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ABSTRACT 

 Intubation during surgery is important to keep the airway open for delivery of anaesthetic 

drugs and oxygen. Succinylcholine and rocuronium are common muscle relaxants which are 

used during intubation. Knowing the probability of adequate muscle relaxation may help in 

choosing the appropriate dose of succinylcholine or rocuronium. Given succinylcholine dose 

and using meta-analysis, considerable between study differences for excellent intubation 

conditions can be investigated. Using different meta-regression models the objective of this 

project was to investigate whether patient characteristics or methodological issues can 

explain any of the heterogeneity in excellent intubation condition between studies.  

The results showed that due to study differences, models correcting for extra binomial 

variability (overdispersion) namely: Beta-binomial and Random-effects model fitted the data 

better. For both models there was significant overdispersion (extra binomial variability). 

Succinylcholine dose, study size, age group, and the interaction of age group with dose were 

the significant covariates affecting excellent intubation condition (EIC) probability in these 

models. An alternative Bayesian hierarchical model was also fit and the model showed that, 

true excellent intubation condition probability varies between studies, with succinylcholine 

dose and study size as potential factors for excellent intubation conditions. In comparison 

with other studies using rocuronium, succinylcholine was observed to yield higher odds of 

EIC. 

It was concluded that there exists heterogeneity across studies and the cause of this may be 

the clinical and methodological issues across studies. In particular succinylcholine dose and 

study size differences were observed as the main potential factors for excellent intubation 

conditions across the three models.  However, it should be noted that due to ecological bias 

paramount in meta-regression interpretation and inference of results should be done with 

caution else they can be misleading. 

Keywords: Excellent intubation condition (EIC), succinylcholine, Meta- Analysis, Meta-

Regression, Beta-binomial model, Random-effects model, Bayesian hierarchical model. 
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1. INTRODUCTION  

Intubation generally refers to inserting a flexible tube anywhere in the human body, but 

most people use it specifically to refer to tracheal intubation, which involves putting a tube 

down someone's trachea to secure his or her airway. Intubation is often used in emergency 

medicine when a patient is having difficulty breathing, and it is also used during surgery to 

keep the airway open for delivery of anaesthetic drugs and oxygen (Smith, 2003).  

To perform a tracheal intubation, a doctor or emergency medical technician ideally uses a 

laryngoscope, a medical device which is inserted into the mouth to strengthen the angle 

between the tongue and the epiglottis. The laryngoscope also lets the doctor clearly see the 

patient's throat, ensuring that the tube is placed in the correct passage. If an intubation is 

performed improperly and the tube ends up in the oesophagus, the results for the patient 

can be quite unpleasant, like suffocation and even death if not caught in time. The diagram 

of an endotracheal which illustrates how the tube is inserted into the trachea is seen in 

Figure 1. 

 

A - endotracheal tube (blue) 

B - cuff inflation tube with pilot balloon 

C - trachea  

D - oesophagus 

 

Figure 1: Illustration diagram of tracheal intubation. 

In some cases, if the mouth or throat is being operated upon, the tube is threaded through 

the nose instead of the mouth, which is called a nasal intubation, which is then threaded 
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into the airway. This is done in order to keep the mouth empty and allow the surgery to be 

performed. During surgery and using tracheal intubation the patient can be placed on a 

ventilator to assist with breathing and depolarizing muscle relaxant such as succinylcholine 

or non-depolarizing blocking agent like rocuronium can be used (Wolters, 2000).  

Succinylcholine is a depolarizing muscle relaxant which works by depleting acetylcholine a 

neurotransmitter that causes voluntary muscles to contract. Depleting Acetylcholine keeps 

muscles from contracting leading to paralysis of the muscles in the face and those used to 

breathe and move. Succinylcholine is used as a muscle relaxant to induce anesthesia or 

when a tube must be inserted in the windpipe or other conditions as determined by your 

doctor. Its advantage is that it acts rapidly within 60 seconds leading to a quick time to 

recover from paralysis. All medicines may cause side effects, but many people have no, or 

minor, side effects of succinylcholine include: Increased production of saliva, muscle pain 

following surgery, muscle twitching. Severe side effects can also occur and advice is that 

medical attention is sought right away if any of these severe side effects occur when using 

succinylcholine. Severe allergic reactions include rash, hives, itching, difficulty breathing, 

and tightness in the chest and swelling of the mouth, face, lips, or tongue. Other severe 

effects include chest pain, fainting, fast breathing, fast, slow or irregular heartbeat, high 

body temperature, increased pressure in the eye, severe or persistent dizziness or headache 

to mention but a few (Demand media, 1999). 

On the other hand rocuronium is also used to relax the muscles. It works by blocking the 

signals between the nerves and muscles. Rocuronium is given before general anesthesia in 

preparing you for surgery. Rocuronium helps keeping your body still during surgery. It also 

relaxes your throat so a breathing tube can be more easily inserted before the surgery 

(Wolters, 2000). Compared to succinylcholine, rocuronium works for approximately 90 

seconds for a patient to recover from paralysis. Some of the serious side effects are signs of 

an allergic reaction: hives; difficulty breathing; swelling of your face, lips, tongue, or throat 

on-going muscle weakness or inability to move your muscles. Other less serious side effects 

include nausea, vomiting, swelling or discomfort where the medicine was injected, feeling 

sleepy or light-headed or mild itching or skin rash (Cerner Multum, 1996). 
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Many anaesthesiologists still prefer succinylcholine over rocuronium as a neuromuscular 

blocking agent during tracheal intubation (Perry et al., 2008) due to its rapid recovery time. 

Knowing the probability of adequate relaxation may help in choosing the appropriate dose 

of succinylcholine and in the long run it can be life-saving. Given succinylcholine dose, 

considerable between study differences in excellent intubation conditions can be found and 

this can be done by meta-analysis.  

Meta-analysis refers to the statistical synthesis of results from a series of studies. According 

to Borenstein et al., (2009) meta-analysis can be used in different fields of research. For 

example, in medicine, examine the performance of diagnostic tests and epidemiological 

associations between exposure and disease prevalence. Pharmaceutical companies also 

usually conduct a series of studies to assess the efficacy of a drug. These analyses play a role 

in internal research, in submission to governmental agencies and in marketing. The latter is 

in line with the objective of this project where assessment is done to check if succinylcholine 

creates comparable intubation conditions as that of rocuronium during Rapid sequence 

induction (RSI). Meta-analysis can be viewed in two aspects; the narrative review which is 

the task of combining data from multiple studies while the systematic review, a clear set of 

rules is used to search for studies and then to determine which studies will be included in or 

excluded from the analysis. Though there is subjectivity setting these criteria but decisions 

are specified making the mechanism more transparent. There are many ways of doing meta-

analysis and for this project meta-regression was the main tool.  

Meta-Regression is used to assess the relationship between one or more covariates and a 

dependent variable. As stated by Morton et al.; (2004) meta-regression can be either a 

fixed-effects or random effects model. In most meta-regression approaches, the unit of 

analysis, that is each observation in the regression model, is a study. Sometimes an arm, like 

a specific treatment arm or the control arm, or even an arm crossed with outcome, e.g., all 

patients in a specific treatment who had the outcome, is the unit of analysis. For the 

purpose of this project we will consider the simplest case in which the unit of analysis is a 

study. The outcome (dependent variable or effect size) for a study observation might be the 

proportions, odds ratio, risk ratio, risk difference to mention but a few. Predictors in the 

regression are at the study-level and might include factors like the medicine protocol, 

characteristics of the study population such as the average age, or variables describing the 
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study setting such as whether the hospital in which the study is undertaken is an academic 

hospital. 

