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Abstract

Introduction: Clinical studies involving post-cardiac arrest patients have gained popu-

larity in the recent past. This has been enhanced by presence of therapeutic hypothermia,

which is a medical treatment used to regulate a patient’s body temperature with the aim

of reducing risk of ischemic injury to tissues following a period of insufficient blood flow

due to cardiac arrest. Cerebral oxygen saturation was measured repeatedly over time for

each patient during each phase of the therapy. The study aimed to investigate trend and

variability of cerebral oxygen saturation over time in each patient group as well as its

correlations with other parameters.

Methods: Generalized additive models (GAM) was preferred over generalized linear

models (GLM),considered as standard approach, due to complexities arising from the

small sample size available. GAM also have the advantage of flexibility by using smooth-

ing functions instead of parametric terms to estimate trend. To incorporate patient-to-

patient variation, GAM was extended to generalized additive mixed models (GAMM) by

inclusion of random effects.

Results: In the cooling phase, trend of cerebral oxygen saturation in survivor group

started at lower values compared to non-survivor group. It then increased rapidly to

reach a maximum peak before a gradual decrease to reach a minimum peak followed by a

gradual increase towards baseline measurements. Trend for non-survivor group was found

to start at higher values than survivor group but decreased gradually over time. Further,

it was found that in the cooling phase some significant differences were evinced between

patient groups in terms of trend. In other phases, no significant differences were observed.

Conclusion: Some challenges were encountered which included among other large re-

peated measures profiles, highly unbalanced time series, and limitations in computer

memory for use by software. These led to data reduction through truncation and ag-

gregation. Researchers were, however, urged to consider possibility of increasing sample

size and/or employing other statistical methods that would overcome such challenges.

Keywords: Generalized additive models, Generalized linear models, Therapeutic hypother-

mia, Time series data.
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1 Introduction

1.1 Methodological Background

Research in the medical field is often associated with studies designed to evaluate the evolu-

tion of a patient’s characteristic of interest, mostly a disease or effect of medical procedure on

patient management. In such a case, patient measurements are taken over time to determine

modality of evolution of a patient characteristic, a typical feature of longitudinal settings

Diggle et al. (2002). Due to the longitudinal nature of such data, classical approaches to

data analysis fail due to lack of independence of observations as measurements per patient

are often highly correlated.

In most cases, interest often lies in understanding the evolution of individual patient charac-

teristics and how this evolution is influenced by a set of independent variables. This proves

even to be essential when individual interventions may be necessary. Such is the case in this

project where cerebral oxygen saturation for post-cardiac arrest patients enrolled in thera-

peutic hypothermia was studied as an indicator of patient survival. Subject specific models

are useful in such cases, that is, when interest is in within-patient changes (Neuhaus et al.,

1992).

To analyze such data, generalized linear models (GLM) approach, first introduced by Harville

(1974), and discussed in detail by Laird and Ware (1982) is considered a standard approach

(Verbeke and Molenberghs, 2000; Molenberghs and Verbeke, 2005). This approach is partic-

ularly applauded for its ability to account for heterogeneity, serial correlation, dropouts and

handling of intermediate missing values. It is also useful in studies with overlapping levels

of within-patient factors (e.g., patient group and time) as well as between-patient factors to

study, for instance, patient group-response relationships.

Though they have nice properties, they have a disadvantage that only a limited number

of non-linear models can be turned into a GLM by choice of a link function. Additionally,

when the sample size is smaller than the number of parameters to be estimated, GLM are

no longer identifiable, and other approaches must be considered. Semi-parametric models

provide a flexible methodological framework to work with in such cases. This is because they

combine the advantages of parametric and nonparametric models by allowing for inclusion of

explicit parametric terms for certain predictors and smooth non-parametric terms for others

(Ruppert et al., 2003).

Generalized additive model (GAM), introduced by Hastie and Tibshirani (1990), is a spe-
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cific type of semi-parametric model which assumes that the mean of a dependent variable

depends on an additive predictor but not necessarily linearly (Gilks et al., 1996). GAM

are useful in finding predictor-response relationships in many kinds of data without using a

specific model. They combine the ability to explore many non-parametric relationships simul-

taneously with distributional flexibility of GLM. According to Hastie and Tibshirani (1990);

Xiang (2002), GAM have the advantage that they allow greater flexibility than traditional

parametric modeling tools. They relax the usual parametric assumption to uncover hidden

structure in the relationship between dependent and independent variables. This amounts

to allowing for an alternative distribution for the underlying random variation besides the

normal distribution. GAM can therefore be applied to a much wider range of data analysis

problems. In particular, they are widely used for air pollution time-series studies (Dominici

et al., 2002; Peng and Dominici, 2008; Schwartz et al., 1996).

This report demonstrates the application of GAM to investigate trend of cerebral oxygen

saturation in post-cardiac arrest patients.

1.2 Study Description

This study was part of a project being conducted by researchers at Ziekenhuis Oost-Limburg,

Genk, to investigate the effect of cooling in post-cardiac arrest patients enrolled in therapeu-

tic hypothermia. Winslow (2009), define therapeutic hypothermia (also known as protective

hypothermia) as a medical treatment that is used to regulate a patient’s body temperature in

order to help reduce the risk of the ischemic injury to tissues following a period of insufficient

blood flow which may be due to cardiac arrest or occlusion of an artery by embolism, as

occurs in the case of stroke. Therapeutic hypothermia may be induced by invasive means, in

which a catheter is placed in the inferior vena cava via femoral vein, or by non-invasive means,

usually involving a chilled water blanket or torso vest and leg wraps in direct contact with

patient’s skin. Studies have demonstrated that patients at risk for ischemic brain injuries

have better outcomes if treated with therapeutic hypothermia (Holzer, 2002).

The therapy is usually divided into 4 main phases namely: cooling, hypothermia, rewarming

and normothermia. The cooling (also known as induction) phase, represents the start of ther-

apy and involves lowering a patient’s body temperature to 33◦C as quickly as possible. This is

usually achieved by infusion of cold isotonic fluid. According to (So, 2010), caution should be

exercised to avoid over-cooling, hypokalaemia, hyperglycaemia, and shivering. Further, issues

surrounding changes in pharmacokinetics and haemodynamics, and susceptibility to infection

should be addressed. The optimal duration of maintenance is not known but the usual prac-

tice is 12-24 hours. The second phase is hypothermia where patient’s body temperature is

2



maintained at 33◦C for 24 hours to give the brain time to recover from the period it did not

have enough oxygen. The third phase is rewarming (also known as de-cooling) and involves in-

creasing patient’s body temperature to normal values of 37◦C. Patients are usually rewarmed

at a controlled rate of 0.3◦C per hour. The final phase is normothermia where patients are

no longer under control but are expected to maintain body temperature at 37◦C on their own.

To investigate the effect of therapeutic hypothermia, cerebral oxygen saturation over time

for each patient in each phase was recorded.

1.3 Study Objectives

The objectives of the study were to: (a) determine variability of cerebral oxygen saturation,

both as an absolute value and over time in each patient group in each phase, (b) investigate

trend of cerebral oxygen saturation over time in each patient group in each phase and (c)

investigate correlations between oxygen saturation and other variables in each phase.

This report is structured so that Section 2 introduces the data followed by a description

of exploratory and statistical methods in Section 3. Section 4 presents results of analysis

which are discussed further in Section 5. Section 6 discusses challenges encountered during

analysis and some concluding remarks.

