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Abstract

Prognostic models are developed to assist in clinical decision making particularly in regards to

patient treatment and follow-up time. The Cox proportional hazards model is the most extensively

used in analysis. As such almost all prognostic models in survival data are developed based on

Cox models. However, overreliance on the the Cox model alone is common even in the presence of

clustering ignoring the intrinsic heterogeneity and dependency present in such data. This project

highlight the need for prognostic model building to account for clustering with a case study in

Traumatic Brain Injury(TBI). Two approaches are used to account for clustering, the fixed effect

and the frailty models. By comparing model parameter estimates and standard errors for these

methods against the naive Cox, we demonstrate that lack of accounting for heterogeneity may lead

to invalid inference as model parameter estimates have underestimated standard errors leading to

inflated type I error. Comparison of model predictive performance in terms of discrimination and

calibration showed that accounting for clustering substantively improved the discriminating ability

as assessed by the C-index. However no improvement was found in terms of calibration. By use of a

novelle idea on calculation of between and within cluster c-indices, we demonstrate how much model

discrimination ability is improved by inclusion of the random effect. Our results showed again that

the random effect substantively improves the models discriminative performance. Though the use

of fixed effect model corrects for the clustered nature of the data as well, we argue that the model

has limitations such as assumption that the clusters used in fitting the model form the population.

As a result the model cannot be generalized to the outside population.

Key Words: Prognostic Models; Cox Proportional Hazard models; Fixed effect Models; Frailty

Models; Prognostic Model validation; Calibration; Discrimination.
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Chapter 1

Introduction

1.1 Analysis of time to event data

Analysis of time to event data arises more often in various areas of study, for instance in engineering

where reliability of equipment is judged by time to failure or in clinical trials where interest is in the

time until disease healing, pain cessation, or time till death in terminal diseases such as cancer. The

latter case scenario is well reflected in the common terminology: ’Survival Data Analysis’ arising from

mortality studies. Data arising from such study designs are characterized by censoring which renders

the standard statistical methods such as linear models and generalized linear models inapplicable.

Further still, the population considered is often changing as only individuals at risk at a given time

point are considered, an aspect known in survival data analysis as conditioning (Duchateau and

Janssen, 2008). Only right censoring is considered here as it is the most relevant and also the most

common in clinical trial settings. Right censoring occurs when an event fails to be realized within

the stipulated study timeframe (Wienke, 2011). The other types of censoring are left and interval

censoring; and are extensively discussed in (Getachew et al, 2009).

The Kaplan Meier curve (Kaplan and Meir, 1958) is the most common non-parametric estimation

approach applied in survival data analysis. In this approach, the data are summarized in a plot of

survival functions from which summary statistics such as median time to event or event free rate at

a time point can be estimate (Legrand, 2005). The Kaplan Meier curve assumes independence and

homogeneity between observations. However, in most cases, observations in Survival data analysis

exhibit a form of heterogeneity (Korosteleva, 2009). For instance in clinical trials, patients may
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differ in terms of age, gender and many other characteristics. It is often of more interest to study

the relationship between survival times and such covariates often measured at baseline particularly

if they can be controlled. Though stratified Kaplan Meier curves can be applied, it is not capable to

simultaneously take many such variables, into account. Furthermore, it is difficult to quantify the

effect of the stratifying variable on the survival times (Fox, 2002). The Proportional hazards model

introduced by Cox (1972) is a regression model with event time as the response variable. Unlike

the Kaplan Meier approach, the model can simultaneously take several covariates, often referred

to as risk factors, into account. The Cox model is perhaps the most widely used in analysis of

time to event data today. The model assumes a common study population risk of death or event

(hazard) function known as the baseline hazard. Individual subject information is embedded in the

model through the covariates acting multiplicatively on the baseline hazard increasing or decreasing

individual risk based on the prognostic information (Wienke, 2011).

1.1.1 Clustered Data Analysis

Clustered data arises from many applications, for instance in clinical trials where patients are of-

ten treated in groups in given hospital centers or countries. There has been a spiraling approval

worldwide for randomized control multi-center clinical trials spanning various countries, virtually

making them a gold standard in clinical research. Such trials are favored in terms of timely patient

recruitment as well as ease of generalizability of the trial results based on the diversity of the study

population (Buyse et al., 1984), although Yamaguchi et al. (2002) as quoted by Legrand (2005)

warn of over-optimism as most of the individual centers only recruit a non-random subset of the

target population. The key feature of clustered data is that outcomes from the same cluster are

likely to be positively correlated. The proper analysis of clustered data requires that this correlation

be taken into consideration. Ignorance of such correlation can bias the statistical inference Ying

and Liu (2006). Analysis of clustered data assuming independence may lead to correct derivation

of effect estimates (e.g. mean differences, odds ratios) without adjusting correlation. However, the

variability of these effects would likely be biased, leading to incorrect test statistics and confidence

intervals Ying and Liu (2006) and thus invalid inference.
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In survival data, adjustment for the clustering is often done by either introducing the cluster as

a fixed effect using dummies, or a random effect known as a frailty term. The fixed effect model

assumes that the considered clusters are the all clusters in the study while the random effect model

assumes that the clusters considered in the model are only a random sample from the population.

Like in Linear Mixed models and Generalized Linear mixed models (See Verbeke and Molen-

berghs, 2000; Molenberghs and Verbeke, 2005), frailty models accounts for the variability between

the clusters which is modeled with a random effect known as frailty: a term first introduced by

Vaupel et al. (1979) in univariate survival data analysis to cater for unobserved covariates. It was

later first applied to multivariate survival data by Clayton (1978) as shared (within a cluster) frailty.

This project focuses on the shared frailty and its application on prognostic modeling.

By allowing individuals in a cluster to share the same frailty variable, we induce positive statistical

dependence between the individuals in a cluster. The parameter of the frailty distribution then

acts as an association parameter since the event times become more strongly associated as the

frailty variance increases. Vaupel et al. (1979) postulate that conditional on the frailty term, the

survival times are independent. Because of its simple interpretation and mathematical tractability,

the gamma frailty model has been extensively studied (Nielsen et al., 1992, Oakes, 1982). The

distribution allows for key joint quantities such as the Kendalls tau which estimates the within

cluster dependence to be estimated.

Further discussion on these two approaches are given in section 2.1.

1.2 Prognostic Modeling

Prognostic models are developed to assist in clinical decision making particularly in regards to

patient treatment and follow-up time Taktka et al. (2009). The models investigate the relationship

between patient characteristics and outcome Legrand et al. (2009). They are often of regression form.

Factors found to be univariately or jointly associated with the response are known as prognostic

factors Harrell et al. (1996)

A key aspect of the prognostic models is the predictive performance of the model thus validation

plays an important role in prognostic modeling. More often a prognostic index is developed from
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the model based on weighted sum of the prognostic factors, where weights are the multivariate

regression coefficients or a form of transformation (see Legrand et al. (2009)). This new variable

is used to classify patients into different risk levels e.g. poor, moderate and good. As noted by

Altman and Royston (2000), many prognostic indices fail to be utilized due to lack of clinical

credibility and evidence of additional information to inform decision making. Thus as stated by

Legrand et al. (2009), the main determinant in the quality of a prognostic model is its validity

and generalizability. Justice et al. (1999) remark that the two main components of validation are

calibration and discrimination. This two aspects are discussed further in Section 2.2.

1.3 Traumatic Brain Injury (TBI)

Traumatic brain injury (TBI) also known as intracranial injury occurs when the brain sustains trau-

matic injuries arising from external mechanical force such as acceleration, or deceleration, impact,

blast waves or penetration by a projectile Maas et al. (2008). The most common TBI cases arise

from falls, car accidents and violence. According to Saatman et al. (2008) the severity of TBI can

be classified into mild, moderate and severe based on the Glasgow Coma Scale quantifications. Ac-

cording to Thurman et al. (1999), TBI is a leading global cause of death and disability in children

and young adults. It is estimated that about 14 million people are estimated to sustain TBI each

year in the USA, of whom 50 000 succumb to their injuries. Furthermore about 2 percent of the US

population is believed to live with TBI related disabilities today. In Europe, TBI is related annual

fatality incidence or hospital admissions stands at about 235 per 100 000 persons. In spite of this,

there is little concerted effort to deal with TBI particularly in pharmaceutical related research in-

vestments. This has largely been attributed to the poor knowledge of its pathological pathways and

prognostication implying that majority of the people on whom the therapies are tested are often less

likely to benefit from the intervention. As such it is of great importance to determine the relevant

prognostic factors in determining the possible patient outcome to determine the suitable therapy.

