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SUMMARY 

Motivation: Microarray technologies are increasingly being used in early drug development. When 

the gene expression data from microarray experiments also contains the IC50 values of a drug, it is 

of interest to predict the dosage based on the gene expression profiles. In this study, the supervised 

principal component analysis (SPCA) by Bair et al., (2006) was used to select and evaluate possible 

biomarkers and joint biomarker for the IC50 values of compound 352. 

Results: The response of interest is a vector of IC50 values of compound 352 the corresponding 

genes expression contains 7722 genes and 32 samples. This expression matrix was separated to 

genes negatively correlated to the IC50 and those positively correlated. The approach used in the 

SPCA method for biomarker (gene) selection is to select genes only the top k genes that are 

associated to the IC50, using this genes construct a joint biomarker and assess statistical 

significance for prediction using the joint biomarker. 

 

Key Words: Biomarker, Drug development, Gene expressions, Microarray experiments, Supervised 

principal component analysis. 
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1. INTRODUCTION 

Since the introduction of microarray technology into biomedical research it has been very useful in 

monitoring thousands of genes in a single experiment at the expression level across the genome and 

has been proven efficient in exploring the complex patterns in biological systems (Zhao and Simon, 

2010) . However, this ability to measure thousands of genes has resulted to data sets with the 

number of genes p, far exceeding the number of samples N and is often represented by a p×N 

matrix. Each row of the matrix represents the expression levels of a gene across different biological 

samples and each column represents the gene expression levels of a genome under a sample. 

Although there are many genes in the microarray, only subsets of these genes have meaningful 

contributions to variations relating to a given phenotype (Chen et al., 2008). Statistical methods are 

often required to analyse the intensity of the genes across different conditions associated to an 

outcome such as, classification and prediction of the phenotypes based on the expression profiles. 

There are many challenges for the development and validation of predictive models in microarray 

settings due to the large number of predictors (Zhao and Simon, 2010). 

In these statistical studies, a frequent objective is to identify a subset of genes whose expression 

profiles are significantly correlated with a given phenotype. There has been extensive attention on 

the study of the relationship between categorical or survival outcomes and gene expression profiles, 

on the other hand there are relatively few publications on prediction for continuous phenotypes 

(Segal et al., 2003). In the microarray settings with the large p and small N standard regression 

models are problematic because X
T
X may be singular, (where X is the design matrix). Of particular 

interest is when the gene expression profiles are measured alongside the IC50 (Inhibitory 

concentration 50%) value of a drug which is the concentration at which the drug (inhibitor) 

produces 50% inhibition. The genes in a microarray experiment are likely to have a strong and 

complex correlation structure between the expression levels of the genes due to biological pathway 

and gene network relationships (Segal, et al., 2003). Numerous techniques have been proposed to 

handle the problem of dimensionality such as; (a) the Least absolute shrinkage and selection 

operator (LASSO) (Tibshirani, R., 1996), Partial least squares, principal component regression and 

supervised principal component analysis (SPCA). The LASSO penalizes the regression coefficients 

by shrinking them towards zero. However, it is limited in that the number of non-zero coefficients 

in the solution is at most N for any choice of the shrinkage parameter. In situations where there are 

highly correlated variables, LASSO will randomly select one of them. Zhao and Simon (2010) used 

the LASSO to predict the Gleason score of human prostate cancers. Partial least squares down-

weights genes not correlated to the response and maximizing the covariance between the response 

and a linear combination of the genes. Nguyen and Rocke (2002) used the Partial Least Squares 
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method to select relevant genes for prediction of survival time for cancer patients. The disadvantage 

of the Partial Least squares method is that it does not remove the noisy genes; as a result, a large 

number of noisy features can contaminate the predictions (Hastie et al., 2008). Principal 

components regression (PCR) uses principal components analysis to decompose the set of p genes, 

into k principal components, k<p. The k principal components selected are then included in a 

regression model that account for as much variation in the gene expressions as possible (Hastie et 

al., 2008). The disadvantage of this method is that the principal component aims at explaining the 

variability in the predictors rather than the outcome so it is possible to select genes that have little or 

no relationship with the outcome. Bair et al., (2006) proposed a modified version of the PCR called 

supervised principal component analysis (SPCA) that does variable selection based on the 

association of the genes to the response. It excludes genes that have a weak linear association to the 

response. SPCA is the mothod of choice for the analysis in this study. This is because it does 

variable selection based on the outcome information and it allows the possibility of including only 

those features that are highly correlated to the response into the model. 

1.1 Objective 

The main objective of this study was to select a relevant subset of genes (biomarkers) from the gene 

expression profile that are associated to the IC50 value of compound 352. From the selected genes, 

estimate a joint biomarker associated to the effect of compound 352. Also of importance was to 

assess the statistical significance of the association between the joint biomarker and the IC50. 

Genes that are negatively correlated to the IC50 are separated from those that are positively 

correlated and the 2 groups of genes are analysed separately. 

The rest of this report is organized as follows; section 2 gives a brief background about gene 

expression profiles and drug development. Section 3 describes the data and methods used for the 

analysis and the results are outlined in section 4. The discussions and conclusion makes up section 5 

of the report. The appendix (section 6) contains some tables of and graphs for model diagnostics. 
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2. BACKGROUND 

The rapid development of the microarray technology has motivated its use in clinical and preclinical 

trials, diagnosis or predictions of phenotypes. Many studies have attempted to find relevant subset 

of genes associated to a phenotype. A relevant subset of genes, often referred to as „biomarkers‟, 

may be useful in separating patients in diagnosis, prognosis and for appropriate therapeutic 

selection in clinical management. 

The Food and Drug Administration (FDA) defined a biomarker as a characteristic objectively 

measured and evaluated as an indicator of normal biologic or pathogenic processes, or 

pharmacologic responses to a therapeutic intervention (Carroll, 2007). Current research has shown 

that biomarkers can provide indications of  both the potential effectiveness and the potential hazards 

associated with a therapeutic intervention. Biomarkers are now playing an increasingly important 

role in the discovery and development of new drugs (Chau et al., 2008). 

The use of biomarkers in drug discovery, development and post-approval has the potential to 

facilitate development of safer and more effective medicines (Lin et al, 2010) and guide dose 

selection as well as the understanding of the mechanism by which the drug works. It provides 

insights on decisions whether to continue with the development of the drug, to screen compounds 

for toxicity before they enter clinical trials, to monitor the development of toxicity during clinical 

trials, and to forecast adverse events resulting from wider exposure (Frank & Hargreaves, 2003). 

Microarray experiment makes it possible to search for genes that can serve as biomarkers; because 

of the dimension of the microarray there are many potential biomarkers for any given phenotype, 

thus there is a need for gene selection. The large p small N problem with highly correlated genes 

makes it very difficult to select the most powerful biomarker. Because of the large number of genes, 

it is easy to find biomarkers that perform excellently with the training data but achieves poor 

prediction outside the training data (Bovelstad et al., 2007) so one should be cautious in the 

statistical method used and the choice of the model. 