2 Data

The data consisted of measurements taken from 12 post-cardiac arrest patients enrolled on

therapeutic hypothermia. Patients were further classified into two groups, survivor and non-

survivor groups, depending on whether or not they left the hospital alive. The response of

interest was cerebral oxygen saturation (SctO2) measured repeatedly over time after every 2

seconds during a patient’s stay in each phase. Covariates, also measured over time in each

phase, were: Oesophagale temperature (OESOPHAGALE) measured after every minute and

reflected central body temperature; Rectal temperature (RECTAL) measured approximately

every hour and reflected peripheral temperature. Both rectal and oesophagale temperature

were expected to be correlated; Cardiac output(CCO) which gave information regarding a

patient’s heart condition was measured after every one hour, but sometimes much often;

Carbon dioxide (CO2) and Oxygen (pO2) content in the blood were measured every hour,

and gave an idea about oxygen content in the blood. Unfortunately, two patients died during

the study and therefore, no data was available for them in the rewarming and normothermia

phases.
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3 Methodology

Various exploratory and statistical methods were used to analyze trend and variability of

cerebral oxygen saturation over time and its correlations with other variables.

3.1 Exploratory Data Analysis

Exploratory tools such as summary statistics and graphical representations of evolution over

time profiles were used to gain insight into the data. These tools were also used to help in

displaying possible interesting relationships within the data which could then be investigated

using formal statistical models.

3.2 Generalized Additive Model (GAM)

Using the notation of Wood (2006), a GAM can be presented as:

g(µi) = X∗
i θ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + . . .+ εi (3.1)

where µi ≡ E(Yi) and Yi ∼ some exponential family distribution, X∗
i is the design matrix, θ

the corresponding parameter vector, and fj(.) are smooth functions of covariates. Model (3.1)

is simply an additive model if g is the identity link and the response is normally distributed.

3.2.1 Estimation of GAM

The first step towards GAM estimation is the choice of smoothing bases. Scatterplot smooth-

ing functions, commonly referred to as smoothers, are central to GAM. According to Hastie

and Tibshirani (1990), a smoother is a tool used for summarizing the trend of a response

measurement as a function of independent variables. i.e.,

yi = f(xi) + εi (3.2)

A basis, chosen for each smooth function in the model, can be seen as a way of defining the

space of functions for which fj is an element (Wood, 2006). Choosing a basis amounts to

choosing a basis function bj such that the regression splines fj(xj) can be represented as:

fj(xj) =

qj∑
i=1

bjiβji(xj) (3.3)

where xj may be a vector quantity and βji are coefficient of the smooth, which are estimated

as part of model fitting. Once bases have been selected, (3.1) reduces to a GLM problem.

This can be demonstrated by writing each smooth function in the model in terms of a model
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matrix X̃j . Letting fj be a vector such that f ji = fj(xji) and β̃j = [βj1, . . . , βjqj ]
′
, yields

to fj = X̃jβ̃j where X̃j,ik = bjk(xji). Model (3.1) is not identifiable unless each smooth

function is subjected to a centering constraint. The sum (or mean) of the elements of fj is,

for instance, constrained to be equal to zero i.e., 1
′
X̃jβ̃j = 0. When the smooth terms are

re-parameterized in terms of qj − 1 new parameters, βj , such that β̃j = Zβj with Z being a

matrix such that its qj − 1 columns are orthogonal and the matrix also satisfies 1
′
X̃jZ = 0,

a new model matrix for the jth term, Xj = X̃jZ, is obtained such that, fj = Xjβj satisfies

the centering constraint. Given the centered model matrices for the smooth functions, (3.1)

can be written as g(µi) = Xiβ, where X = [X∗ : X1 : X2 : . . .] and β
′

= [θ
′
,β1

′
,β2

′
, . . .]

which is clearly a GLM.

It is important to note that, if the qj are large enough such that there is a reasonable chance

of accurately representing the unknown fj ’s, and β is estimated by ordinary likelihood max-

imization, then there is a good chance of over-fitting. For this reason GAM are usually

estimated by penalized likelihood maximization, where penalties are designed to suppress

overly wiggly estimates of fj terms. In fact, this is the idea behind the penalized regression

approach of GAM estimation (Wood, 2006).

One useful basis in GAM estimation is the cubic regression splines (CRS). Splines have some

theoretical properties, which make them a popular choice for penalized regression. This can

be illustrated by considering their properties, in the context of interpolation and smoothing.

The natural cubic spline, g(x) interpolating the points {xi, yi : i = 1, . . . , n} with xi < xi+1 is

defined as a function composed of sections of cubic polynomial, one for each interval [xi, xn]

joined together so that the function is continuous in value, as well as its first and second

derivatives, i.e., g(xi) = yi and g
′′
(x1) = g

′′
(xn) = 0. The points at which the sections are

joined are referred to as the knots of the spline. It has been shown that this function is not

only the smoothest interpolator through any data set, but also provides interpolation that

is optimal in various respects. Based on these properties, splines are deemed as capable of

closely approximating any smooth function. Because of this property, they are considered

intuitively appropriate in representing smooth terms in models (Wood, 2006).

When considered in the context of smoothing, it has been shown that cubic smoothing splines

arise as a solution to the smoothing objective, which is mathematically expressed as the min-

imization of

n∑
i=1

{yi − f(xi)}2 + λ

∫
f

′′
(x)2dx (3.4)
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where λ controls the trade-off between closely fitting the data and producing a smooth func-

tion. Given this mathematical result, the only challenge that remains before adopting them as

ideal smoothers is that they have as many free parameters as there are data to be smoothed.

Thus, computation becomes expensive in case of many covariates.

The use of penalized regression splines is then a compromise solution between retaining the

good properties of splines and computational efficiency, the idea being to use a spline basis

together with penalties to model the data at hand. Cubic regression splines are a subset of

penalized regression smoothers. Though there are many ways of defining a cubic regression

spline basis, one way, which has been credited to have directly interpretable parameters, is to

have the spline parameterized at its values at the knots (Wood, 2006).

Other splines framework available include: thin plate regression splines, thin plate regres-

sion splines with shrinkage, cubic regression splines with shrinkage and P-splines. They are

discussed in detail by Hastie and Tibshirani (1990); Wood (2006). CRS however have the

advantage that they are computationally cheap when compared to other splines.

3.2.2 Penalized Iteratively Re-weighted Least Squares Estimation (P-IRLS)

Since a measure capturing how wiggly each smooth function in the model is now available,

a penalized likelihood for the model can then be written. Penalties, which measure this

as a quadratic form in the function coefficients, are considered. For the jth function, this

may be evaluated by β̃
′

jS̃jβ̃j where S̃j is a penalty matrix of known coefficients. By re-

parametrization through centering and re-writing the penalty in terms of the full coefficient

vector β, this can be expressed as β
′
Sjβ where Sj is simply S̄j padded with zeros such that

β
′
Sjβ = β

′
S̄jβ where S̄j = Z

′
S̃jZ. The penalized likelihood is therefore defined as

lp(β) = l(β)− 1

2

∑
j

λjβ
′
Sjβ (3.5)

where λj are smoothing parameters, which control the trade-off between model fit and smooth-

ness. Given λj , lp can be maximized for β. However, λj have to be estimated as well. As-

suming that λj are know and defining S =
∑

j λjSj , then

lp(β) = l(β)− 1

2
β

′
Sβ (3.6)
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can be maximized with respect to βi using;

∂lp
∂βj

=
∂l

∂βj
− [Sβ]j (3.7)

=
1

φ

n∑
i=1

yi − µi
V (µi)

∂µi
∂βj
− [Sβ]j = 0

where [.]j denotes the jth row vector.