More importantly, how these factors combine to affect the patient’s outcome. Heterogeneity among

care centers is also quoted as one of the barriers in understanding TBI (Saatman et al., 2008).
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1.3.1 Previously identified TBI Prognostic factors

Lingsma et al. (2010) give a vivid review of literature on factors previously found to affect patient

TBI outcome. Though they discuss various outcomes such as mild disability vs recovery, death or

vegetative state, this paper focuses only on the death outcome. Among the factors cited to influence

TBI outcome are demographic factors such as age. Almost all the studies reviewed by Lingsma

et al. (2010) found older patients more associated to poorer outcomes. Gender and ethnicity have

also been weakly linked to TBI. Meta analysis studies by Faraceand and Alves (2000) associated

women to poorer outcome compared to men. Similarly black patients are weakly associated to

poorer outcomes compared to their asian and white counterparts. Clinical severity related factors

have also been closely associated to variation in TBI outcomes. Studies by Gennarelli et al. (1989)

and McMahon et al. (1999) have associated coexistence of moderate TBI and extra-cranial injuries

with high mortality and morbidity. However, there is no consensus on the prognostic value of extra

cranial injury on TBI outcome with some studies Sarrafzadeh et al. (2001) attributing the effect

on primary cerebral damage and not extra cranial injury. The severity of extra-cranial injuries is

indicated by consciousness level assessed with GCS.

Balestreri et al. (2004) associate abnormality in pupillary reactivity to poorer outcomes. The

abnormality is attributed to the brain cistern damage or compression. Structural abnormalities

observed from CT-scan have also shown varied effects on the TBI outcomes. These abnormalities

include status of basal cisterns, midline shift, the presence and type of intracranial lesions and

traumatic subarachnoid haemorrhage. Other prognostic factors that have been widely studied in

literature include biomarkers such as putative serum and laboratory values such as high glucose

concentration and platelets coagulation.

This paper focuses on easily measurable factors under normal clinical conditions obtained at patient

admission, similar to those considered by Steyerberg et al. (2010). Particular interest is paid to the

core prognostic factors: motor GCS score; age and pupils reactivity.
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1.4 Objective

This report aims to study the application of shared frailty models in to prognostic modeling for TBI.

We target to demonstrate the need to account for heterogeneity in prognostic modeling of clustered

data where the shared frailty model is the natural modeling tool. As such we fit models ignoring the

clustered nature of the data and compare to models considering clusters as fixed effects and models

with clusters as frailties. Models are compared in terms of their parameter estimates and associated

standard errors. Of interest is how the models compare in terms of their predictive performance

based on calibration and discrimination.

1.5 The data

The data set considered arose from the CRASH study and consisted of patients’ time of randomiza-

tion and time of death or censoring and several covariates that could possibly explain the patient’s

time to death since randomization. The covariates included the three major prognostic factors

for TBI: age, pupils reaction (both reactive vs 1 or none); motor score (gcs motor - categorical,1-

5). Other covariates were gender; mechanism of injury (cause), neurosurgical operation; CT scan

(ct scan) cortical contusion (cc), patient’s country income classification (income, high or low), major

extracranial injury. Abnormal scan related variables: One or more petechial haemorrhages within the

brain (nesrip); Obliteration of the third ventricle or basal cisterns(otvbs); Subarachnoid bleeding(sb);

Midline shift over 5mm(mso5 ); Non evacuated haematoma (neh); and Evacuated haematoma (eh).

Also provided was the treatment center (hospital id) for each patient. A description of all the

variables considered is provided in table B.6

1.6 Software

The R-program v2.13.1 was extensively used. The Package ’Survival’ was used to fit the models.

Calibration and discrimination based on resampling was done using the rms package by Frank Harrell

(1996). The Package Coxme was used to calculate the between and within cluster c-indices. SAS

procedures LIFETEST, PHREG and LIFEREG were also used for Kaplan Meier, PH and parametric

models respectively.
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Chapter 2

Methodology

2.1 Modelling Time to Event Data

Analysis of time to event data, commonly known as Survival Data Analysis, deals with failure time

as the dependent variable representing duration until the occurrence of a well defined event such

as death Klein and Moeschberger (2005). A distinguishing characteristic between survival data

analysis and other statistical methods is the presence of censoring. We focus on right censored data

only. Let N represent the number of patients under study. Survival data is usually recorded in the

form (Yj , δj), with Yj = min(Tj , Cj) where Tj is the time to event for the jth patient, while Cj is

the censoring time; δj = I(Tj < Cj) = 1 for uncensored observation and 0 otherwise. A series of

interrelated functions can be used to describe survival data. The survival function S(t) = P (T > t),

denotes the probability of surviving beyond time t. Let f(t) be the density of function of time to

event T , and F (t) the corresponding distribution function. Further still denote the instantaneous

failure rate or risk of failure conditional on having survived to time t also the known as the hazard

function by

h(t) = lim
∆t→0+

(P (t ≤ T < t+ ∆|T > t))

∆t
(2.1)

The cumulative hazard function is derived from the hazard function as

H(t) =

∫ t

0

h(s)ds (2.2)
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Further

h(t) =
f(t)

S(t)
=
−d
dt
logS(t) (2.3)

and

S(t) = exp(−H(t)) (2.4)

2.1.1 The Kaplan Meier

The Kaplan Meier estimate for survival at time t is given by

Ŝ(t) =
∏
k<t

Rk − dk
Rk

(2.5)

where Rk is number at risk just before the event at time k while dk is the number of events at

time k. It is a step function that decreases at time of deaths with × representing censoring. The

survival function can also be derived from the Nelson and Alen (1972) estimator of the cumulative

hazard function given as

H(t) =
∑
k<t

(dk)/Rk = −logS(t) (2.6)

2.1.2 Cox Regression

This model is also often referred to as proportional Hazards model for the fact that for any two

individuals at any time point t, their hazards are related by a proportionality constant that does

not depend on t but only the regression coefficients. The model proposes a common hazard function

h0(t) also referred to as the baseline hazard for all subjects under study. The hazard, h(t), for an

individual with a k-dimensional covariate vector X is then given by

h(t|X) = h0(t)exp(β′X) (2.7)

A common assumption is that no parametric form is imposed on the baseline. Thus, the model

often is referred to as semi-parametric because it allows the baseline hazard to take any unspecified

form while the covariates only enter the model linearly (Wienke, 2011). The Cox model parameters

can thus be estimated by the method of partial likelihood presented alongside by Cox (1972) in the
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same paper he proposed the model. Assuming no ties in the data, the partial likelihood is given as:

L(β) =

n∏
i=1

{ exp(β′Xi)∑
j<t exp(β

′Xj)

}δi
(2.8)

Although the estimates are less efficient than the maximum likelihood estimates, having not to

impose a parametric form on the baseline hazard serves as a remedial virtue against misspecification

(Keele, 2007). In the presence of ties, estimates of the partial likelihood parameters are provided by

Breslow, Cox, or Efron approximation is used as full likelihood estimation is time consuming (Pham,

2005) The Assumption of non-parametric baseline can be relaxed to allow the baseline to take a

parametric form. The most common being the Weibull distribution. Other possible distributions

include the Gamma, lognormal and exponential. The betas in the model are interpreted as the

log-hazard ratios.

2.1.3 The Fixed Effect Model.

Consider the hazard function,

hij(t) = h0(t)exp(X ′iβ) (2.9)

Where hij(t) is the hazard function at time t for subject j(j = 1,· · · , ni) from cluster i with

covariate information Xij , and h0 the baseline hazard. The fixed effect model introduces the cluster

effect ci in the model as a fixed effect with a restriction c1 = 0 to avoid over-parameterizatiion. The

model therefore becomes,

hij(t) = h0(t)exp(X ′iβ + ci) (2.10)

2.1.4 The shared frailty

The intuitive idea behind frailty modelling is that some subjects are more or less susceptible to

observe an event than can be accounted by the model specification, i.e. more or less ”frail” Keele

(2007). In the univariate frailty setting, a random effect (frailty term) is introduced for each subject

to account for the unobserved heterogeneity. This concept is covered in detail by Nelson (1986)

alongside the concept of selection where the most frail individuals die out first and systematic
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selection of less frail ones follows as a consequence. In this paper we focus on the multivariate

shared frailty which assumes the random effect to operate at a group level.

