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summary 

Background: For years microarray-based classification has been a major topic in statistics, 

bioinformatics and biomedical research but because of the large number of variables as compared to 

the sample size, traditional statistical methods have been unsatisfactory. Thus, special methods for 

microarray data together with data mining technologies have been developed to address these 

unsatisfactory issues. The aim of this project was to apply some of these technologies to build 

classification function(s) that can be used to classify chemical compounds to their identified clusters 

and also to predict the cluster of a new chemical compound based on gene expression data. The data 

contained sixty chemical compounds grouped into three clusters GC14, GC22 and GC29 with the 

clusters having 32, 13 and 15 chemical compounds respectively. 

Results: Analysis of differentially expressed genes showed that the three clusters were significantly 

different at 5% significance level as was portrayed by over 500 rejected hypotheses using 

parametric, nonparametric and resampling-based procedures. Though the three clusters were found 

to be different, contrasts analyses showed that cluster GC22 and GC29 were closely similar as there 

were no rejected hypotheses from the parametric and nonparametric procedures and just barely a 

few rejected hypotheses from the resampling-based procedure, at 5% significance level. Also, a 

classification analysis yielded a misclassification rate of approximately 32% when the three clusters 

were considered separately and a misclassification rate of approximately 7%, a sensitivity of 89% 

and specificity of 96% when the two closely similar clusters were merged into one cluster. 

Conclusion: Clusters GC22 and GC29 were found to be indifferent and as such should be 

considered as a single cluster. And for this setting, the combination of {10221_at, 100287237_at, 

100141515_at, 10095_at, 100131187_at, 100128071_at, 100286909_at, 100287098_at, 10217_at,  

100129637_at} as gene signature with linear discriminant analysis as a classification function will 

predict the cluster of an existing or new chemical compound with very low misclassification 

chances.  
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1. Introduction 

1.1. Background 

The identification of functional causes of a disease is usually a primary concern of biomedical 

research. To understand the contributing mechanism of a disease, the desire has been to identify 

genes that are associated with such a disease. Gene expression is measured in several ways 

including mRNA and protein expression. Thus, the purpose of such research is to answer the 

questions: “which genes are associated with a tumour?”, “which clusters of genes are involved in a 

particular tumour?” and/or “to which tumour class does a particular sample belong?”.  

As one of the rapidly growing technologies in the field of genomics, the microarray technology is 

widely used for the analysis of gene expression data. Due to the large amount of data generated by 

the microarray experiments in terms of the parameters as compared to the sample sizes (p>>n), 

traditional statistical methods have become handicap to explore these large data sets.  As such, 

special statistical methodologies for microarray data together with some data mining technologies 

have been brought together to automatically tackle these large data sets.  

In this study some of these methods have been implemented to analyse data generated from one of 

the microarray (Affymetrix) technologies with the intention to identify a set of genes that can 

clearly distinguish between clusters of chemical compounds used at early stage of drug discovery. 

One of the benefits of this study might be to identify which (cluster of) chemical compound(s) may 

respond well to a particular disease based on the associated genes to this disease/chemical 

compound through their expression levels. 

The following sub-section describes briefly the data and the objective of the research, section two 

presents the methodologies implemented in the analysis. This includes methods used to identify 

differentially expressed genes, construct classification functions and build class predictors.  The 

results of the analysis are presented in section three, section four presents a brief discussion while 

section five described briefly the software, packages and functions used for the entire analysis. The 
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references are presented in section six while section seven is the appendix and contains some 

figures from the results of the analysis. 

1.2. Data and Objectives 

The data set is composed of three clusters of chemical compounds used in the early stage of drug 

discovery. These chemical compounds were grouped into clusters depending on their chemical 

structures, chemical formulae and other chemical/physical characteristics. Each chemical compound 

was then applied to a cultured specimen and the expression levels of the genes measured.  For this 

project, the clusters used were namely GC14, GC22 and GC29. Cluster GC14 is composed of 32 

chemical compounds while GC22 is composed of 13 chemical compounds and cluster GC29 is 

composed of 15 chemical compounds. After normalization and gene filtering, the total number of 

genes left for which expression levels were used, was 7722 genes. 

In order to address the research interest, the following scientific questions were posed: Are the three 

clusters of chemical compounds different? If yes, where does the difference lies? Is it possible to 

select a reasonable number of genes for which a classification function can be built to classify 

existing chemical compounds to their respective classes (clusters) and/or predict the class (cluster) 

of a new chemical compound with acceptable error rates?  To answer these scientific questions, the 

objectives of the study were reformulated to assess firstly if there are any differentially expressed 

genes between the three clusters and if there are any, the contrasts are investigated to clearly 

identify where the differential expression arises. And secondly to build a classifier that can correctly 

classify an existing chemical compound to its cluster and/or predict the cluster of a new chemical 

compound with a tolerated amount of error, using the expression levels of the genes.  
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2. Methodology 

2.1. Differentially expressed genes 

2.1.1.  Three clusters analysis 

Let                  =1, 2, ..., 7722 be the mean expressions for gene i in the three clusters GC14, 

GC22 and GC29 respectively. To assess if the three clusters are the same, we test for each and 

every gene the following hypothesis: 

                                                        

This comparison was done using the following statistical tests: 

 F test 

 Let      be the expression level of gene i in cluster j for subject k,     be the expression mean of 

gene i in cluster j and      be the overall expression mean of gene i. To test for the above hypothesis 

we fit the model: 

                                                                                   

where j= A, B, C represents the different clusters and k= 1, 2, ...,    represents the number of 

chemical compounds in cluster j with                 . The assumptions of model (1) are that 

the epsilons are independently normally distributed errors with mean zero and constant variance 

that is              . 

The test statistic for model (1) above is 

   

              
 

 

     
              

  

      

                

Where r is the total number of clusters and    is the total number of chemical compounds in all the 

clusters. For a significance level    the statistic follows an F distribution with r-1 and       

degrees of freedom. Thus, we reject    if                    and fail to reject    
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otherwise (Kutner et al., 2005). The numerator of the statistics is the between group (cluster) 

variability while the denominator is the within group (cluster) variability. 