Given λj , β̂ is estimated via penalized maximum likelihood estimation by iterating the fol-

lowing two steps to convergence:

1. Given the current µ[k] calculate the pseudo-data z[k] and weights w
[k]
i where,

w
[k]
i =

1

V (µ
[k]
i )g′(µ

[k]
i )2

and zi = g
′
(µ

[k]
i )(yi − µ[k]i ) +Xiβ̂

[k]
,

g is the model link function, z[k] is a vector of pseudo-data and W [k] is a diagonal

matrix with diagonal elements w
[k]
i

2. Minimize

‖
√
W [k](z[k] −Xβ) ‖2 +β

′
Sβ

with respect to β to find β̂
[k+1]

. Evaluate the linear predictor η[k+1] = Xβ[k+1] and

fitted values µ
[k+1]
i = g−1(η

[k+1]
i ). Increment k.

The influence matrix of a GAM fit is A = X(X
′
WX + S)−1X

′
W , the influence matrix of

the penalized working least square problem of the final step of the P-IRLS.

3.2.3 Degrees of Freedom and Residual Variance Estimation

Effective degrees of freedom of a GAM, defined as tr(A), where A is the influence matrix de-

scribed above, indicate the flexibility of the fitted model. For instance, using large values for

smoothing parameters would result in a model with very few degrees of freedom which is very

inflexible. The application of penalties reduces the model degrees of freedom. It is possible

to break down the effective degrees of freedom of the model to each smooth function in the

model or even to each β̂i separately. It can be shown that the effective degrees of freedom

for the model parameters in the general weighted case are given by the leading diagonal of

F = (X
′
WX + S)−1X

′
WX, where S =

∑
j λjSj . F can also be shown to be the matrix

that maps the un-penalized estimates to the penalized ones and Fii to measure the effective

degrees of freedom of the ith penalized parameters.
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Residual variance, σ2 for additive model is estimated in a similar way to linear regression

as

σ̂2 =
‖ y −Ay ‖2

n− tr(A)
(3.8)

while the scale (dispersion) parameter in case of a GAM is estimated by the Pearson-like

estimator as

φ̂ =

∑
i V (µ̂i)

−1(yi − µ̂i)2

n− tr(A)
(3.9)

3.2.4 Smoothing Parameter Selection

Penalized likelihood maximization can only estimate model coefficients, β, given smoothing

parameters λ. This section discusses how the smoothing parameters λ are estimated, starting

with the case of the additive model, then generalizing to GAM. Two approaches have been

suggested by Wood (2006). When the scale parameter, φ, is known, then estimation is done

by Mallow’s Cp or Un-Biased Risk Estimator (UBRE). This approach is discussed in details,

UBRE by Craven and Wahba (1979) and Mallow’s Cp by Mallows (1973). When the scale

parameter is unknown, then estimation is done using the generalized cross validation (GCV).

GCV is discussed in this report.

The ordinary cross validation (OCV) criterion is based on an attempt to minimize the average

mean squared error in predicting a new observation y using the fitted model. By omitting

observation yi while fitting the model, using the model to predict E(yi), and repeating the

procedure to all data in turn, leads to the following estimate of OCV in the additive model

case:

v0 =
1

n

n∑
i=1

(yi − µ̂[−i]i )2 (3.10)

where µ̂
[−i]
i denotes the prediction of E(yi) obtained by leaving out yi. It can be shown that

estimation of v0 does not have to proceed by fitting the model n times; indeed, it can be

shown that

v0 =
1

n

n∑
i=1

(yi − µ̂i)2

(1−Aii)2
(3.11)

which simply requires fitting the original model once. However, it has been noted that the

OCV is not only computationally expensive to minimize in the additive model case where
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there are several smoothing parameters but it has a slightly disturbing lack of invariance. The

need to overcome this lack of invariance leads to the so called generalized cross validation score

(GCV). In the additive model case, it is given as

vg =
n ‖ y − µ ‖2

[n− tr(A)]2
(3.12)

which provides a valid estimate of the prediction error just like the OCV, but has the invari-

ance property. Generalization of the GCV criterion to the GAM case is straightforward. By

first writing the GAM fitting objective in terms of model deviance,

D(β) +
m∑
j=1

λjβ
′
Sjβ

an applicable GCV score has been defined as

vg =
nD(β̂)

[n− tr(A)]2
(3.13)

Two numerical strategies suggested for estimating the smoothing parameters are the perfor-

mance iteration and outer iteration. Details of these strategies are discussed in details by

Wood (2006).

3.2.5 Confidence Intervals for Functions of Parameters

Having described the estimation of model parameters β and λ, it is of interest to not only

quantify the uncertainty surrounding them but to calculate confidence intervals for β as well

as quantities derived from them such as the smooth terms themselves. Also of interest is to

test for the need of terms in the model. Bayesian confidence intervals which follow from the

Bayesian approach to uncertainty estimation are utilized. When some penalties are imposed,

it implies that we are expressing our prior belief about the likely characteristics of the correct

model. This leads to the concept of specifying a prior for β. Starting with the additive model

case, assume that bases and penalties have been chosen, so that the model can be written as

Y = Xβ + ε

The fitting of the model can proceed by minimizing the penalized least squares criterion

‖W
1
2 (y −Xβ) ‖2 +

m∑
i=1

λiβ
′
Siβ
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where W is some positive definite weight matrix. It is assumed that constraints to make the

model identifiable have been resolved by re-parametrization. Let the prior for β be

fβ(β) ∝ exp

(
−1

2β
′∑

Si

τiβ

)

where τi are parameters controlling the dispersion of the prior. This prior not only expresses

belief in smooth rather than wiggly models but gives equal probabilities to all models of equal

smoothness. It can be shown that the posterior distribution is

β|y ∼ N(β̂, (X
′
WX +

∑
i

λiSi)
−1σ2)

which can be used to calculate credible intervals for any quantities derived from β. Similarly

for the GAM, g(µi) = Xiβ where µi ≡ E(Yi), Yi ∼ some exponential family and g is the link

function. The model is estimated by minimizing

−l(β) +
1

2

m∑
i=1

λiβ
′
Siβ

with respect to β, where l(β) is the models log likelihood. Similarly, it has been shown that

β|v ∼ N([X
′
WX +

∑
λi]

−1v, [X
′
WX +

∑
λi]

−1φ) where v = X
′
Wz.

This then requires plugging the estimates of v and W as evaluated at convergence of the

P-IRLS algorithm and an estimate of φ if necessary, after which results can be used to

approximate Bayesian confidence intervals for quantities derived from β. It has been noted

that confidence intervals for individual GAM components can be improved by accounting

for the smoothing parameter uncertainty; i.e., by constructing intervals based on the joint

posterior density.

f(β, λ̂|y) = f(β|λ̂,y)f(λ̂|y)

3.3 Generalized Additive Mixed Models (GAMM)

In situations where data consists of repeated measurements taken on each patient, the likely

patient-to-patient variation introduces a new source of randomness and an extension to GAM

may be necessary. Just like generalized linear mixed models (GLMM) are extensions of GLM,

GAM can also be extended to GAMM (generalized additive mixed models) by inclusion of

random effects.