Consider individuals drawn from clustered data with a total of K clusters of sizes n1, n2,· · ·nn,

With
∑n
i=1 ni = N , the conditional hazard function for individual i in cluster k is then given by

hij(t) = h(t|xij , ui) = uih0(t)exp(β′xij) (2.11)

a product of cluster specific random effect ui representing the frailty and baseline hazard function

h0(t) common to all individuals and individual specific covariate effects. Individuals in cluster i are

assumed to share the same frailty, ui which is the cause of dependence between lifetimes within

the cluster. The Frailty model further assumes that given the random effect uk, the proportional

hazards assumption holds. hij(t) is thus called the conditional hazard given ui. The dependence is

positive unless variance ui = 0 meaning no variability between clusters, in which case the frailty is

said to be degenerate. The corresponding conditional survival function for subject j in cluster i is

then given by

Sc(t|xij , ui) = [S0(t)]uiexp(β
′xij) (2.12)

which represents the probability of being alive at time t given that a patient is in the ith cluster.

Though the random effect is unobserved, it is believed to follow a certain distribution f(U), the

most common being the gamma frailty, the log-normal frailty and the constant stable frailty. The

shared frailty model assumes correlations between lifetimes of randomly selected pairs are always

the same implying a symmetric situation equivalent to that in the compound symmetry assumption

in mixed models.

Shared Gamma Frailty

The one parameter gamma frailty is the most widely applied particularly due to its mathematical

tractability and ease of parameter interpretation. Fitting of the gamma frailty depends on whether

a parametric assumption is made on the baseline survival or not. For the parametric gamma, the

unconditional likelihood can easily be derived by integrating out the clusters. This yields simple
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expressions of the likelihood function, which are important for ML parameter estimation. As noted

by Wienke (2011), its closed form can easily be obtained from

L(β,θ, λ) =

n∏
i=1

∫ ∞
0

ni∏
j=1

[
uih0(tij ;θ)exp(β′Xij)

]δi
exp(−uiH0(tij ;θ)eβ

′Xijf(ui;λ)dui (2.13)

with f(u) ∼ gamma(λ, λ)

=

n∏
i=1

Γ( 1
λ + di)

∏ni
j=1

[
h0(tij ; θ)exp(β

′Xij)exp(β
′Xij)

]δi
(

1
λ +

∑ni
j=1Ho(tij ;θ)eβ

′Xij

)( 1
λ+di)

λ
1
λΓ( 1

λ )

(2.14)

The log-likelihood is obtained by taking the logarithm of equation 2.14. The frailty term is explicitly

estimated as

ui =
( 1
λ + di)

1
λ +

∑ni
j=1Ho(tij ; θ)eβ

′Xij
(2.15)

where di is the number of events in cluster is i , θ is the baseline parameter vector and λ is the

single parameter gamma variance. In semi-parametric frailty models, the baseline hazard is treated

as a nuisance parameter. As such the Expectation Maximization (EM) algorithm (Dempster, 1977)

first adopted for survival data by Nielsen et al. (1992) is the ideal method for parameter estimation

treating the random effects as unobserved variables. Execution of the EM algorithm is however slow

as it requires many iterations. An estimation approach which uses penalized partial likelihood (PPL)

is presented by Therneau and Grambsch (2000) where the random effect is treated as a penalty term.

In the Gamma frailty model both the PPL as well as EM algorithm lead to the same result. This

does not hold for other frailty distributions. The frailty term in the semi-parametric case is given

by

ui =
( 1
λ + di)

1
λ +

∑ni
j=1Ho(tij)eβ

′Xij
(2.16)

where H0(tij) in this case is a non-parametric estimator of the baseline hazard. The parameters

are adjusted for the correlation in the clusters, and the frailty variance is interpreted as a measure

of the correlation between the lifetimes in the clusters. Other measures of dependence such as the
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Kendall’s Tau, K = θ/(2 + θ), can also be derived from the parameters of the model (Shoukri et al.,

2010). K is interpreted as the intra-cluster correlation.

2.1.5 The Weibull parametric model

Although this report is intended to focus on semi-parametric Cox proportional hazards model, results

of model fit are compared to those from the parametric fit, in particular the weibull, which is the

most commonly used distribution on the baseline. The Weibull hazard function is of the form :

hi(t) = exp(x′iβ)ρλρtρ−1) (2.17)

and the corresponding survival function is of the form:

Si(t) = exp(−λtpexp(ρxit′β)) (2.18)

2.2 Prognostic model performance for Survival Data

2.2.1 Calibration

Calibration is the degree of correspondence between the model estimated probabilities and the actual

observed probability Dreiseitl and Ohno-Machado (2002). This is usually presented using calibration

curves which plot predicted versus observed outcomes. A calibration curve for time to event data

plots the Kaplan Meier estimates at a certain time point against the predicted probabilities at that

time point (Vergouwe et al., 2002). Subjects are usually grouped for instance by deciles of predicted

probability. The Kaplan Meier is calculated for each group and plotted against model predicted

survival. Calibration can also be assessed by plotting the observed survival time object against the

predicted and assessing the slope. i.e. Y v/s β′X , where Y is a survival object. However, this

approach may be limited by censoring and the first is the most applied. In either cases, the slope

should be equal to one in case of ideal calibration.
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2.2.2 Discrimination: the C-index

Discrimination is the model ability to correctly classify patients into different groups (Steyerberg

et al., 2010). In survival data analysis, discrimination assess if the relative ranking of individual

predicted risk is in the correct order as of the observed. The c-index is the most common tool in

evaluation of survival model discrimination. It is estimated by looking at all pairs of samples which

are comparable and calculating the probability of the pairs being concordant. Two subjects i&j

are comparable if their event times are not tied i.e (Ti < Tj |Di = 1), both are not censored, or

the censoring occurs for one member after the other experiences an event. The ties are neglected.

Two event times are concordant if further the predicted survival probability of subject i above with

shorter event time is lower than that of subject j. That is (Si > Sj |Ti < Tj), where S represents

the survival probability.

2.2.3 Validation of PI performance

Prognostic model performance can be studied in sample of patients different from the developing

sample. Internal validation is when a model is fit on a section of a data set and validated on the

remainder Steyerberg et al. (2010). External validation is carried out on a data set independent

from the development sample e.g. data from different centres collected by independent investigators

(Altman et al., 2008, Harrell, 2001); thus model generalizability is tested on a more diverse scenario

broadening the conclusions.

Model Performance in clustered data

In the presence of clustering, van Oirbeek and Lesaffre (2010) suggested a novelle approach that

uses the random effect in its calculations and can be used to judge the significance of accounting for

covariates and clusters apart as well as jointly by comparing the model discriminating abilities in

terms of the c-indices. Define the c-index as

C = P (T̂i < T̂j |Ti < Tj) = P
(
S(t|Xi) < S(t|Xj)|Ti < Tj

)
(2.19)

for any t > 0
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In a PH model this can also be expressed as

Si(t) < Sj(t)⇔ S0(t)
eβ

′Xi
< S0(t)

eβ
′Xj ⇔ eβ

′Xi > eβ
′Xj (2.20)

Lessafre and Oirbeek demonstrate that two classes of concordance can be inferred: Between and

within cluster concordance depending on the pairs considered. These can further be broken into

marginal, conditional and overall concordance. The marginal is derived by considering the marginal

survival function from which the frailties have been integrated out. Let Sc(t|x, uk = S0(t))uke
β′Xi

be the conditional survival for subject in cluster k, the between cluster concordance is defined as

Sc(t|x, uk) < Sc(t|x, ul)⇔ S0(t)
uke

β′Xi
< S0(t)

ule
β′Xj ⇔ uke

β′Xi > ule
β′Xj (2.21)

This reduces to equation 2.20 in the case of within cluster. The overall concordance can then be

expressed as C0 = Cwπw+CBπB where Cw and CB are within and between concordance probabilities

respectively; while πw and πB are probabilities that pairs are within and between cluster respectively.

It is further noted the Co converges to CB if the cluster size is fixed and the number of clusters

increases infinitely and converges to Cw if the number of clusters is fixed and the cluster size increases

infinitely. As such it is not a suitable measure of model performance as it is a function of the number

and size of clusters. Cw measures the intra-cluster predictive ability of β while marginal CB measures

the inter-cluster predictive ability of β . The inter-cluster predictive ability improvement of the model

can be checked by comparing the Conditional CB and marginal CB .

2.3 Missing data

To deal with missing data, multiple imputations were generated by Gibbs sampling as described in

van Buuren et al. (2005). This algorithm imputes an incomplete column (the target column) by

generating ’plausible’ synthetic values given other columns in the data. Each incomplete column

is both a target for imputation and a predictor to other incomplete columns. The most recent

imputations are re used to complete the predictors before the target column is imputed. A separate

univariate imputation model is specified for each column, depending on its measurement level.