 Moderated F test 

The moderated F test is similar to the F test but for the fact that the test statistic does not make any 

constant assumption about variance between genes. More specifically, the moderated F test model 

is as follows: 

                                                                              

Where   is the expression matrix,   is the design matrix and   is the contrast matrix with each row 

of the design matrix corresponding to an array in the experiment and each column corresponds to a 

coefficient which is used to describe the RNA sources in the experiment (Smyth, 2004). Unlike the 

F test which assumes that the variability is constant between genes, the moderated F test assumes 

prior distributions of the model coefficients and the variances of the genes and then computes the 

posteriors estimates of these parameters through the empirical Bayes approach. The final gene 

specific within group variance is then computed as a weighted average of the posterior estimate of 

the overall variability   
  and per gene variability   

 . This renders a similar test statistic as the F 

statistic but with augmented degrees of freedom (Smyth, 2004). 

 Kruskal-Wallis test 

For each gene i, the expression levels are replaced with ranks and let      be the average rank of 

gene i for cluster  ,   =1,...,s and      the overall average rank for gene i then the clusters differ 

widely among each other if and only if there are big differences among the values of the       

(Lehmann, E. L., 2006). A convenient measure of the overall closeness of       to      is a weighted 

sum of square difference defined below and known as the Kruskal-Wallis statistic 
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where    are the number of chemical compounds in cluster  , N total number of chemical 

compounds  and s is the total number of clusters. K is zero when      are equal and is large when 

there are substantial differences among the      (Lehmann, E. L., 2006). We then reject the null 

hypothesis at a given significance level   if 

   
        

where k is the observed value for K. Lehmann, E. L. (2006) states that for three or more clusters and 

cluster sample sizes greater than or equal to five, the distribution of the statistics is approximated by 

the Chi-square distribution and    
             . 

 Significance Analysis of Microarrays (SAM) 

SAM is a resampling-based procedure in which no distributional assumption is made. It uses 

permutations to approximate the null distribution of the test statistic. The SAM test statistics is as 

follows: 

  
  

              
 

 

     
              

  

         

 

The constant    is called the fudge factor and it is estimated as the percentile of the gene-wise 

standard errors that minimizes the coefficient of variation of the SAM test statistics. This 

modification is used to overcome bias for genes with expression difference (between clusters 

variability) close to zero, which have large values of the test statistics due to small within clusters 

variances. Supposed B permutations are made, the SAM matrix of statistics will be 

     

 

  
 

   
    

  
   

    
  

      

   
   

 

   
 

      
   

   
    

  
   

 
 

   
 

 

 

  
 

 

where 1, 2, ... m rows are the genes and 1, 2, ..., B columns are the permutations. Once this matrix is 

obtained, the columns are sorted and the row means are computed to yield the expected statistics 
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To call a gene significant, the difference between the observed and expected values of the test 

statistic needs to be larger than a certain cut-off value λ. For a grid of λ values, the corresponding 

number of significant genes can be listed; at the same time, the number of false positives arising 

from any permutation matrix      is estimated. Under the null hypotheses, we expect that no 

differentially expressed genes are present for each permutation. Consequently the median or 90 

percentile number of false positives corresponding to λ can be obtained from permutation matrix. In 

this way, the FDR can be calculated for each value of λ and an acceptable value of λ can be chosen 

to control the FDR at the desired level. (Lin et al., 2008). 

The SAM Procedure also controls for false discovery rate (FDR) once the permutation matrix is 

obtained. Apart from automatically controlling for multiple testing, SAM has the strength that the 

null distribution is generated for all the genes at once by permuting the group labels, so that the 

correlation between test statistics of all the genes is preserved (Lin et al., 2008). 

2.1.2. Contrasts analysis 

Once a reasonable number of the null hypotheses in the three cluster analysis are rejected signifying 

a difference between the groups, analysis of the contrasts GC14-GC22, GC14-GC29 and GC22-

GC29 is carried out to identify where the difference lies. In each of these contrasts and for each and 

every gene i, the following respective hypotheses were formulated:  

                                             

                                             

                                             

These comparisons were done using the following statistical tests: 
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 t test 

 Let      be the expression level of gene i (i =1, ..., m) in cluster j for subject k, and     be the 

expression mean of gene i in cluster j. The test statistics for the hypotheses can be written as 

   
       

   
 
  

 
 
  

                                     

where   
  

 

       
            

 
 

  

   
           

   
     is the pooled variance for gene i,    is 

number of arrays (chemical compounds)  in cluster j and    is the number of arrays (chemical 

compounds) in cluster l. This statistic has the assumptions that the samples are randomly and 

independently assigned to the clusters, the variance for gene i is the same across the clusters and 

that the population from which the samples are selected both have approximately normal relative 

frequency distribution. Thus this statistics follows a t distribution with          degrees of 

freedom. (Mendenhall & Sincich, 2007). 

 Moderated t test 

Like with the moderated F test, a linear model is fitted for each gene and the null hypothesis of zero 

coefficients is investigated using the t test except of the fact that the test statistic does not make any 

constant assumption about variance of the error terms. Unlike the t test, the moderated t test 

assumes prior distributions of the model coefficients and the variances of the error terms and then 

computes the posteriors estimates of these parameters through the empirical Bayes approach. The 

final gene specific within group variance is then computed as a weighted average of the posterior 

estimate of the overall (prior) variability   
  and observed per gene variability   

 . The posterior 

values shrink the observed variances towards the prior values with the degree of shrinkage 

depending on the relative sizes of the observed and prior degrees of freedom. Under the null 

hypothesis of zero coefficients, it yields a statistic called the moderated t statistic that has a t 

distribution with degree of freedom as the sum of the prior and the observed degrees of freedom 

(Smyth, 2004). 
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 Wilcoxon Rank Sum test 

