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Preface 

 

Research studies focusing on factors leading to road crashes necessitate the collection 

of relevant data regarding several aspects including the road user, vehicle, road 

network and the environment among others. Due to the complexity of road crashes, 

the data collected is usually very large, multidimensional and highly heterogeneous. 

Therefore, it becomes primordial to reduce this heterogeneity in order to retrieve 

hidden information. Moreover, road intersections play a critical role in the safety and 

mobility performance of a road network. This report which culminates with the 

completion of my master studies at the University of Hasselt seeks to identify dominant 

crash or accident types at intersections in Belgium in order to promote road safety. 

I hereby extend my gratitude to those people who contributed to the realization of this 

project in particular and to the successful completion of my studies in general. Sincere 

thanks to my promoter, Prof. dr. Tom Brijs and co-promoter, Dr. Benoit Depaire for 

their constant guidance and constructive criticisms. My profound gratitude to Mevrouw 

Nadine Smeyers, Mevrouw Isabel Thys and the entire staff at the student secretariat 

for their administrative assistance. 

My studies would have been impossible without the invaluable support of my brother, 

Ediebah Divine Ewane, my beloved mother, Ediebah Roseline Mboulle, my sister 

Ediebah Ebude Vivian and my other brother and sisters for their words of 

encouragement and patience. 

Finally, kind regards to all my classmates and friends especially Goele Lipkens who 

contributed (or are contributing) to make my stay in Belgium a unique experience. 

 

 

EDIEBAH John Edie 

Hasselt, Belgium 

July 20th, 2011. 
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Summary 

 

A great number of road traffic crashes or accidents occur at intersections worldwide. In 

the year 2005, about 34% of road crashes in Belgium occurred at intersections alone. 

Due to the complexity of road crashes, the crash data collected is usually very large 

and heterogeneous. Data mining techniques have become increasingly useful to 

analyse this type of data in order to reduce its heterogeneity and discover obscure 

patterns. The main objective of this study is to determine the dominant crash or 

accident types at various types of intersections in Belgium using cluster analysis. The 

purpose of cluster analysis is to group similar observations or objects; in this case 

crashes or accidents into homogenous groups or clusters from which meaningful 

insights can be obtained. Distance-based clustering techniques including K-means and 

hierarchical clustering and also fuzzy clustering are first reviewed and their strengths 

and weaknesses highlighted. These traditional distance-based clustering methods are 

usually ad hoc and not statistically based thereby producing less reliable results. The 

model-based clustering technique known as latent class cluster analysis (LCCA) or finite 

mixture model is the main analytical tool in this research. A pre-analysis using basic 

exploratory data analysis (EDA) is first conducted for all the crashes that occurred at 

intersections in the year 2005. The crash data is then segmented according to the 

different types of intersections. In all, six intersections are distinguished based on the 

type of traffic control. Three of the data sets representing about 98% of the overall 

crashes at intersections (intersection with right-of-way sign B1 or B5, intersection with 

right-of-way to traffic from right and intersection with functioning traffic lights) are 

then clustered individually using latent class cluster analysis with the aid of the Latent 

Gold software package. The three other data sets representing the other intersection 

types (intersection with a traffic policeman, intersection with a defective traffic light 

and right-of-way to traffic from the right and intersection with a defective traffic light 

and right-of-way sign B1 or B5) could not be effectively modeled due to an insufficient 

number of crashes. 

From the pre-analysis, it is shown that about 52% of victims at intersections were 

involved in crashes at intersections with a right-of-way sign B1 (yield) or B5 (stop) 

sign. Surprisingly, the highest fatality rate was registered at intersections with a traffic 

policeman. However, only 0.45% of crashes occurred at this intersection type. 

Furthermore, the most common type of collision was side-collision between drivers 
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making up 57% and in terms of crash severity, collision with an obstacle (on and off 

the road) has the highest fatality rate while rear-end collisions has the least. Results 

from LCCA show that a significant number of crashes at the various intersections 

involved violation of right of way/priority or traffic light. The accident share increases 

as the intersection type moved from signal-controlled (Intersec_TL) to right-of-way 

signs (Intersec_RS) and finally to uncontrolled (Intersec_TR) intersection. Hence, 

signalised intersections are better in terms of road safety compared to the other two as 

they minimize the possibility of violation which is a key cause of accidents at 

intersections. In brief, Latent class cluster analysis is an effective data segmentation 

tool which assists in reducing the heterogeneity of crash data by identifying 

homogeneous groups which can facilitate the discovery of hidden patterns. Moreover, it 

facilitates the implementation of more in-depth analytical tools using predictive models 

such as injury risk analysis which focuses on the outcome of crashes. 

 

Keywords: Intersections, road crashes, heterogeneous, homogeneous, cluster 

analysis, K-means, hierarchical clustering, cluster, segmentation, exploratory data 

analysis (EDA), latent class cluster analysis (LCCA), Finite mixture model. 
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Chapter 1: INTRODUCTION 

 

The growth in road transport worldwide has brought about some negative impacts 

especially road traffic crashes. Despite measures implemented to reverse this situation, 

the external costs incurred still remain unacceptably high. Today, road crashes are a 

leading cause of premature deaths worldwide. The collection of relevant data regarding 

road crashes is a condition sine qua non for effective road safety strategies. Due to the 

complexity of road crashes, the data collected is usually very heterogeneous. Therefore, it 

becomes primordial to use statistical analytical techniques in order to retrieve useful 

information from this usually non-homogeneous traffic data. Moreover, certain sections of 

the road such as intersections or junctions are very important regarding the safety and 

mobility performance of a road network. 

1.1 Background 

 

Road transportation in Belgium facilitates the accessibility to jobs, education, markets, 

leisure and a wide range of other facilities thereby enhancing economic development. 

The advent of new Information and Communication Technologies (ICTs) and recent 

breakthroughs has further increased the role of transport as a key determinant of 

globalization. That notwithstanding, improvement in transportation systems has 

brought about other costs including crashes (accidents), pollution, noise, and 

environmental degradation. 

  

Road traffic crashes still remain a major public health problem in Belgium despite a 

decline in fatalities per million population from 145 in 2001 to 90 in 2009 (ETSC, 

2010). This trend is similar to several countries in Europe. In 2009, about 35 000 

persons were killed in road crashes in the European Union (EU), while another 1.7 

million people are recorded as injured on police records annually, with 300,000 being 

serious cases (ETSC, 2010). The estimated yearly cost of road traffic crashes to the EU 

member states is quite colossal and stands at more than € 180 million, which is roughly 

an equivalence of 2% of the Gross Domestic Product (GDP) of the EU (WHO, 2004). 

Due to these ravages, the EU in 2001 had set itself the ambitious target of reducing 

fatalities from crashes by 50% (27 000 cases) by the year 2010. Even though fatalities 

fell considerably by 15 400 cases in 2009 compared to 2001 (see figure 1-1); the      
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27 000 deaths limit set by the EU in its 2010 Road Safety Target was not attained. The 

annual progress since 2001 had been 4.4% implying that the target could be reached 

only until 2017 ceteris paribus (ETSC, 2009). 

 

In a bid to create awareness and to reduce road crashes worldwide by half, the United 

Nations declared 2011-2020 as the Decade of Action for Road Safety. In line with this, 

the EU Road Safety Action Programme 2011-2020 includes challenging targets for the 

reduction of serious injuries and fatalities. In this regard, member states are 

encouraged to formulate national road safety strategies which are in line with the goals 

of the EU through the exchange and dissemination of good practices. 

 

This research is centered on the application of a cluster analytical technique on crash data. 

Latent Class Cluster Analysis (LCCA) is used to model crashes that occurred in Belgium, 

specifically on road intersections using data for the year 2005. The main purpose is to 

identify the different crash or accident types that are dominant at specific types of 

intersections or junctions. 

 

1.2  General Aspects of Road Safety 

There are certain peculiarities of the general road safety situation which are a major 

cause for concern. For instance, the majority of road accident victims are young drivers 

below the age of thirty. A joint report from the Organization of Economic Co-operation 

and Development and the International Transport Forum (OECD/ITF, 2006) states that 

annually, more than 8 500 young car drivers die in thirty OECD member states. The 

same report further states that, road crashes are the single major killer of 15-24 year 

olds in industrial countries. Moreover, these young drivers are not just a danger to 

themselves, but they also pose greater risk to their passengers and other road users. 

In the year 2002, 5% of road fatalities in Europe involved children under 15 years old 

thereby making road accidents the leading cause of death for children (ETSC, 2007). 

This implies that if appropriate measures are not adopted in time, a devastating blow 

will be dealt on the youthful, working population of many developed countries. 

Pedestrians, bicyclists and motorcyclists are highly vulnerable to traffic accidents. Klop 

and Khattak (1999) and Räsänen and Summala (1998) stated that a high proportion of 

serious injury bicyclist crashes involve collisions with vehicles at intersections. 

Furthermore, old people are largely involved in accidents at intersection due to their 
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high susceptibility to injury, especially as pedestrians and cyclists (Oxley et. al., 2004). 

In a related study, Harkey (1995) pointed out that 33% of older pedestrian deaths and 

51% of older pedestrian injuries occurred at intersections. As road users advance in 

age, understanding complex traffic situations such as that encountered at an 

intersection become problematic. Considering the fact that the population of most 

European countries is rapidly ageing as a result of longer life spans, this will pose a 

serious problem in future if appropriate measures are not taken in time. Significant 

improvement in road safety can only be realized if the plight of these vulnerable road 

users is ameliorated.  

 

 

Figure 1-1: Evolution of road safety in Europe (1991-2009) 

Source: CARE (EU road accidents database) or national publications 

European Commission / Directorate General Mobility and Transport 

 

Moreover, rapid urbanization and industrialization have exacerbated the existing road 

safety situation. The traffic safety problem is further aggravated by the rapidly 

increasing level of motorization especially private car use in Europe. Despite measures 
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implemented to discourage private car use, its ownership and use still remains high. 

For instance, in Europe, private car use has been expanding very rapidly (figure 1-2) in 

comparison to other modes of transport such as railway, air and sea. 

 

 

 

Figure 1-2: Increasing car use in Europe compared to other modes.  

Source: Europe‟s environment: The second assessment (1998). 

 

1.3 Intersections and Traffic Safety 

This section deals with the role of intersections on traffic safety and the different types 

of intersections. 

1.3.1  Road Safety at Intersections 

Intersections or junctions are known to be one of the most dangerous locations on the 

entire road network. Due to the high frequency and severity of traffic collisions at 

intersections, they have been major targets of traffic safety strategies. Between 1996 

and 2004, almost 61 000 persons were killed in traffic crashes at intersections in 

fourteen European countries, representing 21% of all the overall traffic accident 
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fatalities in these countries (ERSO, 2006). According to the same report, more than 

one-third of crashes (35.3%) registered in the United Kingdom in 2004 occurred at 

intersections. 

Due to the merging of opposing traffic streams and the subsequent high number of 

conflict points, intersections are major causal points of various types of collisions 

including head on, rear-end and side collisions. As depicted on figure 1-3 below, conflict 

occurs where one vehicle path crosses, merges or diverges with, or queues behind the 

path of another vehicle, pedestrian, or bicycle. Therefore, intersections are the greatest 

point of conflict in traffic involving various types of road users. Depending on the type 

of intersection; signal controlled, unsignalised or round-about, the type and severity of 

the crash is likely to vary.  

Round-abouts are generally better in terms of road safety than other intersection 

types. Cost-benefit studies carried out in several countries on the conversion of 

intersections into round-abouts have shown a general increase in road safety (Garder, 

1998; Schoon and Van Minnen, 1993; Maycock and Hall, 1984). Elvik (2003) conducted 

a meta-analysis of the safety impacts of converting intersections to round-abouts 

outside the United States of America and concluded that the number of injury accidents 

reduced by 30-50% while fatal crashes considerably decreased by 50-70%. This is 

partly due to the reduction of conflict points on the road network. However, despite the 

reported increase in overall road safety, the safety level of certain road users has 

instead shown a decline. For instance, a before-and-after study carried out by Daniels, 

Nuyts and Wets (2008), on the safety impacts of the conversion of 95 intersections into 

round-abouts in Flanders (Belgium) showed that, even though the overall safety level 

improved, injury accidents involving bicyclists instead increased by 29%.  

These studies clearly demonstrate the significance of intersections on road networks. 

Furthermore, the type of intersection that is constructed should reflect the main goals 

that the project seeks to achieve at the level of the target group of road users. 

However, technical impracticability can restrict the construction of certain types of 

intersections at specific locations. 
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Figure 1-3: A T-intersection showing the different conflict points. 

 

1.3.2 Types of Intersections 

Intersections or road junctions have been classified in several ways. A common 

classification is based on the number of road segments or arms that meet at the 

intersection while others are based on the shape or the manner of traffic control. 

Generally, five types of intersections can be identified based on the type of traffic 

control (Bird, 2001). 

 Uncontrolled intersections: These are junctions with no road signs or 

markings to indicate priority. This is usually common where the traffic volume is 

relatively low. However, in most cases, vehicles coming from the right have 

priority of way over the other vehicles. 

 Priority intersections: Such intersections do have clear road signs and 

markings that indicate which vehicles are supposed to stop (B5) or give way 

(B1) to oncoming traffic. Hence, unlike uncontrolled intersections, roads with 

priority are clearly indicated. 

 Round-abouts: These are circular junctions that direct traffic around a central 

island with several exit points. They vary in size depending on the flow of traffic 

and the number of road segments. 
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 Signal-controlled intersections: Intersections where the different traffic 

streams alternately have priority based on the changing signals. The use of 

traffic lights at intersections is very common especially on locations where the 

traffic volume is high.  

 Grade separated Junctions: These are junctions where opposing traffic 

streams are separated by being at different levels. This can be accomplished by 

means of a bridge, tunnel or flyover. 

On the basis of shape, intersections can be classified into T or Y junctions, 

staggered junction, acute angle junction or multiple junctions among others.. 

 

1.4 Road Safety and Infrastructure in Belgium 

1.4.1 Overview of Road Safety 

Report from the Belgian Institute for Traffic Safety in 2000 cited in Geurts, Wets, Brijs 

and Vanhoof (2003) indicates that approximately 50 000 injury accidents occur 

annually in Belgium, involving some 70 000 victims with 1 500 deaths (Table 1-1). This 

is approximately 150 deaths per million population. However, road safety in Belgium 

has witnessed significant improvements over the years in line with the general trend in 

Europe. The highest number of traffic accident deaths was recorded in 1973 with an 

overwhelming 1 866 fatalities which dramatically dropped below 1000 for the first time 

in 2008 with 944 registered cases. (FPS Economy-Statistics Belgium, 2009). 