10



Lin and Zhang (1999) define a generalized additive mixed model (GAMM) as simply a GLMM

in which part of the linear predictor is specified in terms of smooth functions. Using the no-

tation of Wood (2006), an additive mixed model (AMM), a special case of GAMM, has the

following structure:

yi = Xiβ + f1(x1i) + f2(x2i, x3i) + . . .+Zib+ εi (3.14)

where yi is a univariate response; β is a vector of fixed parameters; Xi is a row of the design

matrix corresponding to the fixed-effects; fj(.) are smooth functions of covariates xk; Zi, is a

row of the design matrix corresponding to random effects, b ∼ N(0,Ψθ) is a vector of random

effects coefficients where Ψθ is positive definite with parameter θ, and ε ∼ N(0,Λ) is the

residual error vector.

3.3.1 Estimation of GAMM

A GAMM can be readily transformed into a linear mixed model by making use of Bayesian

model of smoothing discussed in Section 3.2.1. The smoothing parameters are treated as

variance components to be estimated. Each smooth is considered to have a fixed effects

(un-penalized) component and a random effects (penalized) component. These components

are respectively absorbed into Xiβ and Zib. Consider a smooth with a single smoothing

parameter

f(xi) =
J∑
j=1

bj(xi)βj (3.15)

with associated wiggliness measure, J(f) = β
′
Sβ, where S is a positive semi-definite matrix

of coefficients. The Bayesian approach of estimating f starts on the premise that, by stating

that f is smooth, we acknowledge our prior belief that f is more likely smooth than wiggly,

which can be formalized by adopting a prior for how wiggly the model is. This argument can

be expanded to finally show that (3.15) has a mixed model representation

XFβF +XRbR where bR ∼ N(0, D−1
+ /λ)

and λ and βF are fixed parameters to be estimated. D+ denotes a sub-matrix of a matrix D

which is involved in the eigen-decomposition of S. This can further be re-parameterized to:

XFβF +Zb with b ∼ N(0, I/λ)
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3.3.2 Inference with GAMM

The Bayesian approach is can be in evaluating credible regions for the smooth components.

It has be shown that the Bayesian approach implies:

β ∼ N(β̂, (X̄
′
V −1X̄ + S)−1)

where S =
∑
λi/σ

2Si, V = Z̄ΨθZ̄
′

+ Λσ2 where Z̄ is the random effects model matrix

excluding the columns relating to smooths, Ψθ is the corresponding random effects covariance

matrix, β contains all the fixed effects and the random effects of the smooth terms (only) and

X̄ is the corresponding model matrix. The effective degrees of freedom for each element of β

are given by the leading diagonal of

F = (X̄
′
V −1X̄ + S)−1(X̄

′
V −1X̄)

Inference for the AMM can proceed in a manner similar to that of linear mixed models.

3.4 Software

Data manipulation and exploratory data analysis were performed using Statistical Analysis

Software (SAS, version 9.2) while are graphical presentations and statistical analysis were

done using CRAN-R (version 2.13.1). Selected codes are shown in Appendix: A.1 for SAS

and Appendix: A.2 for R. All statistical tests were conducted at α = 0.05 level of significance.
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4 Results

4.1 Summary Statistics

Patients were classified into two groups with 4 belonging to survivor group and 8 to non-

survivor groups. Means and variance of cerebral oxygen saturation for each patient were

computed for each phase and are shown in Table 1. In the cooling phase, variability was

highest in patient CCU02 and smallest in patient CCU05. In the hypothermia, rewarming

and normothermia phases, variability was highest in patients CCU04, CCU01, and CCU07

and smallest in patients CCU11, CCU06, and CCU05 respectively. The high variability for

patients CCU04 and CCU12 was observed during the hypothermia phase and it ia attributed

to the two patient deaths.

Table 1: Means and variances of cerebral oxygen saturation for each patient

Cooling Hypothermia Rewarming Normothermia

Patient Mean Variance Mean Variance Mean Variance Mean Variance

CCU01 65.17 15.37 65.09 6.09 72.75 18.78 72.79 3.23
CCU02 59.19 59.38 63.95 18.94 76.11 15.96 74.38 10.31
CCU03 62.79 38.17 72.12 15.31 77.46 5.15 71.49 11.88
CCU04 60.31 4.02 50.63 149.88 - - - -
CCU05 59.92 1.68 59.61 18.96 64.16 1.34 64.76 1.09
CCU06 69.57 24.32 73.22 5.56 73.26 0.36 73.31 6.98
CCU07 67.89 24.87 70.89 3.06 77.99 9.33 76.27 15.20
CCU08 65.43 11.84 67.57 30.52 72.10 3.14 74.35 4.86
CCU09 58.88 20.80 61.68 5.26 64.13 3.47 68.03 2.26
CCU10 64.77 27.97 66.89 35.59 75.82 1.97 72.31 9.33
CCU11 63.63 10.56 62.47 1.69 62.01 2.75 67.79 3.21
CCU12 59.51 21.65 53.88 52.52 - - - -

Absolute values representing variability of cerebral oxygen saturation in each phase were

computed for each patient group as shown in Table 2. The lowest measurement (26.5) was

observed in the hypothermia phase for non-survivor group. This measurement is from one of

the patients who died during the study. The highest measurement (94.0) was observed during

the Normothermia phase for non-survivor group also. Other measurements were found to lie

inside this range. Measurements observed during the cooling and hypothermia phases were

smallest in value whereas those observed during rewarming and normothermia phases where

largest. Variability was smallest in the normothermia phase and largest in the hypothermia

phase.
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Table 2: Summary statistics for cerebral oxygen saturation

Phase Patient group Mean Std. Dev. Minimum Maximum

Cooling
Survivor 64.11 5.684 52.0 81.5
Non-survivor 64.11 6.541 47.5 82.0

Hypothermia
Survivor 67.12 6.429 51.5 83.5
Non-survivor 63.82 6.865 26.5 82.0

Rewarming
Survivor 71.93 5.505 61.5 85.5
Non-survivor 71.51 6.615 53.5 89.0

Normothermia
Survivor 69.80 4.309 58.5 87.0
Non-survivor 71.90 4.330 50.0 94.0

Summary statistics for other parameters in each phase were computed for each patient group

as shown in Table 3. Generally, measurement from survivor group were more variable than

those from non-survivor group partly due to the small sample size in that group.

In the cooling phase, it was observed that, oesophagale temperature appeared comparable

in both patient groups but more variable in survivor group. Rectal temperature appeared

to be slightly higher in non-survivor group, but more variable in survivor group. CCO was

slightly higher and more variable in survivor group. CO2 content was also comparable across

both groups, although it was more variable in non-survivor group. pO2 was larger and more

variable in non-survivor group.

In the hypothermia phase, it was observed that, oesophagale temperature was slightly higher

and more variable in survivor group. Rectal temperature was slightly higher and more vari-

able in non-survivor group. CCO and CO2 were higher and more variable in survivor group.

pO2 was larger and more variable in non-survivor group.

In the rewarming phase, it was observed that, oesophagale and rectal temperatures were

comparable across both groups. CCO was slightly higher and more variable in survivor

group. CO2 larger in survivor group but more variable in non-survivor group. O2 was larger

in non-survivor group but more variable in survivor group.

In the normothermia phase,it was observed that, oesophagale temperature comparable in

both groups, but slightly variable in non-survivor group. Rectal temperature was slightly

higher in non-survivor group, but more variable in survivor group. CCO was higher and

more variable in survivor group. CO2 was higher in non-survivor group, but more variable

in survivor group. pO2 was larger and more variable in non-survivor group.