For each of the hypotheses above, let   and   be the two clusters to be tested for equal means with m 

and n the number of chemical compounds respectively in each cluster. For each gene i, the 

expression values are assigned ranks and let     and     be the sum of ranks of gene i in clusters   

and   respectively then for gene i, we reject the null hypothesis at a given significance level   if 

    
      

 

 
            

 

 
           

Where    is the observed value of    , N is the total number of chemical compounds in the two 

clusters. Lehmann, E. L. (2006) states for large values of m and n the distribution of the statistics is 

approximated by that of the normal distribution and the significance of the tow-sided test hypothesis 

is then approximated by 

 

 
 

 

   

 
 
 
     

 
         

 
 

        
   

 
 
 

 
 

 

 

 Significance Analysis of Microarrays (SAM) test 

In a similar manner as for the t test, let      be the expression level of gene i (i =1, ..., m) in cluster j 

for subject k, and     be the expression mean of gene i in cluster j. The test statistics for the 

hypotheses can be written as 

  
  

       

   
 
  

 
 
  

   

                                     

where   
  

 

       
            

 
 

  

   
           

   
     is the pooled variance for gene i,    is 

number of arrays (chemical compounds) in cluster j and    is the number of arrays (chemical 

compounds) in cluster l. The constant    is called the fudge factor and it is estimated as the 

percentile of the gene-wise standard errors that minimizes the coefficient of variation of the SAM 

test statistics. This modification is used to overcome bias for genes with expression difference 
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        close to zero having large values of the test statistics due to small sample variances. 

Supposed B permutations are made, the SAM statistics will be 

     

 

  
 

   
    

  
   

    
  

      

   
   

 

   
 

      
   

   
    

  
   

 
 

   
 

 

 

  
 

 

where 1, 2, ... m rows are the genes and 1, 2, ..., B columns are the permutations. Once this matrix is 

obtained, the analysis follows suit as in the multiclass case described above. 

2.1.3. Controlling the FDR for multiple testing  

In all cases except for SAM procedures, I corrected for multiple testing by controlling the false 

discovery rate (FDR) defined as expected proportion of false rejection among the rejected 

hypotheses using the Benjamini and Hochberg (BH) procedure described by Lin et al. (2010). The 

BH procedure is a linear step-up procedure in which if the desired FDR level is α then the ordered 

p-value      is compared to the critical value   
 

 
. Let                 

 

 
 , then reject 

            if such a k exists (Lin et al., 2010) . 

2.2. Classification 

Let      be the predictor space,              be the vector of finite (K) set of class labels 

and        be the joint probability distribution on    . Let also                       be a 

sample of n predictor-class pairs. Then the classification task is to construct a decision function 

       (Where ^ indicates that the function is estimated from the sample.) 

                   

such that the generalization error 

                                      
   

 

is minimized. Where        is a suitable loss function with                ,        

            (Slawski et al., 2008). 



Classification and class prediction for different chemical structures using gene expression data.       September 2011 

Jong, V. L. (2011) Master Thesis 10 

2.2.1. Performance measures 

 Misclassification error 

Since we are only equipped with a finite sample and the underlying distribution is unknown, the 

empirical counterpart to the generalization error is estimated as 

        
 

 
            

 

   

 

Though this empirical counterpart to the generalization error can be used to evaluate classifiers, it 

usually overfits the sample  . Thus a general practice is to split the sample into a learning set   and 

a test set   and       is constructed from   only and evaluated using   (Slawski et al., 2008). 

Because the sample sizes are usually very small, a good practice is to generate several learning and 

test sets from the available sample, construct a classifier with each learning set and using the 

corresponding test set estimate the empirical generalization error. The final empirical generalization 

error will be the average across the test set. Suppose B learning sets             are generated 

from S and the corresponding test set         with        obtained from             then an 

estimate of the error rate is 

   
 

 
 

 

    
     

    

 

   

         

where     is the cardinality of the considered set (Slawski et al., 2008). 

 Sensitivity and specificity 

For binary classifications, the following measures were also used alongside the misclassification 

error. Let the two classes be + and - for notation purpose and consider the following table which 

contains the true class (cluster) and predicted class (cluster) of an observation (chemical compound) 

 Predicted class of observation (T) 

True class of observation (S) 

 +   

+ a b 

  c d 
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We define sensitivity as the probability that the predicted class is + given that the true class is + that 

is            
 

   
  and specificity as the probability that the predicted class is   given that 

the true class is   that is           
 

   
 . Higher values of sensitivity and specificity entail 

a good classifier (Agresti et al, 1997). 

2.2.2. Features selection for three clusters analysis 

For 2000 bootstrap, the data was split into 
 

 
 for the training set and 

 

 
 for the test set taking into 

account the number of samples per cluster using Monte Carlo Cross Validation (MCCV) described 

by Slawski et al. (2008). For each bootstrap, classifiers were built from a combination of one of F 

test, moderated F test and Kruskal-Wallis test as gene selection method, five of the classification 

functions described below and top k genes where k = 5, 10 and 20. These classifiers were evaluated 

with each bootstrap test set and the misclassification errors recorded. The means and the standard 

errors of the misclassification errors over the 2000 bootstrap for the classifiers built from each 

combination were computed and the combination with the lowest misclassification error and/or 

smallest standard error was chosen for further analysis. Let the combination with lowest 

misclassification error be denoted                                  . 

2.2.3. Features selection for two clusters analysis 

In a similar manner, for 2000 bootstrap, the data was split into 
 

 
 for the training set and 

 

 
 for the test 

set taking into account the number of samples per cluster using Monte Carlo Cross Validation 

(MCCV) described by Slawski et al. (2008). For each bootstrap, classifiers were built from a 

combination of one of t test, moderated t test and Wilcoxon rank sum test as gene selection method, 

five of the classification functions described below and top k genes where k = 5, 10 and 20. These 

classifiers were evaluated with each bootstrap test set and the misclassification errors recorded. The 

means and the standard errors of the misclassification errors over the 2000 bootstrap for the 

classifiers built from each combination were computed and the combination with the lowest 
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misclassification error and/or smallest standard error was chosen for further analysis.  Let the 

combination with the lowest misclassification error be                                  . 

