 = γ2, was fitted. Since the reduced model (15) is nested with model (11), likelihood

ratio test (LRT) was used to test the homogenous effect of treatment across different solicited symptoms.


logit[P (W1ij = 1|Dayij , T rti, b1i)] = β0 + β1jDayij + β2Trti + b1i Pain

logit[P (W2ij = 1|Dayij , T rti, b2i)] = α0 + α1jDayij + β2Trti + b2i Redness

logit[P (W3ij = 1|Dayij , T rti, b3i)] = γ0 + γ1jDayij + β2Trti + b3i Irritability

(15)

Where, β2 is the common treatment effect for different outcomes.

The value of the computed LRT =-2(llmodel(15) -llmodel(11))=21944 -21942=2, compared with χ2
(2) = 5.99,

and this nonsignificant test result (p-value=0.368) indicates that, the effect of the treatment group is

similar across the three solicited symptoms. The estimated common treatment effect β̂2, is -0.36 with

95%CI ( -0.553, -0.169). Thus, the estimated odds ratio exp(−0.36) = 0.70 can be interpreted as the odds

ratio comparing a child injected with the candidate vaccine with another child injected by the licensed

vaccine, both having identical covariate and random-intercept values to observe all intensity levels of a

specific solicited symptom. Hence, children injected with the licensed vaccine are 1.43 time more likely to
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show either of the adverse events as compared with children injected by the candidate vaccine. Based on

the estimated random effects (co)variance matrix D, the variability between children are approximately

similar for pain and redness adverse events, while a bit higher variability observed for irritability adverse

event.

Similar analysis for the ordered outcome based on model (13) was also done and due to independence

between outcome specific random effects, significant association between the solicited symptoms were

not observed. Since, integrating the likelihood for model (13) is computationally intensive, homogeneous

effect of the treatment across the solicited symptoms were not tested based on model (13).

4 Discussion and Conclusion

4.1 Discussion

In this report, we have presented marginal and random effect models to analyze repeated categorical

measurements concerning solicited symptoms coming from vaccine clinical trials. In case of marginal

models the correlated nature of the data is acknowledged inside the estimating equation, while for random

effects model it is done through the random effect part. Eventhough, both the considered marginal

and random effect models are extensions of generalized linear model (McCullagh and Nelder, 1989),

the different way of accounting within child association has a consequence for the interpretation of the

regression model parameters. In the random effect approach the goal is to determine child-specific changes

in the risk of observing solicited symptoms over the courses of the study, while in the marginal model

the emphasis is to determine the overall change.

To fix ideas on the difference between marginal and random effects model, let us reconsider the estimated

effect of the candidate vaccine under different model formulation (Table 9). The estimated treatment

effect 0.64 and 0.33 (Table 9) from the marginal model (1) describes how the average rates (in terms of

odds ratio) of observing at least moderate and severe intensity levels of pain would increase in the study

population if children are injected by the candidate vaccine. While, the estimated treatment effect 0.449

and 0.162 from the random effect model (5) describes how the odds of observing at least moderate and

severe levels of pain increase for any child treated with the candidate vaccine.
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Table 9: Summary of estimated odds ratios (95%CI) of the candidate vaccine based on marginal and
random effects model for the three adverse events

Fitted Adverse Modeled intensity level of adverse event AIC

Model Event All Moderate Severe

Model (1) Pain 0.86(0.72,1.02) 0.64(0.52, 0.80) 0.33(0.21, 0.54)

Redness 0.77(0.66,0.91) 0.70(0.54,0.91) 0.96(0.58,1.59)

Irritability 0.86(0.72,1.02) 0.78(0.58,1.03) 0.79(0.46,1.36)

Model (5) Pain 0.75(0.55,1.02) 0.45(0.30,0.68) 0.16(0.07,0.41)

Redness 0.59(0.42,0.81) 0.48(0.28,0.83) 1.07(0.52,2.23)

Irritability 0.74(0.50,1.10) 0.61(0.31,1.18) 0.74(0.30,1.83)