14



Table 3: Summary statistics for other parameters

Phase Parameter Patient group Mean Std. Dev. Min. Max.

Cooling

Oesophagale Survivor 34.02 0.94 33.1 36.2
Non-survivor 34.07 0.71 33.1 36.1

Rectal Survivor 34.13 0.81 32.9 36.3
Non-survivor 35.05 0.76 32.9 36.5

CCO Survivor 3.29 0.73 2.5 6.0
Non-survivor 3.64 0.99 2.0 5.9

CO2 Survivor 44.25 8.38 33.4 62.0
Non-survivor 43.87 13.18 19.2 74.1

pO2 Survivor 102.69 36.70 33.4 169.0
Non-survivor 136.96 97.02 19.2 652.0

Hypothermia

Oesophagale Survivor 33.16 0.45 31.85 35.1
Non-survivor 33.02 0.32 27.93 34.1

Rectal Survivor 33.29 0.51 32.3 34.5
Non-survivor 34.01 0.71 30.4 34.9

CCO Survivor 6.07 1.50 2.3 11.1
Non-survivor 5.42 0.95 1.9 7.3

CO2 Survivor 42.38 9.63 28.5 64.2
Non-survivor 37.71 7.55 23.1 75.6

pO2 Survivor 96.84 21.80 45.8 154.0
Non-survivor 100.20 23.03 34.9 182.0

Rewarming

Oesophagale Survivor 35.00 1.06 33.08 37.0
Non-survivor 34.88 1.01 32.74 37.3

Rectal Survivor 35.18 1.12 32.9 37.3
Non-survivor 35.97 1.06 33.5 37.4

CCO Survivor 6.67 0.91 3.1 11.67
Non-survivor 5.60 0.64 2.4 8.4

CO2 Survivor 39.53 6.50 26.4 54.5
Non-survivor 37.39 7.77 25.7 74.1

pO2 Survivor 83.34 18.60 35.9 146.0
Non-survivor 85.51 16.19 29.0 155.0

Normothermia

Oesophagale Survivor 37.06 0.20 36.65 37.94
Non-survivor 36.79 0.45 35.87 38.28

Rectal Survivor 37.31 0.48 33.9 38.1
Non-survivor 39.05 0.35 35.4 39.6

CCO Survivor 7.63 1.34 3.71 12.68
Non-survivor 5.79 0.85 3.4 9.6

CO2 Survivor 36.48 5.99 26.4 56.2
Non-survivor 38.35 4.95 29.6 63.6

pO2 Survivor 83.89 14.47 34.6 125.0
Non-survivor 90.82 20.86 36.1 156.0

Additionally, some patients did not have measurements for some parameters due to lack of

enough monitoring equipments and thus they did not contribute to these results.
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4.2 Individual Profiles

To get a glimpse of the evolution of cerebral oxygen saturation, individual patient profiles

were plotted as shown in Figure 1.
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Figure 1: Individual profiles of cerebral oxygen saturation over time

Generally, trend was seen to mimic temperature regulations performed in each phase. For

instance, a decreasing trend in the cooling phase was observes with lowering patient’s body

temperature. Differences in evolution over time were noted in each phase, suggesting use of

random effects. Individual profile fluctuations indicated presence of within-patient variability.
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4.3 Mean Structure

In order to be able to further visualize overall evolution of cerebral oxygen saturation, averages

were computed at each time point and plotted against time as shown in Figure 2 (a-d).
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Figure 2: Average evolution of cerebral oxygen saturation over time

In the cooling phase, cerebral oxygen saturation on average started at a lower values in sur-

vivor group compared to non-survivor group. It gradually increased reaching a maximum

peak after about 3500 seconds, before starting to decrease towards baseline. In non-survivor

group, there was a gradual decrease over time. In the hypothermia phase, oxygen saturation

on average started at higher values in survivor group than non-survivor group and remained
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higher throughout the phase. In the rewarming phase, cerebral oxygen saturation on average

appeared constant over time with the two curves overlapping one another. In the normoth-

ermia phase, cerebral oxygen saturation on average started at higher values in non-survivors

than survivors and remained higher throughout the phase.

4.4 Variance Structure

0 1000 3000 5000 7000

0
50

10
0

15
0

a) Cooling phase

Time (in seconds)

V
ar

ia
nc

e

Survivors
Non−survivors

0 20000 40000 60000 80000

0
10

0
30

0
50

0

b) Hypothermia phase

Time (in seconds)

V
ar

ia
nc

e

Survivors
Non−survivors

0 10000 30000

0
50

15
0

25
0

c) Rewarming phase

Time (in seconds)

V
ar

ia
nc

e

Survivors
Non−survivors

0 20000 40000 60000 80000

0
50

10
0

15
0

d) Normothermia phase

Time (in seconds)

V
ar

ia
nc

e

Survivors
Non−survivors

Figure 3: Variability of cerebral oxygen saturation over time

To study the variability over time, cerebral oxygen saturation variance in each phase was com-

puted for each patient at each time point and then plotted against time. Figure 3 presents
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variance functions, indicating variability in each phase and patient group.

In the cooling phase, cerebral oxygen saturation was more variable in survivor group com-

pared to non-survivor group. This was attributed partly to small sample size (N = 4) for

that group. In the hypothermia phase, variability for non-survivor group was generally higher

at the start of the series, but appeared to level up with that of survivor group during late

time points. In the rewarming phase, variability increased over time but remained higher in

non-survivor group most of the time. In the normothermia phase, variability was high at the

start of the series in both patient groups, but appeared to stabilize after 20000 seconds.

4.5 Correlation Structure

In order to be able to study the correlations in each phase, Pearson correlations cerebral

oxygen saturation and other parameters were computed between and the corresponding cor-

relation matrices plotted as shown in Figure 4 (a-d).

Values marked with an (∗) indicate that correlations, which measures the linear associa-

tion between two variables, were significant at α = 0.05 level of significance. Plots indicate

a graphical representation of the best predicted linear or non-linear association between two

variables. It was observed that most correlations were fairly strong, but highly significant.

In the cooling, hypothermia, rewarming and normothermia phases, the highest correlations

were respectively 0.61, 0.58, 0.95, and 0.11 and were between oesophagale and rectal temper-

atures. They were also significant as expected since both variables measure body temperature.

In the cooling phase, the smallest correlation was -0.012 and was between cerebral oxy-

gen saturation and oesophagale temperature. However, this was counter-intuitive since body

temperature and oxygen saturation were both expected to decrease over time, but could be

attributed partly due to the small sample.
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Figure 4: Correlation in each phase

In the hypothermia phase, the smallest correlations was -0.065 and was observed between

cerebral oxygen saturation and carbon dioxide content in the blood. In the rewarming phase,

the smallest correlations was -0.043 and was observed between cerebral oxygen saturation

and oxygen content in the blood. In the normothermia phase, the smallest correlations was

-0.048 and was observed between cardiac output and oxygen content in the blood.

Generally, all the smallest correlations were also not significant (p-value >0.05)
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4.6 Statistical Model

To be able to estimate cerebral oxygen saturation trend over time in each phase and for each

patient group, the following preliminary additive model was fitted

SctO2ijk = f1(timek) + f2(timek)groupj + patienti + εijk (4.1)

where, for i = 1, . . . , 12, j = 1, 2, k = 0, . . . , N ,

SctO2ijk is the cerebral oxygen saturation measurement k of patient i belonging to group j.

f1(.) is a smooth function representing trend for non-survivor group.

f2(.) is a correction or difference curve representing the smooth effect of survival.

groupj is a dummy variable indicating patient group.

patienti is the random effect of patient i.