Even though the vehicle population in Belgium has been on the rise (Table 1-3), the 

number of accidents has been relatively stable for many years. Moreover, the severity 

of accidents (seriously injured and deaths) has dropped significantly. A consistent 

decrease in fatalities was only realized after 2001 (Figure 1-4). Before this period, 

accident fatalities fluctuated from year to year. Between 2000 and 2009, road fatalities 

in this country decreased by 36%. Hence, fatalities per million population dropped from 

145 in 2001 to 90 in 2009 (ETSC, 2010). Despite this progress, the number of those 

killed in 2009 is still 20% higher than the average of EU27. However, between 2000 

and 2007, the number of deaths per million inhabitants decreased faster than the 

European average; -30% against -26% (FPS Economy-Statistics Belgium, 2008) 
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Table 1-1: Traffic accidents and casualties in Belgium 

 

* People killed within 30 days from the day of the accident. 

Source: FPS Economy-Statistics Belgium, 2009. 

 

The cost arising from accidents in Belgium in terms of lives lost and other costs such as 

property damage, medical and administration costs is consequently high, not to 

mention the psychological pain, grief and suffering it brings to victims and family 

members. According to Hoornaert (2010) even though the social costs of road crashes 

decreased by 14% between 2000 and 2008, that for vulnerable road users including 

pedestrians, bicyclists moped riders and motorcyclists instead witnessed an increase. 

The Belgian government through the regional authorities is therefore highly committed 

to improving the level of road safety especially for these vulnerable road users. 

The causes of these crashes are wide ranging and principally involve human factors, 

vehicle and the road infrastructure. Excessive or inappropriate speeding is estimated to 

be a major cause of 30% of all road fatalities in Belgium (ETSC, 2008). Other related 

human factors are drink-driving, traffic light violations and multitasking while driving. 

Measures taken so far amongst others include reducing the speed limits especially 

around schools where it is currently 30km/h. Moreover, speed cameras have been in 

 32000 2005 2006 2007 2008 

Number of injury accidents 49 064 49 313 49 181 49 815 48 827 

Number of casualties 69 430 66 476 66 344 66 915 65 381 

Dead* 1 470 1 089 1 075 1 071 944 

Seriously injured 9 846 7 272 6 999 6 997 6 782 

Slightly injured 57 588 58 114 58 270 58 847 57 654 

Number of deaths according to 

road user 

     

Users of cars 922 624 594 550 479 

Users of motorcycles 118 125 131 139 108 

Users of mopeds 66 30 36 36 42 

Cyclists 134 71 91 90 86 

Pedestrians 142 108 123 104 99 
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use since 2001 to ensure compliance with speed limits and mitigation of other traffic 

violations. Above all, Intelligent Transport Systems (ITS) are currently used to reduce 

the possibility of accidents as well as reducing its severity by enhancing the protection 

of driver, occupants as well as other third parties when they actually occur. 

 

 

 

Figure 1-4: Evolution of traffic fatalities in Belgium (1991 to 2006). 

Source: CARE Database 

 

1.4.2 The Road Network 

The Belgian road network is well developed, very dense and highly interconnected to 

other transport modes. Development of the road transport system has grown 

tremendously especially since after the Second World War when considerable trafficable 

road was damaged. Today, the transport infrastructure is well maintained with frequent 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06

Fa
ta

lit
ie

s

Years (1991-2006)

Evolution of traffic fatalities in Belgium

Fatalities



 

- 10 - 
 

maintenance and reconstruction works and the roads are well lit. In 2005, the entire 

road network totaled 118 414 km (FPS Economy-Statistics Belgium, 2009). 

Table 1-2: The Road network in Belgium (2005) 

Road type Length(km) 

Motorways     1 747 

Highways   13 892 

Communal or street roads 102 775 

Total 118 414 

 

Source: www.statbel.fgov.be 

 

Belgian roads are numbered as R-roads, A-roads, B-roads, N-roads and secondary N-

roads or provincial roads. R-roads are ring roads around major cities and the Brussels 

ring denoted by RO is the most popular. It is a circular highway that surrounds the city 

of Brussels with other smaller towns on its southern flank. The ring stretches about 

75km with two to three lanes in each direction and traverses the three regions of 

Brussels, Flanders and Wallonia. (http://en.wikipedia.org/wiki/Brussels_Ring). 

A-roads are motorways which connect major cities and international destinations. They 

are not usually built as limited access facilities and may include traffic lights and grade 

crossings. A-road numbers radiate out from Brussels in a clockwise motion while those 

numbered from ten upwards radiates out from Antwerp in a similar manner. Belgium 

has a very dense network of motorway which is second only to the Netherlands 

(www.belgianroads.tk). 

http://www.statbel.fgov.be/
http://en.wikipedia.org/wiki/Brussels_Ring
http://www.belgianroads.tk/
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Figure 1-5: A-road system with major R-roads in Belgium 

Source: www.europe.aaroads.com 

 

B-roads are usually of expressway quality and act as short link roads between other 

points. N-roads can have motorway characteristics and grade separated interchanges 

but are mostly two lane roads connecting secondary cities and towns. N-roads 

approximately form a web and many converge on Brussels. Provincial routes are rarely 

sign posted, connecting small towns and villages and numbered according to which N-

road they are nearest to. Most of the roads are connected with other European 

countries like France, the Netherlands, Germany and Luxemburg which constitute part 

of the Trans-European Transport Networks. Belgium highly utilizes the European 

http://www.europe.aaroads.com/
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numbering system based on the International E-road Network with well designated 

roads. These roads are recognizable by the letter „E‟ before the road number. 

The rapid expansion of the road network has also been marked by an increase in car 

ownership especially in private cars. In spite of the crisis that rocked the car industry in 

Europe and other parts of the world in 2009, the car population in Belgium instead 

witnessed an increase.  In 1977, there was one car per 3.5 inhabitants but by 2009, 

the ratio has increased to one car per two inhabitants. By mid 2009, about 6.5 million 

vehicles were plying Belgian roads of which more than 5 million were passenger cars as 

depicted on Table 1-3 below. (FPS Economy-Statistics Belgium, 2009). Therefore, the 

negative impacts arising from road transport poses a major problem. Moreover, it 

should be noted that the management of the Belgian road network is at the level of 

regional authorities. 

Table 1-3: Motorization level in Belgium 

 

(a) Trucks, vans, all-terrain vehicles, tank trucks. 

(b) Road tractors are commercial motor vehicles to which semi-trailers (vehicle without front axle) are 

hitched. 

(c) All motorcycles doing more than 40 km/h, i.e. all motorcycles and most mopeds. 

(d) The special vehicles are slow vehicles the dimensions or weight of which exceed the normally allowed 

maximum values to transport goods. 

It should be known that the maximum permissible weight in Belgium should not exceed 44 tonnes. The 

vehicles of this category are permitted to drive on the public highway only under very strict condition.  

On 1 August 
+ evolution 

1977 1987 2000 2005 2006 2007 2008 2009 Growth 
2009/2008 

Motor-vehicle 
population 
on 1 Aug.(inc. 
motorcycles). 

3 315 071 4 158 127 5 735 034 6 158 742 6 251 428 6 362 161 6 482 033 6 574 789 1.4% 

Passenger 
cars. 

2 773 344 3 497 818 4 678 376 4 918 544 4 976 286 5 048 723 5 130 578 5 192 566 1.2% 

Buses & 
coaches. 

19 517 15 060 14 722 15 391 15 329 15 479 15 992 16 061 0.4% 

Motor vehicles 
for goods  
transport (a). 

236 421 556 397 502 979 604 437 623 250 642 687 662 780 676 644 2.1% 

Tractors (b). 34 682 47 102 45 452 47 646 47 164 48 060 49 109 47 418 -3.4% 
Agricultural 
tractors. 

114 517 164 090 162 123 168 284 170 613 172 818 174 709 176 522 1.0% 

Special motor 
vehicles (d). 

32 489 57 432 53 544 58 147 59 022 59 651 60 585 61 638 1.7% 

Motorcycles 
(c). 

104 101 319 480 277 838 346 293 359 764 374 743 388 280 403 940 4.0% 

Inhabitants 
per passenger 
car on 1 
August. 

3.55 2.15 2.19 2.12 2.11 2.10 2.08 - - 
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Source: FPS Economy – Statistics Belgium, 2009.  

 

 

 

Figure 1-6: Passenger car population in Belgium - 2009 

Source: FPS Economy – Statistics Belgium, 2009.  

 

1.5 Scope of Study and Research Objectives 

Current road safety figures clearly indicate that road crashes are on a decline in many 

western countries. That notwithstanding, there is still a need to further reduce these 

fatalities to the lowest rate possible. This calls for more robust and rigorous studies of 

those aspects that directly or indirectly impact on the occurrence and severity of road 

crashes. These factors are linked to the vehicle, road infrastructure, the behavior of 

road users and also to the environment. These factors do not act in isolation, but 

interact with each other to contribute to road crashes. 

This study focuses on crashes that occurred at intersections. Intersections play an 

important role in the mobility and safety performance of a road network depending on 

Passenger cars
79%

Other 
vehicle types

21%

Passenger car population in Belgium - 2009
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the particular type. Some studies on road safety (Elvik, Hoye, Vaa and Sorensen, 2009, 

Kulmala, 1994) assert the need for redesigning some intersections as a road safety 

strategy. Moreover, knowing the specific characteristics of crash types that occur at the 

different types of intersection is very valuable when undertaking such safety measures 

as they will likely differ in their degree of injury severity. For instance, some accident 

types might show a high proportion of head-on collision, which is known to be more 

fatal than side-collision or rear-end collision. Hence, strategies can be aimed at 

reducing the occurrence of certain specific types of collisions. Another scenario might 

be an intersection where human errors are frequently mentioned to be partly the cause 

of crashes. In this case, making the intersection more road user friendly can be an 

option for road safety authorities. 

This research is based on crash data for Belgium and seeks to achieve the following 

objectives: 

 To demonstrate the usefulness of Latent Class Cluster Analysis (LCCA) as an 

effective statistical method to cluster or segment accident data. 

 

 To identify the dominant crash or accident types that are associated with 

particular types of Traffic control at intersections. 

 

 To describe the accident data of crashes that occurred at intersections. 

 

 Finally, to make a comparative assessment of dominant crash types among 

different types of intersections.  

 

In a nutshell, this model-based clustering technique will be used to classify a 

sample crash data on intersections in Belgium into homogenous groups. From 

this, the different accident types based on traffic control at the intersections will 

be deduced. To this end, informed decision can be made regarding the safety 

potential of intersections in particular, and the entire road network in general. 

1.6 Research Method 

Cluster analysis is a useful analytical tool for discovering structure or pattern within 

large heterogeneous data sets. It involves classifying objects or observations into 

homogenous groups based on certain criteria. This research utilizes a novel technique 

of cluster analysis known as Latent class cluster analysis (Vermunt and Magidson, 
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2002). This technique is also known by different appellations notably finite mixture 

models (Fraley and Raftery, 2002), mixture densities-based clustering (Xu and 

Wunsch, 2005), model-based clustering (Banfield and Raftery, 1993) and Bayesian 

Classification (Cheeseman and Stutz, 1995). 

Latent class cluster analysis (LCCA) is a model-based and more efficient clustering 

technique compared to traditional distance-based clustering methods such as the K-

means and hierarchical clustering. In LCCA, an observation‟s posterior class 

membership probabilities are computed from the estimated model parameters and its 

observed scores (Vermunt and Magidson, 2002). Therefore, observations belong to 

several clusters with varying degree of membership and are assigned to the cluster 

with the highest membership probabilities. 

This technique is used to model crashes that occurred at intersections in Belgium in the 

year 2005. After selecting variables for the model, the data set is then split up 

according to the different intersection types. The next step involves identifying the 

crash types that are common to specific types of intersections. However, a pre-analysis 

using descriptive statistics including frequency tables and charts is first conducted to 

obtain some important notions about the data. The data is then processed using the 

statistical software package known as Latent Gold (Vermunt and Magidson, 2000). 

Latent Gold processes data by running several iterations until convergence is attained. 

The model selection is based on low BIC, AIC and CAIC values. The clusters obtained at 

the end of the process conceptually refer to different crash types. 

1.7 Structure of the Report 

After the background information provided in this chapter, the rest of the report is 

structured as follows: 

Chapter two examines the traditional or distance based clustering techniques. Some 

applications in the field of transport are mentioned, narrowing down to more specific 

applications in the domain of traffic safety. This is followed by a discussion of the 

various types as well as their strengths and weaknesses. 

Latent class model (LCM) and its application in clustering; Latent class cluster analysis 

(LCCA) is covered in chapter three. The procedure of LCCA is fully examined. 

The methodological aspect of this report is the focus of chapter four. The data sources, 

preparation, variable selection and processing is examined. Moreover, the advantages 
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of LCCA over traditional clustering techniques are highlighted. Next a description is 

given about clustering using the software package, Latent Gold (Vermunt and 

Magidson, 2000) and how the data was actually processed. 

Chapter five presents the results of the analysis beginning with descriptive statistics, 

followed by results from Latent Gold. Next is a discussion of the results. 

Finally, chapter six gives a conclusion including major findings of the research and 

some directions for further research.
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 Chapter 2: STANDARD CLUSTER ANALYSIS 

 

Cluster analysis or clustering embodies diverse techniques for discovering structure or 

pattern within complex bodies of data. As stated in Xu and Wunsch (2005), cluster 

analysis has been applied in several fields including life and medical sciences (genetics, 

biology, microbiology, paleontology, clinic, pathology), computer sciences (web mining, 

spatial database analysis, image segmentation), engineering (machine learning, 

artificial intelligence, pattern recognition, mechanical and electrical engineering), earth 

sciences (geography, geology, remote sensing), social sciences (education, sociology, 

psychology, archeology) and economics (business, studies), (Moustaki and 

Papageorgiou, 2005; Green, 2004; Jiang, Tang and Zhang, 2004; Everitt, Landau and 

Leese, 2001; Arabie and Hubert, 1994; Hartigan, 1975.) For instance, Cluster analysis 

is used in Marketing to identify persons with similar purchasing needs. Based on this 

information, it becomes relatively easy to formulate efficient marketing strategies in 

the future. In Traffic Safety, Cluster analysis can be used to classify road crashes by 

age, gender, road user or severity level. From this, specific safety strategies or 

countermeasures can be formulated for different target groups. 

Standard clustering techniques have also been applied in the field of transport. For 

instance, Esnaf, Koldemir, Küçükdeniz and Akten (2008) examined shipping accidents 

in relation to the different types and locations where accidents occurred frequently by 

applying a fuzzy clustering technique. Based on their analysis, accident characteristics 

at different locations were studied and key factors behind sea accidents in the 

Bosporous were obtained. 

Weijermars and Van Berkum (2005) used the hierarchical clustering method to analyze 

highway flow patterns in the Netherlands. By collecting data on speed and flow on a 

daily 15 minutes interval, they obtained three clusters with distinct traffic profiles. In a 

related study, Chengqian, Jingling, Zhong and Yue (2009) in their research studied the 

traffic flow characteristics of a city tunnel by applying cluster analysis and other data 

mining techniques. 