For Ordinal Outcomes

Model (7) Pain 0.75(0.56,1.00) 0.51(0.37,0.72) 0.33(0.19,0.58) 10266

Redness 0.61(0.46,0.79) 0.61(0.43,0.85) 1.22(0.68,2.18) 11472

Irritability 0.76(0.53,1.09) 0.78(0.51,1.22) 0.80(0.41,1.53) 10355

Model (8) Pain 0.75(0.56,1.00) 0.52(0.37,0.73) 0.34(0.20,0.59) 10261

Redness 0.60 (0.45,0.79) 0.61(0.43,0.86) 1.21(0.67,2.17) 11334

Irritability 0.76(0.52,1.09) 0.79(0.51,1.23) 0.80(0.42,1.53) 10270

Modela(9) Pain 0.77(0.55,1.07) 0.40(0.24,0.67) 0.07(0.02,0.29) 10087

Modelb (9) pain 0.77(0.56,1.07) 0.38(0.22,0.68) <0.01(0.00,0.003) 10029

AIC=Aikakes Information Criterion, Modela (9)=nonproportional odds only for treatment

Modelb (9)=nonproportional odds for both treatment and visiting day

Note that, the same odds ratio are significant across both the random effects model and marginal models,

but the magnitude of the effect can differ (Table 9). Therefore, the answer for the question ”how

the candidate vaccine is beneficial?” will depend on whether the interest is in its impact on the study

population or on an individual drawn from that population. The estimated treatment effect difference

from the marginal model a somewhat smaller than the estimated treatment effect from random effect

model (Table 9), and this discrepancy becomes high when the estimated variance for the random intercept

based on the random effect models becomes large. These differences in the estimated coefficients and

odds ratios are due to different interpretations of β in the two model families, that is these two classes of

models estimate parameters that address substantively different questions. More precisely, the estimates

of fixed effects of the treatment in model (5) describe the effect of the treatment on a specific child to

observe solicited symptom. While, the corresponding effects in the marginal model (1) describe the effects

of treatment on the prevalence of observing solicited symptom in the population of children injected by

the candidate vaccine. The approximate relationship between the two model parameters mentioned in
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Section 2.1.1 highlights how the parameters estimates for marginal model are attenuated relative to the

corresponding fixed effects in model (5).

Moreover, since the joint distribution of the responses is not specified in GEEs method, likelihood based

inferences are not available. Hence, if the interest is to model the heterogeneity among children and

to draw likelihood based inferences, we prefer to fit random effect models over GEE. In random effects

model, each child is assumed to have its own level of adverse event. Thus, it is well known that fixed

effects parameters do not maintain their interpretation when random effects are introduced in the model.

Therefore the fixed effects odds ratio no longer is an odds ratio between any two child as mentioned by

Zeger et al (1988).

Among the considered models that account the ordinal nature of the data, the extended model (9) with

category specific random terms better fits the data (Table 17) for pain adverse event. Further, since the

considered random effects model accounts only baseline heterogeneity, it is also possible to extend those

models by introducing visiting day specific random effects bij , where bij is the random effect for subject

i at occasion day j (j=1 to 4) and vector of bij follows a multivariate normal distribution with mean

vector 0 and (co)variance matrix D. But, in practice, when the number of visiting days increase, it is

difficult to introduce more than few random effects due to computational intensive integration methods.

Even the result presented in Table 9 for modela (9) and modelb (9) with three random effect terms

took approximately 470:18 hour and 774:37 hour on 2.5GHz PC, respectively. Moreover, NLMIXED

procedure fail to integrate the likelihood for less than 20 quadrature points. Among the considered

optimization techniques (Levenberg-Marquardt Method, Newton-Raphson, Trust-Region Method), Trust-

Region Method is very time consuming and fail to integrate the likelihood. Thus, all the presented

parameter estimates were obtained using Newton-Raphson optimization techniques.

4.2 Conclusion

Both marginal and random effect modeling approaches provide similar conclusions about the significant

difference between the two vaccines. A significance difference between the candidate and licensed vaccine

in terms of percentage of children who showed at least moderate and severe intensity levels of pain, all

and at least moderate intensity levels of redness were found in both modeling approaches. The difference
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between the two treatment groups become high for severe intensity level of pain as compared with the

other intensity levels of solicited symptoms. In both marginal and random effect models, significant

difference between the two treatment groups were not found for all intensity levels of pain symptom and

severe intensity level of redness. Further, in all analyses, significant difference was not observed between

the two treatment groups for all, at least moderate and severe intensity levels irritability. Moreover, the

non-significant interaction effect in all the considered adverse event models implies that, the difference

between the two treatment groups can be considered constant over the follow-up period. The association

between the three outcome recorded from the same child over time assessed using the joint generalized

mixed model and nonsignificant association between the three outcomes in all visiting days was found.