2.2.4. Gene signatures and final classifiers 

In each clusters (three or two) setting and for 2000 bootstraps the data was split into 
 

 
 for the 

training set and 
 

 
 for the test set and using                    ;                    for three 

clusters setting and two clusters setting respectively,                   genes that were selected 

most of the times were extracted as gene signatures for three clusters setting and two clusters setting 

respectively. Finally, for 2000 iterations the data was split in a similar manner as above into 
 

 
 for 

the training set and 
 

 
 for the test set and for each gene signature say                for three 

clusters and two clusters settings respectively, classifiers were built using the classification 

functions                                 respectively for the three and two clusters settings. In 

each setting, misclassification rate and/or sensitivity–specificity analysis was carried out. 

2.2.5. Classification functions (classifiers) 

A. Linear discriminant analysis (LDA) and/or Diagonal linear discriminant analysis (DLDA) 

Let G be a vector of class labels and X a matrix of covariates. Suppose       is the class-conditional 

density of X in class G = k, and let    be the prior probability of class k, with    
 
     , the goal 

of classification by discriminant analysis is to estimate the posterior probability 

           
       

        
 
   

 

Thus, having the posterior probabilities uses techniques that are based on models for the class 

densities (Hastie et al., 2009). Discriminant analyses are Bayes optimal classifiers which assume 

that the conditional distributions of predictors given the classes are Gaussian (Slawski et al., 2008). 

They differ only by the assumptions made for their covariance matrices. LDA assumes that the 

within-class covariance matrices are equal for all the classes while DLDA assumes that the within-

class covariance matrices are diagonal and equal for all classes. 
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B. K-nearest neighbor (KNN) 

For a test observation x, the k-nearest neighbor classifier classifies this observation x based on a 

measure of distance between x and other training observations. It finds the k observations in the 

learning set closest to x and then predicts the class of x by majority votes. The value k is usually 

specified by the user but it should be noted that if k is too small, then the nearest-neighbor classifier 

may be susceptible to over-fitting because the noise in the training data. On the other hand, if k is 

too large, the nearest-neighbor classifier may misclassify the test instance because its list of nearest 

neighbors may include data that are located far away from its neighborhood (Tan et al., 2005).  The 

optimal value of k can be chosen by cross validating and returning the one with the smallest 

misclassification error. 

C. Random forest (RF) 

Random forest is a classification method designed for decision tree classifiers. It combines the 

prediction made by multiple decision trees, where each tree is generated based on the values of an 

independent set of random vectors (Tan et al., 2005). Randomization helps to reduce the 

correlations among decision trees so that the generalization error of the classifier can be improved. 

A random vector can be incorporated in the tree-growing process in many ways some of which 

include; randomly select a subset (e.g. square root of total number) of the features and then grow a 

tree to its entirety or randomly select one of the best split at each node of the decision tree. Once 

multiple trees have been built, they are then combined by voting; that is each tree cast a vote at its 

terminal node. 

D. Tree-based boosting (TBB) 

Boosting is a classification method that combines the output of several “weak” classifiers to 

produce a powerful “committee” (Hastie et al., 2009).  It is an iterative procedure used to adaptively 

change the distribution of the training examples so that the base classifiers will focus on examples 

that are hard to classify. Boosting assigns a weight to each training example and may adaptively 

change the weight at the end of each boosting round (Tan et al., 2005).  These weights are then used 



Classification and class prediction for different chemical structures using gene expression data.       September 2011 

Jong, V. L. (2011) Master Thesis 14 

either as a sampling distribution or can be used by the base classifier to learn a model that is biased 

toward higher-weight examples. The idea is to give all observations same weights at the start, 

perform a bootstrap sample and build a classifier in this case a classification tree (hence tree-based 

boosting) then test the classifier with all the objects. The weights of misclassified objects are 

increased in the next bootstrap sample thereby given them higher chances to be sampled. 

E. Support  vector machines (SVM ) 

Support Vector Machines classification is a binary classification method whereby it fits an optimal 

hyperplane between the two classes by maximizing the margin between the classes' closest points. 

The points lying on the boundaries are called support vectors, and the middle of the margin is the 

optimal separating hyperplane. Data points on the “wrong” side of the discriminant margin are 

weighted down to reduce their influence. For nonlinear cases, SVM uses a nonlinear mapping (via 

kernels) to transform the original training data into a higher dimension. Within this new dimension, 

it searches for the linear optimal separating hyperplane that is, a “decision boundary” separating the 

tuples of one class from another. The SVM finds this hyperplane using support vectors (“essential” 

training tuples) and margins defined by the support vectors (Han, J. & Kamber, M., 2006). For 

multiclass classification, SVMs uses one-against-one technique by fitting all binary subclassifiers 

and finding the correct class by a voting mechanism (Meyer, 2011). 

F. Neural Networks (NNET ) 

A neural network is a two-stage regression or classification model. The central idea is to extract 

linear combinations of the input variables as derived features, and then model the target as a 

nonlinear function of these features. This transformation can be done more than once leading to 

multi-hidden-layers neural networks but in this project, a one-hidden-layer neural network called 

the feed-forward neural networks was implemented. The idea is that; starting with covariates X, one 

forms projections        
            which forms the units of the one-hidden-layer. These 

units are subsequently used as inputs for the prediction model. Here the activation function       is 

usually chosen to be sigmoid that is      
 

      (Hastie et al., 2009).  
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3. Results 

This section provides the results obtained from the analysis of the dataset. The first subsection 

presents the differentially expressed genes found for the three clusters and their contrasts while the 

other subsection presents the classification results for the three clusters and two clusters formed by 

merging clusters GC22 and GC29 to one cluster. 

3.1. Differentially expressed genes 

Figures A1(a) and A1(b) in the appendix illustrate the need of SAM analysis. From these figures, 

one notices that there are test statistics with large values caused by small within clusters variability 

for the F test or sample standard errors for the t test but with very small between clusters variability 

or fold change respectively.  