No one biomarker is likely to have all of the characteristics necessary to provide a robust 

understanding of response, as a result, the use of multiple biomarkers is likely to improve 

prediction. However, the use of a combination of biomarkers (referred to as a joint biomarker) may 

introduce challenges, such as how to combine results, and the interpretations in different clinical 

contexts. Statistical techniques play a vital role for the selection and evaluation of biomarkers in 

drug development and for the understanding of the complex nature of the relationship between 

genes and phenotypes. The improper use of these techniques or interpretation of biomarkers can be 

detrimental to the research; it may lead to misdirecting therapy or research activities.  
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Lin et al., (2010) classified biomarker into two groups, therapeutic and/or prognostic genes 

depending on their relationship to a clinical outcome. Therapeutic biomarkers are genes that 

response to treatment and can enable the clinicians understand the effect of a treatment on the 

clinical outcome while prognostic biomarkers are related to the response with or without the 

treatment effect. The use of microarray experiments in clinical and preclinical trials  has been 

extended beyond the level of subject classification into possible prediction of clinical outcomes 

using single genes (biomarker) or combination of genes (joint biomarker). In this study, the interest 

is on prognostic biomarkers. 
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3. METHODOLOGY 

3.1 Data 

The microarray data set used for the analysis in this study is from a drug development research of 

compound 352. In this experiment the expression level of 7722 genes where measured from 32 

samples resulting to a gene expression matrix of 7722 x 32, with p=7722 genes and N=32 samples. 

The outcome of this study is the IC50 value of compound 352. The microarray data is summarized 

in a pxN matrix 𝑋 = 𝑥𝑖𝑗  as shown below 
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N = 32 is the number of sample and p = 7722 is the number of genes. The data set is divided into 

two, i.e. genes negatively correlated (Xneg) and those positively correlated (Xpos) to the IC50. 2794 

genes are correlated to the IC50 while 4928 are negatively correlated to the IC50 thus two data sets 

are obtained Xpos a 2794 x 32 matrix of positively correlated genes and Xneg a 4928 x 32 matrix of 

negatively correlated. 

3.2 Gene Specific Model 

Let Y be the IC50 values of the 32 samples and 𝑥𝑖  the expression vector of gene i, (i=1, ..., p) from 

either Xpos or Xneg expression matrices above. To test the association between the ith gene and the 

IC50 it suffices to test for independence (Sohn et al., 2011), thus the inference of interest would be 

to test the hypotheses: 

𝐻0
𝑖 : gene i is associated with the IC50 against  𝐻1

𝑖 : gene i is not associated with the IC50 

To identify prognostic genes Lin et al., (2010) propose the use of a univariate regression model. 

Sohn et al., (2011), Sreekumar & Jose (2008) and Lin et al., (2010), used the linear regression 

coefficient to quantify the hypothesis of independence. Let 𝑥𝑖  be a vector of gene expression values 

for gene i, i=1,...,p, (p=2794/4928) and 𝑌 the vector of the IC50 values with mean 𝛼, the gene-

specific regression model is 

𝐸(𝑌) =  𝛼 +  𝛽𝑖𝑥𝑖                           (1) 
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The gene-specific univariate regression coefficients 𝛽𝑖 , of model (1) quantify the association 

between gene expressions and the IC50. In order to assess the significance of the association it 

suffices to test the null hypothesis 

𝐻0
𝑖 :  𝛽𝑖 = 0       𝑣𝑒𝑟𝑠𝑢𝑠      𝐻1

𝑖 :  𝛽𝑖 ≠ 0                        (2) 

(Sohn et al., 2011 and Thomas et al., 2001) where 𝐻0
𝑖  is the null hypothesis of gene i. In the 

marginal testing 𝐻0
𝑖 is rejected in favour of 𝐻𝑎

𝑖  if  𝛽𝑖 ≠ 0 (Sreekumar & Jose, 2008), if the null 

hypothesis in (2) is rejected, genes with  𝛽𝑖 > 0 are up-regulated prognostic biomarkers (positive 

biomarkers) and the gene with  𝛽𝑖 < 0 are down regulated (negative biomarkers) (Lin et al., 2010). 

Simultaneous testing for association of thousands of genes would lead to the multiple testing 

problem (Benjamini & Hochberg, 1995). Thus, using a common significance level will generally 

result in a large number of false positives, so there is a need to control for type I error rate (Hastie et 

al., 2008). The false discovery rate of Benjamini and Hochberg (FDR-BH) was used to adjust for 

multiplicity. The False Discovery Rate (FDR) is the expected proportion of genes falsely declared 

significant, among the total number of genes that are significant (Hastie et al. 2008). The FDR 

procedure is based on table 1 below and is defined as 

𝐹𝐷𝑅 = 𝐸  
𝑉

𝑅
  

Table 1: Number of errors committed when simultaneously testing the null hypothesis. 

 Non Significant Significant Total 

H0 True m0 – V V m0 

H0 False m1 – S S m1 

Total m – R R m 

 

Where m0 is the total number of true null hypothesis, m1 is the total number of false null hypothesis, 

V the true null hypothesis that are declared significant, S is the number of falsely declared null 

hypothesis declared significant and R the total number of null hypothesis that are significant. The 

Benjamini–Hochberg (BH) procedure is based on p-values obtained from an asymptotic 

approximation to the test statistic, or a permutation distribution (Benjamini & Hochberg, 1995). 

Benjamini and Hochberg (1995) show that under the assumption of independence and regardless of 

the distribution of the p-values and the number of true/false null hypotheses, the algorithm for the 

FDR-BH procedure is 
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 Order the p-values: 𝑃(1) ≤  𝑃(2) ≤ , … , ≤ 𝑃(𝑖), … , ≤ 𝑃(𝑝) corresponding to the ordered 

hypothesis𝐻(1) ≤  𝐻(2) ≤ , … , ≤ 𝐻(𝑖), … , ≤ 𝐻(𝑝) 

 Define 𝐿 = max{ 𝑗: 𝑃 𝑗   ≤  𝛼 .
𝑗

𝑝
} 

 Reject all hypothesis 𝐻(𝑗 ) for which 𝑃(𝑗 )  ≤  𝑃(𝐿)the FDR-BH threshold. 

The FDR-BH procedure was implemented using the multtest package of the R statistical software. 

3.3 Supervised Principal Component Analysis (SPCA) 

Bair et al (2006) proposed the SPCA that handles the problem of high-dimensionality and 

estimation of a latent variable by using only genes with the strongest correlation to the response. 

This method uses principal components (PC), estimated from a selected subset of genes to predict 

an outcome, it is a supervised process because gene selection is based on the outcome information. 