In the domain of traffic safety, Golob and Recker (2003) made use of clustering 

methods alongside Principal Component Analysis (PCA) and Non-linear canonical 

analysis (NLCA) to find relevant patterns in the relationship between accident type and 
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traffic flow characteristics on urban freeways. In a similar study, Postorino and Sarnè 

(2001) analyzed different accident types using clustering techniques to decipher the 

principal causes of accidents, by classifying accidents into homogenous groups. In a 

more recent study, Kleinemas and Rudinger (2010) applied clustering methods to 

profile elderly drivers‟ involvement in road accidents. From this, they were able to get 

an insight into the behavior of old drivers.  

Several studies have been conducted to analyze road crashes using statistical models 

(Savolainen, Mannering, Lord and Qudus, 2011). For example, Kim, Nitz, Richardson 

and Li (1995) formulated a log-linear model to identify the relationship between driver 

characteristics and behaviour and the severity of traffic crashes. Their results indicated 

that alcohol or drug use and non seat belt use sharply increases the odds of more 

severe crashes and injuries. In another study, Roh, Bessler and Gilbert (1999) 

demonstrated the benefits of using statistical methods based on directed graphs to 

model traffic accident fatalities. 

Ossenbruggen, Pendharkar and Ivan (2001) in performing a risk assessment of a 

region, made use of a logistic regression model to identify factors that were statistically 

significant in predicting the probability of crashes and injury. Using factors like land use 

activity, roadside design, use of traffic control devices and traffic exposure; they 

concluded that village sites are less hazardous than residential and shopping streets.  

In a related study, Bédard, Guyatt, Stones and Hirdes (2002) used a Multivariate 

Logistic regression model to identify the separate contribution of driver, crash and 

vehicle characteristics to the fatality risk of drivers. They found out that consistent seat 

belt use, speed reduction and reduction of frequency and severity of driver side impacts 

will greatly minimize driver fatalities. Furthermore, to analyze the association between 

fatal crash rate (fatal crash per vehicle mile traveled) and speed limit in the state of 

Washington D.C, Ossiander and Cummings (2002) applied a Poisson regression 

technique. Their result confirmed that speed limit increase was associated with a higher 

fatal crash rate and more deaths on freeways in that state. 

However, due to the complexity of road crashes, some classic statistical models cannot 

properly be used to model crash data due to the existence of so many variables. As 

Chen and Jovanis (2002) showed, problems may arise when classic statistical analysis 

is used on data sets with many dimensions.  They cited the exponential increase in the 

number of parameters with the addition of variables and the invalidity of statistical 

tests when there is sparse data in large contingency tables. Moreover, commonly used 
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statistical methods including Logistic regression, Poisson regression and Binomial 

regression, usually rely on certain assumptions and pre-defined underlying 

relationships between dependent and independent variables. Therefore, these models 

could lead to erroneous estimation of the likelihood of accident occurrence under the 

hypothesized conditions when these assumptions are violated (Prato et al., 2010). 

This chapter gives an overview of standard clustering methods. The next section 

presents some early definitions of cluster analysis followed by assessment of distance 

in section 2.2. Distance metrics for continuous and binary variables are the focus of 

section 2.3 and finally, the types of clustering algorithms; their computation, 

advantages and disadvantages are covered in the remaining sections. 

2.1 Definition of Cluster Analysis 

Cluster analysis (Tryon, 1939) is a family of methods for organizing data into structures 

that are hoped to be meaningful. This early definition has been improved and modified 

over the years, but the underlying concept has not altered significantly. Cluster 

analysis or clustering is an exploratory data analytical technique aimed at extracting 

hidden information out of large and usually multi-dimensional data sets.  It is used to 

classify a set of items into two or more mutually exclusive unknown groups or clusters 

based on a combination of interval variables. Cluster analysis has also been defined as 

the classification of similar objects into groups, where the number of groups, as well as 

their form is unknown (Kaufman and Rousseeuw, 1990). The form of a group according 

to this early definition refers to the cluster parameter; that is, to its cluster-specific 

means, variances, and covariances that also have a geometrical interpretation. 

Therefore, a cluster is a collection of objects which are homogeneous between items of 

the group and heterogeneous to items of other groups.  

 

Graepel (1998) stated a simple, formal, mathematical definition of clustering as 

follows: let X ∈ Rmxn equal a set of data items representing a set of m points xi in Rn. 

The goal is to partition X into K groups Ck such that every data belonging to the same 

group is more „alike‟ than data in different groups. Each of the K groups is called a 

cluster. The result of the algorithm is an injective mapping X → C of data items Xi to 

clusters Ck. The number K might be pre-assigned by the user or it can be an unknown, 

determined by the clustering algorithm. Generally, cluster analysis is made up of two 

major components, which are the similarity (or distance) measure and the clustering 

algorithm.  
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The main goal of cluster analysis is to organize items into groups in such a way that the 

degree of similarity is maximized for the items within a group and minimized for those 

between groups. Moreover, this technique is often used when the researcher is 

interested in the characteristics of the individual items in the dataset, rather than 

aiming to test causal hypotheses. Therefore, the aim is to summarize the data as 

simply, practically and effectively as possible, rather than to estimate particular 

quantities.  

Due to the fact that the actual number of clusters as well as their form is unknown, it is 

a classic example of unsupervised learning (Vermunt and Magidson, 2002). Hence it is 

also referred to as unsupervised classification (Zaiane, 1999). Unsupervised learning 

which is a sub-field of machine learning, studies how systems can learn to represent 

particular input patterns in a way that reflects the statistical structure of the overall 

collection of input pattern (Dayan, 1999). Contrary to supervised or reinforcement 

learning, there are no explicit target outputs or environmental evaluations associated 

with each input; rather the unsupervised learner brings to bear prior biases as to what 

aspects of the structure of the input should be captured in the output.  

 

Clustering is a core task in the data mining procedure for discovering groups (Han and 

Kamber, 2000). Data mining which in turn is a step of the Knowledge discovery in 

databases (KDD) process refers to the nontrivial extraction of implicit, previously 

unknown and potentially useful information from a large database (Frawley, Pietetsky-

Shapiro and Matheus, 1992). It uses machine learning, statistical and visualization 

techniques to discover and present knowledge in a form which is easily comprehensible 

to humans. Data mining techniques are now widely used in a variety of fields including 

traffic safety as a result of the need for analyzing massive and multidimensional data 

and the development of fast computing algorithms. Knowledge discovery in databases 

simply refers to the process of finding useful information and patterns in data 

(Dunham, 2003). 

Other data mining techniques that have been increasingly applied in the domain of 

traffic safety and mobility management include:  

 Artificial Neural Networks (ANN) (Moghaddam, Afandizadeh and Ziyadi, 2011; 

Chimba and Sando, 2009; Delen, Sharda and Bessonovi, 2006; Bayam, 

Liebowitz and Agresti, 2005; Chang, 2005; Chong, Abraham and Parzycki, 

2005; Mussone, Ferrari and Oneta, 1999). 

 Classification and Regression Trees (CART) or Decision trees (Chang and Wang, 

2006; Chang and Chen, 2005; Chong, Abraham and Parzycki, 2005; 
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Yamamoto, Kitamu and Fujii, 2002; Zeitouni and Chelghoum, 2001; Dougherty, 

1995; Yang, Kitamura, Jovanis and Vaughn, 1993).  

 Association rules (Kavsek, Lavrac and Jovanoski, 2006; Geurts, Wets, Brijs and 

Vanhoof, 2003a) Kohonen networks (Tseng, Nguyen, Liebowitz and Agresti, 

2005), Frequent item sets (Geurts, Thomas and Wets, 2005). 

 

In a nutshell, Cluster analysis is a technique used for grouping observations such that: 

 

 Each group is homogeneous with respect to certain characteristics; that is 

observations in each group are similar to each other. 

 Each group is different from other groups (heterogeneous) with respect to 

particular characteristics; that is observations of one group differ from those of 

other groups. 

 

 

 

 

 

Figure 2-1: Stages in Clustering 

Source: Jain, Murty and Flynn, 1999. 
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2.2 Assessing Similarity and Dissimilarity in Cluster Analysis 

 

As earlier stated, cluster analysis seeks to maximize the similarity within clusters while 

minimizing that between clusters. Most often, the level of similarity is assessed by 

specifying a specific distance function when the variables in the study are continuous in 

nature and a similarity matrix when the variables portray qualitative characteristics. 

When both continuous and qualitative features are present, a mapping is applied on to 

the interval (0,1) such that a distance measure can be utilized. 

The idea of dissimilarity captured by distance forms an essential component of 

clustering algorithms and permits one to navigate through the data space and form 

clusters. Using the dissimilarity measure, it is possible to sense and articulate the 

closeness of two patterns, and based on this allocate them to the same cluster. Hence, 

lower values indicate more similarity. 

Formally, the dissimilarity between x and y, denoted by d(x, y) is considered to be a 

two-argument function, satisfying the following condition:  

 

 d(x, y) ≥ 0 for every x and y            (2.1) 

 d(x, x) = 0 for every x             (2.2) 

 

 d(x, y) = d(y, x)              (2.3) 

 

To summarize, the dissimilarity measure should be a non-negative character as 

demonstrated above in equation 2.1. Another obvious requirement is the symmetry. 

When dealing with two identical patterns, the dissimilarity attains a global minimum, 

that is d(x, x) = 0. 

Metric distance is a more restrictive concept as the triangular inequality has to be 

satisfied. For instance, for any pattern x, y and z; 

 d(x, y) + d(y, z) ≥ (d, z)            (2.4) 

 

2.3 Selected Distance Functions between Patterns x and y 

 

Several distance metrics are used when performing cluster analysis. The objective is to 

compute the similarity or dissimilarity between two or more points and group similar 

points into clusters. Different metrics are used for continuous and binary variables as 

elucidated in the proceeding section. 
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2.3.1 Distance metrics for continuous variables 

 

Several distance metrics are used when performing cluster analysis for continuous 

variables. These include amongst others the Euclideaan distance, Squared Euclidean 

distance, Mahalanobis (Nadler and Smith, 1993), Minkowski (Batchelor, 1978), 

Tchebyshev, Canberra, Manhattan, Angular and Hamming distance metrics ( Michalsky, 

Stepp and Diday, 1981; Diday, 1974). 

  

 Euclidean distance (L2 Norm):  This refers to the straight line distance 

between two points and it is the most common distance metric. Euclidean 

distance or simply distance “as the crow flies” examines the root of squared 

differences between coordinates of a pair of objects. One weakness of the basic 

Euclidean distance function is that if one of the input attributes has a relatively 

large range, then it can overpower the other attributes. For example, if an 

application has just two attributes, A and B and A has values from 1 to 1000, and 

B has values only from 1 to 10, then B‟s influence on the distance function will 

usually be overpowered by A‟s influence. Therefore, distances are often 

normalized by dividing the distance for each attribute by the range (i.e., 

maximum-minimum) of that attribute, so that the distance for each attribute is in 

the approximate range 0-1. In order to avoid outliers, it is also common to divide 

by the standard deviation instead of range, or to “trim” the range by removing 

the highest and lowest few percent (e.g. 5%) of the data from consideration in 

defining the range (Atkeson, C.G., Moore, A.W. and Schaal, S., 1997). It is also 

possible to map any value outside this range to the minimum or maximum value 

to avoid normalized values outside the range 0-1. Domain knowledge can often 

be used to decide which method is most appropriate. Related to the idea of 

normalization is that of using attribute weights and other weighting schemes. 

Many learning systems that use distance functions incorporate various weighting 

schemes into their distance calculations (Wettscherek, Aha and Mohri, 1995).  

 

The formula for the Euclidean distance between points   = (  1,  2,…,n) and = 

(  1,  2,…,n) is given as: 
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   ,              

 

   

 

 

Where; 

  =number of variables and  

   and    are the values of the  th variable at points   and   

respectively. 

 

 Squared Euclidean distance: This merely involves squaring the simple 

Euclidean distance in order to place progressively greater weight on objects that 

are further apart. As a result, clustering with the Euclidean squared distance 

metric converges faster than clustering with the normal Euclidean distance. 

Moreover, the output for k-means clustering does not change when either 

metrics are used. However, the output for hierarchical clustering is likely to 

change. This distance is computed as: 

 

 

   ,              

 

   

 

 

 

 

 Manhattan or City-block distance (L1 Norm): The Manhattan distance metric 

between two items is simply the sum of their differences across dimensions. In 

other words, it computes the distance that would be travelled to get from one 

data point to the other if a grid-like path is followed. Assuming again  =( 1, 

 2,…n  and  =( 1,  2,…n  are two points, the Manhattan distance metric is 

computed as: 

 

   ,            

 

   

 

Where;  

(2.7) 

(2.6) 

(2.5) 
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 ,    and    are defined as above (Equation 2.5) 

 

Usually, it yields similar result with the simple Euclidean distance. However, the 

effect of outliers is dampened since they are not squared.  

 

 

 

 

 

(a) Manhattan distance        (b) Euclidean 

distance 

 

Figure 2-2: Distinction between Manhattan and Euclidean distance metrics 

 

 Tchebyschev distance (Lmax or L∞ Norm): This distance metric examines the 

absolute magnitude of the differences between coordinates of a pair of points in 

any single dimension. It is also referred to as the maximum value or chessboard 

distance and was named after the Russian Mathematician Pafnuty Tchebyshev. It 

can be used for both ordinal and quantitative variables and  is computed as: 

 

     ,   = Maxi 1,2,…,n |  i-  i|   

 

The Tchebychev distance metric may be adequate when the difference between 

points is reflected more by differences in individual dimensions rather than all 

the dimensions considered. It is also very sensitive to outliers. 

 

 Minkowski distance: The Minkowski distance (Kruskal, 1964) is a generalized 

metric that includes other distance measures as special cases of the generalized 

form. Theoretically, infinite measures exist by varying the order of the equation, 

(2.8) 
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but only three are of major importance in practice. Even though the Minkowski 

metric can be defined for any  >0, it is rarely used for values other than 1, 2 

and ∞.  

 

 

It is expressed as: 

 

   ,              

 

   

 

  ,     

 

 =the order of the distance metric 

Therefore when: 

 =1, it equals the Manhattan distance. 

 =2, it equals the Euclidean distance. 

 =∞, it equals the Tchebyshev distance. 

 

 This distance metric is mostly used when variables are measured on ratio scales with 

an absolute zero value. The result is affected when variables have a wide range and as 

such, a few outliers with high values bias the result and disregard the alikeness given 

by a couple of variables with a lower upper bound. 