3.1.1. Three clusters analysis 

Table 1 below shows the number of differentially expressed genes by each statistical test at 

different significance levels before and after adjusting for multiple testing. From this table one 

clearly sees that irrespective of the statistical test employed, there is high evidence that at least two 

of three clusters are different as portrayed by the number of rejected hypotheses. 

Table 1: Number of rejected hypotheses by each test statistic at different significance levels  

Statistical method Alpha Raw p-value BH adjusted p value 

F test 

1% 1297  568 

5% 2320 1169 

10% 3054 1669 

Moderated F test (limma) 

1% 1268 555 

5% 2298 1162 

10% 3021 1563 

Kruskal-Wallis test 

1% 1751  873 

5% 2883 1843 

10% 3548 2510 

SAM (S0=0.0015) 

1% 1340  546 

5% 2408 1039 

10% 3130 1478 
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For each test statistic, the top ten most significant genes at a significance level of 5% were retrieved 

and are shown in Table 2 below. From this table, one clearly sees that none of the genes appeared in 

more than one of the methods implying the methods have different lists of top 10 genes.  

Table 2: Top 10 significant genes for each test statistic at 5% significance level. 

 

F test Moderated F test Kruskal-Wallis SAM 

1 152006_at 6156_at 7549_at 9314_at   

2 135932_at 7388_at 3068_at 27154_at   

3 64710_at 6194_at 51075_at 57602_at 

4 5867_at 6165_at 143098_at 150094_at 

5 8131_at 5692_at 79414_at 1962_at 

6 27345_at 10767_at 26100_at 10221_at 

7 23287_at 23516_at 339457_at 1846_at 

8 220001_at 8667_at 80319_at 92335_at 

9 26958_at 26476_at 94134_at 27042_at 

10 285381_at 4883_at 388753_at 23406_at 

3.1.2. Contrasts analysis 

In order to investigate where the difference lies between the three clusters, contrasts were made and 

Table 3 below gives the number of rejected hypotheses for each and every contrast by each test 

statistic at 5% significance level before and after adjusting for multiple testing. Based on the results 

displayed on this table, one clearly sees that cluster GC14 is different from clusters GC22 and 

GC29 but cluster GC22 and GC29 seems to be the same because there is approximately zero 

differentially expressed gene between these two supposed clusters. 

Table 3: Number of rejected hypotheses for the different contrasts at 5% significance level. 

Contrast Statistical method Raw p-value BH adjusted p-value 

GC14 - GC22 

t test 2499 1529 

Moderated t test (limma) 2256 1286 

Wilcoxon test 2933 1911 

SAM (S0=0.0011) 2676 1390 

GC14- GC29 

t test 1576  384 

Moderated t test (limma) 1557  406 

Wilcoxon test 1840  718 

SAM (S0=0.0011) 1613  347 
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GC22 – GC29 

t test  848     0 

Moderated t test (limma) 1103     0 

Wilcoxon test  859     0 

SAM (S0=0.0014) 864     3 

As for the three clusters setting, the top 10 most significant genes for each of the statistical tests are 

presented in Tables 4 and 5 for the contrasts GC14 - GC22 and GC14 - GC29 respectively. From 

these tables one notices that for these contrasts, some genes appear amongst the top 10 of different 

statistical methods and that for some statistical methods, similar genes are differentially expressed 

between GC14 and GC22 or GC29, indicating that GC22 and GC29 are similar. 

Table 4: Top 10 significant genes for GC14- GC22 by each test statistic at 5% significance level. 

 

t test Moderated t test Wilcoxon test SAM 

1 79026_at 150094_at 6461_at 9582_at 

2 23244_at 57602_at 8723_at 253980_at 

3 2831_at 9314_at 53838_at 65983_at 

4 261726_at 1846_at 79738_at 56270_at 

5 1106_at 27154_at 9966_at 90007_at 

6 22828_at 1962_at 729970_at 8796_at 

7 23300_at 10221_at 1106_at 10915_at 

8 81853_at 92335_at 57106_at 161742_at 

9 55858_at 79170_at 23483_at 25980_at 

10 729970_at 84274_at 8021_at 163702_at 

Table 5: Top 10 significant genes for GC14- GC29 by each test statistic at 5% significance level. 

 

t test Moderated t test Wilcoxon test SAM 

1 64782_at 9314_at 79894_at 3725_at 

2 8611_at 1962_at 55341_at 339983_at 

3 160897_at 27154_at 54841_at 9070_at 

4 85455_at 113828_at 83607_at 63950_at 

5 8773_at 57820_at 2152_at 83607_at 

6 6137_at 23406_at 55147_at 7555_at 

7 390502_at 27042_at 59_at 79074_at 

8 66005_at 8140_at 152518_at 6574_at 

9 9080_at 57602_at 81930_at 10486_at 

10 22879_at 150094_at 5058_at 83734_at 
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3.2. Classification 

3.2.1. Three clusters analysis 

For 2000 bootstraps, features selection for the three clusters dataset was performed as described in 

the methodology and table 6 below gives the mean misclassification errors with standard errors in 

brackets, for all the various combinations of selection methods, top k genes and the classification 

functions. From this table, one notices that the combination of top 10 genes moderated F test as 

selection method and the classification functions LDA and NNET have the smallest 

misclassification error of 0.2701 with the same standard error of 0.0585. 

Table 6: Three clusters mean misclassification error rates and their standard errors in brackets.  

Figure 1 below also represents the mean misclassification errors as a function of the top k genes and 

the selection methods. Based on this plot, the mean misclassification errors and their standard 

errors, the combination of top 10, moderated F test and LDA was chosen for further analysis. LDA 

could be replaced with NNET because they have the same misclassification error rates. 