Dummy variables are created for categorical data before the corresponding variable is imputed.
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Chapter 3

Results

3.1 Exploratory Analysis

The main data analyzed in this project was a part of a larger data set from the CRASH study

on TBI. The original data consisted of 10,008 patients recruited into 239 centers. However, the

data used in this analysis comprised of the top 20 of the original clusters. These clusters were

each randomized, 10 to the model development set and 10 to the validation set. Preference for the

subset was based on study objective which was to compare models with different cluster handling

techniques. Particularly it was important to assess the performance of the validation indices within

each cluster hence clusters of substantial size would be required. It is also believed that the C-index

is influenced by the size and number of the clusters (van Oirbeek and Lesaffre, 2010), and therefore it

was important to validate the model on an almost equal data set. It is a common practice to analyze

an informative subset of clusters. For instance Legrand et al. (2009) analyze a subset of clusters

with at least 5 observations each, they refer to as informative clusters. It’s also cited in literature

that the fixed effects model becomes unstable with increase in the number of clusters particularly

when the amount of censoring is very high (Heinze and Schemper, 1993), which was the case in the

full dataset. Thus for demonstrative purposes, it was found reasonable to base the results on this

subset although the models were later also assessed on the full set. The minimum and maximum

number of patients per cluster was 118 and 841 respectively for the training set and 113 and 525 for

the test set.
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Table 3.1: The baseline variable distribution

Train Test
Variable Frequency Percent Frequency Percent

cc 1 366 16.97 287 14.21
2 1034 47.94 1201 59.46

NA 757 35.1 532 26.34
Missing 339 291

ct scan 1 1732 69.59 1772 76.91
2 757 30.41 532 23.09

Missing 7 7

gender 1 550 22.04 459 19.86
2 1946 77.96 1852 80.14

income 0 382 15.3 542 23.45
1 2114 84.7 1769 76.55

major extracranial injury 0 1872 75.54 1780 77.8
1 606 24.46 508 22.2

Missing 18 23

neurosurgical operation 1 413 16.69 422 18.43
2 2061 83.31 1868 81.57

Missing 22 21

neh 1 441 17.73 388 16.85
2 1290 51.85 1383 60.05

NA 757 30.43 532 23.1
Missing 8 8

eh 1 108 4.34 279 12.11
2 1623 65.23 1492 64.79

NA 757 30.43 532 23.1
Missing 8 8

nesrip 1 396 15.92 414 17.98
2 1335 53.66 1357 58.92

NA 757 30.43 532 23.1
Missing 8 8

Ns 1 451 18.13 484 21.02
2 1280 51.45 1287 55.88

NA 757 30.43 532 23.1
Missing 8 8

otvbs 1 329 13.22 475 20.63
2 1402 56.35 1296 56.27

NA 757 30.43 532 23.1
Missing 8 8

pupils 0 2245 89.94 2118 91.65
1 251 10.06 193 8.35

Missing 2 8
mso5 1 459 18.45 626 27.18

2 1272 51.13 1145 49.72
NA 757 30.43 532 23.1

Missing 8 8

Gcs motor 1 170 7 113 6
2 95 4 82 5
3 138 6 124 7
4 252 10 238 13
5 1841 74 1240 69

Table 3.1 presents baseline covariate distribution for the training and the test data sets. Age

was the only continuous covariate. The median age was 30 while the mean was 35.1 with a standard

deviation of 16.5.

The analysis began by graphical exploration of the data to visualize the distribution of the survival

times with respect to the clusters and the recorded variables. Figure 3.1 below illustrates the overall

survival curve for all subjects in the training set. From the Kaplan Meier Curve, it can be concluded
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that most of the deaths that occurred in the six month study were recorded within the first month.

Most of the individuals who lived beyond one month survived to the end of the study.
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Overal Kaplan Mieer Curve for the TBI dataset

Figure 3.1: Kaplan Meier Curve for Overall Population Survival

Figure 3.2 presents survival curves for the selected 10 clusters in the training set. From the plots

we can judge that while some survival curves overlap, some show clearly differing trends indicating

possible cluster effect thus the need to account for it. The Kaplan Meier was also used to assess

survival variation by variable levels (results omitted)
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Figure 3.2: Survival Curves for the 10 clusters in the training set

3.2 Univariate Models

Model fitting commenced with univariate models on the training set. This was important in not

only identifying factors to be included in the multivariate model, but also in identifying relevant

prognostic factors influencing TBI related deaths independent of the other factors. Due to the

substantial amount of data as stated by Courgeau and Levievre (2001), the proportional hazards

model was preferred in this initial analysis. Table 3.2 below presents the results from the univariate

analysis.
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Table 3.2: Univariate result for the Cox PH model, frailty and fixed effects model

Parameter Marginal frailty Fixed

age 0.019 (0.003 ; 0.007) 0.021 (0.003) 0.021 (0.003)
factor(ct scan)2 -2.21 (0.265 ; 0.795) -0.976 (0.319) -0.896 (0.321)
factor(pupils)1 1.909 (0.119 ; 0.387) 1.48 (0.127) 1.469 (0.126)
as.factor(motor gcs)2 0.453 (0.198 ; 0.307) -0.311 (0.207) -0.335 (0.206)
as.factor(motor gcs)3 -0.008 (0.198 ; 0.261) -0.387 (0.208) -0.405 (0.207)
as.factor(motor gcs)4 -0.54 (0.19 ; 0.282) -0.972 (0.202) -0.99 (0.201)
as.factor(motor gcs)5 -1.977 (0.165 ; 0.412) -2.185 (0.178) -2.2 (0.177)
factor(cause)2 0.113 (0.168 ; 0.214) 0.078 (0.17) 0.075 (0.17)
factor(cause)3 -0.125 (0.132 ; 0.251) 0.036 (0.136) 0.037 (0.136)
factor(major extracranial) 0.446 (0.122 ; 0.169) 0.333 (0.125) 0.33 (0.125)
as.factor(ns)2 2.166 (0.308 ; 0.335) 2.1 (0.314) 2.098 (0.318)
as.factor(nesrip)2 -0.559 (0.139 ; 0.186) -0.547 (0.145) -0.549 (0.145)
as.factor(otvbs)2 -1.346 (0.127 ; 0.214) -1.18 (0.134) -1.156 (0.137)
as.factor(neh)2 -0.862 (0.128 ; 0.203) -0.832 (0.131) -0.833 (0.132)
as.factor(mso5)2 -1.284 (0.148 ; 0.215) -1.26 (0.151) -1.269 (0.152)
factor(cc)2 -0.635 (0.13 ; 0.187) -0.574 (0.131) -0.567 (0.131)
factor(gender)2 0.421 (0.156 ; 0.222) 0.171 (0.157) 0.168 (0.157)
income 0.364 (0.18 ; 0.488) 0.671 (0.462) 0.465 (0.453)

From the univariate analysis, the Cox PH model fitted without adjustment for clustering found

all variables including gender (p−val = 0.007) and income (p−value = 0.0427) significant except the

cause of the injury. On the other hand the frailty and the fixed effect models found both gender and

income non-significant. This is in line with literature as stated by Borecki and Province (2008) that

failing to account for clustering in the Cox models may lead to inflation of type I error. Adjustment

of these errors was done in the Cox model using robust sandwich estimator for standard errors

(Huber, 1967; White, 1982), with model parameters interpreted at marginal level. After adjustment

the two variables were borderline insignificant. The fixed effect model and the frailty model give very

close parameter estimates as well as standard errors as they both capture the effect of clustering.

3.3 The Core Model

Special interest was in the performance of model comprising of the core factors : Age, Pupils and

GCS motor. These factors have extensively been analyzed in literature based on other methods

and are often the basis of prognostic models in TBI. For instance, (Lingsman et al, 2010) analyzed

the same data using Generalized Linear Models based on binary mortality outcome at 6-months to

determine cluster influence on treatment effect. There were no missing data for the variables in the
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core model. The results for the fitted model are presented in Table 3.3 below.