Further, results based on the joint mixed model reveals that the effect of the candidate vaccine is similar

across different outcomes (Pain, Redness, Irritability).
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Appendix

Appendix A: Tables

Table 10: Relative frequencies for different solicited symptom by the level of intensity and treatment
group at each follow-up day

Percentage of observed solicited symptom

Day 1 Day 2 Day 3 Day 4

Trt Control Trt Control Trt Control Trt Control

Pain

All 67.3 66.7 44.4 50.5 19.1 23.2 7.4 9.8

Moderate 21.7 28.7 11.1 18.6 3.1 5.0 1.0 2.0

Severe 2.2 6.6 1 2.8 0.5 0.4 0.3 0.4

Redness

All 57.7 62.1 55.7 62.5 36.5 42.9 17.1 23.0

Moderate 5.8 7.8 13.7 18.2 7.4 10.8 2.2 4.6

Severe 1.3 0.4 3 3.2 1.4 2.2 0.1 0.0

Irritability

Any 41.3 44.3 42.5 43.7 29.9 32.9 17.8 23.0

Moderate 6.4 6.2 10.8 13.4 8.3 10.8 5.0 7.6

Severe 1.4 0.8 2.5 3 1.5 2.8 0.6 0.8

Trt= Candidate vaccine for meningococcal infection, Control= licensed vaccine

Table 11: Parameter estimates with their respective 95% CI based on model (1) for observing all level of
adverse events

Models for observing presence of any solicited symptom

Pain Redness Irritability

Parm Estimate 95% CI Estimate 95% CI Estimate 95% C I

β0 0.819 (0.655, 0.982) 0.550 (0.399, 0.703) -0.217 (-0.374, -0.059)

β12 -0.875 (-0.979, -0.770) -0.057 (-0.154, 0.040) 0.031 (-0.06, 0.122)

β13 -2.089 (-2.224, -1.955) -0.843 (-0.952, -0.734) -0.495 (-0.60, -0.387)

β14 -3.155 (-3.339, -2.972) -1.836 (-1.970, -1.703) -1.118 (-1.245, -0.99)

β2 -0.141 (-0.312, 0.031) -0.259 (-0.422, -0.096) -0.141 (-0.314, 0.033)
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Table 12: Summary result for the score test based on different model formulation for different adverse
events

Pain adverse event

Fitted Tested All Moderate Severe

Model Effect χ2 d.f p-value χ2 d.f p-value χ2 d.f p-value

Model (1) day 1097 3 0.0001 424.10 3 0.0001 53.92 3 0.0001

Trt 2.84 1 0.092 14.24 1 0.0002 13.31 1 0.0003

day 593.54 3 0.0001 130.54 3 0.0001 30.37 3 0.0001

Model (2) Trt 4.02 1 0.045 8.93 1 0.0028 13.46 1 0.0002

Trt*day 5.75 3 0.124 3.54 3 0.316 3.44 3 0.328

Redness adverse event

Model (1) day 792.12 3 0.0001 219.60 3 0.0001 71.80 3 0.0001

Trt 9.50 1 0.002 6.87 1 0.008 0.02 1 0.876

day 206.00 3 0.0001 68.55 3 0.0001 z
Model (2) Trt 2.99 1 0.0836 2.22 1 0.136 z

Trt*day 2.00 3 0.572 2.32 3 0.508 z
Irritability adverse event

Model (1) day 449.15 3 0.0001 96.12 3 0.0001 31.66 3 0.0001

Trt 2.33 1 0.122 1.77 1 0.183 0.57 1 0.445

day 299.23 3 0.0001 66.66 3 0.0001 23.31 3 0.001

Model (2) Trt 2.91 1 0.088 2.41 1 0.121 0.21 1 0.651

Trt*day 6.50 3 0.089 3.49 3 0.322 4.45 3 0.217

z =Test results not available,since the generalized Hessian matrix is not positive definite