The questions that a meta-analyst may answer with a meta-regression include estimating 

the treatment effect controlling for differences across studies, and determining which 

study-level covariates account for the heterogeneity. This statistical heterogeneity refers to 

the true effects in each study not being identical. Clinical and methodological diversity 

among the studies included in a meta-analysis necessarily leads to heterogeneity. What is 

required in meta-regression is the need to select the appropriate model: fixed (marginal) 

versus random effects. For given values of the covariates considered, a fixed effect analysis 

estimates the assumed common effect, whereas a random effects analysis estimates the 

mean of a distribution of effects across studies. If heterogeneity exists, a random effects 

analysis appropriately yields wider confidence intervals and larger standard errors for the 

regression coefficients than a fixed effect analysis (Thompson and Higgins, 2001). 

The use of fixed effects model is advocated for when studies included in the analysis are 

functionally identical. In addition when the goal is to compute the common effect size for 

the identical population and not generalise to other populations. While for random-effects 

model is used when the researcher is accumulating data from a series of studies that had 

been performed by researchers operating independently. Also when the goal of the analysis 

is to generalise to the range of scenarios or make inferences about a wider population. The 

selection of the model should follow the logic of how the studies were selected. In particular 

if there is heterogeneity in true effects that is not explained by the covariates, then the 

random-effects model is likely to be more appropriate. However when number of studies is 

very small, then the estimate of the between-studies variance will have poor precision. An 

alternative approach is to use the Bayesian hierarchical model where the between-studies 

variance estimate is based on data from outside the current set of studies (Borenstein et al., 

2009). 

The difficulties faced in a meta-regression are numerous. Primarily, the available degrees of 

freedom can be small due to the fact that most meta-analyses do not include a large 

number of studies. The use of meta-regression especially with multiple covariates is not the 

recommended option when the number of studies is small. The recommended number is at 
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least 10 studies for each covariate (Borenstein et al., 2009). In addition, covariates tend to 

be highly collinear. For example all studies in rural areas may administer the medicine in a 

particular way, while urban hospitals use a different protocol. In such cases, it is impossible 

to disentangle effects of individual covariates. The problem of ecological bias is paramount 

in meta-regression, as the analysis is conducted at the study-level and does not include the 

underlying patient-level variation. This occurs when averages of patient characteristics in 

each trial are used as covariates in the regression. This is an obstacle in reaching reliable 

conclusions from meta-regression (Thompson and Higgins, 2001). 

In this project meta-regression with three different approaches, marginal (fixed effects) 

model, random effects model and Bayesian model were used to investigate whether patient 

characteristics or methodological issues can explain any of the heterogeneity in excellent 

intubation condition (EIC) between studies. 

1.1. Objective  

The goal of this project was to investigate whether patient characteristics or methodological 

issues can explain any of the heterogeneity in excellent intubation condition (EIC) between 

studies using meta-regression analysis. 

The organization of the report is as follows: Section 2 gives the data description followed by 

a brief outline of the proposed methods in Section 3. Section 4 will give results of applying 

these methods to the data and in Section 5 a discussion of the results, and a presentation of 

the conclusions together with several topics for further research are given. 

2. DATA 

Data was abstracted from 80 articles by different authors reporting results of randomised 

and controlled clinical trials which evaluated intubation conditions following succinylcholine 

administration. The 80 articles yielded 99 observations since some authors published more 

than one article. All patients older than 16 years that had to undergo diagnostic or surgical 

procedures under general anesthesia and with requirement of endotracheal intubation 

were considered. A systematic search of the literature was performed without language 

restriction.  
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Articles were identified by search of MEDLINE, EMBASE; IndMED, the Cochrane controlled 

Trials Register Databases using combinations of free text terms for example succinylcholine, 

suxamethonium, randomised controlled trial, and intubation conditions. Electronic searches 

were performed until February 2011 and were complemented by screening bibliographies 

of retrieved articles and meta-analyses. 

Explanatory variables consisted of dose, age, gender, use of opioids, RSI, and nasal tracheal 

intubation.  Opioid is a chemical that works by binding to opioid receptors which are found 

in the central and peripheral nervous system and the gastrointestinal tract. The analgesic 

(painkiller) effects of opioids are due to decreased perception of pain, decreased reaction to 

pain as well as increased pain tolerance. Side effects of opioids include sedation, respiratory 

depression, constipation, strong sense of euphoria (Brincat et al., 2007). RSI is a particular 

method of induction for general anesthesia commonly employed in emergency operations 

and other situations where patients are assumed to have a "full stomach". The objective of 

RSI is, minimize regurgitation possibility and pulmonary aspiration of gastric contents during 

the induction of general anesthesia and subsequent tracheal intubation (El-Orbany, 2007). 

The response variable which is Excellent Intubation Condition (EIC) was derived as a ratio of 

number of patients with excellent intubation condition to the total number of patients in a 

particular study. The intubation condition was assessed by the Goldberg Scale where-by a 

patient was considered to have excellent intubation conditions if the patient had ease with 

intubation, vocal cord movement, and response to intubation. 

The software used in this project was SAS 9.2, R 2.10.1, WinBUGS14 and all hypotheses 

were tested at the 5% significance level. 

3. METHODOLOGY 

This section describes the statistical methods that will be applied to the data using different 

meta-regression approaches. 

3.1. EXPLORATORY ANALYSIS 

Before the meta-regression was applied, exploratory tools were used to get insights of the 

data. The tools included summary tables showing frequencies, histograms, scatter plots and 
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kernel density plots. A kernel density plot can be considered as a refinement of a histogram 

or frequency plot. This is usually a much more effective way to depict the distribution of a 

variable (Kabacoff, 2011). The density estimates are the kernel density estimates using a 

Gaussian kernel. That is, a Gaussian density function is placed at each data point, and the 

sum of density functions is computed over the range of the data. These are the proposed 

statistical methods used for this data. 

3.2. META-REGRESSION 

Dose-response relationships for neuromuscular blocking drugs are customarily determined 

by regression analysis. Stated by Morton et al., (2004) there are different approaches of 

doing meta-regression which we will describe here. 

3.2.1. Fixed effects meta-regression  

A fixed-effect meta-regression estimates a single effect that is assumed to be common to 

every study and that all other differences in observed effects are due to sampling error. This 

approach yields a descriptive analysis of the included studies, however it does not allow us 

to make inferences about a wider population (Borenstein et al., 2009). This approach was 

used in this project where the response is the probability of excellent intubation condition 

(EX/N), having EX as the number of patients who had excellent Intubation condition out of 

the total number of patients (N) in a particular study. Taking into account the nature of the 

response, logistic regression was considered as appropriate. Logistic regression allows one 

to predict a discrete outcome, such as group membership, from a set of variables that may 

be continuous, discrete, dichotomous, or a mix of any of these. Generally, the dependent or 

response variable is dichotomous, such as presence/absence or success/failure. That is 

taking the value 1 with a probability of success π, or the value 0 with probability of failure 1-

π. This type of variable is called a Bernoulli (or binary) variable (Agresti, 2002). Let us denote 

Y�	 = � 1	if	the	patient	had	EIC
					0		if	the	patient	did	not	have	EIC� 	with	Y�	~B!1,π�#, 

for i=1,…, 80 and j=1,…n� denoting studies and patients in a study respectively, while π� is 

the probability of EIC which is allowed to be different from study to study. For a particular 

study the number of patients with EIC is given by  
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			Y� = !$Y�	#~
%&

	'(
B!n�,π�#.																																																																		!1#	 

The variance of 	Y� (within study variance) can then be given by 

			var!Y�# = n�π�!1 − π�#,1 + !n� − 1#ρ.,																																								!2# 

Where ρ is the correlation between Y�		and Y�0 (over-dispersion occurring when ρ > 0).The 

fixed effects logistic model is given by 

logit!π# = log 4 π

1 − π
5 = β6 + β(x( + β8x8 +⋯+ β0x0,												!3# 

where x(, x8, … , x0 are a set of covariates.  