 

 Canberra distance: The Canberra distance metric (Lance and Williams, 1967) 

examines the sum of series of a fraction „differences‟ between coordinates of a pair of 

points. Each term of the fraction difference has value between 0 and 1.However, the 

Canberra distance itself does not lie between 0 and 1. If one of the coordinates is zero, 

the term becomes unity regardless of the other value, thus the distance will not be 

affected. Moreover, if both coordinates are equal to zero, it is written as 0/0 =0 and 

not infinity. This distance metric is very sensitive to a small change when both 

coordinates approach zero. The formula is written as: 

 

   ,     
       

       

 

   

 ,                        

 

(2.9) 

(2.10)

) 



 

- 27 - 
 

 Mahalanobis distance: 

The Mahalanobis distance is also a common generalized distance measure. Also known 

as quadratic distance, it measures the separation of two groups of objects by taking 

into account the covariance among the variables in computing the distances. Hence, 

the problem of correlation and scale which is inherent in Euclidean distance is 

eliminated. It was named after the Indian Scientist and Statistician P.C Mahalanobis in 

1936. Suppose there are two groups with means x i and x j, then the Mahanalobis 

distance is computed as: 

      x i  x            x i  x                                                       (2.11) 

where, 

  = covariance matrix 

By choosing this matrix, the geometry of potential clusters can be controlled by 

rotating the ellipsoid (off diagonal entries of S) and changing the length of its axes (the 

elements lying on the main diagonal of the matrix). When the covariance matrix is the 

identity matrix, the Mahanalobis distance is equal to the Euclidean distance. 

 

The afore-mentioned distance functions (section 2.3.1) are useful when the variables 

concerned are continuous. Each of these functions implies a different view of the data 

because of their geometry. The geometry is easily illustrated when only two features 

are considered (For example X = [x1x2]
 T) and the distance of x from the origin is 

computed. The contours of the constant distance (figure 2-3) show what type of 

geometric construct becomes a focus of the search for structure. Here we become 

aware that the Euclidean distance favors circular shapes of data clusters. With the 

distance functions come some taxonomy or classification, for instance the Minkowski 

distance comprises an infinite family of distances, including well-known and commonly 

used ones such as the Hamming, Tchebyschev, and Euclidean distances. 

 



 

- 28 - 
 

 

 

Figure 2-3: Examples of distance functions-three dimensional and contour plots: (a) 

Euclidean, (b) Hamming, (c) Tchebyschev (d) „Combined‟ type of distance measure 

(2/3 Hamming, Tchebyschev 

 

Source: Pedrycz, 2005. 

 

2.3.2 Distance measures for binary variables 

 

With binary variables, the general focus is on the notion of similarity rather than 

distance (or dissimilarity). Consider two binary vectors x and y that consist of two 

strings [xk], [yk] of binary data; compare them coordinate wise and do the simple 

counting of occurrences: 

 

Number of occurrences when xk and yk are both equal to 1 

Number of occurrences when xk = 0 and yk = 1 

Number of occurrences when xk = 1 and yk = 0 

Number of occurrences when xk and yk are both equal to 0 
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These four numbers can be organized in a 2 by 2 co-occurrence matrix (contingency 

table) that visualizes how “close” these two strings are to each other. 

 

    

 

  

Evidently, the zero non-diagonal entries of this matrix point at the ideal matching (the 

highest similarity). Based on these four entries, there are several commonly 

encountered measure of similarity of binary vectors x and y. These are : 

 

 The Matching coefficient: 

 

 

   

       
 

 

 The Russell and Rao measure of similarity consists of the quotient: 

 

 

       
 

 

  The Jacard index involves the case when both inputs assume values equal to 1. 

 

 

     
 

 

 The Czekanowski index is practically the same as the Jacard index, but by 

adding the weight factor of 2, it emphasizes the coincidence of situations where 

entries of x and y both assume values equal to 1: 

 

 

2 

2     
 

(2.12) 

(2.15) 

(2.14) 

(2.13) 
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2.4 Types of Clustering Algorithms 

 

Cluster analysis involves many different techniques and the procedure will depend on 

the particular technique used. However, there are two major categories of clustering 

techniques. Hierarchical (nested) and Non-hierarchical (Partitional) clustering 

algorithms. With hierarchical clustering, successive clusters are found using previously 

established clusters whereas partitioning algorithms determine all clusters at once. 

Partitioning methods partition the data into pre-specified number of clusters (k) of 

mutually exclusive and exhaustive groups. On the other hand, hierarchical methods do 

not specify how many clusters are appropriate a priori, but clusters are obtained by 

“cutting” the tree at some level as shown on the dendogram below (figure 2-4).  

  

2.4.1 Hierarchical clustering  

 

Hierarchical cluster analysis (or nested clustering) is a general approach to cluster 

analysis, in which the objective is to group together objects or records that are "close" 

to one another. A key component of the analysis is repeated calculation of distance 

measures between objects, and between clusters once objects begin to be grouped into 

clusters. The clustering techniques in this category produce a graphic representation of 

data (Duda, Hart and Stork, 2001). The outcome is represented by a tree diagram 

known as a dendogram as shown on figure 2-4. A dendogram is a graphical 

representation of the results of a hierarchical cluster analysis. It is a tree-like plot 

where each step is represented as a fusion of two branches of the tree into a single 

one. The branches depict clusters obtained on each step of the hierarchical clustering 

algorithm.  

 

http://www.statistics.com/resources/glossary/c/clusteran.php
http://www.statistics.com/resources/glossary/c/clusteran.php
http://www.statistics.com/resources/glossary/d/dendrogram.php
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Figure 2-4: A Dendogram 

The hierarchical clustering technique is further divided into two types:  

2.4.1a Agglomerative or Bottom-up Technique:  

It starts with one point or singleton cluster and recursively merging two or more most 

similar clusters to one “parent” cluster until the termination criterion is reached. For 

example, until k clusters are built. This method is often used is practice. Below is a 

simple agglomerative algorithm: 

 Initialise the cluster set assuming that each point is a distinct cluster. 

 Compute the similarity between all pairs of clusters that is, calculating the 

similarity matrix whose ijth entry gives the similarity between the ith and jth 

clusters. 

 Merge the most similar (closest) clusters. 

 Update the similarity matrix to reflect the pair-wise similarity between the new 

cluster and the original (remaining) clusters. 

 Repeat steps 3 and 4 until only a single cluster remains. 

2.4.1b Divisive or Top-down Technique:  

Contrary to the agglomerative approach, it starts with one cluster of all objects and 

successively splitting each branch until the termination criterion is attained. This 

method is not frequently used in practice. 

The initial data for the hierarchical cluster analysis of N objects is a set of N x N (N – 

1) /2 object-to-object distances and a linkage function for computation of the cluster-

http://www.statistics.com/resources/glossary/l/linkage.php
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to-cluster distances. The linkage function is an essential pre-requesite for hierarchical 

cluster analysis. Its value is a measure of the “distance” between two groups of objects 

or clusters. Three are five major types of linkage function used in hierarchical 

clustering. 

 

   

 

 

 

 

 

 

 

 

 

Figure 2-5: Hierachical Clustering 

 

2.5 Types of Linkage Functions 

 

In hierarchical clustering, the decision to merge or split clusters depends on the linkage 

function used. Several of these linkage functions are available and include Single-

linkage, Complete linkage, Average linkage, Group average linkage and Ward‟s method 

amongst others. 

 

 

 

Divisive 

Agglomerative 
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 Single Linkage or Nearest-Neighbor Method (MIN):  

Based on this method, the dissimilarity between two clusters is the minimum distance 

between objects of the two clusters. The distance is computed as the minimal object-

to-object distance, d(xi ,yj) where objects xi belong to the first cluster, and objects yi 

belong to the second cluster. In other words, this technique computes the maximum 

similarity between two groups of objects or clusters. This method produces long chains 

which form loose, straggly clusters. This technique is useful in handling non-elliptical 

shapes, but it is very sensitive to noise and outliers. Clustering based on this distance 

metric is one of the most commonly used methods.  

Mathematically, the distance D(X, Y) between cluster X and Y is expressed as: 

     ,     in    ,    

   ∈  ,  ∈  , 

Where, 

   ,     is the distance between objects   and   and 

  and   are two sets of objects (clusters). 

 Complete Linkage or Furthest-Neighbour Method (MAX):  

The dissimilarity between 2 groups is equal to the greatest distance between a member 

of cluster X and a member of cluster Y. This method tends to produce very tight 

clusters of similar cases. The distance between two clusters is computed as the 

maximal object-to-object distance between d(xi ,yj) where objects xi belong to the first 

cluster and objects yi belong to the second cluster. This implies that, the distance 

between two clusters is computed as the distance between the two farthest objects in 

the two clusters. Complete link unlike the single link is less susceptible to noise and 

outliers and favours globular shapes. 

Mathematically, it is expressed as: 

 

       ,          ,    

          ∈  ,  ∈  ,             

(2.16) 

(2.17) 
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Where, 

   ,    is the distance between objects   and  ; 

  and Y are two sets of objects (clusters)  

 Average Linkage 

The distance or dissimilarity between two clusters is computed based on average 

distance between objects from the first cluster and objects from the second cluster. 

The averaging is performed over all pairs (x, y) of objects, where x is an object from 

the first cluster, and y is an object from the second cluster.  

Mathematically, it is expressed as: 

 

         
 

          
        ,    

  
   

  
       

           ∈  ,    ∈  , 

 

Where, 

     ,    is the distance between objects   ∈    and   ∈  ;  

   and  are two sets of objects (clusters);  

    and    are the numbers of objects in clusters   and    respectively. 

 Group Average Linkage: 

  

The linkage function specifying the distance between two clusters is computed as the 

distance between the average values (the mean vectors or centroids) of the two 

clusters. In contrast to the single linkage and complete linkage approaches, where the 

distance is determined on the basis of extreme values of the distance function, this 

method considers the average between the distances computed between all pairs of 

patterns, one from each cluster. Hence, it is an intermediate technique between both 

approaches. Therefore, it requires more intensive computations. 

Mathematically, it is expressed as: 

(2.18) 

http://www.statistics.com/resources/glossary/l/linkage.php
http://www.statistics.com/resources/glossary/c/centroid.php
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          ,       x , y   ,                                                             

 

x   
1

  
  x i ,

  

   

 

y   
1

  
  y i ,

  

   

 

 

 

Where, 

   and   are two sets of objects (clusters);  

    and    are the numbers of objects in clusters   and   respectively;  

 x  and y are the mean vectors of the first and the second clusters, respectively;  

   x , y  is the distance between vectors x  and y  

 

 

 

 

 

 

 

 

 

 (2.20) 

(2.21) 

(2.19) 
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Figure 2-6: Two clusters and three main ways of computing the distance between 

them: (a) single link, (b) complete link, and (c) group average link. 

 

 Ward's Method:  

 

This method has much in common with analysis of variance (ANOVA). The linkage 

function specifying the distance between two clusters is computed as the increase in 

the "error sum of squares" (ESS) after fusing two clusters into a single cluster. Ward's 

Method seeks to choose the successive clustering steps so as to minimize the increase 

in ESS at each step. The ESS of a set   of    values is the sum of squares of the 

deviations from the mean value or the mean vector (centroid). For a set   the ESS is 

described by the following expression:  

 

  

             
   
     

 

   
      

  
    

Where,  

|.|  is the absolute value of a scalar value or the norm (the "length") of a vector.  

Mathematically the linkage function - the distance between clusters   and   is 

described by: 

                 ,                           

Where, 

 

    is the combined cluster resulting from the fusion of clusters  and  ; 

        is the error sum of squares described above. 

 

Deciding on when to stop clustering will depend on two main criteria. Firstly, when 

clusters are too far apart to be reasonably merged, known as the distance criterion, 

and secondly, when there is a sufficiently small number of clusters referred to as the 

number criterion. The choice of decision criteria will depend on the purpose of the 

analysis. 

(2.21) 

   (2.22) 

   (2.23) 

http://www.statistics.com/resources/glossary/l/linkage.php
http://www.statistics.com/resources/glossary/l/linkage.php
http://www.statistics.com/resources/glossary/m/mean.php
http://www.statistics.com/resources/glossary/c/centroid.php
http://www.statistics.com/resources/glossary/l/linkage.php
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2.6 Advantages and Disadvantages of Hierarchical Clustering 

 

2.6.1 Advantages: 

 

Hierarchical clustering algorithms are mostly used in practice (especially the 

agglomerative method) because it offers several advantages. 

 Firstly, it has an embedded flexibility regarding the level of granularity. The 

dendogram shows a detailed structure of the data and clusters can be merged 

(agglomerative method) or split (divisive method) easily at any point of the 

tree. The smaller clusters that are generated may enable discovery. 

 Secondly, this algorithm is capable of handling any form of distance or similarity 

measure and moreover, it is applicable to any type of attribute.  

Despite these advantages, a couple of disadvantages still abound. 

 

2.6.2 Disadvantages: 

 

 The termination criteria are usually very vague and difficult to define in 

practice. For instance, it is not easy to determine the number of clusters which 

is ideal to obtain optimum results. This requires additional expert knowledge.  

 Furthermore, it is not possible to undo intermediate clusters once they are 

constructed, hence improvement becomes difficult to implement. This means 

that, objects that are incorrectly grouped at an early stage cannot be undone. 

 The use of different distance metrics for measuring distances between clusters 

may generate different results. It is therefore recommended to perform multiple 

experiments and compare the results in order to confirm the veracity of the 

original results.  

 Another issue is the scaling problem. Most hierarchical clustering algorithms do 

not scale well. They usually have a time complexity of at least O(n2), where n is 

the total number of objects. The time complexity of an algorithm refers to the 

amount of time it takes to run, as a function of the size of the input to the 

problem.  

 Finally, there is one main disadvantage in the interpretation of dendograms. 

Gordon (1994) stated that the absence of previous knowledge of the original 

data set often leads to misinterpretation by the human expert. 
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It should however be noted that linkage metrics presented in section 2.5 above based 

on the Euclidean distance usually have some restrictions. This is because they naturally 

predispose to clusters of proper convex shapes. However, this is not always the case 

with real data as they may exhibit various shapes and forms. In order to handle data of 

non-spherical shapes, wide variances in sizes and to resolve the problem of outliers, an 

alternative hierarchical clustering algorithm known as Clustering Using Representatives 

(CURE) was developed (Guha, Rastogi and Shim, 1998). 

Experimental results obtained by the researchers confirmed that the quality of clusters 

produced by CURE is much better than those found by existing hierarchical algorithms. 

Furthermore, they demonstrated that random sampling and partitioning enable CURE 

not only to outperform existing algorithms but also to scale well for large databases 

without sacrificing clustering quality. 

 

2.7 Partitional or Non-Hierarchical Clustering 

 

In non-hierarchical clustering, data are divided into k partitions or groups with each 

group representing a cluster. In other words, it is the division of a set of data objects 

into non-overlapping subsets such that each data object is in exactly one subset. 

Therefore, unlike the hierarchical method, the number of clusters is to be known a 

priori. The main types under this category include the k-means, K-median and Fuzzy c-

means. 

 

2.7.1 K-means Clustering 

 

This clustering technique is one of the most popular and simple approaches to 

clustering. Macqueen (1967) was the first person to use the term k-means. The goal is 

to partition n observations (objects) into k clusters such that each observation belongs 

to the cluster with the nearest mean. Generally, the algorithm is iterative and usually 

converges after several iterations to a local optimum. Unlike hierarchical clustering, the 

number of clusters k is stated apriori that is, the number of clusters is selected at the 

beginning, and the algorithm merely assigns each object to predetermined clusters. 