Table 3.3: Parameter estimates for the Core model

Parameter Marginal (Näıve; Robust) Frailty Fixed Effect

age 0.017 (0.003 ; 0.006) 0.019 (0.003) 0.019 (0.003)
factor(pupils)1 1.109 (0.133 ; 0.186) 0.743 (0.138) 0.73 (0.138)
as.factor(motor gcs)2 0.511 (0.199 ; 0.337) -0.125 (0.208) -0.146 (0.207)
as.factor(motor gcs)3 0.155 (0.199 ; 0.277) -0.125 (0.211) -0.141 (0.21)
as.factor(motor gcs)4 -0.236 (0.193 ; 0.232) -0.638 (0.205) -0.657 (0.204)
as.factor(motor gcs)5 -1.489 (0.178 ; 0.336) -1.733 (0.19) -1.75 (0.19)
factor(hospital id)774 -0.807 (0.472)
factor(hospital id)776 0.459 (0.451)
factor(hospital id)802 0.707 (0.486)
factor(hospital id)815 1.393 (0.418)
factor(hospital id)847 1.518 (0.405)
factor(hospital id)854 1.842 (0.399)
factor(hospital id)1838 1.173 (0.492)
factor(hospital id)1941 1.91 (0.408)
factor(hospital id)2113 1.199 (0.458)

From table 3.3, similar to the univariate case, the results from the core model show consistency

between the frailty and the fixed effect model both in terms of parameter estimates and standard

errors. Again despite the Cox model parameter estimates being as large as the frailty model and

fixed effect models in most cases, their variances are underestimated and the risk of type I error is

inflated.

3.3.1 Test for Cluster effect

The test for random effect for the frailty model was done by comparing the partial log-likelihood

for the models with and without the frailty term. The change in the partial log-likelihood was

-2(-2024.42 - -1973.678) = 101.48. This was compared to the chi-square with one degree of freedom

and its p-value divided by 2 as this is a χ2
0;1 boundary problem. The resulting p-value was below

0.001 indicating that indeed the clustering needed to be accounted for. The variance of the frailty

term was 0.775 giving Kendall’s tau of 0.28 interpreted as intra-cluster dependency.

For the fixed effect model, the usual likelihood ratio test was used to compare the model with

and without the clusters. The change in partial log-likelihood was -2(-2024.42 - -1973.4) = 102.06.
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Comparison with the chi-square of 9 degrees of freedom gave a p− value < 0.0001.

3.3.2 Model Diagnostics

Test for Cox Proportionality Assumption

The Cox proportionality assumption was tested by including an interaction term of log-transform of

time with each covariate to be tested. Table 3.4 presents the results of model checking for the Cox

PH and the fixed effect model.

Table 3.4: Cox Proportional Odds Assumption test for Fixed and Naive Cox PH models

Parameter Fixed Effect Cox PH
rho chisq p rho chisq p

age -0.014 0.076 0.782 0.012 0.046 0.831
pupils -0.120 4.750 0.029 -0.100 3.160 0.076
as.factor(motor gcs)2 0.011 0.039 0.843 0.049 0.716 0.398
as.factor(motor gcs)3 -0.004 0.004 0.949 0.000 0.000 0.996
as.factor(motor gcs)4 0.021 0.140 0.708 0.021 0.131 0.718
as.factor(motor gcs)5 0.043 0.654 0.419 0.051 0.809 0.368
factor(hospital id)774 -0.006 0.011 0.917
factor(hospital id)776 0.064 1.205 0.272
factor(hospital id)802 0.009 0.026 0.873
factor(hospital id)815 -0.037 0.415 0.520
factor(hospital id)847 0.033 0.318 0.573
factor(hospital id)854 0.071 1.604 0.205
factor(hospital id)1838 -0.095 2.791 0.095
factor(hospital id)1941 -0.029 0.259 0.611
factor(hospital id)2113 0.017 0.087 0.768
GLOBAL NA 35.925 0.002 NA 6.260 0.394

From Table 3.4 it can be concluded that none of the four covariates showed any violation of

the proportionality assumption in the PH model. However for the model with fixed effects, the

introduction of hospital ID factors caused the other covariates to show proportionality assumption

violation. It is also advised to examine the proportionality assumption by use of schoenfeld residual

plots to determine the presence of any trend (Thernau and Grambsch, 2000). Figure 3.3 below

presents diagnostic plots for the three covariates in the PH model. As can be seen none of the plots

seems to indicate any time trend to warrant corrections. Similar findings were found for the fixed

effect model (results not presented).
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Figure 3.3: Test for Proportional Odds Assumption for the Cox Model

Sensitivity to the Frailty distribution misspecification;

The sensitivity to misspecification for the frailty distribution was assessed by fitting a log-normal

distributed frailty model and comparing the parameter estimates to those of the gamma frailty

model. Table 3.5 below presents results comparing the two models. It can be inferred from Table

3.5 that the parameter estimates were not highly sensitive to the misspecification of the frailty

distribution; particularly if the true frailty distribution was log-normal. However the log-normal

seemed to fit the data a little better based on the AIC values.
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Table 3.5: Comaparison of the Gamma and Log-normal Frailty model parameters

Parameter Gamma Log-normal

age 0.019 (0.003) 0.019 (0.003)
pupils 0.743 (0.138) 0.747 (0.138)
as.factor(motor gcs)2 -0.125 (0.208) -0.114 (0.208)
as.factor(motor gcs)3 -0.125 (0.211) -0.118 (0.21)
as.factor(motor gcs)4 -0.638 (0.205) -0.628 (0.205)
as.factor(motor gcs)5 -1.733 (0.19) -1.726 (0.19)

Var. Frailty 0.775 0.602
AIC 4228.198 4228.064

3.3.3 Parameter interpretation

It should be born in mind that the parameter interpretations for these three models differ and exam-

ining their magnitude alone is of no relevant consequence. The marginal model parameters express

a population average risk, while the frailty model expresses cluster specific risk. The fixed effect

model as well assumes independence of observations within clusters. The Cox model parameters are

interpreted as log risk rates on population average level. For instance, for the marginal Cox model,

the risk of an individual with at least one or both pupils unreactive dying was exp (1.109)= 3.0

times higher compared to an individual who had both pupils reactive to light. For the frailty, for

a given hospital, the risk of that individual with at least one eye unreactive dying is exp (0.746) =

2.1 i.e. twice as high compared to an individual in the same hospital but with both pupils reactive.

3.3.4 Parametric model form

The above models were also fitted under the parametric assumption to compare the hazard ratios

predicted to that from the semi-parametric model. The extensively applied Weibull parametric

model was chosen for convenience purposes although lognormal distributed baseline hazard models

were also fitted to assess extend of possible baseline hazard misspecification. The results from the

log-normal baseline fit [not presented] showed only marginal disparity from the Weibull baseline

model. Table 3.6 presents the results for the Cox PH; Fixed effect and the Frailty Models under

Weibull parametric assumption.
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Table 3.6: Parametric form for the core model

Parameter Marginal (Robust; Naive) Gamma Frailty Fixed Effect Model

Intercept 12.319 (1.591 ; 0.822) 12.356 (0.989) 14.264 (1.447)
age -0.063 (0.02 ; 0.011) -0.06 (0.011) -0.063 (0.012)
pupils -3.816 (0.472 ; 0.475) -2.168 (0.456) -2.167 (0.468)
as.factor(motor gcs)2 -2.309 (0.971 ; 0.69) -0.399 (0.668) -0.22 (0.686)
as.factor(motor gcs)3 -0.648 (0.973 ; 0.704) 0.264 (0.687) 0.371 (0.71)
as.factor(motor gcs)4 0.65 (0.832 ; 0.679) 1.902 (0.674) 2.125 (0.699)
as.factor(motor gcs)5 3.506 (0.831 ; 0.635) 4.818 (0.649) 5.126 (0.68)
factor(hospital id)774 0.898 (1.523)
factor(hospital id)776 -1.345 (1.458)
factor(hospital id)802 -1.962 (1.574)
factor(hospital id)815 -4.202 (1.374)
factor(hospital id)847 -4.753 (1.333)
factor(hospital id)854 -5.982 (1.317)
factor(hospital id)1838 -5.209 (1.714)
factor(hospital id)1941 -5.497 (1.36)
factor(hospital id)2113 -4.129 (1.523)
Log(scale) 1.227 (0.05 ; 0.055) 1.147 (0.053) 1.173 (0.054)

Similar to the Proportional odds assumptions model, the parametric Cox model with a Weibull

baseline hazard showed very little variation in parameters and standard errors between the frailty

and the fixed effect regression models. The intercept for the fixed effect model was higher than the

rest of the models as it also accommodates for the clustering reference point. The interpretation for

the parameters similarly differs for the three different models as previously stated.

The parameter interpretation is based on the transform βj =
−γj
σ , where γj is the Weibull

representation of jth covariate coefficient while σ is the scale parameter. Thus the effect of hazard

ratio for the individual with at least one pupil unreactive compared to both pupils reactive is given

by exp(−3.256/exp(1.215) = 3.04 which is similar to the hazard ratio obtained from the proportional

hazards model previously from table 3.3. Through similar calculations for the frailty model we get

a risk rate of 2.0 times as high for individual with at least one pupil unreactive to light compared

to individual with both pupils reactive to light. Again interpretation is conditional on the random

effect. These results again are in agreement with the semi-parametric model fitted before. The rest

of the parameters can be interpreted in the same manner. The change in partial log-likelihood when

the random effect was included was 107.8 and compared to χ0;1 gave p− value < 0.0001 indicating

significance.