Although when analysing binary data often a logistic model (3) is considered reasonable, the 

goodness-of-fit statistics of this model indicate that too much binomial variation remains 

(overdispersion).That is, the deviance and Pearson chi-square are large relative to their 

degrees of freedom. This lack of fit is sometimes described as overdispersion, namely if the 

true variance (equation 2) is greater than π!1 − π# which is the estimated variance for a 

Bernoulli distribution. It’s often that correlated or grouped data exhibit overdispersion and 

when not taken into account overdispersion can have major impact on statistical inference. 

The implications of overdispersion are serious and the analysis which assumes the logistic 

model underestimates the standard errors and thus wrongly inflates the test statistics and 

level of significance. Taking into account overdispersion involves the additional estimation 

of a dispersion parameter, often called a scaling parameter and using study-specific models 

as stated by Agresti, (2002). To answer the research question logit models taking into 

account overdispersion considered were the beta-binomial model and the quasi-likelihood 

models, which are explained in the sections that follow. 

3.2.1.1. Quasi-likelihood (QL) with scaling options Williams-QL(1) and Pearson-QL(2) 

This method corrects for overdispersion by multiplying the variance-covariance matrix of 

the parameters by the value of the overdispersion parameter. It avoids the full specification 

of the distribution and therefore a more robust method. When using quasi-likelihood QL(1) 

with similar variance function	var!Y�# = n�π�!1 − π�#,1 + !n� − 1#ρ] as the beta-binomial, 
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overdispersion occurs when ρ > 0 otherwise when ρ = 0 it results in ordinary binomial 

variance. While for the quasi-likelihood QL(2) approach which uses the simpler variance 

function 	var!Y�# = n�π�!1 − π�#∅  overdispersion occurs when ∅ > 1	 otherwise when 

∅ = 1	ordinary binomial variance has been used. The standard errors for this overdispersion 

approach multiply those for the binomial model by ∅=(/8. 

To determine which QL model is more appropriate Agresti (2002) states that a plot of the 

standardized residuals for the ordinary binomial model against the indices �?can provide 

insight about which is more appropriate. When the residuals show an increasing trend in 

their spread as �?  increases, the beta-binomial-type variance function QL(1) may be more 

appropriate. This is because when the beta-binomial variance holds, the residuals from an 

ordinary binomial model have a denominator that is progressively too small as �? increases. 

The two quasi-likelihood approaches are equivalent when �?  are identical. Only when the 

indices vary considerably results might differ. 

3.2.1.2. Beta-Binomial 

The Beta-binomial model is a model to handle overdispersion occurring with ordinary 

binomial models. The reason is that, it is a mixture model which assumes a binomial 

distribution at a fixed parameter value having a marginal distribution which permits more 

variation than the binomial. As stated by Agresti (2002) it is an alternative model to binary 

Generalized Linear mixed models (GLMMs) with normal random effects and behaves like a 

random-effects model with marginal interpretation. The beta-binomial distribution results 

from a beta distribution mixture of binomials and also its full likelihood model where AIC is 

fully corrected and defined. Suppose that (a) given π , @	has a binomial distribution, 

A��!�, B# and (b)  π  has a beta distribution. The beta probability density function is given by 

C!B; E, F# = Γ!E + F#
Γ!E#Γ!F#B

GH(!1 − B#IH(, 0 ≤ B ≤ 1	,																																	!4# 

with parameters α > 0	and F > 0, for the gamma function Γ!. #. Let  L = G
GMI, N = (

!GMI#, 

the beta distribution for B has mean and variance O!B# = L  and 

var!π# = μ!1 − μ# N
!N + 1#, 

respectively. Using the properties of the beta function, equation (4) can be rewritten as 
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f!π;α, β# = Γ!n + 1#
Γ!π + 1#Γ!n − π + 1#

Γ!α + π#Γ!n + β − π#
Γ!α + β + n#

Γ!α + β#
Γ!α#Γ!β#	 , 0 ≤ π ≤ 1	, 

where π is the proportion of patients having excellent intubation condition out of n the 

number of patients in a particular study. This model reduces to the Bernoulli distribution as 

a special case when n = 1 and for α = β = 1, it is the discrete uniform distribution. 

3.2.2. Random effects model (logistic normal model) 

When studies are performed by different researchers and then culled from the literature, it 

is more plausible that the impact of the covariates captures some, but not all of the true 

variation among effects. In this case, it is the random-effects model that reflects the nature 

of the distribution of true effects, and should therefore be used in the analysis (Borenstein 

et al., 2009). The terminology “random effects” refers to the fact that a random study effect 

is included in regression to take into account the between study variation. Computationally, 

under the fixed-effect model, the total model variance is the variance within studies while 

under the random-effects model it is the variance within studies plus the variance between 

studies known as P8. Generally the log odds ratio is regressed on an intercept and study-

level covariates. In the simplest case in which only an intercept term is included, this 

approach reduces to the usual DerSimonian and Laird random effects estimate of the 

pooled odds ratio (sally et al., 2004). With a univariate random effect, the model can be 

written as 

����Q	,R!S?T = 1|V?#. = W?T, F + V? ,																																																																	!5#					 

where W?T, F is the linear predictor and V?  are independent Y!0, Z8# variates. This is the 

special case of the generalised linear mixed models (GLMM) in which the �!. # is the logit 

link and the random effects structure simplifies to a random intercept. More generally, the 

link function in equation (5) can be an arbitrary inverse cumulative density function. The 

random effects part of the model is a mechanism for representing how positive correlation 

between observations within a study occurs. However parameters pertaining to the random 

effects may themselves be of interest. For instance, the estimate Z[  of the standard 

deviation of a random intercept may be a useful summary of the degree of heterogeneity of 

a population. 
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Interpreting heterogeneity is another key aspect of the logistic-normal model. When σ =
0,	the logistic-normal model (equation 5) simplifies to an ordinary logistic regression model 

treating all observations as independent. This implies the usual form of log odds ratio for a 

model without random effects. When σ > 0, variability in the effects of this model implies 

log odds ratio for two observations in the same study (Agresti, 2002). This is a test of null 

hypothesis that the between-studies variance is zero. This test is based on the amount of 

between-studies variance observed, relative to the amount we would expect if the studies 

actually shared a common effect size. 

The random effects models have some advantages which include; accounting for random 

variability among studies thus catering for unexplained variability left out by marginal 

models. Related to this motivation, random effects also provide a mechanism for explaining 

over dispersion in terms of estimate Z[ compared to basic models which do not have those 

effects (Breslow and Clayton, 1993). Though this model is fit to account for random 

variability among studies, its disadvantage is the interpretation complexity. 