Table 13: Parameter estimates with their respective 95% CI based on model (1) for observing at least
moderate level of adverse event

Models for observing at least moderate solicited symptom

Pain Redness Irritability

Parm Estimate 95% CI Estimate 95% CI Estimate 95% CI

β0 -0.859 (-1.044, -0.674) -2.432 (-2.684, -2.180) -2.555 (-2.813, -2.291)

β12 -0.721 (-0.851, -0.592) 0.954 (0.790, 1.118) 0.653 (0.471, 0.836)

β13 -2.116 (-2.362, -1.870) 0.293 (0.079, 0.507) 0.380 (0.177, 0.584)

β14 -3.183 (-3.589, -2.777) -0.827 (-1.135, -0.520) -0.113 (-0.345, 0.120)

β2 -0.445 (-0.662, -0.229) -0.374 (-0.628, -0.121) -0.199 (-0.479, 0.081)
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Table 14: Parameter estimates with their respective 95% CI based on model (1) for severe level of adverse
event

Modeling Severe solicited symptom

Pain Redness Irritability

Parm Estimate 95% C.Limits Estimate 95% C.Limits Estimate 95% C.Limits

β0 -2.666 (-3.011, -2.311) -4.502 ( -5.077, -3.927) -4.231 (-4.743, -3.72)

β12 -0.853 (-1.202, -0.505) 1.085 ( 0.638, 1.532) 0.771 (0.368, 1.173)

β13 -2.002 (-2.658, -1.345) 0.411 (-0.138, 0.959) 0.426 (-0.039, 0.892)

β14 -2.408 (-3.215, -1.602) -2.312 (-3.759, -0.866) -0.657 (-1.251, -0.062)

β2 -1.101 (-1.585, -0.618) -0.042 (-0.550, 0.466) -0.225 (-0.77, 0.320)

Table 15: Summary for the effect of deleting ithsubject information on the model parameter estimates

Difference in Parameter estimates

β0 β12 β13 β14 β2

Minimum -0.0027 -0.002978 -0.0032 -0.0034 -0.0108

First quartile -0.0037 7x10−5 0.0001 0.0001 -0.0008

Mean −3x10−7 10−8 5x10−8 4x10−9 3x10−7

Third Quartile -0.00003 0.00014 0.000114 0.0001 0.002

Maximum 0.0096 0.0048 0.01558 0.043 0.0057

Measure of over all influence

Measure minimum First quartile Mean Third Quartile Maximum

Leverage 0.0005 0.0005 0.0006 0.0007 0.0015

Cluster Levearage 0.0021 0.0021 0.0026 0.0040 0.0040

Cook Distance 7x10−9 6x10−8 2x10−6 2x10−5 0.0113

ClustercookD 0.00004 0.00004 0.0005 0.0006 0.0125

ClusterDfit 0.00004 0.00004 0.0005 0.0006 0.0126

Table 16: Summary of ML estimates for the random effect model (5) for Pain adverse event

All Moderate Severe

Parm LogOR 95%CI logOR 95%CI logOR 95%CI

β0 1.569 (1.273, 1.865) -1.793 (-2.177, -1.408) -6.266 (-7.703, -4.829 )

β12 -1.634 (-1.832, -1.436) -1.336 (-1.588, -1.084) -1.471 (-2.106, -0.836)

β13 -3.888 (-4.164, -3.613) -3.622 (-4.037, -3.206) -3.258 (-4.264, -2.251)

β14 -5.701 (-6.077, -5.328 -5.155 (-5.764, -4.546) -3.857 (-5.048, -2.665)

β2 -0.287 (-0.595, 0.022) -0.797 (-1.199, -0.395) -1.816 (-2.733, -0.899)

σ2
bi

6.250 7.727 13.422

AIC 6902.5 3798.3 875.8

logOR=Estimated log odds ratio , ML= maximum likelihood
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Table 17: Summary of goodness of fit measures for the fitted ordinal random effect models for pain adverse
event