3.4. EXTENDED MULTIVARIATE MODELS 25

3.4 Extended Multivariate Models

The extended multivariate model was developed by incorporating more covariates found significant

in the univariate analysis into the core model. Model building was done by backward elimination

while retaining the core variables. This was done in the three modeling approaches, the marginal

Cox, the frailty and fixed effect models. The final model consisted of four more covariates found

significant all the models: cortical contusion (cc), neh, otvbs and mso5. The fitted model parameter

estimates are presented in Table 3.7 below. A major feature observed in the data set was the missing

covariate values for individuals who didn’t have a CT-scan. As such all the other variables related

to CT-scan were not recorded. Attempts to seek for details on the reasons for missing CT-scan were

not fruitful. As such, two separate analysis were done, one based on the observed data and one

based on multiple imputation. The R library MICE (Multiple imputation chain equations) was used

in the imputation. Attempts to treat the missing data as a category were thwarted by convergence

problems.

Table 3.7: Extended multivariate Cox model excluding data without CT-scan

Parameter Marginal Frailty Fixed Effect

ge 0.018 (0.003 ; 0.005) 0.0163 (0.0038) 0.017 (0.004)
factor(motor gcs)2 0.41 (0.215 ; 0.292) 0.1914 (0.2297) 0.027 (0.223)
factor(motor gcs)3 0.163 (0.229 ; 0.219) -0.0143 (0.2421) -0.113 (0.24)
factor(motor gcs)4 -0.19 (0.217 ; 0.245) -0.4827 (0.232) -0.606 (0.231)
factor(motor gcs)5 -0.929 (0.198 ; 0.206) -1.2448 (0.2181) -1.391 (0.214)
factor(pupils)1 0.649 (0.145 ; 0.125) 0.5112 (0.1544) 0.506 (0.155)
factor(cc)2 -0.24 (0.134 ; 0.211) -0.2864 (0.1408) -0.279 (0.14)
factor(otvbs)2 -0.888 (0.133 ; 0.132) -0.795 (0.1383) -0.796 (0.138)
factor(ns)2 1.193 (0.327 ; 0.277) 1.0455 (0.3388) 1.065 (0.34)
factor(neh)2 -0.259 (0.133 ; 0.162) -0.3706 (0.1382) -0.348 (0.136)
factor(hospital id)774 -0.121 (0.665)
factor(hospital id)776 0.53 (0.654)
factor(hospital id)802 0.323 (0.685)
factor(hospital id)815 1.139 (0.616)
factor(hospital id)847 1.294 (0.605)
factor(hospital id)854 1.493 (0.599)
factor(hospital id)1838 1.88 (0.687)
factor(hospital id)1941 1.611 (0.608)
factor(hospital id)2113 1.533 (0.643)

It was equally notable that the fixed effect and frailty model have relatively close parameter
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estimates as well as standard errors. Test for proportionality assumption showed no indication

for violations by the marginal Cox model (Global p − value = 0.27) while for the fixed effect

model, only the clustering variable (hospital id) seemed to violate the proportionality assumption.

The results for the assumptions test are presented in Table B.3 in the appendix. An associated

graphical examination (results omitted) showed no reasons for concern in either of the models in

terms of proportionality assumption violation. Table 3.8 presents results from the multiply imputed

covariates model.

Table 3.8: Extended multivariate model with Multiple imputation

Parameter Marginal Frailty Fixed
age 0.016 (0.003 ; 0.005) 0.018 (0.004) 0.018 (0.003)
as.factor(motor gcs)2 0.331 (0.201 ; 0.29) -0.146 (0.208) -0.163 (0.207)
as.factor(motor gcs)3 0.166 (0.2 ; 0.207) -0.1 (0.212) -0.117 (0.212)
as.factor(motor gcs)4 -0.167 (0.196 ; 0.202) -0.575 (0.206) -0.596 (0.205)
as.factor(motor gcs)5 -1.303 (0.181 ; 0.26) -1.531 (0.191) -1.55 (0.191)
pupils 0.794 (0.137 ; 0.145) 0.533 (0.142) 0.521 (0.142)
factor(cc)2 -0.309 (0.127 ; 0.167) -0.372 (0.131) -0.371 (0.131)
factor(otvbs)2 -1.01 (0.128 ; 0.162) -0.826 (0.134) -0.818 (0.133)
factor(ns)2 0.97 (0.333 ; 0.306) 0.832 (0.336) 0.832 (0.337)
factor(neh)2 -0.361 (0.127 ; 0.135) -0.464 (0.126) -0.471 (0.126)
factor(hospital id)774 -0.983 (0.474)
factor(hospital id)776 0.317 (0.453)
factor(hospital id)802 0.323 (0.492)
factor(hospital id)815 1.127 (0.421)
factor(hospital id)847 1.268 (0.409)
factor(hospital id)854 1.381 (0.405)
factor(hospital id)1838 1.13 (0.509)
factor(hospital id)1941 1.685 (0.415)
factor(hospital id)2113 1.204 (0.465)

3.5 Model Predictive Performance

The predictive performances of the models were compared on the training set, the test set as well

as based on re-sampling techniques. Due to the incompleteness of most of the variables in the

extended model, it was decided that predictive performance of the models be compared based on

the core model. This was reasonable as most of the TBI models are based on these core factors.

Predictive performance on the extended model was also performed but the results did not show a

great difference. Harrell’s C- index (Harrell, 1996) was used to assess model discrimination while

plots of model predicted survival against the observed survival were used for model calibration.



3.5. MODEL PREDICTIVE PERFORMANCE 27

Calibration and discrimination based on the Training and test set

Table 3.9 below presents the C-indices for each of the three models for the 10 test set clusters.

Table 3.9: Concordance indices for the Core model based on the training and test set

Training Set Test Set
näıve Frailty Fixed effect näıve Frailty

0.721 0.743 0.7428 0.898 0.892
0.947 0.95 0.95 0.882 0.888
0.621 0.628 0.628 0.745 0.752
0.818 0.822 0.821 0.712 0.722
0.825 0.816 0.815 0.723 0.723
0.667 0.665 0.664 0.809 0.816
0.774 0.773 0.772 0.754 0.754
0.934 0.934 0.935 0.77 0.776
0.747 0.755 0.756 0.732 0.729
0.802 0.799 0.8 0.76 0.759

Mean 0.786 0.789 0.788 0.778 0.781
stdev 0.104 0.102 0.102 0.064 0.064

Overal 0.797 0.854 0.853 0.741 0.743

Based on the training set, a marginally higher c-index per cluster was noted for the frailty model

followed by the fixed effect model while the näıve Cox model had the lowest average though still only

marginally different. There was no notable difference in variability of the c-index across clusters.

The overall c-index was however clearly higher for the frailty model and the fixed effect model

compared to the näıve Cox. This can be attributed to the use of the cluster fixed and random effects

in ordering of observations across clusters.

The C-indices based on the test set were only slightly lower than for the training set. This is

reasonable given that the two data sets are not completely independently collected.

To assess model calibration patients were first grouped based on their 30 day model predicted

survival probability into 10 groups by deciles. The Kaplan Meier 30 day survival probability was

then computed for each group and plotted against the model predicted survival. Ideally, this should

fall on the 45o line. Figure 3.4 (a) and (b) displays smooth functions of the calibration curves based

on Training set and test set respectively. From Figure 3.4 (a) it is clear that based on the training

set the three models performed equally well with the calibration curve close to the ideal line. Figure

3.4 (b) compares the calibrations for the frailty and the näıve Cox model based on the test set. Again
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no clear difference could be told in terms of modal calibration. The drawback here again is that the

fixed effect model cannot be used in a standard way in prediction for clusters outside those used in

the development set.
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Figure 3.4: Calibration Curves for the Training and the test Set

Calibration and Discrimination based on the re-sampling

Model validation by re-sampling is aimed at correcting for over-optimism that is expressed when

model predictive performance is assessed on the same data it was developed (See Harrell, 1996).