The random effects models have conditional interpretations, referred to as study specific. 

This contrasts with marginal models, which have population-averaged interpretations. In 

meta-analyses, fixed effects models may give more narrow confidence intervals and more 

impressively low p-values compared with models that accommodate potential diversity of 

effects (heterogeneity). Random effects models thus try to estimate the population average 

and the extent of dispersion in the different effect sizes (Loannidis et al., 2007). Some 

statisticians prefer one of these types, but most feel that both are useful, depending on the 

application. The conditional modeling approach is preferable if one wants to specify a 

mechanism that could generate positive association among clustered observations, estimate 

study-specific effects, estimate their variability, or model the joint distribution. Given a 

conditional model, one can recover information about marginal distributions. That is, a 

conditional model implies a marginal model but a marginal model does not itself imply a 

conditional model (Agresti, 2002). 
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3.2.3. Bayesian meta-regression 

The proposed Bayesian meta-analysis model allows prior information in the form of expert 

opinion to be cooperated into the analysis. According to Chan and Leng(2005), this model 

allows observed effect sizes (data) to vary around their individual study-specific effect sizes 

θ�which in turn belong to a distribution characterised by the overall effect size θ (odds 

ratio). In contrast with the traditional random-effects model, for which the parameters θ, 

σ8(within study variability) and τ8(between study variability) are assumed to be fixed, σ8and 

τ8are assumed to be random variables in a Bayesian random-effects model, in the sense 

that they have a probability distribution (Lan et al., 2009).  

In this analysis, the prior distribution for θ (in terms of betas) was given a vague prior the 

normal distribution of a mean of 0 and a variance of 10,000 to reflect the presumption that 

factors could have negative or positive effect on EIC with equal odds. The prior distribution 

for τ (var.studie) was assumed to have an inverse gamma distribution (0.001, 0.001) and 

sensitivity analysis was done by changing the prior distribution for var.studie to a uniform 

distribution with parameters (0,100) for 
(
√] (sigma.studie). This was done to determine the 

validity of the results. The model for predicting the response is given by 

R^�R,�.~_A��!R,�., �,�.# 
����Q(R[�]) < −AaQb[1] + AaQb[2] ∗ �[�] + AaQb[3] ∗ ���_�da1[�] + AaQb[4]

∗ (b�ae�_a[�]) + AaQb[5] ∗ (Cafb�aR^�R[�]) +  QℎhdQV_�a[�]i          ( 6) 

Where R[�] represents probability of excellent intubation condition, i = 1,2, . . . , 80 studies, 

and QℎhdQV_�a[�]i are random intercepts at studie level with normal distribution of a mean 

0 and variance  ZlTmn?o
8  that is Y�^fb�(0, ZlTmn?o

8 ). 

The Bayesian meta-analysis has several advantages. Lan et al., (2009) state that; in contrast 

with a classical meta-analysis, which considers the probability (e.g. P value) of observed data 

given the hypothesis of no treatment effect, the Bayesian analysis considers the probability 

of the hypothesis of treatment effect given the observed data.  

The P value is known to be a poor measure for evaluating evidence and making clinical 

decisions and is often misinterpreted. In contrast, the Bayesian method does not depend 

on, and bypasses the shortcomings associated with P values for inference. That is to say 
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making the type 1 (reject the null hypothesis when it is true) and type 2 (fail to reject null 

hypothesis when it is false) error. Therefore credible intervals showing the probability that 

the true parameter lies in that interval becomes the interval of evidence. In addition the 

Bayesian analysis allows the reporting of direct probability statements about any differences 

that are of interest basing on the posterior distribution. Though this is probably the best 

option, Borenstein et al., (2009) state that relatively few researchers have expertise in 

Bayesian meta-analysis and some have a philosophical objection to this approach. Helser 

and Han-Lin, (2004) add that Bayesian approaches are controversial because the definition 

of prior probability will often be based on subjective assessments and opinion. 

3.3. Model building, selection and Goodness of fit 

To check which covariates are most closely related to the response (probability of EIC) and 

which to be used in the model, univariate analyses based on ordinary logistic regression as a 

screening tool for the possible covariates was used. From the Univariate logistic regression 

all covariates significant at 25% as recommended by Hosmer and Lemshow, (2000) were 

considered to fit the multiple logistic regression model. Using the backward selection 

procedure the fit of the model was tested after the elimination of each variable to ensure 

that the models still adequately fits the data. The model was reduced to the presented 

model fit in the analysis. 

Diagnostic checks of models were done by use of plots of the standardized residuals, plots 

of predicted versus observed in addition scatter plots detecting outlier studies. Akaike’s 

information criterion (AIC) was used to select a few “good” sub models. So the optimal 

model having lower AIC balances the accuracy of the fit to its complexity. It is worthwhile to 

note that AIC is used for “full” specified models and it’s valid for non-nested models. For the 

Bayesian models Deviance Information criteria DIC was used as a selection criteria. 
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4. RESULTS (APPLICATION TO THE DATA) 

4.1. Exploratory Data Analysis 

Exploratory data analysis was used to gain insight into the nature of the data, and to suggest 

some plausible models that are appropriate for statistical analysis. The minimum average 

age across studies was 20.1 years and the maximum was 72.0 years. In order to gain more 

insight about the dependency of EIC on age, the probability of EIC was plotted against age in 

Figure 2a. The plot seems to suggest that the probability tends to be high among the middle 

age groups compared to the young and the old. If equally sized points are used like in Figure 

2a, sometimes it is impossible to see which trials provide the greatest information, and how 

this might affect the interpretation. So the size of points was taken into account as seen in 

Figure 2b. This plot seems to suggest that probability tends to be high among the young and 

shows a decreasing spread as the age increases. 

 

a)

 

b)

 

Figure 2: Scatter plots of Probability of EIC by age. 
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Figure 3: Probability distribution of EIC by age groups. 

From Figure 3 it can be observed that there is an unclear difference between the two age 

groups at small probabilities of EIC. However at higher probabilities studies with mean 

age<40 (agecode 0) had slightly higher probability of EIC compared to studies with mean 

age>40 (agecode 1). This will be confirmed in the statistical analysis. This was further 

explored taking into account the sample size. 

a)

 

b)

 

Figure 4: Plot of study size by age group. 
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From Figure 4a it is observed that the probability of EIC does not differ between the two age 

categories for studies with sample size less than 50 and this is also seen even when n is on 

the log scale (4b). There exists differences when the sample size increases beyond 50 where 

studies with mean age<40 (agecode 0) had a higher probability of EIC compared to studies 

with mean age>40(agecode 1) but after the probability of both groups decreases.   

The size of the studies (n) ranged from 7 to 184 patients. To explore how size of the study 

corresponds with proportion of EIC, sample sizes were categorized into 3 size groups. It was 

observed 56, 32, 11 of the studies were in sizegrp1, sizegrp2, and sizegrp3 respectively. 

Table 1: Number of studies in three categories of sample size. 

Sizegroup Frequency Percent 

1. n< 30 56 56.57 

2. 30-60 32 32.32 

3. n>60  11 11.11 

 

A further exploratory was done by use of histogram in Figure 5; it is observed that more 

studies had EIC proportion greater than 52.5%. To investigate which study sizes have higher 

probabilities of EIC we used funnel plots. 

 

Figure 5: Histogram of study by EIC proportion. 
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Funnel plots are a visual tool for investigating publication and other bias in meta-analysis. 