εijk is the random error for measurement k of patient i belonging to group j.

It is assumed that patienti ∼ N(0, σ2p) and εijk ∼ N(0, σ2).

Both smooth functions were represented using cubic regression splines. Implementation of

the model using entire profiles of repeated measurements for each patient was not possible in

the cooling phase because of a number of issues present in the data. Firstly, one patient had

a very large profile of repeated measures compared to the rest. Caiado et al. (2006) suggested

two methods of dealing with this. The first involves extrapolating the shorter series to match

the longer one. This method however, does not produce desirable results when the length

difference is very large such as the case in this study. The other approach involves reducing

the larger series to match the smaller series. Though it involves truncating data, it has the

advantage of constructing an appropriate test. The second approach was therefore applied in

this report leading to reduced profiles of length of 6750 seconds (225 minutes).

Secondly, due to large number of profiles, there was limitation of computer memory available

for use by the software which could not be solved even by increasing memory requirements

to the maximum (4Gb) available. Two solutions were suggested. The first one was to reduce

the number of profiles to a level that could allow implementation. The second one was to

aggregate measurements over the minute-time interval. Though both methods involves re-

ducing the number of profiles, the second one has an advantage that the entire profile length

is used and was thus applied to measurements in each phase.

Results from gam component in the cooling phase, are shown in Table 4. Trend for non-

survivors was estimated as a smooth curve with 6.790 degrees of freedom, while the correction

or difference curve representing smooth effect of survival was estimated to have 9.684 degrees
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of freedom. In total, estimated model had 17.474 degrees of freedom (1 degree of freedom for

model intercept inclusive). Approximate p-value, corresponding to the correction term, was

<.0001, and gave a clear-cut evidence for a significant additive effect of patient group.

The selected model also provided a better fit than a simpler model without the correction

term. This was concluded by comparing Akaike Information Criterion (AIC) values obtained

from lme components of both models, which were equal to 9757.862 and 10323.452 respec-

tively. Thus, likelihood-based approach also provided support for the model including the

correction term. Adjusted R2 for this model was 0.487 implying the model explained about

48.7% of total variability in the data. Variance components were estimated as; residual vari-

ance, σ2 = 8.15 and random effects variance, σ2p = 9.74 an indication that there was high

patient-to-patient variability.

Table 4: Model results from GAM component

Function Estimated df F p-value Adjusted R2

f1(timek) 6.790 404.94 <.0001 0.487
f2(timek)groupj 9.684 76.32 <.0001

AIC-based approach was also used to assess whether or not selected model, in which the effect

of patient group over time was captured in a smooth manner, provided a better fit than an

alternative model, which assumed that the effect was constant over time. Respective AIC

values were 9757.862 and 10324.325, clearly supporting the former over the latter. Attempts

to fit models with higher order random time effects were not successful due to computer

memory limitations.

Having inferred a significant effect of patient group, it was of interest to find out the ex-

act portions along the oxygen saturation profile, where patient group had a significant effect,

and to detect what type of effect it was. This was achieved by considering the smooth cor-

rection term with its credible intervals.

Figure 5 (a-b) shows estimated smooth functions in each patient group. The solid lines

represent estimated trend while the dashed lines show 95% Bayesian credible intervals. Time

values (in minutes) are shown on the x-axis of the plots, and estimated smooth function on the

y-axis. It was observed that estimated trend for survivor group started as lower values than

non-survivor group, but increased to reach a maximum peak. It then decreased gradually over

time reaching a minimum peak and then started to increase towards baseline values. Esti-

mated trend for non-survivor group on the other hand was observed to reduce gradually over

time. These results are in agreement with results shown in Section 4.3 and also researchers’
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expectations. Additionally, estimated trend for survivor group appeared more variable than

for non-survivor group as indicated by wider credible intervals. This was partly attributed to

small sample size N = 4 for this group.
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Figure 5: Estimated trend for survivor and non-survivor groups, difference curve and model diag-
nostics

Figure 5 (c) shows the correction curve representing the marginal difference of cerebral oxy-

gen saturation over time between the two patient groups. The vertical dashed red lines show

start and end time point intervals where estimated trend for both groups was significantly

different. The first interval was [43; 72] minutes and the second [165; 225] minutes. In both in-

23



tervals, survivor group had higher measurements on average, compared to non-survivor group.

To be able to perform model diagnostics, a plot of standardized residuals versus time was

plotted as shown in Figure 5 (d). Residuals were observed to scatter without showing any

particular trend, an indication that selected model fitted well.

Attempts were made to estimate difference curves in other phases. Results are shown in

Figure 6 (a-c).
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Figure 6: Estimated difference curves for other phases

The solid black line represents estimated difference curves between survivors and non-survivors.
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The dashed black lines below and above estimated difference curve represent the correspond-

ing credible interval. As expected, no significant differences in cerebral oxygen saturation

trend were observed between the two patient groups.

5 Discussion

This report aimed at analyzing data collected from post-cardiac arrest patients who were put

on therapeutic hypothermia. The therapy was divided into 4 phases; cooling, hypothermia,

rewarming and normothermia. Patients were further divided into two patient groups; survivor

and non-survivor groups. The research questions were to investigate trend and variability of

cerebral oxygen saturation, and compute its correlation with other parameters in each phase.

Due to highly unbalanced time series lengths in the cooling phase, some profiles were shortened

leading to reduced profiles of maximum length of 6750 seconds (225 minutes) for each patient.

Individual patient variability of cerebral oxygen saturation over time around the mean were

computed as shown in Table 1. High variability in the hypothermia phase for patients CCU04

and CCU12 were attributed to the said patient’s death. Absolute values of variability of cere-

bral oxygen saturation in each patient group were computed as shown in Table 2. Variability

in survivor group was lower compared to non-survivor group in all phases. Variability over

time was estimated and presented in Figure 3. Generally, variability was not constant over

time in all phases and for all patient groups. In the cooling phase, for instance, cerebral

oxygen saturation appeared more variable in survivor group compared to non-survivor group.

In other phases, variability appeared comparable over time in both patient groups, though

non-constant.

Correlations between cerebral oxygen saturation and other parameters was investigated by

computing Pearson’s correlation as shown in Figure 4. Both significant positive and negative

correlations were observed, though they were fairly strong. The correlation between cerebral

oxygen saturation measurements in the right and left brain sectors in the cooling phase was

found to be 0.94 (p− value =< 0.0001). This was expected because these are measurements

from the same patient. Corresponding correlations in the hypothermia, rewarming and nor-

mothermia phases were respectively 0.94, 0.90 and 0.69. Peng and Dominici (2008) suggested

that when multiple time series are observed for same parameter belonging to a single patient,

they can be aggregated into a single measurement. Using this suggestion and the presence

of high correlations, cerebral oxygen saturation measurement from the left and right brain

sectors were aggregated into a single response. Correlation between oesophagale and rectal

temperatures were found to be highly significant (p-value <0.05). This is in agreement with
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researcher’s expectations.

According to Hill and Lewicki (2007), just like in most other analyzes in time series analy-

sis, it is assumed that the data consists of a systematic pattern (usually a set of identifiable

components) and random noise (error) which usually make the pattern difficulty to identify.