Top Selection Method SVM DLDA LDA KNN NNET 

5 

F test 0.3032(0.0628) 0.3601(0.0575) 0.2764(0.0612) 0.3601(0.0575) 0.2764(0.0612) 

Krusskal-Wallis test 0.3112(0.0631) 0.3921(0.0487) 0.2850(0.0575) 0.3921(0.0487) 0.2850(0.0575) 

Moderated F test 0.2991(0.0622) 0.3609(0.0595) 0.2726(0.0622) 0.3609(0.0595) 0.2726(0.0622) 

10 

F test 0.3007(0.0578) 0.3712(0.0541) 0.2712(0.0563) 0.3712(0.0541) 0.2712(0.0563) 

Krusskal-Wallis test 0.3083(0.0608) 0.3803(0.0485) 0.2764(0.0592) 0.3803(0.0485) 0.2764(0.0592) 

Moderated F test 0.3002(0.0591) 0.3735(0.0526) 0.2701(0.0585) 0.3735(0.0526) 0.2701(0.0585) 

20 

F test 0.3015(0.0569) 0.3539(0.0439) 0.3175(0.0638) 0.3539(0.0439) 0.3175(0.0638) 

Krusskal-Wallis test 0.2979(0.0596) 0.3528(0.0459) 0.3036(0.0649) 0.3528(0.0459) 0.3036(0.0649) 

Moderated F test 0.3021(0.0596) 0.3525(0.0440) 0.3186(0.0644) 0.3525(0.0440) 0.3186(0.0644) 
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Figure 1: Mean misclassification error as a function of top k and selection method for 3 clusters. 

For the chosen combination, 2000 bootstraps were performed for gene selection and table 7 below 

presents a list of the top 10 genes and their frequencies that were selected most of the times. 

Table 7: Gene signature for the three clusters 

Gene 10300_at 100288152_at 10152_at 100131512_at 10022_at 100127891_at 10018_at 10294_at 100288092_at X10200_at 

Freq. 1960 1799 1789 1707 1649 927 802 697 605 439 

For this gene signature, the expression levels for each gene were compared by visualising a gene by 

gene box plot across the three clusters as shown in figure 2 below. From this figure, one clearly sees 

that the expression levels of the genes differ for GC14 and others but closely similar for GC22 and 

GC29.

 

Figure 2: Expression levels of the three clusters gene signature. 
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Finally, 2000 bootsraps were performed with the gene signature in table 7 above with LDA as the 

classification function each time validated with the bootsraap test set. The mean misclasification 

error was 0.3228 which is approximately 32%. This was suggested to be high because of the 

similarity between clusters GC22 and GC29 that frequently leads to misclassification. 

3.2.2. Two clusters analysis 

Because of the high similarity between clusters GC22 and GC29, they were merged into one cluster 

and in a similar manner as in the three cluster analysis, features selection was performed as 

described in the methodology for two clusters settings. Table 8 below gives mean misclassification 

errors for all the various combinations of selection methods, top k genes and the classification 

functions. It can clearly be seen that the combination of top 10 genes, moderated t test as selection 

method and LDA as the classification function has the smallest misclassification error of 0.0807 

with a standard error of 0.0356. 

Table 8: Two clusters mean misclassification error rates and their standard errors in brackets.  

Top Selection Method SVM LDA TBB KNN RF 

5 

t test 0.1078(0.0474) 0.0850(0.0507) 0.1519(0.0552) 0.1076(0.0432) 0.1130(0.0517) 

Wilcoxon test 0.1372(0.0332) 0.1553(0.0317) 0.1681(0.0486) 0.1569(0.0577) 0.1559(0.0317) 

Moderated t test 0.1279(0.0452) 0.0928(0.0354) 0.1654(0.0496) 0.1092(0.0379) 0.1254(0.0455) 

10 

t test 0.1106(0.0490) 0.0908(0.0452) 0.1561(0.0556) 0.1230(0.0398) 0.1093(0.0392) 

Wilcoxon test 0.1553(0.0486) 0.1586(0.0528) 0.2000(0.0637) 0.1619(0.0543) 0.1679(0.0532) 

Moderated t test 0.1101(0.0470) 0.0807(0.0356) 0.1535(0.0650) 0.1201(0.0522) 0.1134(0.0540) 

20 

t test 0.0897(0.0339) 0.1239(0.0390) 0.1446(0.0687) 0.1303(0.0460) 0.1078(0.0489) 

Wilcoxon test 0.1710(0.0524) 0.2148(0.0572) 0.2100(0.0670) 0.1646(0.0576) 0.1679(0.0453) 

Moderated t test 0.1078(0.0474) 0.1415(0.0467) 0.1504(0.0618) 0.1295(0.0544) 0.1120(0.0580) 

Figure 3 is a graphical representation of the mean misclassification errors as a function of the top k 

genes and the selection methods. Based on this plot and the values of the mean misclassification 

errors the combination of top 10, moderate t test and LDA was selected because it is the curve with 

the lowest mean misclassification error. 
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Figure 3: Mean misclassification error as a function of top k and selection method for 2 clusters. 

For moderated t test as the selection method and top 10 genes to be selected, 2000 bootstraps were 

performed for gene selection and table 9 below gives the top 10 genes that were selected most of the 

times with their respective frequencies.  

Table 9: Gene signature for the two clusters 

Gene  10221_at 100287237_at 100141515_at 10095_at 100131187_at 100128071_at 100286909_at 100287098_at 10217_at 100129637_at 

Freq. 2000 1926 1854 1582 1408 958 867 805 697 570 

For this gene signature, the expression levels for each gene were compared by a box plot as shown 

in figure 4 below. From this figure, one clearly sees that the expression levels of the genes differ 

across the clusters. A gene by gene visualisation of the box plot makes this clearer than a block 

comparison. 