They are simple scatter plots of the treatment effects estimated from individual studies 

(horizontal axis) against a measure of study size (vertical axis). The name "funnel plot" is 

based on the precision in the estimation of the underlying treatment effect increasing as the 

sample size of component studies increases (Sterne and Harbord, 2004). Therefore, in the 

absence of bias (the association of publication probability with the statistical significance of 

study results), results from small studies will scatter widely at the bottom of the graph, with 

the spread narrowing among larger studies. In the absence of bias, the plot will resemble a 

symmetrical, inverted funnel. Seen from Figure 6 there seems to be absence of publication 

bias since the plot resembles an inverted funnel though some few studies outlay the funnel 

at small values of the effect size. 

 

 

Figure 6: Funnel plot for sample size by effect size. 

It is, however, important to realize that publication bias is only one of a number of possible 

causes of funnel-plot asymmetry, funnel plots should be seen as a generic means of 

o

o
o

o

o oo

o

o

o

o

o
o o

o

o

o

o

o

o
o

o

o

o
o

o

o

o o o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o o o o

o
o o o oo

o

o

oo

o

ooo oo

o

o

oo o o o o o

o

o

o o

o

o

o o o

o o

o o o

o

o

o

o

o

o

oo

o

0.0 0.2 0.4 0.6 0.8 1.0

0
5
0

1
0
0

1
5
0

funnel plot

effect size

s
a
m

p
le

 s
iz

e



18 

 

examining small study effects (the tendency for the smaller studies in a meta-analysis to 

show larger treatment effects) rather than a tool to diagnose specific types of bias. This gave 

an insight that it may be possible that differences between smaller and larger trials are 

accounted for by a trial characteristic. An explanation of this heterogeneity was investigated 

more formally using meta-regression (logistic regression with correction for overdispersion). 

Succinylcholine dose levels varied from 0.5 to 2 f�. p�H(. Figure 7 seem to suggest that 

probability of EIC increases with increasing Dose. In addition the graph shows an S-shaped 

curve indicating the use of logit models. Further confirmation of these observations will be 

done in the statistical analysis. 

 

a)

 

b) 

 

Figure 7: Probability of EIC by Dose level. 
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Table 2: Number of studies in two categories of Nasal intubation, RSI and use of Opioids. 

Group Coding Frequency Percent Total  

Nasalintubation 

 

0 (No) 91 91.92 99(100%) 

1 (Yes) 8 8.08 

RSI 0 (No) 81 81.82 99(100%) 

1 (Yes) 18 18.18 

Opioids 0 (No) 84 84.85 99(100%) 

1 (Yes) 15 15.15 

 

According to illustration by Figure 8 for Nasal intubation, for smaller probabilities, studies 

which used nasal intubation had a higher probability while for bigger probabilities the 

density curve of studies which did not use nasal is above the one for studies which used 

nasal intubation. Also it is noticeable that for non-nasal group there a lot of variation while 

for the group of nasal, the probability of EIC is constantly increasing this difference will be 

cleared by the statistical analysis. 

 

Figure 8: Probability distribution of EIC by Nasal groups. 
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Figure 9a for use of opioids shows indifference between the two opioids groups to the 

probability of EIC and this coincides with the RSI (9b). The same unclear message is seen in 

succinylcholine dose by opioids plot (Appendix 3). What is observed is that the group of 

studies which didn’t use opioids or didn’t use RSI have more variability as compared to the 

group which used opioids or used RSI. What is observed will be confirmed in the statistical 

analysis.  

a)

 

b) 

 

Figure 9: Probability distribution of EIC by opioids use. 
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For this reason the model was extended by taking different scale options, a beta-Binomial 

model was also fitted and furthermore, a random-effects model to account for random 

variability between studies was fitted, thereby catering for unexplained variability left out 

by marginal models. 

Table 3: Parameter estimates (standard errors) for Ordinary logistic model (Maximum 

Likelihood, ML), QL (1) with beta-binomial variance function, QL (2) with Pearson inflated 

variance, Beta-Binomial and Random-effects model. 

Parameter Binomial ML QL(1) QL(2) Beta-Binomial Rand-effects 

Intercept                                 -2.882(0.570)* -3.064(1.195)* -2.882(1.247)* -3.105(1.140)* -3.873(1.001)* 

Dose   3.701(0.572)* 4.052(1.259)* 3.701(1.252)* 4.008(1.178)* 5.369(0.937)* 

gender(femaleprop) 3.175(1.022)* 3.227 (2.135) 3.175(2.237) 3.084(2.032) 4.520(1.757)* 

Opioids 0.844(0.294)* 1.114 (0.600) 0.844(0.643) 1.354(0.579)* 0.765(0.689) 

Dose*femaleprop -2.312(1.007)* -2.321 (2.211) -2.312(2.205) -2.203(2.069) -4.315(1.656)* 

Dose*Opioids -0.683(0.315)* -0.918 (0.737) -0.683(0.688) -1.290(0.664) -0.484(0.630) 

Overdispersion None q[ =0.128>0 ∅= =4.790* q[ =0.129(0.025)* Z[=0.786(0.1)* 

*parameter significant at 5% level 

From the results in table 3, it can be seen from the overdispersion estimates that there is 

extra binomial variability. The Pearson chi-square estimate obtained in QL(2) is large relative 

to the degrees of freedom. This yielded an estimate of 4.790 which is significantly larger 

than 1 and 0.128 is greater than 0 providing evidence of overdispersion. One cause of this 

overdispersion is the heterogeneity among studies. Extending to the beta-binomial model 

the correlation estimate 0.129 is significant indicating that there exists within study 

dependences. For a random effects model the estimate of sigma 0.785 (standard deviation 

of the random intercept) is also significant showing unexplained heterogeneity which could 

cause the differences in the estimated probabilities of EIC in the different studies.  

Comparing Binomial ML which assumes no over dispersion with the other four methods it 

can be seen that the standard errors have been inflated and significance of parameter 

estimates changed, this is because of correcting for overdispersion. Considering the four 

models which were corrected for overdispersion, parameters in QL(1) and QL(2) had the 

same significance compared to the beta-Binomial and random-effects model though for all 

four models dose was significant. The difference in the significance of the Beta-Binomial and 

the random effects model can be explained by the fact that the two models have different 
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variance structures and one being a marginal model and the other being a study-specific 

model. Before selecting which model best describes the data the ordinary logistic regression 

was extended to cater for year of publication and sample size.  

4.2.2.  Model extension to cater for Year of publication and study size 

When year of publication and study size were included in the model, using the backward 

selection procedure, year of publication, study size, Dose, female proportion, Dose*female 

prop, were significant while opioids and Dose*opioids were clearly now insignificant. 

Although year of publication was significant in the Binomial model, for all other four models 

which take into account overdispersion it was not significant and so, it was dropped in order 

to get a clear difference among models. All the five models were refitted and the results are 

presented in Table 4. 

Table 4: Parameter estimates (standard errors) for Ordinary logistic model (Maximum 

Likelihood, ML), QL (1) with beta-binomial variance function, QL (2) with Pearson inflated 

variance, Beta-Binomial and Random-effects model. 