The algorithm works by first selecting k locations at random to be the initial centroids 

for the clusters. Each observation is then assigned to the cluster which has the nearest 

centroid, and the centroids are recalculated using the mean value of assigned values. 

The algorithm then repeats this process until the cluster centroids do not change 
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anymore, or until they change less than a given threshold. As such, the K-means 

method is numerical, unsupervised, non-deterministic and highly iterative. 

Below are the different steps in the k-means algorithm: 

 

 Start with K randomly chosen points to define the centres of the K clusters, 

 Assign each item to the closest point, 

 Calculate the mean (centroid) of each cluster, 

 Use the K means to define the centres of K new clusters and reassign each item 

to the cluster with the closest centre, 

 Repeat the previous two steps until there is no change in the nature of the 

clusters between steps. 

K-Means Algorithm has the following properties: 

 There are always K clusters. 

 There is always at least one item in each cluster. 

 The clusters are non-hierarchical and they do not overlap. 

 Every member of a cluster is closer to its cluster than any other cluster because 

closeness does not always involve the 'center' of clusters. 

 

2.7.1a Advantages: 

 

 Relatively simple clustering technique. 

 K-means clustering may be computationally faster than hierarchical clustering 

when there are many variables and the number of clusters (k) is small. 

 Furthermore, k-means tend to produce tighter clusters than hierarchical 

clustering especially if clusters are globular in shape; that is a cluster which is 

roughly spherical or convex in shape. This means that any line drawn between 

two cluster members or objects stays inside the boundaries of the cluster. 

 

2.7.1b Disadvantages: 

 

 K-means is not suitable for handling non-globular clusters or clusters of different 

sizes and densities. Non-globular clusters usually have very convoluted 

boundary and the mean is often irrelevant and may even lie outside the cluster. 

 This clustering technique assigns objects to already predetermined k classes 

exclusively. This is not usually the case in reality as objects can belong to more 

than one cluster with varying degrees of membership probability. 
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 Moreover, by stating a fixed number of clusters a priori, it might become 

difficult to predict what k should actually be. 

 Furthermore, it is not very efficient in clustering data that contains outliers, 

hence outlier detection and removal becomes necessary. 

 Traditional k-means clustering was restricted to data for which there is a notion 

of centre (centroid). However, this has been resolved by using k-medoid which 

is more expensive to conduct. 

 

Another variant of the K-means algorithm is the K-median. It differs from K-means in 

that it utilizes the manhattan or city block distance (equation 2.7) instead of the 

Euclidean distance (2.5) used in K-means. Therefore, it is less sensitive to outliers than 

the normal K-means due to the properties of the Manhattan distance metric (Bradley, 

Mangasarian and Street, 1997). 

  

2.7.2 Fuzzy C-Means (FCM) Clustering 

 

Standard clustering methods assume that data objects or points are exclusive and non-

overlapping meaning that, each object is assigned to a single cluster only. However, 

there are some situations whereby an object can be rationally placed in more than one 

group or cluster implying they are overlapping or non-exclusive. For instance, a road 

crash can be caused by a factor related to human, vehicle or road infrastructure but 

reasonably, it can be attributed to a combination of these factors. 

 

This is what fuzzy clustering is about. Fuzzy clustering reflects the fact that an object 

can simultaneously belong to more than one group or class depending on the criteria 

used. Based on this clustering method, every object belongs to every cluster with a 

known membership weight or probability that lies between 0 (absolutely does not 

belong) and 1 (absolutely belongs). The individual clusters are considered as fuzzy 

sets. Fuzzy sets are sets whose elements have degrees of membership. It was first 

introduced by Zadeh (1965) as an extension of the classical set theory. In the field of 

mathematics, a fuzzy set is one in which an object belongs to any set with a weight of 

between 0 and 1. However, in fuzzy clustering, an additional condition is imposed that 

the sum of the weights for each object must equal one. 

 

Due to the fact that the membership weights for any object sum up to one, this 

technique does not address true multiclass situations. That notwithstanding, it is most 
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appropriate in avoiding the arbitrariness of assigning an object to only a single cluster 

whereas it can be quite similar to many. Therefore, it incorporates the existence of 

uncertainty in its analysis. However, in practical applications, fuzzy or probabilistic 

clustering is usually converted to an exclusive clustering by assigning each object to 

the cluster for which its membership weight is highest.  

 

Fuzzy clustering is therefore similar to LC clustering. However, a major difference is 

that an object‟s grade of membership in fuzzy clustering are the „parameters‟ to be 

estimated (Kaufman and Rousseuw, 1990) where as an individual‟s posterior class 

membership probabilities in LC clustering are computed from the estimated model 

parameters and its observed scores. This feature renders it possible to classify other 

objects belonging to the population from which the sample is taken which is not 

feasible with standard fuzzy clustering methods (Vermunt and Magidson, 2002). 

 

This chapter gave an overview of widely used traditional clustering techniques. It is 

realised that despite the importance and popularity of these traditional clustering 

methods, they do have some major weaknesses especially as their computation rely 

heavily on a distance function. There also exist many other clustering methods 

including density and grid-based methods. Latent class models (LCM) and its 

application in clustering; Latent class cluster analysis (LCCA) which is the main 

analytical tool in this report is covered in the proceeding chapter. 
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Chapter 3: LATENT CLASS MODELS (LCM) AND     

 LATENT CLASS CLUSTER ANALYSIS (LCCA) 

 

 

The application of Latent class cluster analysis in the domain of traffic safety unlike 

standard clustering methods is still relatively new but a few studies do abound. Depaire 

Wets and Vanhoof (2008) showed that LCCA is an effective clustering technique for 

identifying homogenous traffic accident types. By applying the technique to a 

heterogeneous traffic accident data set, the researchers were able to segment the data 

into explicit clusters. In another study, Geurts, Wets, Brijs and Vanhoof (2003) used 

LCCA to cluster 19 central roads in the city of Hasselt (Belgium) into specific groups 

based on similar accident frequencies.  

This chapter discusses latent class models and their application in clustering. The first 

part (section 3.1) begins with an explanation of latent class or finite mixture models. 

The statistical properties of the different functions are highlighted. This is then followed 

by a succinct step-by-step description of latent class cluster analysis in the next 

section.  

3.1 Latent Class Models (LCM)  

Latent class analysis was first introduced by Lazarsfeld (1950a, b) and Lazarsfeld and 

Henry (1968) as a technique for formulating latent attitudinal variables from 

dichotomous survey items. A latent variable, in contrast to an observable or manifest 

variable, refers to an unobservable construct which cannot be directly measured but 

can be inferred by a model from other variables that are observable. In this early 

model, it was assumed that the latent variable is categorical. Goodman (1974a, b) later 

on formalized and extended the methodology to nominal variables and is also credited 

with the development of the maximum likelihood (ML) algorithm that forms the basis of 

most LC software applications. LC models have been extended over the years and 

today include observable variables of mixed-scale type (nominal, ordinal, continuous 

and count) in the same analysis, the capacity to deal with sparse data, boundary 

solutions and other problem areas (Vermunt and Magidson, 2000). Moreover, for 

improved cluster or segment description the relationship between the latent classes 

and external variables can be assessed simultaneously with the identification of the 
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clusters by the inclusion of covariates. Therefore, the need for the usual second stage 

of analysis where a discriminant analysis is performed to relate the cluster results to 

demographic and other variables is eliminated. Apart from cluster analysis, LC 

modeling has also been applied to factor and regression analyses. 

LC analysis can be viewed as a special case of model-based clustering for multivariate 

discrete data (Dean and Raftery, 2010). The main assumption of model-based 

clustering is that each observation comes from one of a number of classes, groups or 

subpopulations and each is modeled with its own probability distribution (McLachlan 

and Peel, 2000; Fraley and Raftery, 2002). Therefore, the overall population thus 

follows a finite mixture model (Fraley and Raftery, 2002) expressed as: 

     

      

 

   

        

Where, 

    the density function for group   

G = Number of groups 

  = the mixture proportions,0<   <1 and 

   

 

   

 1 

However, since in practice    are from the same parametric family, as is the case with 

latent class analysis, the overall density is written as: 

 

 

      

 

   

          

 

Where, 

   = set of parameters for the gth group. 

 

In latent class analysis, the variables are usually assumed to be independent given 

knowledge of the group an observation came from, an assumption referred to as local 

independence. A multinomial density is used to model each variable within each group 

(3.2) 

(3.1) 
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when the variables are categorical. The general density of a single variable   (with 

categories 1, . . . , d) given that it is in group g is then written as: 

 

            
       

    

 

Where, 

1       is the indicator function equal to 1 if the observation of the variable takes 

value j and 0 otherwise,     is the probability of the variable taking value   in group  , 

and   is the number of possible values or categories the variable can take. 

Since we are assuming conditional independence, if there are k variables, their joint 

group density can be written as a product of their individual group densities. If   

 1, …  ,    , the joint group density is written as: 

 

 

      

       

 

  1

     
1       

  

  1

  

Where, 

 

 1{yi = j } is the indicator function equal to 1 if the observation of the ith variable takes 

value j and 0 otherwise, Pi jg is the probability of variable i taking value j in group g and 

di is the number of possible values or categories the ith variable can take. 

 

More discussion of LC models is covered in Hagenaars and McCutcheon (2002), Clogg 

(1995) and McCutcheon (1987). 

 

3.2 Latent Class Cluster Analysis (LCCA) 

 

The application of latent class (LC) analysis as a clustering method has led to the 

development of Latent class cluster analysis (LCCA) in recent years. The first explicit 

connection between Latent class and cluster analysis was made by Wolfe (1970). 

Several terminologies have been used by researchers to  describe such an application 

of LC analysis  notably mixture likelihood approach to clustering (McLachlan and 

(3.4) 

(3.3) 
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Basford, 1988; Everitt, 1993), model-based clustering (Banfield and Raftery, 1993; 

Bensmail, Celeux, Raftery and Robert, 1997; Fraley and Raftery, 1998a, 1998b), 

mixture-model clustering (Jorgensen and Hunt 1996; McLachlan, Peel, Basford and 

Adams, 1999), Bayesian classification (Cheeseman and Stutz, 1995), unsupervised 

learning (McLachlan and Peel, 1996), finite mixture models (Fraley and Raftery, 2002) 

and latent class cluster analysis (Vermunt and Magidson, 2002). 

 

3.2.1 LCCA for Continuous Variables 

 

The basic LC cluster model is written as: 

 

   i       

 

   

         

 

 

Yi denotes an object scores on a set of observed variables, 

K is the number of clusters 

 k is the prior probability of belonging to latent class or cluster k or equivalently the size 

of cluster k. 

As indicated in the above model, the distribution of Yi given the model parameters  , 

that is    i    is assumed to be a mixture of class specific densities,  k  i  k). 

 

A great deal of research on LCCA has been done using continuous variables. These 

continuous variables are usually assumed to be normally distributed within the latent 

classes after applying an adequate non-linear transformation (Cheeseman and Stutz, 

1995; Banfield and Raftery, 1993; McLachlan, 1988). Other distributions that can be 

used are the Student, Gompertz or Gamma distributions (McLachlan, Peel, Basford and 

Adams, 1999). 

The general Gausssian distribution is the multivariate normal model with parameters  k 

and  k. If no other restrictions are imposed, the LCCA problem involves estimating a 

separate set of means, variances and covariances for each latent class. The main goal 

in most applications is finding classes that differ with respect to their means or 

locations. The fact that the model allows classes to have different variances implies 

that classes may also differ with respect to the homogeneity of the responses to the 

  (3.5) 
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observed variables. The assumption is usually made in standard LC models with 

categorical variables that the observed variables are mutually independent within 

clusters. This assumption is not necessary in the case of continuous variables. The y 

variables ( indicators or dependent or endogenous variables) may be correlated with 

clusters which may be cluster specific due to the fact that each class has its own set of 

variances. Therefore, the clusters differ with respect to their means and variances as 

well as to their correlations between the observed variables. 

As the number of indicators and /or the number of latent classes increases, the number 

of parameters to be estimated also increases rapidly, especially the number of free 

parameters in the variance-covariance matrices  k. Hence, model restrictions that are 

imposed to obtain more parsimony and stability typically involve constraining the class-

specific variance-covariance matrices.  

A typical constraint model is the local independence model. It is obtained by making 

the assumption that all within-cluster covariances are equal to zero or in other words, 

the variance-covariance matrices,  k are diagonal matrices. Models that are less 

restrictive than the local independence model can be obtained by fixing some, but not 

all the covariances to zero that is, by assuming that certain pairs of y‟s are mutually 

independent within latent classes. 

The equality or homogeneity of variance-covariance matrices across latent classes;  

 k =   is another type of constraint. A homogenous or class-independent error 

structure of this nature yields clusters that have the same forms but different locations. 

These kinds of equality constraints can be applied in combination with any structure 

for  . 

The reparameterising of the class specific variance-covariance matrices using the eigen 

value decomposition was proposed by Banfield and Raftery (1993) as follows: 

 

             
  

 

Where;  

   = |   |
1/d is a scalar; with d = number of observed variables 

   = matrix with eigenvectors 

  = diagonal matrix where elements are proportional to the eigen values of     and is 

scaled such that |  |= 1. 

 

  (3.6) 
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An advantage of this model is that the three parameters each have a geometrical 

interpretation:    indicates the volume of cluster  ,    indicates its orientation and    

is the shape. As such, restrictions that are imposed on these matrices can directly be 

interpreted in terms of the clusters. Generally, matrices are assumed to be class-

independent and/or assigned simpler structures (diagonal or identity). An overview of 

many other specifications is covered in Fraley and Raftery (1998b). 

Furthermore, the structure of the     matrices can also be simplified using a 

covariance-structure model rather than a restricted eigen value decomposition. Many 

researchers have proposed the use of LC models in handling unobserved heterogeneity 

in covariance structure analysis (Arminger and Stein, 1997; Dolan and Van der Maas, 

1997; Jedidi, Jagpal and DeSarbo; 1997). The same methodology can be used to 

restrict the error structure in LCCA with continuous indicators. Another important 

structure for     which is related to the eigen value decomposition is the Factor analytic 

model (Yung, 1997; McLachlan and Peel, 1999). It is written as: 

 

 

    

             

 

 

Where; 

   = matrix with factor loadings 

  = variance-covariance matrix of the factors 

   = diagonal matrix with unique variances 

 

Restrictions can be imposed on this model by limiting the number of factors; for 

example to one and/or fixing some factor loadings to zero. These specifications render 

it possible to describe the correlations between the y variables within clusters or 

equivalently, the structure of local independencies by using a small number of 

parameters. 