Measure One random effect Three random effect

POM PPOM GOLM POM PPOM GOLM

-2ll 10259 10246 10229 10069 10057 10029

No. Parameters 8 10 16 13 15 21

AIC 10275 10266 10261 10095 10087 10071

R2
ms 0.430 0.431 0.433 0.450 0.450 0.453

Model Likelihood ratio test

Comparison LRT df p-value

One Random effect

POM versus PPOM 13 2 0.0015

POM versus GOLM 30 8 0.0002

PPOM versus GOLM 17 6 0.0093

Three Random effect

POM versus PPOM 12 2 0.0025

POM versus GOLM 40 8 <0.001

PPOM versus GOLM 28 6 <0.001

LRT= Value of computed likelihood ratio test, df=degrees of freedom

Table 18: Summary of ML estimates for the joint model (11) for all intensity levels of the three solicited
symptoms

Pain Redness Irritability

Parm Estimate 95%CI Estimate 95%CI Estimate 95%CI

β0 1.569 (1.273, 1.865) 1.124 (0.819, 1.430) -0.538 (-0.894, -0.181)

β12 -1.634 (-1.832, -1.436) -0.115 (-0.298, 0.070) 0.070 (-0.126, 0.266)

β13 -3.888 (-4.164, -3.612) -1.700 (-1.899, -1.498) -1.117 (-1.325, -0.909)

β14 -5.701 (-6.077, -5.326) -3.620 (-3.882, -3.358) -2.447 (-2.691, -2.203)

β2 -0.287 (-0.595, 0.022) -0.537 (-0.863, -0.210) -0.295 (-0.685, 0.095 )

σ2
bi

6.250 7.39 10.31
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Appendix B: Figures
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Figure 5: Distribution of estimated subject specific parameters using model (5)for redness

Figure 6: Estimated odds ratios with their 95%CI for different levels of intensity for different solicited
symptoms
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Appendix C: SAS Codes

1. Marginal Models (GEE)

proc genmod data=binary descending; title ’GEE for any Pain’;

class PID timecls day Trt /descending;

model resp1= day Trt/dist=bin link=logit type3 aggregate INFLUENCE OBSTATS;

repeated subject=PID/ type= un corrw within=timecls modelse;

output out=pred p=phat DFBETAC=_all_; run;

2. Binary outcome Random effects Model

proc glimmix data=random3 method=RSPL; /*To get intial values for NLMIXED Procedure*/

class PID;nloptions maxiter=50; model all = d2 d3 d4 Trt / dist=bin solution;

random intercept / subject=pid; run;

proc nlmixed data=random3 qpoints=20; /* Main effect model*/

parms beta0 -0.2469 beta1 0.04549 beta2 -0.7387

beta3 -1.6253 beta4 -0.1792 d11 3.4969;

eta = beta0 + beta1*d2 + beta2*d3 + beta3*d4 + beta4*trt + b1;

expeta=exp(eta);p=expeta/(1+expeta); model all ~ binary(p);

random b1 ~ normal([0], [d11]) subject=pid; run;

proc nlmixed data=random3 qpoints=20; /* Model With interaction effect*/

parms beta0 -0.2537 beta1 -0.03732 beta2 -0.743 beta3 -1.4678 beta4 -0.1703

beta5 0.1121 beta6 0.005896 beta7 -0.2199 d11 3.4969;

eta = beta0 + beta1*d2 + beta2*d3 + beta3*d4 + beta4*trt + beta5*(d2*trt)+

beta6*(d3*trt)+beta7*(d4*trt)+ b1; expeta=exp(eta); p=expeta/(1+expeta);

model severe ~ binary(p); random b1 ~ normal([0], [d11]) subject=pid; run;

3. Proportional Odds model with random intercept

proc nlmixed data=random1 qmax=5000 qpoints=20 tech=newrap maxiter=1000;
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Title ’POM for Pain: one random effect’;

parms beta01 -4.9008 beta02 -1.6228 beta03 1.506 beta1 -1.4268 beta2 -3.5633

beta3 -5.2607 beta4 -0.4168 d11 5.4812;

eta3 = beta01 + beta1*(day=2) + beta2*(day=3) + beta3*(day=4) + beta4*Trt + b1;

eta2 = beta02 + beta1*(day=2) + beta2*(day=3) + beta3*(day=4) + beta4*Trt + b1;

eta1 = beta03 + beta1*(day=2) + beta2*(day=3) + beta3*(day=4)+ beta4*Trt + b1;

if (pain=3) then model=1/(1+exp(-eta3));

else if (pain=2) then model= 1/(1+exp(-eta2)) - 1/(1+exp(-eta3));

else if (pain=1) then model= 1/(1+exp(-eta1)) - 1/(1+exp(-eta2));

else if (pain=0) then model= 1 - 1/(1+exp(-eta1));

ll=log(model); model pain ~ general(ll);

random b1 ~ normal(0,d11) subject=Pid out= EB;run;