Though One can also use cross-validation, bootstrapping is a more common approach for generating

validation sets. Spline functions can be used to estimate the baseline hazard and provide smoothed

calibration curves alongside the the correction for over optimism. Discriminative performance of

the model was quantified based on the c-index which is calculated from the Somers D-statistic as

C=0.5Dxy+0.5. Again, based on the results in Table 3.10, it is apparent that taking into account

the clustering gives a better discrimination. Results for the prognostic performance based on the

frailty model were omitted as the software packages developed for this could not fit the frailty.
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Table 3.10: Resampling validation statistics for the three models

C-index R2 Slope

Cox 0.751 0.134 0.969
Fixed effect 0.788 0.184 0.959

Figure 3.5 illustrates the calibration results based on the 200 bootstrap samples for the Cox PH

model, the fixed effect model. From the calibration curves the 90th quantile of error was 0.008, for

the Cox PH and 0.018 for the fixed effect model. This also indicates that neither of the models

showed a distinctively poor or better calibration than the other.
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Figure 3.5: Calibration plots for the three models based on re-sampling

3.5.1 The Between and within cluster discrimination based the frailty model

A novelle idea for quantifying the added effect of accounting for clusters in model predictive per-

formance in terms of the c-index and utilizes the estimated frailty terms was applied to the data

at model based on the training set. The cluster contribution is estimated from the the difference

between marginal between cluster and the conditional between c-indices. Table 3.11 shows the C in-

dices for the core model. Based on the difference between conditional between (0.863) and marginal

between (0.793), it can be judged that the introduction of clusters greatly improved the concordance

performance of the model.
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Table 3.11: frailty based C-indices for the core model

Overal conditional 0.862
Overal marginal 0.793
Conditional Between 0.863
Marginal Between 0.793
Within 0.786

3.6 Extended Analysis

3.6.1 Extended model Predictive performance

Model predictive performance was assessed similar to the core model above. However, due to the

missingness in the data, model calibration and discrimination was performed on a singly imputed

data set as this could not be achieved with multiple imputation. Table 3.12 presents the concordance

indices from the model. There was an increase in concordance compared to the core model for all

the models.

Table 3.12: C-indices per cluster for Extended model

Train Test

Frailty Näıve Factor Frailty Näıve
Overal 0.820 0.812 0.820 0.756 0.754
Mean per cluster 0.875 0.831 0.875 0.800 0.784

3.6.2 Analysis on the full data set

An extended analysis based on the full data was also performed but the results were not found to

differ from the the subset data analyzed. Part of the analysis results are presented in the appendix.

Table B.4 illustrates the results of the fitted core model. Compared to Table 3.3 of subset data, the

frailty model had relatively close parameter estimates. However, the parameter estimates for the

fixed effect model were different depending on whether the clustering indicator came first or last

in model specification, a problem also noted by Duchateau and Jansen(2008). A common problem

problem faced was censoring of almost all the subjects, which gave extreme c-index values or no

results at all for some clusters.
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Chapter 4

Discussion

This paper aimed at discussing the relevance of frailty models in prognostic modelling for survival

data. A common phenomenon in clinical trials is the presence of multivariate failure data arising due

to the clustered nature of the data where patients are treated in different centres. These clusters

contain possibly dependent failure times within. As such Glidden (1993 ) re-affirms that such

dependence must be taken into account in any statistical analysis. Although in prognostic studies,

interest is often in the predictive performance of the model, examined by means of calibration and

discrimination, these aspects require that the prognostic model is correctly specificied which in turn

requires the correct covariates identification. Thus there is need to account for both dependence

and the heterogeneity that is often induced by clustering. As stated by (Bretagnolle and Huber-

Caroll (1988) , in survival analysis, unobserved variation if ignored, can lead to serious bias in

both parameter estimates and in the estimate of the hazard rate. This theoretical results have

been extended to the analysis of correlated failure times as stated by Pertersen, Andersen and Gill,

Utrecht [Technical Paper].

In this paper we analyzed the Traumatic Brain Injury data using three approaches, the Cox model

without correcting for clustering, the gamma frailty model and the fixed effect model. These three

approaches were applied to univariate analysis, to the core model comprising of age, GCS motor and

patients pupil reactivity; and to an extended set of factors. Interest was in comparing the model

performance in terms of parameter estimates relative to standard errors, predictive performance was

assessed by calibration and discrimination.

In all the fitted models we observed consistently that though almost equally as large as the
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parameters from the frailty and the fixed effect models, the Cox PH model underestimates the

parameter standard errors thus inflating the type I error. For instance in the univariate analysis,

the naive Cox PH model found both gender and income significant, however, both the frailty and the

fixed effect models found these variables to be insignificant. When adjusted for standard errors, the

marginal model found this covariates insignificant too, though on the borderline. Next we fitted the

Core model comprising of the three variables identified in literature as the core-prognostic factors in

TBI. Various analysis models based on these factors have been carried out based on other outcomes

such as survival at 6 months (Lingsma et al., 2010). Accounting for clustering was tested for both

the frailty and the fixed effect model. The significance of the frailty term was assessed using a

mixture of Chi-square of zero and one degree of freedom, while the likelihood ratio test was used

for the fixed effect model. In both models, it was found that the cluster effect was significant and

thus it was necessary to account for it. Lingsma et al. (2010) had similar conclusions on analysis

of the same data set but on the binary mortality outcome at six months. However, based on the

fitted gamma frailty model, the parameter estimate of 0.775 for the variance of the model meant

that model estimated intra-cluster dependence was of about 0.28.

Based on the training set, the c-indices were calculated for each cluster. It was found that the

frailty model had the highest C-index per cluster though very close to the fixed effect model. The

weakness of the fixed effect model is the lack of portability to clusters where it was not developed

as it assumes that the clusters where it was developed is the entire enumeration thus making it less

generalizable. Thus validation for this model was only done by re-sampling. Based on re-sampling

techniques, we demonstrated again that the fixed effect had a higher C-index values compared to

the naive Cox model although again the difference was quite marginal. The marginal difference

may be attributed to the low dependence showed in the data. Similarly, based on the between and

within cluster c-indices as illustrated by the difference between the between marginal and between

conditional c-indices. The advantage of this approach is that it is not affected by the variation in

number and of clusters like the overall c-index.

All the models, showed a good performance in terms of calibration. However, no clear difference

was noted in the performance of either the frailty or the fixed effect model in terms of calibration

compared to the Cox PH. Although by small margin, the frailty model consistently showed better
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predictive performance in terms of discrimination index compared to the Cox PH model when

validated on the test set. Calibration did not seem to differ a lot for the two models, with the frailty

having a slope of 1.06 while the the Cox PH had 0.94 Again the fixed effect model could not be

extended to the test set as it assumes fixed number of clusters used in model development. When

the the extended model was considered, the c-indices all went up but still the the models considering

the clustering showed better discrimination. However, due to high-censoring, most clusters could

not allow for calibration plots and discrimination indices calculation making the results spurious.

Although the Fixed effect and Frailty model both perform equally well, when the number of

centres is very large, the fixed effect model overfits leading to possible bias in treatment effect or

covariate. According to Heinze and Schemper (1993), when interest is in estimation of cluster effect,

then the fixed effect model with a Firth correction gives a less biased estimator. Firths correction

Firth (1993) is needed incase monotone likelihood is observed in the fitting process, i.e. when the

likelihood converges to a finite value while at least one parameter estimate diverges to infinity.

Monotone likelihood primarily occurs in small samples compared to number of clusters. However, if

interest is in the treatment or other covariates effect, which is often the case in prognostic modeling,

then the Random effect gives unbiased estimates.
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Chapter 5

Conclusions

In this study we sought to determine the need for frailty models in prognostic modeling. To arrive at

our conclusions, we compared the model estimates relative to standard errors for the näıve Cox PH,

the fixed effect and frailty models. Based on the TBI data set, we showed that the Cox PH model

underestimates parameter estimate standard errors inflating type I error risk in clustered data. In

univariate analysis we found that gender and cause of injury did not affect TBI related deaths. Both

the fixed effect and frailty models found the cluster effect significant. The full multivariate model

could be sufficiently described by adding only CT-scan abnormality variables to the core model.