Parameter Binomial ML QL(1) QL(2) Beta-Binomial Rand-effects 

Intercept -2.763(0.598)* -2.577(1.221)* -2.763(1.272)* -2.744(1.241)* -3.346(0.965)* 

Study size(n) -0.007(0.001)* -0.007(0.003)* -0.007(0.002)* -0.007(0.003)* -0.009(0.003)* 

Dose   4.226(0.613)* 3.909(1.286)* 4.226(1.304)* 3.967(1.269)* 5.121(0.908)* 

gender(femaleprop) 3.517(1.068)* 3.195(2.177) 3.517(2.272) 3.384(2.188) 4.435(1.711)* 

Dose*femaleprop -2.880(1.050)* -2.339 (2.234) -2.880(2.234) -2.607(2.183) -3.958(1.604)* 

Overdispersion None q[ =0.126>0 ∅= =4.530* q[ =0.128(0.026)* Z[= 0.711(0.2)* 

*parameter significant at 5% level 

Considering the models which were corrected for overdispersion, it is shown that study size 

and Dose affect the probability of EIC. For this model the two scaling options and the Beta-

Binomial give more or less the same interpretation with dose and study size being the only 

covariates affecting EIC probability. Considering the random-effects model the parameter 

significance and magnitude differs and the standard errors are smaller compared to the 

three models correcting for overdispersion. 
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4.2.3. Considering transformed Dose and categorized age 

To check if the use of transformed variables gave a better fitting model, the dose covariate 

was taken on a logarithmic scale; log(dose+1) with an additional constant one to avoid 

missing values of log dose. Kopman et al., (2000) states that because the association 

between dose and effect yields a sigmoid curve, estimation of 50% effective dose (ED50) and 

95% effective dose (ED95) values by linear regression analysis first requires a suitable 

mathematical transformation of the data like taking the logarithm of dose. Also, categorized 

age variable was considered since the age variable as seen in the scatter plot of the 

exploratory analysis (Figure 2) showed that probability tends to be high among the middle 

age groups compared to the young and the old. In addition to the kernel density plot of the 

two age categories showed that at higher probabilities, studies with mean age<40 (agecode 

0) had slightly higher probability of EIC compared to studies with mean age>40 (agecode 1). 

The results of the fixed effects model (Beta-Binomial) and the random effects model are 

presented in Table 5. 

Table 5: Parameter estimates of Beta-Binomial and random effects models. 

Parameter Beta-Binomial Random effects 

Intercept -1.2912(0.4780)* -1.3614 (0.5362)* 

Study size(n) -0.0096(0.0033)* -0.01416(0.0043)* 

Log(dose+1) 3.7654(0.5378)* 4.2350(0.3903)* 

Agecode(1) -1.7516(0.6259)* -3.6402(0.6980)* 

gender(femaleprop) 0.8275(0.6241) 0.8901(0.7217) 

Logdose1*agecode 2.9955(1.0939)* 6.1567(1.1524)* 

overdispersion ρ[ = 	0.1091(0.0225)* Z[ =1.0067(0.1753)*    

*parameter significant at 5% level 

From Table 5 it can be observed that significance of covariates is the same in both the beta-

binomial and the random-effects models. To select which model best fits the data among 

three alternative steps, some diagnostic tools and AIC were used. A plot of the standardized 

residuals (figure 10a) for the ordinary binomial model against the indices �?  can provide 

insight about which of QL(1) or QL(2) is more appropriate. When �?  was taken on the log 

scale figure 10b indeed there was no visible pattern of the residuals. 
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a)

 

b)

 

Figure 10: Plot of standardized residuals, a) by indices �?  and b) by ����?. 

 

Since the plots of residuals did not show a clear increasing trend in their spread as �?  

increases, this indicates that QL(1) and QL(2) more or less fit the data the same way. When 

the AIC of other two marginal models was compared, the Beta-Binomial with log(dose+1), n 

and age categorized model had the least AIC (466.400) and hence fitted the data better 

marginally. Looking at the random effects model, also the model with log(dose+1), n and 

age categorized had the least AIC (494.300).  

Table 6: Model selection criteria. 

 

Model category 

 

Model fit 

                                          AIC 

Without n 

covariate 

With n as 

covariate 

log(dose+1),  n 

and age 

categorized 

Marginal Binomial ML 3057.447 3007.281 2963.553 

Beta-Binomial 480.200 479.600 466.400 

Random effects Rand-effects 562.800 553.400 494.300 
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Diagnostic plots for the random-effects model to check the goodness of fit are presented in 

figure 11. In Figure 11a, it can be seen that majority of the data points fall on the line 

indicating that the random-effects model chosen is appropriate. In Figure 11b, there seems 

to be no outlying study-intercept (EB estimate) implying that no study had extreme value 

from the others. 

a) predicted EIC probabilits against observed 

probabilities

 

b) Empirical bayes estimates against study

 

Figure 11: Diagnostic plots, a) predicted against observed, b) EB estimates against study. 

 

The results of Table 5 presenting a fixed and random-effects models can be interpreted as 

follows. It is observed that Log(dose+1), study size, age categorised, and interaction of age 

categorised with transformed dose (Logdose1*agecode) are significant covariates affecting 

the probability of Excellent Intubation Condition (EIC) in both models. The beta-binomial 

interpretation is as follows: The odds of EIC increases multiplicatively by 3.77 for every 1-

unit increase in Log(dose+1). This implies that every one unit increase in Log(dose+1) 

corresponds to an increase of 3.77 times the odds of EIC. In addition, after controlling for 

other model covariates, the odds of EIC decreases multiplicatively by 0.99 (eH6.66st) for 

every one unit increase in study size. For categorised age, studies with average age>40 

(agecode 1) were 5.76 (e(.uv(t) times less likely to have an outcome of EIC compared to 

those studies with average age<40. Also across the two age groups the effect of Log(dose+1) 

to the odds of EIC is not the same due to the significant interaction Logdose1*agecode. 
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Considering the results of the Random effects model in table 5, the same covariates as the 

Beta-binomial were significant though the magnitude of covariates and their corresponding 

standard errors is different. For the random effects model they seem bigger this may be due 

to the fact that this model has a study-specific interpretation. The odds obtained from this 

model imply log odds ratio for two observations in the same study. For example 4.24 odds 

of EIC corresponding to Log(dose+1) in the random effects imply log odds ratio for two 

observations in the same study. This means for every two study publications by one author 

they yield 4.24 odds. In both Beta-Binomial and random-effects model, it is seen that 

methodological issues are able to explain heterogeneity in excellent intubation condition 

(EIC) within and between studies. This is evidenced by the significant overdispersion (extra 

binomial variability) parameters. That is to say, correlation estimate of 0.1091 indicates 

correlation within a given study for Beta-Binomial and sigma 1.0067 (standard deviation of 

random intercept) the unexplained heterogeneity between studies.  

4.2.4. Bayesian Random-effects (hierarchical) model 

A model with similar covariates as Table 5 was run in WinBUGS where an inverse gamma 

distribution with w = 10Hx was chosen as a prior for study variance. Three chains were 

initialized and after 61,000 iterations, allowing over relaxation to reduce auto correlation 

and removal of 1000 as the burn in part, convergence of the sampler was achieved. The 

model had a DIC of 161.395.  For comparison differences this model was presented with the 

beta-binomial and classical random effects model in Table 7. It is observed that for the 

Bayesian model all covariates were insignificant except n so the model was reduced by 

dropping the interactions in this model. 

Table 7: Parameter estimates of Beta-Binomial, random effects and Bayesian hierarchical 

models.  