 

Figure 4: Expression levels of the two clusters gene signature. 
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From 2000 bootsraps performed with the gene signature in table 9 above and LDA as the 

classification function, the following results were obatined when validated with the bootstrap test 

sets; a mean misclassification error rate of 0.0724 which is approximately 7%, a sensitivity of 89% 

and a specificity of 96%. 
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4. Discussions And Conclusion 

From the analysis of differentially expressed genes, parametric, nonparametric and resampling-

based methods have shown that the three clusters of chemical compounds are not the same as 

reflected by the number of rejected hypotheses observed in this analysis. Though the three clusters 

were found to be dissimilar, it has been observed from the analysis of contrasts that clusters GC22 

and GC29 are similar to each other as reflected by the no or few number of rejected hypotheses at 

5% significance level. Clearly, assumptions are made about the distribution and/or variability across 

genes when using parametric tests like t test, moderated t test, F test and moderated F test. These 

assumptions may be violated leading to false results. Also, nonparametric tests like the Wilcoxon 

and the Kruskal-Wallis tests replace data with their ranks thereby leading to loss of information but 

have the advantage that the statistics are insensitive to measurement errors. Resampling-based 

(permutation) methods make no distributional assumptions about the statistic. The choice of an 

optimal method is not of much concern in this analysis and is left onto to the individual to choose 

which method best suits his/her desire since the goal was to determine using several possible 

methods if truly the three clusters are different. That notwithstanding, one clearly sees from Figures 

A1 (a) and (b) in the appendix, that there are quite a number of genes with large test statistics due to 

small within cluster (sample) variance. Hence, for this data, I will recommend resampling-based 

methods for the analysis of differential expression. 

For classification analysis, seven classification functions were chosen and five of these functions 

were used at the early stage of the classifier building process. The choices of the classification 

functions are subjective, that is there is no standard motivation for these choices. They can equally 

be replaced by any of the numerous classification functions that exist in the literature. Also, for the 

choice of classification function made, it might be required to carry out parameters tuning to 

determine the optimal values for the parameters to be used.  For instance, for support vector 

machines (SVM) it might be required to fine tune the optimal value for the cost parameter while for 

k nearest neighbour (KNN) one also needs to determine the optimal value for k. This is required 
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because classifiers might perform slightly better with optimal values of their parameters than with 

default values though in some cases, the difference may not be noticeable. For this analysis, optimal 

value(s) for the parameter(s) was (were) not performed. Thus, it could be that if performed, the 

classifier with the lowest misclassification error might be different from the current classifier in 

each of the clusters (three or two) settings. 

With respect to the classification analysis, it was observed that with the gene signature in Table 7 

and linear discriminant analysis (LDA) as the classification function, the misclassification rate 

stood at approximately 32% for the three clusters setting. This was suspected to be high because of 

the close similarity between clusters GC22 and cluster GC29. Worth to mention is the fact that the 

LDA classification function could have been replaced by the feed-forward neural networks (NNET) 

classification function since they both had same misclassification errors at different values of top 

selected genes. After merging clusters GC22 and GC29 to one cluster and performing the classifier 

building process with the two formed clusters, the gene signature in Table 9 and still linear 

discriminant analysis (LDA) as the classification function confirms the assertion that the 

misclassification error could have been high in the three cluster setting certainly because of the 

similarity between clusters GC22 and GC29 in that the misclassification rate reduced drastically to 

approximately 7%. This misclassification rate seems to be very encouraging as also illustrated by 

high values of sensitivity and specificity obtained from a sensitivity-specificity analysis. This 

analysis revealed a sensitivity of 89% and a specificity of 96%. 

In conclusion, I will recommend that if the goal of the experiment is to classify and predict the class 

of a chemical compound using gene expression data, then the researcher(s) should consider merging 

clusters GC22 and GC29 into one main cluster. This is because it has clearly been observed that 

based on the gene expression data, these clusters are not different and also, better classification and 

prediction results are obtained when these two clusters are merged and considered as one than when 

they are considered as separate clusters.  
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5. Software 

The sofware used for the entire analysis was the statistical sofware R version 2.13.0 with its 

accompanying bioconductor packages as described in each subsection below.  

5.1. Differential Expression 

For differentially expressed genes analysis, the packages Biobase for base functions for bioconductor, 

limma for linear models for microarray data, samr for significance analysis of microarrays, multtest for 

multiple hypothesis testing and xlsx for writing to spreadsheets were utilised. 

Differentially expressed genes analysis for the three clusters setting was performed using the F test, 

moderated F test, Kruskal-Wallis test and SAM. For F test, a linear model was fitted for the 

expression data of this gene against the vector of class labels using the method lm and this model 

was tested for no cluster effect using the method anova. The F statistic and the p-value for each gene 

were retained. In a similar manner, the Kruskal-Wallis test was performed by fitting a Kruskal-

Wallis model for each gene using the method kruskal.test and the Kruskal-Wallis statistic and p-value 

also retained. In both cases, I controlled for multiple testing as described in the methodology using 

the package multtest. First the method mt.rawp2adjp was used to convert the raw p-values retained from 

the fits to adjusted p-values using the BH adjustment procedure. Then the raw p-values and adjusted 

p-values were then combined into a data frame. Secondly, for a vector of values of false discovery 

rate (FDR) to be controlled, the method mt.reject was used to return the number of genes rejected at 

each significance level with the return object r and the genes that were rejected with the return 

object which. 

For moderated F test, the package limma was used. Firstly, an “assaymat” was created by converting 

the data into a matrix using the method as.matrix. Secondly, an expression set “myexpset” was created 

from the “assaymat” matrix using the method new. Next the design matrix was then created from the 

class labels using the method model.matrix and the model between the expression set and the design 

matrix was then fitted using the method lmFit and finally the empirical Bayes statistics and smoothed 

standard errors were computed for this fit using the method eBayes. The method topTable was then 
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applied to this empirical Bayes fit with no multiplicity adjustment and with the BH multiplicity 

adjustment procedure at various significance levels to get the number and consequently the rejected 

hypotheses. 

Comparison with significance analysis of microarrays (SAM) was done using the package samr. 