Using the C-index to quantify model discriminative ability, the frailty model, though in some cases

only by small margins, consistently had better predictive performance compared to the Cox PH

model. The Fixed effect model performed almost equally as well as the frailty. However, the fixed

effect model has limitations of not being generalizable to clusters from which the model was not

developed. It’s also cited in literature that the fixed effect model gives biased parameters when

the number of clusters grows large relative to the sample size. This together with the monotone

likelihood problems often encountered when fitting the model, makes the fixed effect less favorable

compared to the frailty model. Calibration did not show any variation in model performance among

all the three models. In conclusion, frailty modeling is important not only in correct identification

of factors that influence an outcome of interest and correct model specification, but it also improves

model predictive performance in terms of discrimination. More research is recommended for ways

to quantify clearly model calibration in presence of clustering. We recommend that other analysis

approaches such as Bayesian where all clusters can easily be incorporated into the analysis.
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Appendix A

Analysis Code

A.1 R-function for calculation of within and between c-indices

library(foreign)

library(coxme)

age<-train["age"][,1]

motor_gcs<-train["motor_gcs"][,1]

pupils<-train["pupils"][,1]

time<-train["time"][,1]

event<-train["event"][,1]

hospital_id<-train["hospital_id"][,1]

#Define the survival object we will use later on

SurvObject <- Surv(time,event)

#Fit the data using the function coxme with hospital_id as the frailty term

fit <- coxme(SurvObject~age+pupils+factor(motor_gcs)+(1|hospital_id), x=T, data=train)

x.fit <- fit$x

x<-cbind(age, pupils,motor_gcs)

#Coefficients of the covariates

beta <- matrix(nrow=1,ncol=6)

beta[1,] <- fit$coef$fixed

#The frailty terms

n.cluster <- length(unique(hospital_id))

w <- exp(fit$frail$hospital_id)

C <- frailty.c(x.fit,beta,w,time,event,hospital_id)
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Appendix B

Additional Analysis

B.1 Additional Analysis

Table B.1: Calibration slopes for the core model based on the test set

frailty 1.41 1.50 1.18 0.90 0.86 1.31 0.90 0.62 0.87 1.10
näıve 1.28 1.40 1.08 0.77 0.75 1.04 0.81 0.55 0.79 0.96

Table B.2: Parametric form for extended model on main data set

Parameter Marginal(Näıve; Robust) Frailty Fixed

(Intercept) 11.452 (1.915 ; 1.473) 10.835 (1.5) 12.982 (2.25)
age -0.061 (0.017 ; 0.011) -0.054 (0.011) -0.055 (0.011)
pupils -2.071 (0.288 ; 0.47) -1.43 (0.465) -1.387 (0.48)
as.factor(motor gcs)2 -1.459 (0.913 ; 0.683) -0.376 (0.66) -0.128 (0.678)
as.factor(motor gcs)3 -0.484 (0.738 ; 0.724) 0.189 (0.707) 0.429 (0.732)
as.factor(motor gcs)4 0.587 (0.814 ; 0.688) 1.656 (0.683) 2.025 (0.71)
as.factor(motor gcs)5 2.982 (0.756 ; 0.649) 4.071 (0.657) 4.481 (0.691)
factor(neh)2 0.896 (0.536 ; 0.424) 1.122 (0.403) 1.197 (0.414)
factor(otvbs)2 3.01 (0.47 ; 0.441) 2.584 (0.419) 2.627 (0.432)
factor(cc)2 0.902 (0.718 ; 0.426) 0.912 (0.411) 0.997 (0.426)
factor(ns)2 -3.718 (0.741 ; 1.057) -3.155 (1.019) -3.158 (1.05)
Log(scale) 1.151 (0.065 ; 0.058) 1.085 (0.056) 1.109(0.057)
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Table B.3: Cox Assumption for the extended models

Fixed Effect näıve Cox PH

Parameter rho chisq p rho chisq p

age 0.014 0.062 0.803 0.057 0.91 0.34
as.factor(motor gcs)2 0.041 0.435 0.509 -0.089 2.155 0.142
as.factor(motor gcs)3 0.015 0.06 0.807 0.079 1.603 0.205
as.factor(motor gcs)4 0.012 0.037 0.848 0.02 0.104 0.748
as.factor(motor gcs)5 0.034 0.351 0.553 0.013 0.044 0.834
pupils -0.104 3.13 0.077 0.051 0.709 0.4
factor(neh)2 0.07 1.25 0.263 0.054 0.705 0.401
factor(otvbs)2 0.009 0.023 0.879 -0.019 0.095 0.758
factor(cc)2 -0.059 0.964 0.326 -0.085 1.943 0.163
factor(ns)2 -0.109 3.08 0.079 -0.112 3.078 0.079
factor(hospital id)774 -0.037 0.348 0.555
factor(hospital id)776 0.009 0.021 0.885
factor(hospital id)802 -0.054 0.756 0.385
factor(hospital id)815 -0.075 1.47 0.225
factor(hospital id)847 -0.027 0.186 0.666
factor(hospital id)854 0 0 0.996
factor(hospital id)1838 -0.126 4.15 0.042
factor(hospital id)1941 -0.071 1.32 0.25
factor(hospital id)2113 -0.037 0.351 0.554
GLOBAL NA 39.1 0.004 NA 12.226 0.27

Table B.4: Core model for full data

Parameter Marginal(Näıve; Robust) Frailty Fixed effect

age 0.02 (0.002 ; 0.002) 0.022 (0.002) 0.023 (0.002)
pupils 0.847 (0.072 ; 0.086) 0.8 (0.075) 0.8 (0.076)
as.factor(motor gcs)2 0.5 (0.113 ; 0.135) 0.289 (0.12) 0.18 (0.122)
as.factor(motor gcs)3 0.146 (0.114 ; 0.126) -0.017 (0.122) -0.105 (0.126)
as.factor(motor gcs)4 -0.396 (0.114 ; 0.127) -0.539 (0.121) -0.619 (0.124)
as.factor(motor gcs)5 -1.126 (0.104 ; 0.119) -1.385 (0.113) -1.508 (0.116)
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Table B.5: Extended Model for full data

Parameter Marginal(Näıve; Robust) Frailty Fixed

age 0.017 (0.002 ; 0.002) 0.019 (0.002) 0.02 (0.002)
pupils 0.2 (0.122 ; 0.135) 0.095 (0.127) -0.005 (0.131)
as.factor(motor gcs)2 -0.088 (0.123 ; 0.132) -0.11 (0.131) -0.18 (0.136)
as.factor(motor gcs)3 -0.539 (0.123 ; 0.132) -0.515 (0.131) -0.594 (0.135)
as.factor(motor gcs)4 -1.137 (0.113 ; 0.132) -1.24 (0.122) -1.366 (0.127)
as.factor(motor gcs)5 0.607 (0.078 ; 0.081) 0.613 (0.081) 0.643 (0.083)
factor(neh)2 -0.287 (0.069 ; 0.083) -0.312 (0.072) -0.309 (0.074)
factor(otvbs)2 -0.692 (0.071 ; 0.121) -0.81 (0.077) -0.806 (0.081)
factor(cc)2 -0.297 (0.069 ; 0.074) -0.278 (0.073) -0.271 (0.075)
factor(ns)2 1.119 (0.183 ; 0.186) 1.102 (0.186) 1.083 (0.188)
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B.1.1 Variable Names

Table B.6: Variable names

FIELD NAME DESCRIPTION CODES

pcode Unique patient ID From 1 to 10792 (not all integers included)
pupils Pupil reactiveness 0 = Both pupils reactive to light

1 = One or both pupils un-reactive
gcs total Total GCS score Total GCS score (from 3 to 15)

dob Date of birth Date of birth (dd/mm/yyyy)
gender Gender 1=Female

2=Male
cause Mechanism of injury 1=RTA

2=Fall ¿2metres
3=Other

major extracranial injury Major extracranial injury 1 = Yes
2 = No

ct scan Head CT scan performed 1 = Yes
2 = No

ns Normal scan 1 = Yes
2 = No
8 = Not applicable

nesrip Abnormal scan: 1 = Yes
One or more petechial haemorrhages within the brain 2 = No

8 = Not applicable
otvbs Abnormal scan: 1 = Yes

Obliteration of the third ventricle or basal cisterns 2 = No
8 = Not applicable

sb Abnormal scan: 1 = Yes
Subarachnoid bleed 2 = No

8 = Not applicable
mso5 Abnormal scan: 1 = Yes

Midline shift over 5mm 2 = No
8 = Not applicable

neh Abnormal scan: 1 = Yes
Non evacuated haematoma 2 = No

8 = Not applicable
eh Abnormal scan: 1 = Yes

Evacuated haematoma 2 = No
8 = Not applicable

cc Cortical Contusion 1 = Yes
2 = No
8 = Not applicable

hospital id Hospital CRASH ID Unique hospital ID (from 3 to 2362)
income High/Mid-Low income country 0 = High income

1 = Low or Middle income



Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:

Do we need frailty modeling in the development of prognostic models?

Richting: Master of Statistics-Biostatistics

Jaar: 2011

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de 

Universiteit Hasselt. 

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt 

behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -, 

vrij te reproduceren, (her)publiceren of  distribueren zonder de toelating te moeten 

verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de 

rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat 

de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt 

door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de 

Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de 

eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen 

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze 

overeenkomst.

Voor akkoord,

Chebon, Sammy  

Datum: 12/09/2011