4. Partial Proportional odds Random effects Model

proc nlmixed data=random1 qmax=5000 qpoints=20 tech=newrap maxiter=1000;

Title ’Partial POM for Pain with one random effect’; bounds i1>0, i2>0;

parms beta0 -4.6339 beta1 -3.59 beta2 -2.077 beta3 -0.86 beta41 -0.2911

beta42 -0.6564 beta43 -1.0812 i1 3.0869 i2 3.0416 d11 5.5510;

eta3 = beta0 + beta1*d2 + beta2*d3 + beta3*d4 + beta43*Trt + b1;

eta2 = beta0 + i1 + beta1*d2 + beta2*d3 + beta3*d4 + beta42*Trt + b1 ;

eta1 = beta0 + i1 + i2 + beta1*d2 + beta2*d3 + beta3*d4 + beta41*Trt + b1;

if (pain=3) then model=1/(1+exp(-eta3));

else if (pain=2) then model= 1/(1+exp(-eta2)) - 1/(1+exp(-eta3)) ;

else if (pain=1) then model= 1/(1+exp(-eta1)) - 1/(1+exp(-eta2)) ;

else if (pain=0) then model= 1 - 1/(1+exp(-eta1)); ll=log(model);

model pain ~ general(ll);random b1 ~ normal(0, d11) subject=Pid;

estimate ’int3’ beta0 ; estimate ’int2’ beta0+i1;

estimate ’int1’ beta0+i1+i2; run;
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proc nlmixed data=random1 qmax=5000 qpoints=20 tech=newrap maxiter=1000;

Title ’Partial POM for Pain with three random effect’; bounds i1>0, i2>0;

parms beta0 -4.6339 beta1 -3.59 beta2 -2.077 beta3 -0.86

beta41 -0.2911 beta42 -0.6564 beta43 -1.0812 i1 3.0869

i2 3.0416 d11 5.5510 d12=0 d22=4.32 d13=0 d23=0 d33=7.62;

eta3 = beta0 + beta1*d2 + beta2*d3 + beta3*d4 + beta43*Trt + b1;

eta2 = beta0 + i1 + beta1*d2 + beta2*d3 + beta3*d4 + beta42*Trt + b2 ;

eta1 = beta0 + i1 + i2 + beta1*d2 + beta2*d3 + beta3*d4 + beta41*Trt + b3;

if (pain=3) then model=1/(1+exp(-eta3));

else if (pain=2) then model= 1/(1+exp(-eta2)) - 1/(1+exp(-eta3));

else if (pain=1) then model= 1/(1+exp(-eta1)) - 1/(1+exp(-eta2));

else if (pain=0) then model= 1 - 1/(1+exp(-eta1));

ll=log(model); model pain ~ general(ll);

random b1 b2 b3 ~ normal([0,0,0],[d11,d12,d22,d13,d23,d33]) subject=Pid out= EB1;

estimate ’int3’ beta0; estimate ’int2’ beta0+i1; estimate ’int1’ beta0+i1+i2;run;

5. Generalized Ordered logit Random effects Model

proc nlmixed data=random1 qmax=5000 qpoints=20 tech=newrap maxiter=1000;