 

 

 

 

 

 (3.7) 
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3.2.2 LCCA for Mixed-Mode Indicators 

 

LC cluster models for continuous variables or indicators assume a restricted 

multivariate normal distribution for    within each of the latent classes. In practice 

however, there exist many situations where there may be other variable types such as 

nominal, ordinal or count. LC models for nominal and ordinal variables assuming 

restricted multinomial distribution for the items are equivalent to standard exploratory 

LC models (Clogg 1981, 1995; Goodman 1974). LC models for Poisson count was 

postulated by Bockenholt (1993) and Wedel, DeSarbo, Bult and Ramaswamy (1993). 

 

The specification of cluster models for indicators of different scale types is possible 

using the general structure of the LC model. This type of data is also referred to as 

mixed-mode data (Vermunt and Magidson, 2000; Lawrence and Krzanowski, 1996; 

Jorgensen and Hunt, 1996; Everitt 1988). Taking the local independence assumption 

into consideration, the LC cluster model is denoted as: 

 

 

 

   i       

 

   

            

 

   

  

Where; 

 =total number of indicators 

  = an individual indicator 

 

The appropriate univariate distribution function for each element of     of  i is then 

specified, instead of specifying the joint distribution of  i  given class membership 

using a single multivariate distribution. Relevant distributions for continuous     include 

the univariate normal, student, gamma and log-normal distributions. Multinomial 

distribution (restricted) is the normal choice for discrete nominal or ordinal variables. 

Finally, Poisson, binomial and negative binomial are used for count variables. 

It is assumed in the above equation (3.8) that the  ’s are conditionally independent 

within the latent classes. However, it is possible to relax this assumption by using the 

relevant multivariate rather than univariate distributions for sets of locally dependent y 

variables. Presenting a separate formula for this situation is unnecessary as the index 

(3.8) 
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in equation 3.8 can be considered to denote a set of indicators and not just a single 

indicator. The multivariate normal distribution is used for a set of continuous variables 

and a set of nominal /ordinal variables can merge into a (restricted) joint multinomial 

distribution. A multivariate Poisson model can be used to model correlated counts. The 

specification of the mixed multivariate distributions is rather complex. Two possible 

ways of modeling the relationship between a nominal /ordinal and a continuous y was 

proposed by Krzanowski (1983): 

 

 Conditional Gaussian where the categorical variable can be used as covariate in 

the normal model and 

 Conditional multinomial distribution where the continuous variable is used as a 

covariate in the multinomial model. 

 

The conditional Gaussian distribution in LC clustering with combination of categorical 

and continuous variables was used by Hunt and Jorgensen (1999) and Lawrence and 

Krzanowski (1996). Moreover, local dependencies with a Poisson variable are handled 

in the same way; by allowing its mean to be dependent on the relevant continuous or 

categorical variables. 

The inclusion of local dependencies between indicators is very important in LCCA for 

two main reasons: 

 

 It ensures that the final solution does not have so many clusters. By including a 

few direct effects between y variables, a simple solution with fewer clusters is 

obtained. However, allowing within-cluster association is also disadvantageous in 

that relevant clusters may remain hidden due to direct effects. 

 Moreover, a better classification of objects into clusters is possible when the local 

independence assumption is relaxed. Two variables that are assumed to be 

locally independent imply that they likely contain some overlapping information 

that should not be used when determining the class membership of an object. 

Furthermore, if a significant bivariate dependency is omitted from a LC cluster 

model, the subsequent locally dependent indicators tend to get a very high 

weight in the classification formula (equation 3.11) compared to the other 

indicators. 
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3.2.3 Inclusion of Covariates 

 

The general LCC modeling approach deals with mixed-mode data and allows for many 

different specification of the (correlated) error structure. An important extension of this 

model is the prediction of class membership by the inclusion of covariates. It is logical 

to differentiate (endogenous) variables that serve as indicators of the latent variable 

from (exogenous) variables that are used to predict to which cluster an object belongs. 

This is the same idea expressed by Clogg (1981) in LCM with external variables. 

In some applications, the latent cluster variable can be used as a predictor of an 

observed response variable rather than as a dependent variable. By using the response 

variable as one of the y variables, a model in which cluster variables serve as a 

predictor can be obtained. 

Using the same standard structure as in equation 3.8 above, the LC cluster model 

becomes: 

 

 

 

   i  i,          

 

   

   

 

   

          

 

where; 

 i =covariate values of object  i 

 

Synonyms for z’s are exogenous variables, external variables, concomitant variables, 

grouping variables or inputs. To reduce the model complexity (number of parameters), 

of the probability of belonging to class   given covariate values  i,       is generally 

restricted by a multinomial logit model; that is a logit model with “linear effects” and no 

higher order interactions. 

Conceptually, a more general specification is obtained when covariates are assumed to 

have direct effects on the indicators: 

 

 

(3.9) 
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   i  i,          

 

   

   

 

   

      i,      

 

 

In this case, the conditional mean of y variables can now be directly related to the 

covariates. As such, the implicit assumption in the previous specification (equation 3.9) 

that the influence of z’s on  ’s goes completely through the latent variable is relaxed. 

There is also another possibility to have direct effects of z’s on  ’s by using a simple 

short-cut to specify direct effects between indicators of different scale types. This is 

obtained by using one of the two variables involved both as a covariate (no influence 

on class membership) and as an indicator. 

 

3.2.4 Model Estimation 

 

The maximum likelihood (ML) and the maximum posterior (MAP) estimators are the 

main methods use in estimating the parameters of the various types of LC cluster 

models. The log-likelihood function required in ML and MAP approaches are derived 

from the probability density function defining the model. Bayesian MAP estimation 

involves maximizing the log-posterior distribution which is the sum of the log-likelihood 

function and the logs of the priors for the parameter. Both methods are quite similar, 

but ML estimate has an edge over MAP in that it prevents occurrence of boundary or 

terminal solutions; that is probabilities and variances cannot become zero. Given a very 

small amount of prior information, the parameter estimates are forced to stay within 

the interior of the parameter space. Typical examples of priors are the Dirichlet priors 

for multinomial probabilities and the inverted-Wishart priors for the variance-

covariance matrices in multivariate normal models. 

The expectation-maximization (EM) algorithm (McLachlan and Krishnan, 1997) or some 

modification of it is used in most statistical software packages to compute the ML and 

MAP estimates. Generally, the algorithm starts with a number of EM iterations and 

switches to Newton-Raphson (NR) when it is close enough to the final solution. In this 

manner, the advantages of both algorithms are combined as EM is very stable even 

when far from the optimum and NR has higher speed when close to the optimum. 

The occurrence of a local solution is a common problem in LC analysis. An ideal way to 

avoid ending with a local solution is to use multiple sets of starting values. Most 

(3.10) 
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computer programs for LC clustering such as Latent Gold have automated the search 

for good starting values using several sets of random starting values as well as 

solutions obtained with other cluster methods. 

In LC cluster analysis, the interest does not only lie in the estimation of the model 

parameters. The classification of objects into clusters is also a significant “estimation” 

problem and is based on posterior class membership probabilities as follows: 

 

 

     ,     
                ,     

                 ,     
 

 

Modal allocation is the standard classification method; that is assigning each object to 

the class with the highest posterior probability. 

 

3.2.5 Model Selection 

 

Model selection is a major research topic in LC clustering. The two main issues deal 

with decisions about the number of clusters and the form of the model given the 

number of clusters. 

Standard likelihood ratio tests between nested models are used to make assumptions 

with respect to the forms of the clusters given their number. A typical example is 

between a model with an unrestricted covariance matrix and a model with restricted 

covariance matrix. Wald tests can be used to assess the significance of certain included 

variables while the Lagrange multiplier tests are used to assess that for excluded 

terms. However, these kinds of chi-squared tests cannot be used to determine the 

number of clusters (Vermunt and Magidson, 2002). 

There are three major model selection tools in LC clustering using the information 

criteria notably the Bayesian information criterion (BIC), Akaike information criterion 

(AIC), and the Consistent Akaike information criterion (Fraley and Raftery, 1998a).  

In the LCA computer program, Latent Gold (Vermunt and Magidson, 2000), these 

criteria are reported in the output and computed in two ways: 

 

 Based on the likelihood-ratio chi-squared statistic (L2) and degrees of freedom 

(df) as follows: 

 

 

(3.11) 
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BICL2   = L2 – log(N)df, 

 

AICL2    = L2 – 2 df, 

 

              CAICL2  = L2  – [log(N) +1] df. 

 

With  

L2 = likelihood-ratio chi-squared statistic, 

df = degrees of freedom. 

 

 Based on the log-likelihood (log ℒ  and the number of estimated parameters 

(npar) defined as: 

 

BIC log ℒ = -2 log ℒ    log N ) npar, 

 

AIC log ℒ = -2 log ℒ   2 np r, 

 

CAIC log ℒ = 2 log ℒ     log N ) + 1] npar. 

 

With  

log ℒ   log-likelihood 

npar = number of estimated parameters 

 

These statistical values are a measure of how well the model describes the data (model 

fit) and also the complexity of the model in terms of number of parameters. Lower 

values of BIC, AIC and CAIC indicate a better model in terms of parsimony. 

 

Other computationally intensive methods have been developed recently including 

parametric bootstrapping (McLachlan, Peel, Basford and Adams, 1999) and Markov 

Chain Monte Carlo methods (Bensmail Celeux, Raftery and Robert, 1997) to determine 

the number of clusters and their forms. A fully automated model selection method 

using approximate Bayes factors, different from BIC was proposed by Cheeseman and 

Stutz (1995). 

  (3.13) 

 (3.14) 

(3.15) 

(3.16) 

 (3.17) 

(3.12) 
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There are other techniques for evaluating LC cluster models which are based on the 

uncertainty of classification or in other words, the separation of the clusters. Apart from 

the estimated total number of misclassifications, other measures can be used to 

indicate how well the indicators predict class membership. Some of these indices 

combine information on model fit and information on classification errors. Examples of 

such indices include the classification likelihood (C) and the approximate weight 

evidence (AWE) in Celeux, Biernacki and Govaert (1997). 
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Chapter 4: METHODOLOGY 

 

This chapter describes the methodological aspects of this study. It discusses the 

research strategy and the empirical techniques that were applied. The data sources, 

data manipulation and transformations are discussed in the first section. The second 

part explains the data analytical technique of Latent Class Cluster Analysis (LCCA) and 

how it is modeled in Latent Gold. 

4.1 Data Description and Preparation 

The data used in this project is obtained from the Directorate-general Statistics 

Belgium. It is a record of road crashes that occurred in Belgium in the year 2005.The 

registration of accidents involving casualties in Belgium is carried out by police officers 

at the accident site using a form which is designed for this purpose known as the 

“Analysis Form for Traffic Accidents with Casualties”. This implies that only injury 

accidents are recorded as those involving only material damage are not taken into 

consideration. The final database contains other important attributes related to the 

accident including the vehicle type, road infrastructure, environmental conditions and 

above all the characteristics of the road users involved. 

The original data set is available in Microsoft Excel format on two separate sheets 

labeled “Accidents” and “Victims”. The Accident spreadsheet has 40,563 observations 

(accidents or crashes) and that for Victims has 88,645 crash victims. The Accident 

sheet was then exported into SAS 9.2, where the necessary transformations were 

performed as elaborated in the proceeding paragraphs.  

As the purpose of this thesis is to analyse road crashes at intersections, the first step 

involves obtaining a sample data set on accidents that occurred at intersections. This 

variable is coded as a binary response with “1” indicating accidents on intersections and 

“2” indicating accidents that occurred on other segments of the road rather than 

intersections. By setting the original variable coded as r4 to 1, that is where r4 = 1, the 

sample data set of accidents that occurred at intersections is obtained. This analysis 

takes only the first collision into consideration to avoid complications that can arise 

from combining single collision crashes with multiple collision crashes. For example, a 

single collision crash can be erroneously treated as a missing value for the second 

collision type whereas in reality there was no second collision. Furthermore, 
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incorporating variables like age and gender could be done by extracting these from the 

“Victims” sheet. However, merging both sheets (Accidents and Victims) produced a 

data set containing details about the victims. This is because each accident 

identification (id) in the “Accidents” sheet is linked to several victims (rows) in the 

“Victims” sheet. Since the focus is to cluster individual accidents or crashes and to 

avoid complications that can arise from complex adjustments, the decision was made 

to leave out these variables. That notwithstanding, the other variables including the 

collision type, road type, time, season, weather conditions, pedestrian or moped 

involvement amongst others provide a vivid description of the crashes at intersections.  

The result indicates that out of 40 563 cases of accidents, 13 953 took place at 

intersections. This implies that about 34% of registered road crashes in Belgium in the 

year 2005 occurred at intersections. This high proportion vividly portrays the strategic 

role of intersections on road safety and hence the importance of a research of this 

nature. In order to facilitate interpretation, the labels of the different columns were 

changed to reflect their actual description. The variables of interest were then selected 

to be used for subsequent analysis. A list of the selected variables is displayed on table 

4-6 on page 64. 

 

 

 

Other crashes
66%

Crashes at 
intersections

34%

Road crashes in Belgium - 2005
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Figure 4-1: Road crashes at intersections in Belgium - 2005 

Furthermore, it was necessary to alter the categories of certain variables in order to 

incorporate other possible scenarios. The following variables were transformed to 

facilitate the analysis. 

 Traffic control in the centre of the intersection (TRAFFIC_C) 

This variable indicates the type of traffic control at the centre of the intersection. The 

original data set contained 5 categories for this variable as displayed on table 4-1a 

directly below. This is our main variable that will be used to segment the data to 

distinguish among the intersection types. 

Table 4-1a: Traffic control in the centre of the intersection (TRAFFIC_C) 

 

However, there are two possibilities that can occur at the intersection. If the first 

position has a value of 3 (defective three-coloured traffic lights or amber flashing light), 

either option 4 (right-of-way signs B1 or B5) or 5 (right of way to traffic from light) will 

be present. For the others, if the first road segment contains values 1, 2, 4 or 5, then 

the second position is left blank. In order to incorporate these, the categories were 

adjusted as follows: 

 Categories 3 and 4 are combined to give a new category labeled 6 (An instance 

where there was a defective three-coloured traffic lights or amber flashing light 

and the right-of-way sign B1 or B5 was present). 

 Categories 3 and 5 are also combined to form a new category labeled 7 (An 

instance where there was a defective three-coloured traffic lights or amber 

flashing light and there was right of way to traffic from the right). 

 

Two new categories, 6 and 7 were therefore created and category 3 in the data set 

was eliminated. The final variable had the following categories: 

1 traffic policeman 

2 functioning three-coloured traffic lights 

3 defective three-coloured traffic lights or amber flashing light 

4 Right-of-way signs B1 or B5 

5 right of way to traffic from the right 
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Table 4-1b: Adjusted traffic control at intersection  

1= traffic policeman 

2= functioning three-coloured traffic lights  

4= right-of-way signs B1 and B5 

5= right of way to traffic from the right 

6= defective three-coloured traffic lights or amber flashing light and the right-

of- way sign B1 or B5 was present 

7= defective three-coloured traffic lights or amber flashing light and there was 

right of way of traffic from the right 

 

 The variable HOUR, which indicates time of day (0h-23h), was divided into six 

broad categories as shown on table 4-2 below, in order to capture variations in crashes 

over different periods of the day. Furthermore, the grouping was necessary to ensure 

that a reasonable number of observations are recorded for the specified periods without 

delving into too much detail which might inhibit interpretation when hourly periods are 

considered. 