The main assumption of the SPCA method is that there is a latent variable U(X) that is associated 

with a given response. This assumption is based on the fact that only a subset of genes from the 

microarray experiment work together to bring about changes in cellular processes that is related to a 

phenotype (Chen et al, 2008 and Bair et al 2006). The latent variable U(X) is viewed as an aspect of 

a cellular process, which cannot be measured directly but may be estimated by combining the 

expression values of the relevant subset of genes. The latent variable estimated is the joint 

biomarker associated to the phenotype. The supervised principal components (PC) helps to uncover 

groups of genes that are expressed together (Bair et al 2006) and estimation of the PCs from the 

selected subset of genes improves prediction accuracy (Chen et al 2008). The main advantage of the 

SPCA is that it is consistent in the features it selects (Roberts & Martin, 2006 and Bair et al., 2006). 

Features that have little or no linear association to the response are excluded from the model.  

Let X be a standardized p x N matrix of feature measurements and Y a response, X is standardized so 

that the slopes can be comparable across the genes. The SPCA algorithm is as follows, 

1. Compute univariate standard regression coefficients for each feature. 

2. Form a reduced data matrix consisting of features whose univariate coefficient exceeds a 

threshold θ (θ is estimated by cross-validation). 

3. Compute the first (or first few) principal components of the reduced data matrix 

4. Use these principal component(s) in a regression model to predict the outcome 

3.3.1 Singular value Decomposition (SVD) 

Let X be a one of the N×p matrix of gene expression in section 3.1, in which the p columns index 

the genes and the N rows index the samples, let xi be a random variable for the gene expression 



Large-scale prediction of phenotypic variables using gene expression data 

8 
NDAH September 2011 

values of the ith sample. Let Σ be a pxp covariance matrix of X then the ordered eigenvalues of Σ, 

(𝜆1 ≥ 𝜆2 … ≥ 𝜆𝑁) are such that the vector of coefficient 𝛼1 corresponds to the largest eigenvalue 𝜆1 

and 𝑣𝑎𝑟 𝛼1
𝑇𝑥 =  𝜆1 (Chen et al. 2008) then 𝛴𝛼𝑖 = 𝜆𝑖𝛼𝑖 , 𝑖 = 1, . . . , 𝑁 (Johnson & Wichern, 2007). 

The principal component scores of the gene expression vector x is a linear combination of x and the 

eigenvector 𝛼 defined as 𝛼𝑘1
𝑇 𝑥 =  𝛼𝑘1𝑥1 +  𝛼𝑘2𝑥2 +  … + 𝛼𝑘𝑝𝑥𝑝  . The vectors {𝛼𝑘1,𝛼𝑘2, … , 𝛼𝑘𝑁 } 

are referred to as the loadings of the kth principal components 𝑘 = 1, . . . , 𝑁.  

Principal component analysis (PCA) is directly related to singular value decomposition when the 

principal components are calculated from the covariance matrix (Wall et al., 2001). Jolliffe (2002) 

estimated the eigenvectors {𝛼𝑘1,𝛼𝑘2, … , 𝛼𝑘𝑝 }, of X using SVD assuming the gene expression matrix 

X is standardized such that the gene expression values have mean 0 and variance 1. The 

mathematical definition for singular value decomposition of X is the following: 

𝑋 = 𝑈𝐷𝑉𝑇  

where U is a p × N matrix, its columns are the principal component scores and form an orthonormal 

basis for the gene expression profiles corresponding to the ordered singular values 𝜆1 ≥ 𝜆2 … ≥

𝜆𝑁 ≥ 0 of D, an NxN diagonal matrix. V
T
 is an N x p matrix whose rows are the right singular 

vectors (expression levels vector). SVD provides a means of estimating the coefficients of the 

principal components and the principal component scores of each sample simultaneously (Jolliffe, 

2002). 

3.3.2 Underlying Model 

Let R be a list of genes related to a phenotype from a gene expression matrix 𝑋 =  𝑥1, 𝑥2, … , 𝑥𝑝 ,  

that explains the variation of a response Y.  Suppose that Y is related to a an underlying latent 

variable U(X) by a linear model 

𝑌 =  𝛽0 +  𝛽1𝑈(𝑋) +  𝜀                                     (3) 

this latent variable U(X), represents an underlying biological process associated with the genes in R. 

𝜀 ~𝑁 0,1  is the error term. Let Xr be the gene expression measurements for the genes in R,  

𝑋𝑟 =  𝛼0𝑟 +  𝛼1𝑟𝑈(𝑋) +  𝜖𝑟 ,         𝑟 ∈ 𝑅                      (4)  

where 𝛼0𝑟  and 𝛼1𝑟  are weights and 𝜖𝑟  ~ 𝑁 0,1 . In addition to the genes in 𝑋𝑟 ,  there are many 

additional genes 𝑋𝑗 , 𝑗 ∉ 𝑅 that are independent of U(X) but included in the gene expression matrix 

X. The SPCA method aims at estimating the subset R of genes from the matrix  X responsible for 

the cellular process, compute the latent variable U(X) fit model (3) and assess statistical significance 
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of association between U(X) and the outcome. From the prediction model (3), statistical 

significance of 𝛽1 would indicate significant association between U(X) and the outcome (Chen et al, 

2008).  

3.3.3 Description 

Bair et al.,(2006) published a technical report about the SPCA method, where they describe the the 

method, below is a summary of the model description. Assume X is a gene expression matrix 

centred to have mean 0 and variance 1, then the singular value decomposition of X as described in 

section 3.3.1 is  𝑋 = 𝑈𝐷𝑉𝑇 . The SPCA algorithm is made up of 4 main steps, the screening step 

that measures the association of the individual genes to the response, the second step estimates the 

subset of genes R that are associated to the response, then compute the latent variable U(X) and 

finally use U(X) for prediction. This procedure ensures that the latent variable constructed 

maximizes the association between the response and the gene expressions and is such that R is the 

best gene subset associated to the response (Tilahun, et al 2010). 

Screening: this step eliminates genes that have little or no correlation to the response. The measure 

of association between the response and the individual genes is the univariate regression coefficient. 

Let S be a p-vector of these standardized regression coefficients then sj is equivalent to 𝛽𝑖‟s in the 

gene-specific model in section 3.2,  

𝑠𝑗 =  
𝑥𝑗

𝑇𝑦

 𝑥𝑗 
   ,   𝑤ℎ𝑒𝑟𝑒  𝑥𝑗 =  𝑥𝑗

𝑇𝑥𝑗                         (5) 

Estimating R: let θ be a threshold value, Bair et al (2006) recommends estimating θ by cross 

validation. Let Xθ  be a reduced matrix consisting of only those genes whose univariate regression 

coefficients exceed the threshold value θ, i.e.  𝑠𝑗  >  𝜃, the estimate of R (𝑅 ) is the subset of genes 

that pass the threshold test. 