Most time series analysis techniques involve some form of filtering out noise in order to make

the pattern more salient. In this report, trend of cerebral oxygen saturation for both patient

groups was estimated using GAMM. Results from the cooling phase shown in Figure 5 (c)

indicated that estimated trend was significantly higher in survivor group compared to non-

survivor group in the time intervals [43; 72] and [165; 225] minutes. Estimated total effective

degrees of freedom were 17.474 for selected model. Model selection was done by fitting a

number of plausible models and selecting the best fitting based on AIC values. When similar

analysis was performed in other phases, no significant differences in cerebral oxygen satura-

tion were found to exist between the two patient groups. Between-patient variability was

found to be larger compared to within-patient variability.

6 Conclusion

In conclusion, it is worthy mentioning that a number of challenges, mainly surrounding the

data, were encountered during the analysis. Firstly, the hospital did not have enough equip-

ment for monitoring oesophagale temperature and therefore, some patients did not have mea-

surements for this parameter recorded. Secondly, the sample size was very small compared to

the number of repeated measures. This means that parametric methods such as linear mixed

model would not be appropriate because they would require more parameter than the sample

size. This prompted for use of semi-parametric models such as GAM which estimate trend

using smooth functions in place of parametric terms. Thirdly, due to highly unbalanced time

series in the cooling phase, some longer series were reduced by truncation to match the shorter

series. Though it involved data reduction, it had the advantage of constructing appropriate

tests. Lastly, even with reduced time series, it was still not possible to implement model

fitting process. This led to data aggregation by averaging measurements over minute-time

interval into a single measurement. Though is involved further data reduction, it has the

advantage that analysis was done for the whole measurement profiles under investigation.

As a recommendation, researchers could consider possibility increasing sample size and/or

using other statistical methods that are able to handle these challenges.
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Appendices

A Selected SAS and R Codes

A.1 SAS Code

/∗ Import data from e x c e l f i l e s o f each pa t i en t ∗/

PROC IMPORT OUT = WORK. coo lccu01 DATAFILE = ”C:\ Thes is \Data\ coo l . x l s ”
DBMS = EXCEL REPLACE; RANGE = ”CCU01$” ; GETNAMES = YES; MIXED = NO;

SCANTEXT = YES; USEDATE = YES;SCANTIME = YES; RUN;

/∗ Average l e f t and r i g h t bra in SctO2 measurements ∗/

data coo lccu01 ; set coo lccu01 ; pa t i en t = ”CCU01” ;
coolSctO2 = ( c o o l S c t O 2 l e f t + coo lSctO2r ight )/ 2 ;
i f c o o l S c t O 2 l e f t =. then coolSctO2 = coo lSctO2r ight ;
i f coo lSc tO2r ight =. then coolSctO2 = c o o l S c t O 2 l e f t ; run ;

/∗ Merge data and a l l o c a t e pa t i en t group ∗/

data c o o l a l l ; set coo lccu01 coo lccu02 coo lccu03 coo lccu04
coo lccu05 coo lccu06 coo lccu07 coo lccu08 coo lccu09 coo lccu10
coo lccu11 coo lccu12 ; group =0;
i f pat i en t=”CCU01” | pat i en t=”CCU03” | pat i en t=”CCU05” | pat i en t=”CCU06”
then group =1; by time pat i en t ; run ;

/∗ Summary s t a t i s t i c s for each pa t i en t ∗/

proc u n i v a r i a t e data = c o o l a l l ;
var coolSctO2 coo loe sophaga l e c o o l r e c t a l coolCCO coolCO2 coolpO2 ;
by pat i en t ; run ;

/∗ Summary s t a t i s t i c s for each pa t i en t group∗/

proc u n i v a r i a t e data = c o o l a l l ;
var coolSctO2 coo loe sophaga l e c o o l r e c t a l coolCCO coolCO2 coolpO2 ;
by group ; run ;

/∗ Data aggregat i on over minute−time i n t e r v a l for each pa t i en t ∗/

/∗ CCU01 ∗/

data temp01 ; do i = 1 to 227 ; do j = 1 to 30 ;
ObsID = j ; output ; end ; end ; run ;
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data cooltemp01 ; merge temp01 coo lccu01 ; i f time ne . then output ; run ;

proc summary data = cooltemp01 nway ; output out = coolccu01summ
mean( coolSctO2 ) = SctO2 mean( coo l oe sophaga l e ) = oesophaga le
mean( c o o l r e c t a l ) = r e c t a l mean( coolCCO) = CCO mean( coolCO2 ) = CO2
mean( coolpO2 ) = pO2 ; by i ; run ;

data coolccu01summ ; set coolccu01summ ; time = i ; run ;

/∗ Merge aggregated data ∗/

data coo lagg r ; set coolccu01summ coolccu02summ coolccu03summ
coolccu04summ coolccu05summ coolccu06summ coolccu07summ
coolccu08summ coolccu09summ coolccu10summ coolccu11summ
coolccu12summ ; group =0;
i f pat i en t=”CCU01” | pat i en t=”CCU03” | pat i en t=”CCU05” | pat i en t=”CCU06”
then group =1; by time pat i en t ; run ;

A.2 R Code

# Set data path
data path=(”C: /Thes is/Data” ) ; setwd (data path )

# Import data f o r use in EDA
coo l=read . table ( ” coolReda . txt ” , header=TRUE, sep=” ” )
hypo=read . table ( ”hypoReda . txt ” , header=TRUE, sep=” ” )
rewarm=read . table ( ”rewarmReda . txt ” , header=TRUE, sep=” ” )
normo=read . table ( ”normoReda . txt ” , header=TRUE, sep=” ” )

###########################################################
# Mean S t r u c t u r e #
###########################################################
par ( mfrow=c ( 2 , 2 ) , cex =0.75)

# a ) Cool ing phase
plot ( coo leda$Time , coo leda$survmeano2sat , type=” l ” , col=” blue ” , lwd=2,
xlab=”Time ( in seconds ) ” , ylab=expression (O[ 2 ] ∗” s a t u r a t i o n (%)” ) ,
main=”a ) Cool ing phase ” , yl im=c (50 , 100 ) )
l ines ( coo leda$Time , coo leda$nonsurvmeano2sat , col=” red ” , lwd=2)
legend ( ” t op r i gh t ” , c ( ” Surv ivor s ” , ”Non−s u r v i v o r s ” ) ,
col=c ( ” blue ” , ” red ” ) , lwd=c ( 2 , 2 ) )

# b ) Hypothermia phase
plot ( hypoeda$Time , hypoeda$survmeano2sat , type=” l ” , col=” blue ” , lwd=2,
xlab=”Time ( in seconds ) ” , ylab=expression (O[ 2 ] ∗” s a t u r a t i o n (%)” ) ,
main=”b) Hypothermia phase ” , yl im=c (50 , 100 ) )
l ines ( hypoeda$Time , hypoeda$nonsurvmeano2sat , col=” red ” , lwd=2)
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legend ( ” t op r i gh t ” , c ( ” Surv ivor s ” , ”Non−s u r v i v o r s ” ) ,
col=c ( ” blue ” , ” red ” ) , lwd=c ( 2 , 2 ) )