Parameter Beta-Binomial Random effects Model in WinBUGS 

Intercept -1.2912(0.4780)* -1.3614 (0.5362)* -3.7150(0.7043)* 

Study size(n) -0.0096(0.0033)* -0.01416(0.0043)* -0.0225(0.0057)* 

Log(dose+1) 3.7654(0.5378)* 4.2350(0.3903)* 1.2690(0.7614) 

Agecode(1) -1.7516(0.6259)* -3.6402(0.6980)* -0.3853(0.9821) 

gender(femaleprop) 0.8275(0.6241) 0.8901(0.7217) 0.0055(0.7310) 

Logdose1*agecode 2.9955(1.0939)* 6.1567(1.1524)* 0.5576(1.4160) 

*parameter significant at 5% level 
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With removal of the Logdose1*agecode interactions and using inverse gamma distribution 

with w = 10Hx as a prior for study variance three chains were initialized. After 161,000 

iterations, allowing over relaxation and removal of 1000 as the burn in part, convergence of 

the sampler was checked. All parameters showed the similar convergence characteristics 

but three arbitrarily chosen covariates are presented in Figure 12. 

Plot study size(n) Log(dose+1) Agecode 

History  

beta[2] chains 3:1

iteration

160950160900160850

  -0.06

  -0.04

  -0.02

6.93889E-18

 

 

beta[3] chains 3:1

iteration

160950160900160850

   -2.0

    0.0

    2.0

    4.0

 

 

beta[4] chains 3:1

iteration

160950160900160850

   -2.0

   -1.0

    0.0

    1.0

 

Density  

 

beta[2] chains 1:3 sample: 453000

  -0.06   -0.04   -0.02

    0.0
   20.0
   40.0
   60.0
   80.0

 

 

 

 

beta[3] chains 1:3 sample: 453000

   -2.0     0.0     2.0     4.0

    0.0
    0.2
    0.4
    0.6
    0.8

 

 

 

beta[4] chains 1:3 sample: 453000

   -2.0    -1.0     0.0     1.0

    0.0

    0.5

    1.0

    1.5

 

Auto-

correla

tion 

 

beta[2] chains 1:3

lag

0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

 

 

beta[3] chains 1:3

lag

0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

 

 

beta[4] chains 1:3

lag

0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

 

BGR   

beta[2] chains 1:3

iteration

10001 50000 100000 150000

    0.0

    0.5

    1.0

 

 

beta[3] chains 1:3

iteration

10001 50000 100000 150000

    0.0

    0.5

    1.0

 

 

beta[4] chains 1:3

iteration

10001 50000 100000 150000

    0.0

    0.5

    1.0

 

Figure 12: History, density, Autocorrelation and BGR plots, for study size, log(dose+1) and 

age categorized. 
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It can be observed that the history plots of n, log(dose+1) and agecode parameters indicate 

samples forming a random scatter about a stable mean an indication that convergence may 

have been achieved. In addition, it can be observed that the posterior distribution was 

explored quickly and there is good mixing since the three chains are moving together. The 

kernel density plots appear to be quite smooth for three parameters. The autocorrelation 

plots show presence of low correlation of the subsequent values in the chain as a function 

of the lag. This implies that the posterior distribution of the parameter is explored quickly. 

From the BGR graphs, the estimated potential scale reduction factor is almost equal to one 

(1), and then the three chains can be assumed to have mixed and converged to the 

posterior distribution. Furthermore, the estimate R is smaller than the recommended 

threshold 1.2, the Gelman and Rubin rule of thumb for convergence.  

The model estimated had a DIC of 159.612 which is smaller than 161.395 for model with 

interaction indicating a better fit. The posterior summary measures obtained from the 

analysis are given in Table 8. 

Table 8: posterior summary measures obtained from analysis based on model without 

interaction. 

 node  mean sd MC 

error 

2.5% median 97.5% start sample 

Intercept beta[1] -3.8260 0.6104 0.0024 -5.0480 -3.8170 -2.6520 10001 453000 

Studysize(n) beta[2] -0.0224 0.0057 8.49E-6 -0.0343 -0.0221 -0.0120 10001 453000 

Log(dose+1) beta[3] 1.4010 0.6443 0.0021   0.1714 1.3900   2.6980 10001 453000 

Agecode(1) beta[4] -0.0105 0.2745 4.09E-4 -0.5518 -0.0098   0.5262 10001 453000 

femaleprop beta[5] 0.0391 0.7244 0.0021 -1.3980 0.0438   1.4460 10001 453000 

Var.studie Var.studie 0.0155 0.0233 2.56E-4 5.85E-4 0.0069   0.0809 10001 453000 

It can be seen that there is good precision of the estimates since for each estimate the MC 

error is less than 5% of the standard deviation. Concerning credible intervals, for example 

the intervals of study size (-0.0343,-0.0120) and Log(dose+1) with (0.1714,2.6980) imply that 

there is a 95% probability that the true parameter value lies in those respective intervals. 

Since the two intervals of study size and Log(dose+1) don’t contain 0, the two are important 

factors that affect the Excellent Intubation condition probability. The estimated standard 

deviation 0.124	!√0.0155# gives indication of how much the true EIC probability varies 

between the studies. 
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A sensitivity analysis was performed by changing the prior distribution for var.studie to a 

uniform distribution with parameters (0, 100) for sigma.studie. Convergence was achieved 

after 141,000 iterations, allowing over relaxation and removal of 1000 burn in part. The DIC 

value for this model was 160.184 which was slightly higher than 159.612 the DIC for the 

model where the variance had inverse gamma distribution. The parameter estimates in 

Table 9 obtained assuming a uniform distribution for standard deviation of the random 

effects were very close to those obtained when a gamma distribution was assumed for the 

variance. The estimated standard deviation which indicates how the true EIC vary between 

the studies is more less the same (0.12) in both models. 

Table 9: posterior summary measures obtained from analysis changing the prior distribution. 

 node  mean sd MC error 2.5% median 97.5% start sample 

Intercept beta[1] -3.8310 0.6135 0.0025 -5.0700 -3.8220 -2.658 10001 393000 

Study size(n) beta[2] -0.0223 0.0057 9.47E-6  -0.0343  -0.0221  -0.012 10001 393000 

Log(dose+1) beta[3] 1.4060 0.6490 0.0023 0.1725 1.3930 2.7220 10001 393000 

Agecode(1) beta[4] -0.0114 0.2761 4.39E-4 -0.5556 -0.0106 0.5273 10001 393000 

femaleprop beta[5] 0.0385 0.7238 0.0023 -1.3960 0.0447 1.4420 10001 393000 

sigma.studie sigm.studie 0.1186 0.0913 0.0017 0.0043 0.0991 0.3408 10001 393000 

 

5. CONCLUSION AND DISCUSSION 

One important use of intubation is during surgery to keep the airway open for delivery of 

anaesthetic drugs and oxygen (Smith, 2003). During surgery and using tracheal intubation 

the patient can be placed on a ventilator to assist with breathing and depolarizing or non-

depolarizing muscle relaxant such as succinylcholine or rocuronium respectively can be used 

(Wolters, 2000). Knowing the probability of adequate relaxation may help in choosing an 

appropriate dose of succinylcholine and that can be life-saving. Given succinylcholine dose, 

considerable between study differences in excellent intubation conditions can be found and 

this can be done by meta-analysis.  

Meta-analysis is a combination of quantitative evidence from studies that have investigated 

a common question. Appropriate model selection in meta-analysis is the key requirement: 

fixed (marginal) versus random effects. Different fixed models and random effects models 

within classical model framework were fit to investigate whether patient characteristics or 
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methodological issues can explain any of the heterogeneity in excellent intubation condition 

between studies. In addition Bayesian hierarchical model was fit for comparison purposes. 