 

 

Table 4-2: Time of the day (HOUR) 

Hours Classification 

06 – 09 Morning 

10 – 12 Late morning 

13 – 15 Afternoon 

16 – 18 Evening rush 

19 – 21 Evening 

22 – 05 Night 

 

 Months were aggregated and a new variable SEASON was created. In the 

original data set, months were denoted by values of 1-12 representing January to 

December. The aggregation was done as was the case with HOUR in order to ensure 

that a reasonable number of observations are available for each period since the data 

pertains to just a single year. Moreover, observing seasonal variations in accidents 

despite the inherent detailed information loss can still help to gain some useful 
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information. The months were aggregated as depicted below on table 4-3. Therefore, in 

the final analysis, the variable Month was replaced by SEASON. 

 

 

Table 4-3: Aggregation of months into seasons (SEASON) 

 

Months Seasons 

Dec.[12], Jan.[01] and Feb.[02] Winter 

March[03], April[04] and May[05] Spring 

June[06], July [07] and August[08] Summer 

Sept.[09], Oct.[10] and Nov.[11] Autumn 

 

 The variable road condition (Road_C) was also adjusted to reduce the number of 

categories. Initially, it had six categories and two categories; dry (1) and clean (4) 

roads were merged to form one category. Hence, five categories are used in further 

analysis. 

 

 

 

Table 4-4: Adjusted categories for road condition (Road_C) 

 

Values Classification 

1 Dry and Clean 

2 Wet puddles 

3 Black ice, snow 

4 Dirty (sand, gravel, leaves etc.) 

5 Unknown 

 

 

The number of categories was also reduced for the variable Weather. Initially eight 

categories were present and three categories namely rainfall (2), snowfall (5) and 

hailstorm (6) were all merged under one broad category; precipitation. Fog (3) was 

also merged with other for example dense smoke (7) to bring the total number of 

categories to four. 
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Table 4-5: Adjusted categories for Weather conditions (Weather) 

 

Values Classification 

1 Normal 

2 Precipitation (rainfall, snowfall and hailstorm) 

including strong wind or gusts. 

3 Fog or other e.g dense smoke 

4 Unknown 

 

 

Below are the other selected variables. The complete list of selected variables is shown 

on table 4-6, pages 64. 

 

4.1.1 Other selected variables 

 

 Collision type (COL_T) 

This depicts the various types of collisions that occurred at the intersection. 

There are six categories for this variable. Multiple collisions and single driver 

collisions are not included. As mentioned earlier, only the first collision is taken 

into consideration. 

 Road types (first and second): Road_T1 and Road_T2 

This variable denotes the road type outside of the intersection where the 

accident occurred. It has three categories; 1 = motorway, 2 = regional road and 

3 = municipal road. 

 Speed limit difference (SL_D) 

This indicates the difference in speed limit between the two roads at the 

intersection. It is coded as a binary variable with 0 = no difference and 1 = 

difference in speed limit. 

 Light conditions (LightC) 

This indicates the lighting conditions available when the accident occurred. It 

has five categories ranging from daylight to darkness as indicated on table 4-6 

below. 

 Built-up area (BUA) 

This indicates whether the accident occurred in an agglomeration or not. A value 

of “1” indicates the accident was inside a built-up area and “2” implies it was 

outside of a built-up area.  
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 Ignored red light or does not give priority to right of way (Behav1) 

This indicates whether the driver violated the red traffic light or priority rule or 

not before the crash. It is also a binary variable with 0 = No and 1 = Yes. 

 Pedestrian Involvement 

This indicates whether a pedestrian was involved in the crash or not. It is a 

binary response with 0 = No and 1 = Yes. 

 Involvement of mopeds and cyclists (MOP_C) 

This also indicates whether a moped rider or bicyclist was involved in the crash; 

0 = No and 1 = Yes. 

 Number of fatalities (FATS) 

This variable denotes the number of fatalities (or deaths) that resulted from the 

crash. 

 Seriously injured crash victims (SER_INJ) 

This variable shows the number of victims who sustained serious injuries. 

 Slightly injured crash victims (SLI_INJ) 

This variable shows the number of crash victims who sustained slight or minor 

injuries. 
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Variable Values 

Collision type 

(COL_T) 

1= between drivers, head-on collision or when crossing each other, 2 = between 

drivers, rear-end collision or side collision, 3 = between drivers, side collision,           

4 = between a driver and pedestrian, 5 = collision with an obstacle (on and off the 

road), 6= Other or unknown 

 

Traffic control at 

intersection 

(TRAFFIC_C) 

1= traffic policeman, 2= functioning three-coloured traffic lights, 4= right of way 

signs B1 and B5, 5= right of way to traffic from the right, 6= defective three-coloured 

traffic lights or amber flashing light and the right of way signs B1 or B5 was present, 

7= defective three-coloured traffic lights or amber flashing light and there was right of 

way of traffic from the right 

Road_T1 and 

Road_T2 

The road type outside the intersection. 1= motor way, 2= regional road, 3= municipal 

road or other. 

SL_D  Speed limit difference. Whether there was a speed limit difference between the roads. 

0 = No, 1 = Yes.  

Season 

(SEASON) 

1= Winter, 2= Spring , 3= Summer, 4= Autumn 

 

Built-up area 

(BU_A) 

The location of accident.  

0 = inside built-up area, 1 = outside built-up area. 

Light conditions 

(LightC) 

1= Day, 2= Dawn, twilight, 3= Night with public lighting, 4= Night with no public 

lighting, 9= Unknown 

Road_C Road conditions. 1= dry and clean, 2 = wet, puddles, 3 = Black ice, snow, 4 = dirty 

(e.g sand, gravel, leaves e.t.c), 5 = unknown. 

Driver 

behaviour 

(Behav1) 

Ignored red light or does not yield to right of way. 

 0 = No, 1 = Yes. 

Time of day 

(HOUR) 

1= Morning, 2 = Late morning, 3 = Afternoon, 4 = Evening rush, 5 = Evening,  5 = 

Night 

Weekend Whether an accident occurred during the week end. 0 = No, 1 = Yes 

Weather  

 

1 = Normal, 2 = Precipitation (rainfall, snowfall and hailstorm) and strong winds or 

gusts, 3 = Fog and other e.g dense smoke, 4 = Unknown 

Pedestrian Whether a pedestrian was involved in the crash or not.  

0 = No, 1 = Yes. 

MOP_C Whether a moped rider or bicyclist was involved in the crash.  

0 = No, 1 = Yes. 

FATS The number of fatalities resulting from the accident. 

SER_INJ The number of crash victims with serious injuries. 

SLI_INJ The number of crash victims with slight or minor injuries. 

Table 4-6 List of selected variables 
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4.1.2 Data Segmentation 

Let us label the sample data set, containing the selected variables of all crashes that 

occurred on intersections as CRASH. This is the final sample data set prior to the 

partition into different smaller samples based on the variable Traffic control in the centre 

of the intersection denoted by TRAFFIC_C. 

The main goal of this research is to segment or partition crashes that occurred at 

intersections into groups of distinct crash types. To achieve this objective, the variable 

TRAFFIC_C (traffic control in the centre of the intersection) is used to repartition the final 

data set obtained labeled CRASH. It should be recalled that this variable consists of six 

different categories (or intersection types). This procedure was performed in SAS 9.2 

and the following connotations on table 4-7 are used to depict these newly created 

sample data sets. The sas codes used for performing this and other data manipulations 

are provided in Appendix 1. 

Table 4-7: Sample data sets based on intersection type 

Data set Intersection type 

Intersec_TP Intersection with a Traffic policeman. 

Intersec_TL Intersection with functioning three-coloured traffic lights. 

Intersec_RS (B1 or 

B5) 

Intersection with right-of-way signs B1 or B5. 

Intersec_TR Intersection with right of way to traffic from the right. 

Intersec_DTLRS Defective three-coloured traffic light or amber flashing light 

and the right-of-way sign B1 or B5 was present. 

Intersec_DTLTR Defective three-coloured traffic light or amber flashing light 

and there was right of way to traffic from the right. 

 

 

4.2 Research Method 

Before the data implementation in latent Gold, basic exploratory data analytical 

techniques are used to gain some prior knowledge about the data. Frequency tables and 

charts are constructed for the different variables. This is then followed by the application 

of LCCA in Latent Gold for the different sample data sets. 
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4.2.1 Latent Class Cluster Analysis (LCCA) 

 

Traditional clustering methods like the K-means and hierarchical clustering make use of 

unsupervised classification algorithms that group objects or items that are close together 

according to an ad hoc definition of distance (Vermunt and Magidson, 2000). The prime 

objective of clustering is to discover hidden structures or patterns within data by creating 

homogenous clusters or groups. However, these distance-based approaches have 

several shortcomings as elaborated in the proceeding section. Due to the inherent 

weaknesses of these early approaches, it is advisable to utilize advanced statistical 

clustering techniques like LCCA. 

LCCA is a model based clustering technique that overcomes the weaknesses of distance-

based clustering methods. It has several advantages over the earlier clustering methods 

as elucidated below. 

4.2.2 Advantages of LCCA over traditional Clustering Methods 

 

Latent class cluster analysis has several properties that make it superior to traditional 

clustering methods. The LC analysis is a model-based approach that utilizes estimated 

membership probabilities or weights estimated directly from the model to classify objects 

into appropriate clusters. Hence, the selection of a distance measure is unnecessary. 

This is more advantageous over the traditional clustering techniques that group similar 

objects based on a ad hoc definition of „distance‟. However, different distributions are 

needed depending on the variable type. The normal Gaussian distribution is used when 

the descriptive feature is continuous, a Multinomial distribution is applied for a nominal 

variable, an adjacent-category Logistic regression model is selected for an ordinal 

variable and the Poisson distribution is appropriate for count variables (Vermunt and 

Magidson, 2005). 

 

 Furthermore, there are well defined statistical criteria to select the number of clusters 

and other model features. Information criteria including BIC, AIC and CAIC are powerful 

model selection tools. Moreover, LC models do not rely on traditional modeling 

assumptions such as linear relationship and homogeneity which are usually violated in 

practice. As such, they are less prone to biases when data do not conform to these 

assumptions. 

 

 Furthermore, variables of mixed scale type (nominal, ordinal, continuous or count) or 

any combination of these can be incorporated into the same model. Added to this, in 
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order to ensure an improved cluster description of the latent (unobserved) and indicator 

(manifest) variables, covariates can be included in the analysis which is not possible with 

traditional clustering algorithms. 

It is possible using LC analysis to build models from large data sets since it does not 

require large memory demands (Brijs, 2002). This is further facilitated by the 

development of high-speed computers and sophisticated algorithms. 

 

This model-based clustering technique is also advantageous over standard distance-

based cluster analysis in that no decisions have to be made regarding the scaling of the 

observed variables; for example, when dealing with normal distributions with unknown 

variances, the results will be unaltered whether the variables are normalized or not. 

There is usually a scaling problem when traditional non-hierarchical methods are used. 

In LC clustering, both simple and complex distributional forms can be used for the 

observed variables within the clusters thereby making it highly flexible. 

 

To conclude, LCCA is more realistic as objects are assigned membership weights of 

varying probabilities of belonging to different clusters unlike standard clustering with the 

exception of fuzzy clustering which assigns objects to a single cluster. 

 

4.2.3 Implementation of LCCA in Latent Gold and Data processing 

 

There are many computer software packages used for estimating various types of LC 

models. These include; NORMIX (Wolfe, 1970), Autoclass (Cheeseman and Stutz, 1995), 

Classmix (Moustaki, 1996), LEM (Vermunt, 1997), MCLUST (Fraley and Raftery, 1998b), 

Mcplus (Muthen and Muthen, 1998), EMMIX (McLachlan, Peel, Basford and Adams, 

1999), MULTIMIX (Hunt and Jorgensen, 1999) and above all Latent Gold (Vermunt and 

Magidson, 2000). These computer programs differ in several aspects including the types 

of cluster models they implement (multivariate normal distribution/ and or mixed-mode 

data), possibility to include covariates in the model, estimation method used, Algorithm 

(Expectation Maximisation-EM or Newton Raphson-NR) utilized and the type of source 

code and the operating environment. 

Latent Gold just like LEM is a full Windows based program which facilitates user 

interaction. It is capable of handling all variable types and the specification of the 

structure of the error-covariance matrices is less complex. Furthermore, its multiple sets 

of starting values greatly reduce the possibility of occurrence of a local solution and it is 

easy to detect local dependencies to be included in the model using bivariate residual 
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measures. Due to these extra capabilities, Latent Gold was used to conduct the main 

analysis in this research. 

The latent class model for mixed mode data; equation 3.8 earlier stated in chapter 3, 

section 3.2.2 (page 49) is implemented in Latent Gold taking into consideration the 

assumption of local independence within clusters. Due to this assumption, the parametric 

complexity of the model is reduced and facilitates the combining of descriptive variables 

of various scale types.  

 

The individual data sets were then exported from SAS 9.2 and saved in SPSS format 

(.sav extension) which is readable in Latent Gold. One of the data sets, Intersec_DTLRS 

had no observations (traffic crash or accident) and two others Intersec_TP and 

Intersec_DTLTR had fewer observations to be effectively clustered, so only three were 

left for further analysis in Latent Gold. Seventeen variables were used to build the 

models as displayed on the “Variable tab” in Latent Gold in figure 4-2 below. The 

variables on the right, with their scale types specified, indicate those that were actually 

included in the models. These data sets are stored in the folder named Traffic_Con in 

two formats: SPSS format (.sav extension) and Excel format (.csv extension). 

 

 

 

Figure 4-2: Screen shot of the variable tab in Latent Gold. 
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Models are built in Latent Gold by running several iterations. The variables used to 

estimate the models (see table 4-6 on pp.62) were selected and their scale types 

specified (figure 4-2).The program by default automatically selects random starting 

values and models can be built from a single cluster to several clusters by specifying the 

desired number of clusters. For each data set, a range was selected from 1 to 10 and the 

best models were chosen based on their BIC, AIC and CAIC values. Cluster analysis was 

conducted for three intersection types namely intersection with functioning three-

coloured traffic lights (Intersec_TL), intersection with right-of-way sign B1 or B5 

(Intersec_RS) and intersection with right-of-way to traffic from the right (Intersec_TR).  
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Chapter 5: ANALYSIS OF RESULTS AND      

   DISCUSSION 

The results derived from descriptive statistics are presented in the first section (section 

5.1). This gives us an insight into the data structure before the main statistical analysis 

is performed. It is then followed by results of LCCA in Latent Gold for each of the three 

data sets (section 5.2). A description of the clusters or crash types is further elaborated. 

Finally, the crash types identified at the various intersection types are compared for the 

different data sets. 