Compute U: Xθ is a reduced matrix of gene expression profiles made up of only the genes in R, the 

SVD of Xθ  is given by 

𝑋𝜃 = 𝑈𝜃𝐷𝜃𝑉𝜃
𝑇                                     (6) 

where 𝑈𝜃 =  𝑢𝜃 ,1, … , 𝑢𝜃 ,𝑘 , termed the ordered supervised principal components, where k is the 

number of features that pass the threshold.  

Prediction: The first supervised principal component 𝑢𝜃 ,1 is used as a predictor in a univariate 

regression model with response y. 
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𝑦 𝑠𝑝𝑐 ,𝜃 = 𝑦 +  𝛾 . 𝑢𝜃 ,1                      (7) 

𝑦 𝑠𝑝𝑐 ,𝜃  is the estimate of y based on the reduced matrix 𝑋𝜃 , and 𝑦  the mean of y, thus 𝛾 =  𝑢𝜃 ,1
𝑇 𝑦, 

since 𝑢𝜃 ,1 is the left singular vector of 𝑋𝜃 , it has mean 0 and unit norm. 

This method encourages the use of the first (or first few) principal component (Bair et al. 2006) 

because it explains most of the variability of the original variable and it has the highest prediction 

accuracy (Niklas & Low, 2011). Equation (6) can be rearranged so that  

𝑈𝜃 =  𝑋𝜃𝑉𝜃𝐷𝜃
−1 =  𝑋𝜃𝑊𝜃                     (8) 

𝑢𝜃 ,1 is a linear combination of the columns in 𝑋𝜃 thus it can be written as 

𝑢𝜃 ,1 =  𝑋𝜃𝑤𝜃 ,1                      (8′) 

where 𝑤𝜃 ,1 is the loading of the first principal component, hence from (7) we get 

𝑦 𝑠𝑝𝑐 ,𝜃 = 𝑦 +  𝛾 . 𝑋𝜃 . 𝑤𝜃 ,1                    (9) 

              = 𝑦 +  𝑋𝜃 . 𝛽 𝜃                            (10) 

where 𝛽 𝜃 = 𝛾 . 𝑤𝜃 ,1, (𝛾  is a scalar), the regression model in (10) is restricted to the genes that pass 

the threshold test.  

The SPCA method was used to select a subset of genes corresponding to a biological process that is 

responsible for the changes in a phenotype resulting from the effect of compound 352; the joint 

biomarker for the prediction of the IC50 was estimated for the positive and negative genes. The 

gene specific model (1) is equivalent to the screening step. The expression levels of these genes are 

combined into one variable, the first supervised principal component representing the joint 

biomarker. Rather than estimating a threshold value θ, the top k genes that maximize the prediction 

of the IC50 values is estimated (Roberts & Martins, 2006).The expression matrices Xpos and Xneg in 

section 3.1 were standardized and the SPCA procedure was implemented as follows; 

1. Fit a gene-specific simple regression model relating the IC50 values to the individual gene 

expressions i.e. for each gene fit the model 

𝑌𝑖 =  𝛼 + 𝛽𝑖𝑥𝑖𝑗 +  𝜀𝑖𝑗                            (11) 

where Yj is the IC50 value of the jth subject and xij the gene expression value of the ith gene 

for the jth subject, 𝛽𝑖  is the standardized regression coefficient and 𝜀𝑖𝑗  ~𝑁(0,1). 
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2. For each of the p models in step 1, rank the genes based on decreasing magnitude of  the 

regression coefficients 𝛽𝑖  such that 𝛽1 ≥ 𝛽2 ≥, … ≥ 𝛽𝑝 , p=4928/2794. 

3. Form a reduced matrix Xk, of the top k genes according to the ranking above k =2,3, ...., m, 

where m is the number of significant genes. Let 𝑅𝑘  = {𝑥𝑖 ⊆  𝑋: 𝑖 = 1, . . , 𝑘} consists of the 

top k genes. Compute first PC score (PC1) using only genes in Rk  and fit the model 

𝑌𝑗 =  𝛼 +  𝛽𝑈𝑗  𝑋𝑘 +  𝜀𝑗  

where Yj is the IC50 and 𝑈𝑗  𝑋𝑘  is the joint biomarker of the jth sample and 𝜀𝑗 ~𝑁(0,1) the 

error term. Let 𝑇𝑘  be the R-squared value of the model. From the set of regression R-squared 

values {𝑇2, 𝑇3, . . . , 𝑇𝑚 } choose the value of k corresponding to the highest R-squared value 

i.e. 𝑘 =   𝑇𝑘 ∶  𝑇𝑘 =  max2 ≤𝑘≤𝑚 𝑇𝑘 ,  select the corresponding subset of top genes in  𝑅𝑘  to 

form the reduce matrix  𝑋𝑘 . 

4. Compute the first supervised principal component 𝑈𝑘 ,1 of  𝑋𝑘  use it in model (3) for 

predicting the IC50 of compound 352. 

3.4 Cross Validation 

To assess the performance of any prediction model, it is necessary to train and test the model on 

separate data. Model building processes should take into account the variation in prediction 

performance that would result from using a different data (Efron, 1983).  

Regression R-squared, can be an overly optimistic view for accuracy of a prediction model. The 

estimates obtained from a model are biased because the model is tuned for the maximum agreement 

with the training data (Snee, 1977). It is advisable therefore to validate the regression model by 

testing the model on data not used for training (Snee, 1977). In cross-validation, a different subset 

of observations is successively set aside (validation set) and used to assess the performance of the 

prediction model. This procedure eventually results in a complete set of predicted values, each of 

which was generated by a model independent of the validation set. 

For microarray settings, cross validation is very problematic due to the large number of highly 

correlated predictors. In order to select good features, Refaeilzadeh et al. (2007) recommends using 

almost the entire data i.e. at least 90% for model building. But for the data described in section 3.1, 

there are N=32 observations and thousands of correlated features hence too many competing 

models for each split, thus leave one out cross-validation (LOOCV) would be an appropriate choice 

for feature selection (Efron, 1983 and Nguyen &Rocke, 2002). 

In the LOOCV, let (𝑌𝑘 , 𝑥𝑘) be the kth record in the data set (𝑘 = 1, . . . , 𝑁) where 𝑌𝑘  is the IC50 and 

𝑥𝑘  the gene expression of the kth sample. Temporarily remove (𝑌𝑘 , 𝑥𝑘) from the data set. Train the 
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model on the remaining N-1 samples, test on (𝑌𝑘 , 𝑥𝑘) and obtain the estimate of the joint biomarker 

𝑈 (𝑋𝑘) of the left out data. Choose the top k genes that correspond to the model with maximum 

correlation between the estimated joint biomarkers 𝑈 (𝑋) and the IC50 value. 
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4. RESULT 

This section presents the basic exploratory data analysis, and the results obtained from the gene-

specific model and the supervised principal component analysis. 