For classical models, the results showed that models correcting for extra binomial variability 

(overdispersion) fit the data better. The major cause for extra variability is the heterogeneity 

between and within studies. The Beta-Binomial model with covariates; log(dose+1), study 

size and age categorized was better fitting marginally. Also under the random effects the 

model with the same covariates was of a better fit. In both models it is observed that 

Log(dose+1), study size, age categorised, Logdose1*agecode interaction are significant 

covariates affecting the excellent intubation condition (EIC) probability. 

The beta-binomial indicated that the one unit increase in Log(dose+1) corresponds to an 

increase of 3.77 times the odds of EIC. In addition, after controlling for other covariates in 

the model, the odds of EIC decreases multiplicatively by 0.99 for every 1-unit increase in 

study size. For categorised age, studies with average age>40 (agecode 1) were 5.76 times 

less likely to have an outcome of EIC compared to those studies with average age<40. Also 

across the two age groups the effect of Log(dose+1) to the odds of EIC is not the same due 

to the significant interaction effect of Logdose1*agecode. 

For the Random effects model same covariates as the Beta-binomial were significant though 

the odds ratio obtained from this model imply study-specific log odds ratio. In both Beta-

Binomial and random-effects model, it is seen that methodological issues are able to explain 

heterogeneity in excellent intubation condition (EIC) within and between studies. This is 

evidenced by significant overdispersion (extra binomial variability) parameters. That is to 

say, correlation estimate of 0.1091 indicates there exists within study dependences for 

Beta-Binomial and sigma 1.0067 (standard deviation of random intercept) the unexplained 

heterogeneity between studies.  

When the Bayesian hierarchical model was fit study size and Log(dose+1) were the two 

important factors that affect excellent intubation condition probability. The results didn’t 

differ so much when a sensitivity analysis was done. The estimated standard deviation 

0.0124 gives indication of how much the true EIC probability vary between the studies.  

There exists difference in the Bayesian results compared to the classical random-effects. 

This may be due to the fact that when number of studies is small, the Bayesian hierarchical 
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model between-studies variance estimate has more precision than the estimate from the 

classical random-effects model (Borenstein et al., 2009). For this analysis 80 studies is quite 

large enough thus classical random-effects may be more precise than the Bayesian model. 

In addition Altham, (1971) as cited by Agresti, (2002) showed that the logit model with 

subject (study)-specific probabilities in which the probability varies by subject but the 

occasion effect is constant, the Bayesian evidence against the null hypothesis is weaker as 

the number of pairs giving the same response at both occasions increases, for fixed values 

of the numbers of pairs giving different responses at the two occasions. This differs from the 

conditional random-effects result, which does not depend on such pairs. 

Factors like use of opioids, RSI and nasal intubation though important in leading to improved 

intubation condition (El-Orbany, 2007) did not show significance in the considered models. 

This may be due to a limited number of studies which used them as seen in Table 2 leading 

to poor precision. Succinylcholine dose is observed to have higher odds of EIC in all models 

3.770 for beta-binomial, 4.235 for classical random effects model and 1.406 for Bayesian 

hierarchical model. These odds ratio estimates are in agreement with what was found by 

Hiestand et al., (2011) who performed a meta-analysis using Logistic regression to assess the 

impact of succinylcholine use on the odds of first-attempt intubation. They further indicate 

that after propensity score adjustment, succinylcholine was associated with a higher 

incidence of first-attempt intubation (odds ratio 1.4, 95% CI 1.1-1.8), as well as improved 

odds for requiring fewer attempts to intubate (odds ratio 1.5, 95% CI 1.2-1.9), as compared 

with rocuronium. In addition a systematic review of 58 studies by Perry et al., (2008) using 

relative risk, random-effects model, excellent intubation conditions as outcome gave similar 

conclusions. In this study it was found out that succinylcholine was superior to rocuronium, 

with relative risk 0.86 (95% confidence interval (95% CI) 0.80 to 0.92) (n = 2690). Although 

succinylcholine is evidenced in the literature to be a better muscle relaxant compared to 

rocuronium, it should not be used in presence of hyperkalemia and/or a family history of 

malignant hyperthermia to avoid a reverse reaction of the drug (Kumar et al., 2010). 

This difference in parameter estimates, magnitude and significance across different models 

used in this meta-regression may be due to the different methodological issues involved 

when fitting the models. For the marginal model estimates the assumed common effect, 

random-effects model estimates the mean of a distribution of effects across studies and the 
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Bayesian hierarchical model using prior information. Nevertheless narrowing to random 

effects model in both classical and Bayesian approaches there exists heterogeneity across 

studies. This heterogeneity may be caused by the clinical and methodological diversity 

among the studies which were included in this meta-regression. 

It is worthwhile to note that reaching reliable conclusions from meta-regression remains an 

obstacle (Thompson and Higgins, 2001). This is caused by the problem of ecological bias 

which is paramount in meta-regression, as the analysis is conducted at the study-level and 

does not include the underlying patient-level variation. This usually occurs when averages of 

patient characteristics in each trial or proportion of gender are used as covariates in the 

regression. This is observed in this analysis with age variable and more for age categorised. 

When included in the model there was a considerable change in results. The ecological bias 

in the long run may interfere with the covariate relationship in that, the relationship with 

patient averages across trials may not be the same as the relationship for patients within 

trials. 

As a recommendation and area for further research, this ecological bias can be avoided by 

pre-specification of covariates to be investigated as potential sources of heterogeneity. 

However in practice this is not always easy to achieve. In addition, one may consider 

conducting meta-regression on other different types of patients such as the elderly or only 

the young to see which age category yields higher odds of excellent intubation condition. 

To alleviate some problems in meta-analysis individual patient data, both of outcomes and 

covariates should be included in meta-regression. This is also recommended by Thompson 

and Higgins, (2001) where they state that within trial and between trial relationships can be 

more clearly distinguished, and confounding by individual level covariate be investigated by 

use of the individual patient data. This calls for exposition and development of statistical 

methods for individual patient data meta-regression. 

Basing on the view of this project it should be noted that heterogeneity in meta-analysis 

remains an important issue and with regard to problems mentioned in meta-analysis (meta-

regression), interpretation and inference of results should be done with caution else they 

can be misleading. 
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7.  APPENDICES 

Appendix 1. Simple scatter plots of EIC by study size 

1a) 

 

b)

 

Appendix 2. Density plots of EIC by study size 

a)

 

b) 
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Appendix 3. Plot of succinylcholine dose by opioids 

 

 

Appendix 4: Parameter estimates (standard errors) for extended Ordinary multiple logistic model  

Parameter DF Estimate Error Wald 

Chi_Square 

Pr>Chisq 

Intercept 1 -2.2396 0.6294 12.6630 0.0004 

Y_code 1 -0.0311 0.0119 6.8523 0.0089 

n 1 -0.0073 0.0010 58.4412 <.0001 

Dose   1 4.1922 0.6016 48.5651 <.0001 

gender(femaleprop) 1 3.2708 1.0478 9.7446 0.0018 

Opioids 1 0.3412 0.3324 1.0537 0.3046 

Dose*femaleprop 1 -2.8080 1.0432 7.2455 0.0071 

Dose*Opioids 1 -0.2191 0.3563 0.3780 0.5387 
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