Firstly, a list object containing the expression data X, the class labels of the samples Y, the gene IDs, 

and the gene names is created then a SAM object is created using the method samr with arguments 

resp.type="Multiclass", nperms=100; corresponding to the response type and the number of 

permutations to be carried out. Secondly, the method samr.compute.delta.table was applied to the SAM 

object to produce a series of delta values and the delta value whose 90 percentile FDR corresponded 

to approximately 5% was chosen. With this delta value, the method samr.compute.siggenes.table was 

applied to the SAM object, the list object and the delta table to return a list of rejected hypotheses 

for this delta value. Finally, the method samr.plot was applied on the SAM object and the chosen delta 

value to produce the SAM plot showing the up and/or down regulated genes. 

For the contrasts analysis, for each and every gene, each cluster was compared with the other using 

the t test via the method t.test, Wilcoxon test via the method wilcox.test and in a similar manner; the 

raw p-values retained from these comparisons were adjusted for multiplicity using the multtest 

package as described above. Also, the comparison made using the moderated t test was performed 

in the limma package by creating a contrast matrix from the design matrix using the method 

makeContrasts, then a contrast model was fitted using the method contrasts.fit and finally, the empirical 

Bayes statistics were computed from this fit by applying the method eBayes and in a similar manner, 

the method topTable was applied to the empirical Bayes contrast fit to get the number of rejected 

hypotheses and definitely the hypotheses at different significance level without multiplicity 

adjustment and with BH multiplicity adjustment. Comparison with the SAM procedure is exactly 

the same as in the three clusters settings except that the expression set and the class labels in this 

case were those of the clusters to be compared  and the method samr now had the argument 

resp.type="Two class unpaired". 



Classification and class prediction for different chemical structures using gene expression data.       September 2011 

Jong, V. L. (2011) Master Thesis 27 

Lastly, from the statistics produced from the F test and t test, their computed standard errors and 

their p-values, a series of fold-change plots we produced using normal plots methods in R. Also, 

rejected hypotheses of one method we compared with those of the other methods using the 

operation %in%. And all through the analysis, outputs intended to be saved as a spreadsheet were 

done so using the method write.xlsx from the xlsx package. 

5.2. Classification 

Classification was performed using the package CMA and other required libraries include: Biobase for 

base functions for bioconductor, gbm for tree-based boosting, randomForest for random forest, limma for 

linear models for microarray data, class for k-nearest neighbours, MASS for linear discriminant 

analysis, nnet for feed-forward neural network, e1071 for support vector machines and xlsx for writing to 

spreadsheets.  

Two functions bestcombA and bestcombB were built for both the three clusters and two clusters settings 

analyses each taking values topk and method corresponding to the top genes to be selected and 

selection method respectively. Each also returns a list object containing the mean misclassification 

error and standard error of the mean for each combination of top genes, selection method and 

classifier. Within each function, a “for loop” from 1 to 1000 was included containing the CMA 

methods: GenerateLearningsets, GeneSelection, classification and compare. For the method GenerateLearningsets, the 

vector of class labels Y is used together with method="MCCV" corresponding to Monte Carlo Cross 

Validation, niter=2, corresponding to two iterations thus making a total of 1000x2 generated 

learning and test sets, ntrain= floor(2/3*length(Y)) corresponding to the number of samples to be in 

each learning set and strat=TRUE to take into account the number of samples per class label in both 

the learning and the test set. 

For each learning set, genes were selected using the method GeneSelection with arguments X the 

expression matrix and method taking the value provided in bestcombA  or bestcombB and for each batch 

of selected genes, five classifiers (of dldaCMA, ldaCM, gbmCMA, knnCMA, nnetCMA, rfCMA, 

svmCMA corresponding to diagonal linear discriminant analysis, linear discriminant analysis, tree-
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based boosting, k-nearest neighbours, feed-forward neural networks, random forest and support 

vector machines respectively) were built using the method classification and taking amongst its 

arguments X, Y  and topk genes provided as argument to bestcombA  or bestcombB. Finally, the results of 

the five classifiers were joined as a list object using the method join and compared using the method 

compare and the misclassification error for each classifier was retained. This was repeated till the “for 

loop” was terminated and the mean misclassification error and standard error of the mean was 

computed for each classifier. The functions bestcombA and bestcombB were then called several times 

with different combinations of topk (k= 5,10 or 20) and method [one of f.test, kruskal.test or limma 

for bestcombA and one of t.test, wilcox.test, limma for bestcombB]. Values returned from these several 

calls were then combined, formatted and saved as in table 6 or 8 and also plotted as in figure 1 or 3. 

In each data setting (three or two clusters), for the selected top k genes and selection method with 

the smallest misclassification error and for 2000 bootstraps, the sample was again split into learning 

and test sets using the method GenerateLearningsets with same arguments as described above and for 

each learning set, genes were selected using the method GeneSelection with the argument method taking 

the value of the chosen method. For each selected batch of genes, the top k (the chosen value) genes 

were retained using the method toplist. At the end of the 2000 bootstraps the retained genes were 

formatted as a table using the method table and ordered in descending order of their frequency 

counts. The top k genes in this table were returned as the gene signature. Based on this signature, 

the gene expression matrix X was reduced to only the gene expression data of the signature say X* 

by eliminating rows of genes not belonging to the signature. With the gene signature a gene by gene 

box plot for all the clusters was plotted using the method boxplot and taking into account which 

samples corresponds to which cluster as shown in figures 2 and/or 4. 

Finally, with the chosen classifier and for 2000 bootstrap, learning and test sets were generated in a 

similar manner as described above using the mehod  GenerateLearningsets. For each learning set, the 

classifier was built using X*, Y. The performace of the classifer was then evaluated using the 

method evaluation  taking argument measure = "misclassification", "sensitivity" or "specificity".   
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7. Appendix 

Figure A1: Effects of fold change and small variance genes 

 

a. Effect of fold change from the F statistic 

 

b. Effect of fold change from the F statistic 
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Figure A2: SAM plots. 

 

a. SAM F statistic (delta = 0.30) 

   

b(i) GC14-GC22; SAM t statistics (delta= 1.43)   b(ii) GC14-GC29; SAM t statistics (delta= 1.30)  
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