4.1 Exploratory Analysis 

The microarray data set described in section 3.1 consist of gene expressions of p = 7722 genes from 

N = 32 samples. Let the outcome vector Y denote the IC50 value for the 32 samples. Out of the 

7722 genes, 4928 are negative correlated to the IC50 values (negative genes) while 2794 have 

positive correlations (positive genes) to the IC50. The positive genes (up regulated) are analysed 

separately from the negative gene (down regulated), thus 2 new expression matrix Xneg a 4928x32 

matrix of negatively correlated genes and Xpos a 2794x32 matrix of positively correlated genes. 

The correlation to the negative genes ranges from -1.67 x 10
-5 

to -0.79 while that for the positive 

genes ranges from 1.74 x 10
-5 

to 0.74. Histograms of the distributions of correlation between the 

negative and positive genes to the IC50 values are in Figure 4.1 panel A and B respectively.  

Figure 4.1: Histogram of the correlation between the IC50 values and the gene expression of the 

4928 negative (left panel) and the 2794 positive genes (right panel). 

The histogram shows that most of the genes have low correlations with the IC50 values. Gene 

8884_at has the strongest negative correlation of -0.79 (Figure 4.2, left panel) and gene 222068_at 

has the strongest positive correlation of 0.74 (Figure 4.2, right panel) to the IC50. 
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Figure 4.2: Scatter plot of the genes expression against the IC50 values for the strongest negative 

correlation (gene 8884_at) and strongest positive correlation (gene 222068_at). 

Figure 4.3 shows the scatter plot of the gene with the weakest negative correlation of -1.67 x 10
-5 

(80135_at) and the gene with the weakest positive correlation of 7.43 x 10
-5 

(100289612_at) 

 

Figure 4.3: Scatter plot of the genes expression against the IC50 values of the gene with the 

weakest negative correlation (gene 80135_at) and weakest positive correlation (gene 

10029612_at). 

The scatter plots in Figure 4.3 shows no apparent relationship between the IC50 values and the gene 

profiles of the genes with very low correlation. 
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4.2 Gene-specific model 

The gene specific model was used to identify and evaluate the association measure of each 

individual gene in the microarray as a possible biomarker for the IC50 values. Figure 4 C and D 

shows a histogram of the distribution of the regression coefficient  𝛽𝑖‟s of the gene-specific model; 

as expected majority of the genes have weak association to the IC50 values (Tilahun, et al., 2010). 

The same observation holds for the R-squared values. This is in line with the assumption that only a 

subset of relevant genes is associated to a phenotype. The distribution of the R-squared values 

(Figure 4 A and B) follows a t-distribution for both the positive and the negative genes. 

 

 

Figure 4.4: histograms for the distributions of the regression coefficient and the R-squared values, 

for the gene-specific model. 

 

Table 4.1 summarizes the results of the top 15 genes, ranked in descending order of the regression 

coefficient. After multiplicity adjustment using the false discovery rate approach of Benjamini & 
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Hochberg (1995), 226 positive genes where found to be significantly associated with the IC50 

values while 859 negative genes where significantly associated at the 5% significance level 

Table 4.1: List of the top 15 genes with their univariate regression coefficients, BH-FDR adjusted 

p-values (BHpvalue) and R-squared. 

Positive Genes Negative Genes 

Gene ID 𝜷 R
2 BHpvalue Gene ID 𝜷 R

2 BHpvalue 

222068_at 0.554 0.551 0.0025 8884_at -0.591 0.625 0.0002 

288_at 0.546 0.534 0.0025 113000_at -0.588 0.619 0.0002 

2729_at 0.542 0.526 0.0025 387338_at -0.582 0.607 0.0002 

255743_at 0.516 0.476 0.0051 573_at -0.576 0.594 0.0003 

57583_at 0.511 0.468 0.0051 55020_at -0.572 0.586 0.0003 

10553_at 0.509 0.465 0.0051 54733_at -0.569 0.580 0.0003 

51315_at 0.504 0.456 0.0051 1594_at -0.565 0.572 0.0003 

7690_at 0.503 0.453 0.0051 93622_at -0.564 0.570 0.0003 

57492_at 0.502 0.452 0.0051 26073_at -0.549 0.540 0.0008 

1604_at 0.502 0.452 0.0051 6242_at -0.547 0.537 0.0008 

4214_at 0.501 0.449 0.0051 23647_at -0.547 0.536 0.0008 

3304_at 0.500 0.449 0.0051 117246_at -0.546 0.534 0.0008 

2936_at 0.499 0.448 0.0051 10309_at -0.544 0.531 0.0009 

7408_at 0.499 0.447 0.0051 6047_at -0.542 0.527 0.0009 

81542_at 0.498 0.444 0.0051 285958_at -0.542 0.526 0.0009 

 

As expected, the genes with largest regression coefficients are the most significant after adjusting 

for multiplicity.  

4.3 SPCA 

The objective of this section is to obtain a joint biomarker for predicting the IC50 value of 

compound 352. A joint biomarker is more likely to explain more of the variability of the response 

than a particular gene obtained from the gene specific model. SPCA procedure was used to estimate 

the joint biomarker. The numbers of top genes used to construct the joint biomarker was selected by 

choosing the top k genes that maximize the R-squared value of model (3). 

Figure 4.5 shows a plot of the R-squared values against the top k genes. The bolded point (in red) 

corresponds to the k with the maximum R-squared value. For the negative genes the maximum R-

squared value of 0.76 was obtained when the joint biomarker U(X) included the top 15 genes, while 
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for the positive genes the best R-squared value of 0.75 was obtained when the top 3 genes was 

included to compute the joint biomarker. 

Figure 4.5: Plot of the R-squared value against the top k genes. 

For the negative genes, after the top 15
th

 gene was used to estimate the joint biomarker the inclusion 

of more genes in the model decreases in the R-squared value which implies that the addition of 

more genes only introduces noise to the model. The same observation holds for the positive gene 

(right panel). Table 6.1 in the appendix list the top 15 genes that show the highest association to the 

IC50 values.  

Bair et al., (2006) and Tilahun et al. (2010) proposes some approaches to obtain a smaller but 

optimal list of genes from the top k genes that could best predict the IC50. One approach is to rank 

the genes according to their loadings on the first principal component and choose only genes with 

larger weights. Using this approach, the R-squared of the joint biomarker increases with the 

addition of the genes in the joint biomarker, but the R-squared value of 0.76 was achieved only 

when all the genes were included in the model. Another approach is to choose only those genes that 

increase the association between the joint biomarker and the IC50 values (Tilahun et al, 2010). 
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Figure 4.6: plot of R-squared against the top k genes, showing the effect of each gene on the R-

square value. 