# c ) Rewarming phase
plot ( rewarmeda$Time , rewarmeda$survmeano2sat , type=” l ” , col=” blue ” , lwd=2,
xlab=”Time( in seconds ) ” , ylab=expression (O[ 2 ] ∗” s a t u r a t i o n (%)” ) ,
main=”c ) Rewarming phase ” , yl im=c (50 , 100 ) )
l ines ( rewarmeda$Time , rewarmeda$nonsurvmeano2sat , col=” red ” , lwd=2)
legend ( ” t op r i gh t ” , c ( ” Surv ivor s ” , ”Non−s u r v i v o r s ” ) ,
col=c ( ” blue ” , ” red ” ) , lwd=c ( 2 , 2 ) )

# d ) Normothermia phase
plot ( normoeda$Time , normoeda$survmeano2sat , type=” l ” , col=” blue ” , lwd=2,
xlab=”Time ( in seconds ) ” , ylab=expression (O[ 2 ] ∗” s a t u r a t i o n (%)” ) ,
main=”d) Normothermia phase ” , yl im=c (50 , 100 ) )
l ines ( normoeda$Time , normoeda$nonsurvmeano2sat , col=” red ” , lwd=2)
legend ( ” t op r i gh t ” , c ( ” Surv ivor s ” , ”Non−s u r v i v o r s ” ) ,
col=c ( ” blue ” , ” red ” ) , lwd=c ( 2 , 2 ) )

###########################################################
# Variance S t r u c t u r e #
###########################################################
par ( mfrow=c ( 2 , 2 ) )

# a ) Cool ing phase
par ( mfrow=c ( 2 , 2 ) , cex =0.75)
plot ( coo leda$Time , coo leda$ survvaro2sat , type=” l ” ,
col=” blue ” , lwd=2, xlab=”Time ( in seconds ) ” ,
ylab=” Variance ” , main=”a ) Cool ing phase ” , yl im=c ( 0 , 160 ) )
l ines ( coo leda$Time , coo leda$nonsurvvaro2sat , col=” red ” , lwd=2)
legend ( ” t op r i gh t ” , c ( ” Surv ivor s ” , ”Non−s u r v i v o r s ” ) ,
col=c ( ” blue ” , ” red ” ) , lwd=c ( 2 , 2 ) )

# b ) Hypothermia phase
plot ( hypoeda$Time , hypoeda$ survvaro2sat , type=” l ” ,
col=” blue ” , lwd=2, xlab=”Time ( in seconds ) ” ,
ylab=” Variance ” , main=”b) Hypothermia phase ” , yl im=c ( 0 , 160 ) )
l ines ( hypoeda$Time , hypoeda$nonsurvvaro2sat , col=” red ” , lwd=2)
legend ( ” t op r i gh t ” , c ( ” Surv ivor s ” , ”Non−s u r v i v o r s ” ) ,
col=c ( ” blue ” , ” red ” ) , lwd=c ( 2 , 2 ) )

# c ) Rewarming phase
plot ( rewarmeda$Time , rewarmeda$ survvaro2sat , type=” l ” ,
col=” blue ” , lwd=2, xlab=”Time ( in seconds ) ” ,
ylab=” Variance ” , main=”c ) Rewarming phase ” , yl im=c ( 0 , 160 ) )
l ines ( rewarmeda$Time , rewarmeda$nonsurvvaro2sat , col=” red ” , lwd=2)
legend ( ” t op r i gh t ” , c ( ” Surv ivor s ” , ”Non−s u r v i v o r s ” ) ,
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col=c ( ” blue ” , ” red ” ) , lwd=c ( 2 , 2 ) )

# d ) Normothermia phase
plot ( normoeda$Time , normoeda$ survvaro2sat , type=” l ” ,
col=” blue ” , lwd=2, xlab=”Time ( in seconds ) ” ,
ylab=” Variance ” , main=”d) Normothermia phase ” , yl im=c ( 0 , 160 ) )
l ines ( normoeda$Time , normoeda$nonsurvvaro2sat , col=” red ” , lwd=2)
legend ( ” t op r i gh t ” , c ( ” Surv ivor s ” , ”Non−s u r v i v o r s ” ) ,
col=c ( ” blue ” , ” red ” ) , lwd=c ( 2 , 2 ) )

###########################################################
# C o r r e l a t i o n S t r u c t u r e #
###########################################################

panel . cor<−function (x , y , d i g i t s =2, p r e f i x=”” , cex . cor )
{

usr<−par ( ” usr ” ) ; on . exit (par ( usr ) )
par ( usr=c ( 0 , 1 , 0 , 1 ) )
r<−cor (x , y , use=” complete . obs” )
txt<−format ( c ( r , 0 . 123456789 ) , d i g i t s=d i g i t s ) [ 1 ]
txt<−paste ( p r e f i x , txt , sep=”” )
i f ( missing ( cex . cor ) ) cex<−1 .0
t e s t<−cor . t e s t (x , y )
S i g n i f<−symnum( t e s t $p . value , co r r=FALSE, na=FALSE,

cutpo in t s=c ( 0 , 0 . 0 5 , 1 ) ,
symbols=c ( ”∗” , ” ” ) )

text ( 0 . 5 , 0 . 5 , txt , cex=cex )
text ( 0 . 8 , 0 . 8 , S i g n i f , cex=cex , col=2)

}
pairs (˜SctO2+oesophaga le+r e c t a l+CCO+CO2+pO2 ,
lower . panel=panel . smooth , upper . panel=panel . cor )

###########################################################
# F i t t i n g GAMM #
###########################################################

# Model 1 : Al lowing curves to d i f f e r by p a t i e n t group #
model1=gamm( SctO2˜s (time , bs=” cr ”)+s (time ,by=as . numeric ( Group==1)) ,
data=c o o l f i n , random=l i s t ( pa t i en t=˜1) )

# Examine gam and lme p a r t s o f model
summary( model1$gam ) ;summary( model1$lme )

# Plot the model terms#
plot ( model1$gam , scale =0, xlab=”Time ( in minutes ) ” ,
ylab=” f (Time) ” , main=”c ) D i f f e r e n c e curve ” )
abline ( a = 0 , b = 0 , col = ” red ” , l t y=”dashed” )
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abline ( v=42, col = ” red ” , l t y=”dashed” )
abline ( v=73, col = ” red ” , l t y=”dashed” )
abline ( v=165 , col = ” red ” , l t y=”dashed” )
abline ( v=225 , col = ” red ” , l t y=”dashed” )

# Plot r e s i d u a l s v e r s u s time#
x1<−model1$lme ;
plot ( x1 , resid ( . , type=”p” )˜time , main=”d) Model d i a g n o s t i c p l o t ” )

# Model 2 : Without c o r r e c t i o n term
model2=gamm( SctO2˜s (time , bs=” cr ” ) , data=c o o l f i n , random=l i s t ( pa t i en t=˜1) )

# Examine gam and lme par t o f model
summary( model2$gam ) ;summary( model2$lme )

# Plot the model terms
plot ( model2$gam , scale =0,page=1)

# Plot r e s i d u a l s v e r s u s time
x2<−model2$lme ; plot ( x2 , resid ( . , type=”p” )˜time )

# Model 3 : Al lowing cons tant group e f f e c t over time
model3=gamm( SctO2˜Group+s (time , bs=” cr ” ) , data=c o o l f i n ,
random=l i s t ( pa t i en t=˜1) )

# Examine gam and lme par t o f model
summary( model3$gam ) ;summary( model3$lme )

# Plot the model terms
plot ( model3$gam , scale =0,page=1)

# Plot r e s i d u a l s v e r s u s time
x3<−model3$lme ; plot ( x3 , resid ( . , type=”p” )˜time )

# Compute AIC v a l u e s
AIC( model1$lme , model2$lme , model3$lme )
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