Title ’Pain:Generalized ordered logit model with one random effect’;

bounds i1>0, i2>0;

parms beta0 -4.6339 beta11 -1.5425 beta12 -1.2968 beta13 -1.3681

beta21 -3.6884 beta22 -3.4010 beta23 -2.8930 beta31 -5.4058

beta32 -4.8126 beta33 -3.3761 beta41 -0.2911 beta42 -0.6564

beta43 -1.0812 i1 3.0869 i2 3.0416 d11 5.5510;

eta3 = beta0 + beta13*d2 + beta23*d3 + beta33*d4 + beta43*Trt + b1;

eta2 = beta0 + i1 + beta12*d2 + beta22*d3 + beta32*d4 + beta42*Trt + b1 ;

eta1 = beta0 + i1 + i2 + beta11*d2 + beta21*d3 + beta31*d4 + beta41*Trt + b1;

if (pain=3) then model=1/(1+exp(-eta3));
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else if (pain=2) then model= 1/(1+exp(-eta2)) - 1/(1+exp(-eta3));

else if (pain=1) then model= 1/(1+exp(-eta1)) - 1/(1+exp(-eta2));

else if (pain=0) then model= 1 - 1/(1+exp(-eta1));

ll=log(model); model pain ~ general(ll);

random b1 ~ normal(0,d11) subject=Pid;estimate ’int3’ beta0;

estimate ’int2’ beta0+i1; estimate ’int1’ beta0+i1+i2;run;

proc nlmixed data=random1 qmax=5000 qpoints=20 tech=newrap maxiter=1000;

Title ’Pain:Generalized ordered logit model with three random effect’;

bounds i1>0, i2>0;

parms beta0 -4.6339 beta11 -1.5425 beta12 -1.2968 beta13 -1.3681

beta21 -3.6884 beta22 -3.4010 beta23 -2.8930 beta31 -5.4058

beta32 -4.8126 beta33 -3.3761 beta41 -0.2911 beta42 -0.6564

beta43 -1.0812 i1 3.0869 i2 3.0416 d11 5.5510 d12=0 d22=4.32

d13=0 d23=0 d33=7.62;

eta3 = beta0 + beta13*d2 + beta23*d3 + beta33*d4 + beta43*Trt + b1;

eta2 = beta0 + i1 + beta12*d2 + beta22*d3 + beta32*d4 + beta42*Trt + b2 ;

eta1 = beta0 + i1 + i2 + beta11*d2 + beta21*d3 + beta31*d4 + beta41*Trt + b3;

if (pain=3) then model=1/(1+exp(-eta3));

else if (pain=2) then model= 1/(1+exp(-eta2)) - 1/(1+exp(-eta3));

else if (pain=1) then model= 1/(1+exp(-eta1)) - 1/(1+exp(-eta2));

else if (pain=0) then model= 1 - 1/(1+exp(-eta1));

ll=log(model); model pain ~ general(ll);

random b1 b2 b3 ~ normal([0,0,0], [d11,d12,d22,d13, d23,d33]) subject=Pid out= EB1;

estimate ’int3’ beta0; estimate ’int2’ beta0+i1;estimate ’int1’ beta0+i1+i2; run;

6. Binary outcome Joint mixed models

/*Care full data arrangement for joint modelling was done*/

proc nlmixed data=jointbinary qmax=5000 qpoints=20 tech=newrap maxiter=1000;
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Title ’ Joint Models for the three binary outcomes’;

parms a0=1.5691 a1=-1.6336 a2=-3.8881 a3=-5.7013 a4=-0.2866

b0=1.1244 b1=-0.1145 b2=-1.6988 b3=-3.6201 b4=-0.536

c0=-0.5377 c1=0.07003 c2=-1.1172 c3=-2.4471 c4=-0.2948

d11=6.2502 d12=0 d22=7.3947 d13=0 d23=0 d33=10.366;

if adversevent=1 then do; /* Pain modelled here*/

eta = a0 + a1*d2 + a2*d3 + a3*d4 + a4*trt + b1i;

expeta=exp(eta); p=expeta/(1+expeta); end;

else if adversevent=2 then do; /* Redness modelled here*/

eta = b0 + b1*d2 + b2*d3 + b3*d4 + b4*trt + b2i;

expeta=exp(eta); p=expeta/(1+expeta); end;

else if adversevent=3 then do;/* irritability modelled here*/

eta = c0 + c1*d2 + c2*d3 + c3*d4 + c4*trt + b3i;

expeta=exp(eta); p=expeta/(1+expeta);end; model resp ~ binary(p);

random b1i b2i b3i ~ normal([0,0,0],[d11,d12,d22,d13,d23,d33]) subject=Pid;run;