Figure 4.6 shows that for the negative genes (left panel) when the 5
th 

top gene was added to the joint 

biomarker the R-square decreases from 0.71 to 0.70; while the 6
th

 gene increases it to 0.73, the  7
th

, 

10
th

, 11
th

 and 12
th

 top genes also decreases the R-square value of the joint biomarker. Using this 

approach, the 9 genes that increases the value of the R-square were used as the joint biomarker, 

resulting to an R-squared of 0.79, which is higher than the 0.76 from the top 15 genes. The first 

principal component of the 9 genes explains 73% of their variability while the first principal 

components of the top 15 genes explain 74% of their variability. Table 4.2 shows the list of the 

Gene ID‟s of 9 genes that were finally used to construct joint biomarker, their loadings for the first 

supervised principal component, univariate R-squared values, and regression coefficients. 

Table 4.2: List of negative genes selected by SPCA for the joint biomarker with the loadings to the 

principal components, and univariate regression coefficients and R- squared. 

Gene ID Loadings Regression Coef R-squared 

8884_at 0.36 -0.591 0.62 

113000_at 0.35 -0.587 0.62 

387338_at 0.36 -0.582 0.61 

573_at 0.36 -0.576 0.59 

54733_at 0.33 -0.569 0.58 

93622_at 0.31 -0.564 0.57 

26073_at 0.31 -0.549 0.54 

10309_at 0.33 -0.544 0.53 

6047_at 0.30 -0.542 0.53 
 

The model developed for the down-regulated (negative) joint biomarker using the 9 genes is 

𝐸(𝐼𝐶50) =  6.866 −  0.233 𝑈(𝑋)                              (3.1) 
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where 𝑈(𝑋) = 𝑃𝐶1𝑇  .  𝑥 ,𝑃𝐶1𝑇  the transpose of the first supervised principal component loadings 

and 𝑥 is a vector of gene expression values corresponding to the gene list in Table 4.2. For the 

positive genes, the first supervised principal component explains 72% of the variability of the 

reduced matrix for the top 3 genes. Table 4.3 shows the top 3 positive genes with the loadings of the 

first supervised principal components and their univariate R-squared and regression coefficients. 

Table 4.3: List of positive genes selected by SPCA for the joint biomarker with the loadings to the 

principal components, and their univariate regression coefficients and R- squared. 

Gene ID Loadings Regression Coef R-squared 

222068_at 0.541 0.554 0.55 

288_at 0.592 0.546 0.53 

2729_at 0.598 0.542 0.53 
 

The model for the up-regulated (positive) joint biomarker is 

𝐸(𝐼𝐶50) =  6.866 +  0.441 𝑈(𝑋)                       (3.2) 

The relationship between the first supervised principal component and IC50 values are highly 

significant in the negative and positive models with p-values of 9.72 x 10
-12

 and 1.68 x 10
-10

 

respectively. The model of the negative genes explains 79% of the variability of the IC50 values 

while the model for the positive genes explains 75%. The R-squared of model 3.1 and 3.2 may be 

overly optimistic since they have not been validated for prediction outside the training data, Tilahun 

et al., (2010) and Snee, (1977) cautioned on this. 

4.3.1 Diagnostics 

This section assesses models 3.1 and 3.2. The negative joint biomarker has a correlation of -0.89 

with the observed IC50, while the positive joint biomarker has a correlation of 0.86. Figure 4.7 

shows the scatter plot of the observed IC50 values against the estimated joint biomarker with an 

overlay regression lines of model 3.1 and 3.2. 
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Figure 4.7: scatter plot of the joint biomarker against the IC50 values with an overlay of the 

regression lines of models 3.1 and 3.2 

These scatter plots in figure 4.7 shows the point scattered around the regression line in a linear 

pattern thus the assumption of linearity between the joint biomarker and the IC50 can be reasonably 

assumed (Chattefuee & Hadi, 2006) for both models. Figure 6.1 in the appendix shows further 

diagnostic plots of models 3.1 and 3.2. In both models, there is no pattern to the plot of the residuals 

against the fitted values and they all lie within the interval -1.0 and 1.0 which is evidence of 

homogeneity of the residuals variance. The qq-plots do not show any mark deviation of the 

residuals from normality, Shapiro-wilks test confirms this assumption (Neter, et al. 2005). 

4.4 Leave one out Cross-Validation (LOOCV) 

LOOCV implementation of the gene-specific model produced results similar to that obtained 

without cross-validation. The top 15 genes were the same for both the positive and negative genes. 

The SPCA was implemented using the LOOCV to find the optimal number k (k=2,..., m) of top 

genes. For each value of k, a LOOCV is applied to obtain an N-vector of estimated joint 

biomarker 𝑈 (𝑋). The k whose estimates of the joint biomarkers 𝑈 (𝑋)has the highest correlation to 

the IC50 is chosen as the optimal k. Figure 4.8 shows a plot of the correlation between the first 

supervised principal component (uk,1) and the observed IC50 values against the top k genes. 
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Figure 4.8: Correlation between the First Supervised Principal Component U(X) and the IC50 

values, against the top k genes. The red point is the k with the highest correlation. 

For the positive genes on implementing LOOCV with the SPCA model (3) the maximum 

correlation of 0.866 was obtained when the top 3 genes are used to construct the joint biomarker 

(Figure 4.8, right panel). This value coincides with the top 3 genes obtained in model 3.2 without 

the cross validation (list of genes in Table 4.3). The mean of the cross validation slope (0.441) 

coincides with the value estimated in 3.2. With the addition of more genes after the top 3 genes the 

correlation decreases rapidly, implying addition of noisy genes. While for the negative genes the 

maximum correlation of -0.861 was achieved when the top 17 genes were used to estimate the joint 

biomarker, a list of these genes is on Table 6.1 in the appendix. 

Figure 4.9 (left panel) shows the scatter plot of the estimated joint biomarkers of the validation 

samples (𝑢 (𝑥)𝑗 = 𝑃𝐶1𝑇 . 𝑥𝑗  where 𝑥𝑗  is a vector of the gene expression for the jth sample) against 

the observed IC50 values with an overlay of the regression line.  
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Figure 4.9: Left panel, the scatter plot of the estimated joint biomarkers of the validation samples 

against the observed IC50 values. Right panel is the scatter plot of the observed IC50 values 

against the predicted IC50 using cross validation. 

The model obtained from the top 17 genes is, 

𝐸 𝐼𝐶50 = 6.866 − 0.172𝑈(𝑋)                        (3.3) 

where 𝑈(𝑋) is the joint biomarker of the top 17 negative genes, the slope (-0.172) is the mean of the 

cross validation estimates of the slopes. This model has a mean R-squared value of 0.75. For the 

plot in the right panel (figure 4.9), there is a linear relationship between the observed and predicted 

IC50 with a correlation of 0.84. Figure 6.2 in the appendix show the diagnostic plots for model 3.3. 

The scatter plot of the residuals against the fitted values all lie within the interval -1.0 and 1.0 thus 

homogeneity of the residual variance is assume satisfied. The qq-plot does not show a mark 

deviation from the normal line thus normality is assumed. The positive genes model with and 

without cross validation coincides while for the negative genes, the slope for the cross validation 

model is of smaller magnitude than that without cross validation. Shapiro-wilks test was used to 

formally confirmation the normality of the residuals. 

Tilahun et al. (2010) observed that though the SPCA method aims at maximizing the association 

between the response and the joint biomarker, this association is always significant for different 

values of k. A permutation test was used to verify the association measure between the joint 

biomarker and the IC50 values for models 3.1, 3.2 and 3.3 and they were all found to be significant. 
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5. DISCUSSION AND CONCLUSION 

The primary interest of this study is to find a subset of genes that can serve as a biomarker for the 

IC50 of compound 352. After identification and evaluation of the individual biomarkers the analysis 

was extended to prediction of the IC50 using a joint biomarker constructed from the selected genes. 

The gene specific model was used to identify and evaluate the association of individual genes to the 

IC50. This model assumes independence across the genes and a linear relationship between the 

IC50 and the gene expression profiles. Without considering the complex correlation structure genes 

that are univariately not associated with the IC50, but may be highly correlated to the IC50 when 

combined with other genes will be excluded from the model. 

A linear regression model was used to quantify the measure of association between the IC50 and the 

genes. However, this results in loss of information because genes that are not linearly associated to 

the IC50 would show weak or no linear association. The SPCA method is based on linear 

association so the joint biomarker estimated will be constituted mainly of genes that are linearly 

associated to the response. Methods such as support vector regression and random forest measures 

non-linear association. The SPCA algorithm should be improved so that it can combine genes with 

linear and non-linear association when estimating the joint biomarker. 

Leave one out cross validation was used for validation and model selection, otherwise model 

selection will be dependent on the data split due to the large number of highly correlated genes and 

small sample size. This will result to too many competing models. Model selected was based on the 

top k genes with the highest R-squared. The R-squared value is a measure of the fraction of 

variability around the mean of the response explained by the regression line. Using the R-squared 

value as ranking criteria imposes a ranking according to goodness of linear regression fit (Guyon 

and Elisseeff, 2003). Gene selection based on R-squared values increases the possibility of selecting 

the best subset of relevant genes. The use of principal component in the regression model ensures 

stability in the estimates of the coefficients, instability of the estimates may result due to correlation 

amongst the genes (Robert and Martins, 2006). The motivation for using only the first supervised 

principal component is because it is a linear combination with the maximum variance and contains 

most of the information of the reduced matrix Xk (Johnson and Wischern, 2005), 72% for the 

positive genes and 74% for the negative genes. The first few principal components capture almost 

all of the variability in the covariance space, and the use of only the first principal component would 

ease interpretation.  

Bair et al. (2006), Robert and Martins (2006) and Chen et al., (2008) proved the consistency of the 

SPCA method in selecting the “correct” genes using both simulated and real data. SPCA assigns 
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principal components loadings to the selected genes without regards to the outcome variable. 

Looking at our results there are genes with higher weights but they pull down the R-squared value 

of the joint biomarker. The 7
th

 top gene has loadings (0.274) greater than that for the 6
th 

top gene 

(0.244), but yet when added to the model it pulls down the R-squared value of the joint biomarker 

model (3) while the 6
th

 gene with lower loadings increases the R-squared (Figure 4.6, left panel) 

There are some possible limitations of the SPCA method. The magnitude of the weights to the 

principal components does not take into account the association with the response. In a situation 

where the IC50 values are marginally independent of a subset of genes but jointly related to them, 

SPCA would fail to identify this subset of genes (Robert and Martin, 2006). SPCA does not take 

into account genes that are non-linearly associated to the outcome. 

The subset of genes identified as biomarker for the IC50 values of compound 352 are those listed in 

Table 4.3 for the up-regulated (positive) genes and the top 17 listed in Table 6.1 for the down-

regulated (negative) genes. The prediction model for the down-regulated (negative) gene is; 

𝐸 𝐼𝐶50 = 6.866 − 0.172𝑈(𝑋)  

Hence, for a unit increase of the expression value of the joint biomarker for the 17 down-regulated 

genes, the IC50 of compound 352 is decreased by -0.172.  For the up-regulated (positive) gene 

model is 

𝐸 𝐼𝐶50 𝑝𝑜𝑠 =  6.866 +  0.441 𝑈(𝑋) 

Hence, for a unit increase of the expression value for the joint biomarker of the 3 up-regulated 

genes the IC50 of compound 352 is increased by 0.441. The joint biomarker is estimate by 𝑈 𝑋 =

𝑃𝐶1𝑇 . 𝑥 where 𝑃𝐶1𝑇  is the transpose of the principal component loadings and x is the gene 

expression profiles of the relevant subset of genes. 

The prognostic biomarkers in Tables 6.1 and 4.3 were selected based on their association to the 

IC50 value of compound 352. The genes corresponding to the Gene ID‟s can be identified and the 

associated cellular process responsible for the phenotype determined and interpreted. Models 3.2 

and 3.3 can be used for predictions.   
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6. APPENDIX 

Table 6.1: List of top 17 negative genes obtained using SPCA method with their univariate 

standardized regression coefficients and R-squared to the IC50 values using the gene specific 

model in section 3.2. The last 2 genes are the genes that where added when LOOCV was 

implemented in the gene selection procedure.  

Gene ID 

Loadings 

(top 15) 

Loadings 

 (top 17) 

Regression 

Coefficient R-Squared 

8884_at 0.279 0.259 -0.591 0.625 

113000_at 0.270 0.253 -0.588 0.619 

387338_at 0.277 0.263 -0.582 0.607 

573_at 0.275 0.259 -0.576 0.594 

55020_at 0.282 0.265 -0.572 0.586 

54733_at 0.244 0.229 -0.569 0.580 

1594_at 0.274 0.257 -0.565 0.572 

93622_at 0.220 0.207 -0.564 0.570 

26073_at 0.238 0.223 -0.549 0.540 

6242_at 0.253 0.238 -0.547 0.537 

23647_at 0.264 0.251 -0.547 0.536 

117246_at 0.267 0.251 -0.546 0.534 

10309_at 0.256 0.243 -0.544 0.531 

6047_at 0.210 0.196 -0.542 0.527 

285958_at 0.251 0.232 -0.542 0.526 

84881_at  0.242 -0.541 0.524 

79230_at  0.242 -0.538 0.519 
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Figure 6.1: Diagnostic plots of the SPCA models 3.1 and 3.2 

 

  
Figure 6.2: Daignostic plot for the cross-validation model 3.3 
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8. CODES 

The R statistical software package was used for the analysis in this report. The multtest package was 

used to implement the FDR-BH multiplicity correction, prcomp() was used for the singular value 

decomposition of the expression matrix. Codes for the implementation of the gene specific, SPCA 

methodology both with and without cross validation were self develop. Below is a description of 

the main functions: 

regression():This function performs a univariate simple linear regression on a give gene expression 

dataset and response variable, it takes 2 arguments: 

regression <- function(data, response) { 
  beta<- r.sqr<-t.stats<- p.value<-rmse<-vector() 
  for (i in 1:dim(data)[1]) { 
   fit<-lm(y~data[i,]) 
   beta[i] <- fit$coef[[2]] 
   r.sqr[i]<-summary(fit)$r.squared 
   p.value[i]<-anova(fit)$"Pr(>F)"[1] 
   t.stats[i]<-coef(summary(fit))[,"t value"][[2]] 
  } 
  result<-list(Beta=beta, R.square=r.sqr, P.value=p.value, T.stat<-t.stats) 
  return(result) 
} 

Arguments: 

 Data: a p x N matrix of expression values with p the number of genes and N the samples. 