7. Joint Generalized linear Mixed models for Ordinal Outcome

proc nlmixed data=joint qmax=5000 qpoints=20 tech=newrap maxiter=1000;

Title ’ Joint Models for the three outcomes’;

bounds a1>0, a2>0, b1>0, b2>0, c1>0, c2>0;

parms a0= -4.6339 a11=-1.5425 a12=-1.2968 a13=-1.3681 a21=-3.6884 a22=-3.4010

a23=-2.8930 a31=-5.4058 a32=-4.8126 a33=-3.3761 a41=-0.2911 a42=-0.6564 a43=-1.0812

a1=3.0869 a2=3.0416 b0=-2.7067 b11=-0.8754 b12=-0.7306 b13=-0.8868 b21=-2.0903

b22=-2.1296 b23=-2.0456b31=-3.1558 b32=-3.1991 b33=-2.4907 b41 =-0.1716 b42=-0.5014

b43=-0.9685 b1=1.8914 b2=1.6566 c0 =-7.3573 c11 =0.09844 c12=0.7254 c13=0.6361

c21=-1.0083 c22=0.2402 c23=0.1057 c31=-2.2598 c32=-0.5116 c33=-1.3278 c41=-0.2752

c42=-0.2248 c43 =-0.2221 c1 =2.5312 c2=4.2562

d11=5.5510 d12=0 d22=5.5431 d13=0 d23=0 d33=9.2099;

if adversevent=1 then do; /* Pain modelled here*/
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eta3 = a0 + a13*d2 + a23*d3 + a33*d4 + a43*Trt + bi1;

eta2 = a0 + a1 + a12*d2 + a22*d3 + a32*d4 + a42*Trt + bi1;

eta1 = a0 + a1 + a2 + a11*d2 + a21*d3 + a31*d4 + a41*Trt + bi1;

if (response=3) then model=1/(1+exp(-eta3)) ;

else if (response=2) then model= 1/(1+exp(-eta2)) - 1/(1+exp(-eta3));

else if (response=1) then model= 1/(1+exp(-eta1)) - 1/(1+exp(-eta2));

else if (response=0) then model= 1 - 1/(1+exp(-eta1)); ll=log(model); end;

else if adversevent=2 then do; /* Redness modeled here*/

eta3 = b0 + b13*d2 + b23*d3 + b33*d4 + b43*Trt + bi2;

eta2 = b0 + b1 + b12*d2 + b22*d3 + b32*d4 + b42*Trt + bi2;

eta1 = b0 + b1 + b2 + b11*d2 + b21*d3 + b31*d4 + b41*Trt + bi2;

if (response=3) then model=1/(1+exp(-eta3));

else if (response=2) then model= 1/(1+exp(-eta2)) - 1/(1+exp(-eta3));

else if (response=1) then model= 1/(1+exp(-eta1)) - 1/(1+exp(-eta2));

else if (response=0) then model= 1 - 1/(1+exp(-eta1)); ll=log(model);end;

else if adversevent=3 then do;/* irritability modeled here*/

eta3 = c0 + c13*d2 + c23*d3 + c33*d4 + c43*Trt + bi3;

eta2 = c0 + c1 + c12*d2 + c22*d3 + c32*d4 + c42*Trt + bi3;

eta1 = c0 + c1 + c2 + c11*d2 + c21*d3 + c31*d4 + c41*Trt + bi3;

if (response=3) then model=1/(1+exp(-eta3));

else if (response=2) then model= 1/(1+exp(-eta2)) - 1/(1+exp(-eta3));

else if (response=1) then model= 1/(1+exp(-eta1)) - 1/(1+exp(-eta2));

else if (response=0) then model= 1 - 1/(1+exp(-eta1));

ll=log(model); end; model response ~ general(ll);

random bi1 bi2 bi3 ~ normal([0,0,0], [d11,d12,d22,d13,d23,d33]) subject=Pid;

estimate’intp3’a0; estimate’inp12’a0+a1; estimate’intp1’a0+a1+a2;estimate’intR3’b0;

estimate ’inpR2’ b0+b1; estimate ’intR1’ b0+b1+b2;

estimate ’intI3’ c0; estimate’inpI2’c0+c1; estimate ’intI1’ c0+c1+c2; run;
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