 Response: an N-vector of  quantitative response associated to the N sample 

The values returned are p-vectors of the results of the univariate regression of the response to the 

gene expression matrix Data: 

 Beta: a vector of univariate regression coefficients 

 R.square: a vector of the univarite R-squared values  

 T.stat:a vector of the p test statistic for the univariate regression coefficients 

 P.value: the vector of p-values. 

topk():Thetopk function performs a simple linear regression of joint biomarker models given a 

number k corresponding to the number of top genes to use in the joint biomarker. For a given k, it 

constructs the first supervised principal component using SVD by the prcomp() function of the top 

k genes and fit a linear model using the lm() function.: 

topk<- function(data, y, beta, k) { 
 topk.genes<- beta[1:k,1] 
 k.matrix<- data[topk.genes,] 
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 pc <- prcomp(t(k.matrix), cor = TRUE)$x[,1] 
 fit <- lm(y~pc) 
 r.sqr<- summary(fit)$r.squared 
 p.value<-anova(fit)$"Pr(>F)"[1] 

result <- list(First.pc=pc, R.Square=r.sqr, P.value=p.value, k=k) 
 return(result) 
} 

Arguments: 

 Data: a p x N matrix of expression values with p the number of genes and N the samples. 

 Y: an N-vector of  quantitative response associated to the N sample 

 beta: An ordered (descending) index of a measure of association obtained from a gene-

specific model. 

 K: a whole number representing the number of genes used to compute the first supervised 

principal component. 

The values returned 

 First.pc: the first supervised principal component used to fit the joint biomarker regression 

model 

 R.Square: the R-squared value of the regression model 

 P-value: the p-value of the slope (regression coefficient) 

 K: a scalar, depicting the number of top genes used to compute the first principal 

components. 

regression.cv():This function is the leave on out cross validation of regression() function above. 

regression.cv <- function (data, y) { 
 beta<-r.sqr<-vector() 
 for (i in 1:dim(data)[1]) { 
  beta.cv<-r.sqr.cv<-vector() 
  x<-data[i,] 
  for (j in 1:32) { 
   fit<-lm(y[-j]~x[-j])  
   beta.cv[j] <- fit$coef[[2]] 
   r.sqr.cv[j]<-summary(fit)$r.squared 
  } 
  r.sqr[i]<-mean(r.sqr.cv) 
  beta[i]<-mean(beta.cv) 
 } 
 result<-list(Beta.cv=beta, R.square=r.sqr) 
 return(result) 
} 
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loocv(): This function performs a leave one out cross validation of the SPCA methodology. It fits a 

simple linear regression of joint biomarker models for a given number of top genes k, it computes 

the first principal component of the top k genes fits a linear model (lm()) while omitting one of the 

observation from the model and returns the regression summary results. It takes the same arguments 

like topk() function, but in this case k is a sequence of whole numbers rather than a scalar.  

loocv<- function (matrix, genes, y, k) { 
 y.hat<-u.x<-r.sqr<-p.value<-vector() 
 y.hat.mat<- r.sqr.mat<-u.x.mat<-p.value.mat<-vector() 
 for (i in 1:length(k)) { 
  feat <- genes[1:k[i],1] 
  mat <- matrix[feat,] 
  for (j in 1:32) { 
   mat.cv<-mat[,-j] 
   y.cv<-y[-j] 
   pc <- prcomp(t(mat.cv), cor = TRUE, center=F) 
   x<-pc$x[,1]  
   fit <- lm(y.cv~x) 
   alpha <- fit$coef[[1]]  
   beta <- fit$coef[[2]] 
   r.sqr[j]<- summary(fit)$r.squared 
   p.value<- anova(fit)$'Pr(>F)'[1] 
   u.x[j] <- t(pc$rotation[,1]) %*% mat[,j] 
   y.hat[j] <- alpha + beta*u.x[j] 
  } 
  u.x.mat<-cbind(u.x.mat, u.x) 
  y.hat.mat<-cbind(y.hat.mat, y.hat) 
  r.sqr.mat<-cbind(r.sqr.mat, r.sqr) 
  p.value.mat<-cbind(p.value.mat, p.value) 
 } 
 result<-list(Predict=y.hat.mat,R.square=r.sqr.mat,U.X=u.x.mat,P.value=p.value.mat) 
 return(result) 
} 

Values returned 

 Predict: a matrix of N x K consisting of the estimated IC50 value of the observation used as 

the test set for the various values of k, where N is the number of observations, and m the 

length of the sequence of top k genes to perform the leave one out cross validation. 

 R.square: an N x m matrix of the R-squared values of the joint biomarker model, for each 

value of k and each omitted observation 

 U.X: the value of the joint biomarker of the test (omitted) observation computed using the 

loadings of the first principal components calculated for each value of k 
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Gene-specific model 

neg<-regression(gc14.neg, y) 

pos<-regression(gc14.pos, y) 

This snippet uses the regression() function to obtain the regression statistics for the p gene-specific 

models. Where y is the IC50 values and gc14.neg (gc14.pos) is the expression matrix of the 

negative (positive) genes. 

 

Supervised principal component analysis 

The script below uses the topk() function to obtain a sequence of R-squared for the negative genes 

values corresponding to a sequence of top k genes used to construct the first supervised principal 

component. Similar code snippet is applied for the positive genes. 

top.genes<- seq(2, 30, 1) 
r.sqr.neg.spca<- vector() 
for (i in 1:length(top.genes)) { 
 k <- top.genes[i] 
 top <- topk(x=gc14.neg, y=y, beta=beta.neg, k=k) 
 r.sqr.neg.spca[i] <- top$R.Square 
} 
 

Leave one out cross validation 

The snippet below was used to perform the leave one out cross validation for the gene-specific 

model and the SPCA model. 

neg.loocv<-regression.cv(gc14.neg, y)  
pos.loocv<-regression.cv(gc14.pos, y) 
 
neg.spca.loocv<-loocv(matrix=gc14.neg, genes=beta.neg, y=y, k=top.k) 
pos.spca.loocv<-loocv(matrix=gc14.pos, genes=beta.pos, y=y, k=top.k) 
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