5.1 Results of Basic Exploratory Data Analysis (EDA) 

Frequency tables and charts (graphs) are used to describe the variables as they were 

mostly nominal and ordinal variables. The results are presented in the proceeding 

subsections. 

5.1.1 Crashes at intersection types 

The final data set labeled CRASH, which contains all the road crashes that occurred at 

intersections, is partitioned based on the manner of traffic control at the intersection (or 

intersection types). The six data sets obtained are analyzed using frequency tables and 

charts. The results are displayed on table 5-1 and figure 5-1 below. 

Table 5-1: Frequency distribution of crashes at various intersection types. 

Data set Frequency Percent 

(%) 

Cumulative 

Frequency 

Cumulative 

% 

 

Intersec_RS 6968 51.58 6968 51.58 

Intersec_TR 3529 26.12 10497 77.7% 

Intersec_TL  2747 20.33 13244 98.04 

Intersec_DTLTR   204 1.51 13448 99.55 

Intersec_TP      61 0.45 13509 100.00 

Intersec_DTLRS 0 - 13509 100.00 

  

Frequency Missing = 444 
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 It is clear from the above frequency distribution table (table 5-1) and the chart below 

(figure 5-1) that more than half the overall number of crashes at intersections (51.58 %) 

occurred at intersections with a right-of-way sign B1 or B5 present (Intersec_RS). 

Intersec_TR follows next with 26.12% while Intersec_TL is comprised of 20.33% of 

crashes at intersections. The lowest number of crashes (except Intersec_DTLRS with 

zero observation) was recorded at intersections where a traffic policeman was present 

(Intersec_TP) with just 0.45% of the overall crashes while the remainder (1.51%) 

occurred at Intersec_DTLTR. It should be noted that no accident was recorded at 

intersections where there was a defective three-coloured traffic light or amber flashing 

light and a right-of way-sign B1 or B5 was present (Intersec_DTLRS). The observations 

(the number of crashes or accidents) at the various intersection types make up the size 

of the individual data sets. In a nutshell, almost all crashes (98.04%) occurred at 

intersections types Intersec_RS, Intersec_TR and Intersec_TL. There were 444 missing 

values in the data set. This figure indicates the number of accidents at intersections 

where the specific intersection type was not mentioned. 

 

 

 

Figure 5-1: Proportion of crashes at various intersection types. 
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In order to gain an insight into the severity of crashes at the different types of 

intersections, the severity of crashes notably the number of fatalities (FATS), seriously 

injured victims (SER_INJ) and slightly injured victims (SLI_INJ) was computed and 

compared among the different data sets. This information is presented in Table 5-2 and 

figure 5-2 below. 

Table 5-2: Severity of crashes based on intersection types     

  Interse_TP Intersec_TL Intersec_RS Intersec_TR Intersec_DTLTR 

Outcome Values % Values % Values % Values % Values % 

FATS 1 1.32 36 0.89 114 1.18 22 0.48 2 0.62 

SER_INJ 7 9.20 319 7.89 973 10.11 351 7.68 12 3.69 

SLI_INJ 68 89.47 3687 91.22 8534 88.70 4198 91.84 311 95.70 

Number of 

victims 

76  4042  9621  4571  325  

 

Legend 

FATS-Fatalities 

SER_INJ - Seriously injured victims 

SLI_INJ - Slightly injured victims 
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Figure 5-2: Severity of crashes based on intersection type. 

A total of 18 635 victims were involved in crashes at intersections with 175 fatalities, 1 

662 serious cases and the remainder being slightly injured. In other words, 0.94% of 

crash victims sustained fatal injuries, 8.92% sustained serious injuries and 90.14% were 

slightly injured. 

Intersection with a traffic policeman (Intersec_TP) surprisingly has the highest 

percentage of crash victims, who were killed, with a fatality rate of 1.32% followed by 

intersection with a right-of-way sign B1 or B5 (Intersec_RS) with 1.18%. However, 

Intersec_TP has the lowest number of crash victims. The lowest percentage of deaths 

was registered at Intersec_TR with 0.48%. In terms of serious injuries, Intersec_RS is 

the highest (10.11%) followed by Intersec_TP (9.2%) and Intersec_TL (7.89%), 

Intersec_TR (7.68) while Intersec_DTLTR has the lowest percentage with 3.69% and 

also the highest percentage of victims who sustained slight injuries.  

5.1.2 Collision types (COL_T) 

The frequency distribution was also computed for the collision type. The results are 

displayed below on tables 5-3 and 5-4 and figure 5-3. More than half the number of 

collisions (57%) involved side collision between drivers (COL_T3). Rear-end collision 

between drivers (COL_T2) made up 15% followed by head-on or collision while crossing 

between drivers (14.40%). Collision with a pedestrian (COL_T4) and that with an 

obstacle (COL_T5) had the same proportion of accidents of close to 6%.  

 

Table 5-3: Frequency distribution of Collision type (COL_T) 

COL_T Frequency Percent (%) Cumu. Freq. Cumu. % 

 

3 7 836 57.14 7 836 57.14 

2 2 120 15.46 9 956 72.60 

1 1 975 14.40 11 931 87.01 

4  781 5.70 12 712 92.7 

5 781 5.70 13 493 98.4 

6  220 1.60 13 713 100 

 

  Missing = 240 
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The collision types were later on compared with the severity levels or outcome of the 

crashes to give a clear notion of their level of riskiness. The results are shown on table 

5-4 below. From the analysis, it was revealed that the highest fatality rate was recorded 

in collisions with an obstacle both on and off the road combined (COL_T5) with a fatality 

ratio of 2.7%. The next highest is collision between a driver and pedestrian with a rate of 

2% (COL_T4) followed by side collision with 0.9% fatality rate. Head-on collision 

(COL_T1) was the penultimate with 0.7% and the least was rear-end collisions with 

0.4%. 

In terms of serious injuries, collision with an obstacle (COL_T5) and collision with a 

pedestrian (COL_T4) were the highest making up 16% of the crash victims originating 

from the respective collision types. Head-on collision was the third with 10% of seriously 

injured victims followed by side collisions (COL_T3) with 8.5%. Rear-end collisions again 

had the lowest share of seriously injured crash victims.  

Consequently, rear-end collisions had the highest proportion of slightly injured casualties 

with 95% followed by side collisions with 91%. Hence, driver-pedestrian collisions 

(COL_T4) and collision with an obstacle (COL_T5) both have the lowest share of slightly 

injured crash victims with 82% each. Finally, 1.6% of crashes representing 220 crashes 

were classified as other or unknown. 

Table 5-4: Collision type and severity of crashes (%). 

 

 

Collision types 

COL_T1 = between drivers, head-on collision or when crossing each other. 

COL_T2 = between drivers, rear-end collision. 

COL_T3 = between drivers, side-collision. 

Outcome COL_T1 COL_T2 COL_T3 COL_T4 COL_T5 COL_T6 

 Value % Value % Value % Value % Value % Value % 

FATS 19 0.7 12 0.4 98 0.9 17 2 27 2.7 2 0.8 

SER_INJ 282 10 156 5 912 8.5 134 16 157 16 14 5.5 

SLI_INJ 2612 89 2923 94.6 9757 91 696 82 808 82 239 94 

Total 2913  3091  10767  847  992  255  



 

- 76 - 
 

COL_T4 = between a driver and pedestrian 

COL_T5 = Collision with an obstacle (off and on the road). 

COL_T6 = Other or unknown 

 

 

 

Figure 5-3: Collision type and crash severity 

 

5.1.3 Crashes according to time of the day (HOUR) 

Table 5-5 and figure 5-4 below show the frequency distribution for the variable HOUR 

which indicates the proportion of accidents during different periods of the day. Most 

accidents were recorded during the evening rush hour (25.67%), followed by during the 

afternoon and morning periods with 18.98% and 17.38% respectively and 16% during 

the late morning period. Close to 80% of accidents were registered during these four 

periods. There was one missing value. 
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 Table 5-5: Number of crash victims according to time of the day (HOUR) 

 

Frequency Missing = 1 

 

 

 

Figure 5-4: Number of crashes according to time of the day (HOUR). 

5.1.4 Crashes during the Week-end 

About 24% of crashes occurred during the week end (Saturday and Sunday) while the 

rest occurred during week days. 
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HOUR Frequency Percent 

(%) 

Cumulative 

Frequency 

Cumulative 

% 

 

Evening rush (16–18) 3 581 25.67 3 581 25.67 

Afternoon (13–15) 2 648 18.98 6 229 44.65 

Morning (10–12) 2 425 17.38 8 654 62.03 

Late morning (6–9) 2 234 16.01 10 888 78.04 

Evening  (19–21) 1 652 11.84 12 540 89.88 

Night (22–5) 1 412 10.12 13 952 100.00 
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Table 5-6: Number of crashes during the week (end) 

Weekend Frequency Percent (%) Cumulative 

Frequency 

Cumulative % 

No (0) 10 5272 75.77 10 572 75.77 

Yes (1) 3 381 24.23 13 953 100 

 

 

 

 

Figure 5-5: Number of crashes during the week (end) 

5.1.5 Seasonal distribution of crashes (SEASON) 

It is also important to describe the seasonal variations in crashes. As indicated on table 

5-7 and the chart below (figure 5-6), the highest number of crashes occurred during 

autumn with 27.92% of the crashes. Summer and spring had roughly the same 

proportion with 25.86% and 24.70% respectively. The winter season was the lowest and 

made up 21.53%. Generally, the number of accidents did not fluctuate considerably 

throughout the different seasons. 
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Table 5-7: Seasonal distribution of crashes (SEASON) 

 

 

 

Figure 5-6: Number of crashes according to season (SEASON). 

5.1.6: Crashes according to built-up area (BU_A) 

To have an insight about the concentration of accidents, a frequency distribution was 

calculated for BUA. As depicted on table 5-8 and figure 5-7, 63% of accident victims 

were recorded inside built-up areas while the rest occurred outside.  

Table 5-8: Number of crashes according to built-up area (BUA) 

BU_A Frequency Percent 

(%) 

Cumulative 

Frequency 

Cumulative 

Percent 

Inside    8 779 62.93 8 779 62.93 

Outside  5 172 37.07 13951 100.00 

 

Frequency Missin  g = 2 
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Autumn 3 895 27.92 3 895 27.92 

Summer 3 608 25.86 7 503 53.77 

Spring 3 446 24.70 10 949 78.47 

Winter 3 004 21.53 13 953 100.00 
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Figure 5-7: Number of crash victims according to built-up area (BUA) 

   

5.2 Additional description of Intersec_TP and Intersec_DTLTR 

An extra descriptive analysis was conducted for Intersec_TP and Intersec_DTLTR 

because they had few observations and could not be effectively modeled in Latent Gold. 

5.2.1 Intersection with a Traffic policeman  (Intersec_TP) 

Collisions at Intersec_TP were dominated by side-collisions (46.67%) followed by rear-

end collisions making up 20%. Collision with an obstacle (COL_T5) was the least with 

5%. This trend is similar to the overall crashes at intersections (See Appendix 3.1a and 

3.1b). 

Regarding the time of the day, most crashes occurred during the afternoon period (26%) 

and Evening rush hour (25%) while the least was at night making up 7%. (See Appendix 

3.2a and 3.2b) 

Considering the days of the week, 30% of crashes occurred during the week-end 

(Saturday and Sunday) while the rest occurred on week days. This percentage is slightly 

higher than the overall case. (See appendix 3.3a and 3.3b). 

Close to 50% of crashes occurred during the autumn season, 28% during summer and 

the lowest in winter with 10%. (See appendix 3.4a and 3.4b). 

Of the sixty-one crashes that occurred at intersections with a traffic policeman 

(Intersec_TP), eight involved pedestrians making up 13%. (See Appendix 3.5a and 3.5b) 

5.2.2: Intersection with a defective traffic light and right of way to traffic from 

the right (Intersec_DTLTR) 

Side collisions made up 64% of crashes at this intersection type followed next by rear-

end collisions making up 19% and the least was collision with an obstacle which was 3%. 

(See appendix 4.1a and 4.1b). 

The majority of crashes occurred during the evening rush hour with 24% followed by the 

morning period with 20% and the least was at night with 11%. (See appendix 4.2a and 

4.2b). 
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Crashes during the week-end made up 29%. This is slightly higher than the overall rate. 

(See appendix 4.3a and 4.3b). 

Most crashes also occurred during the autumn season with 30% followed by summer 

with 27%. The least number of crashes occurred in spring making up 19% (See 

appendix 4.4a and 4.4b). 

Out of the 204 crashes that occurred at this intersection type, 10 involved pedestrians 

making up (See appendix 4.5a and 4.5b). 

 

5.3 Results of LCCA in Latent Gold 

The results from analyzing the individual data sets in Latent Gold are presented in this 

section. The analysis is presented per data sets and the best models are selected based 

on the three afore-mentioned selection criteria notably the Bayesian Information 

Criterion (BIC), Akaike Information Criterion (AIC) and the Consistent Akaike 

Information Criterion (CAIC). These statistical criteria asses the model fit and also take 

into account the model complexity in terms of number of parameters. Models with lower 

values are better than those with higher values when comparing models.  

In addition, the entropy criterion (denoted as I) is also used to measure how well the 

model predicts class membership thereby assessing the quality of the estimated 

clustering solution. This value ranges between 0 and 1, with values closer to 1 indicating 

a better classification of observations into their specific clusters or groups.  

This is computed as: 

 

     1  
      ln      

   
 
   

  ln  1   
 

Where, 

    is the posterior probability that case   belongs to cluster   

and     ln                  

However, this classification criterion is already included in the output in Latent Gold. 

5.1 
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As mentioned before, Intersection with a traffic policeman (Intersec_TP) and intersection 

with a defective three-coloured traffic light or amber flashing light and there was a right 

of way to traffic from right (Intersec_DTLTR) could not be effectively clustered in Latent 

Gold as they had fewer number of crashes. They both had 61 and 204 crashes 

respectively. Nonetheless, the three other intersection types are the most important as 

they registered about 98% of the overall crashes at intersections. Below are the 

clustering results obtained for these intersection types. 

5.3.1 Intersection with functioning three-coloured Traffic lights (Intersec_TL) 

This data set comprises crashes that occurred at intersections with a functioning three-

coloured traffic. It contains a total of 2747 traffic crashes making up about 20% of 

crashes at intersections and it is the third largest sample data set. The 6-cluster model 

was chosen based on low BIC, AIC and CAIC values with an entropy criterion, I(5)= 0.84 

implying a good classification . Figure 5-8 below displays the evolution of the three 

model selection criteria when adding clusters. The profile output from Latent Gold is 

provided in Appendix 2.1. 

 

 

 

Figure 5-8: Evolution of BIC, AIC and CAIC with the addition of clusters (Intersec_TL) 

The first cluster mostly contains side collisions (60%) that occurred during the evening 

rush hour (26%) in autumn (31%) usually in normal weather conditions (97%) and road 
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conditions (93%) inside built-up areas (83%). This cluster is referred to as “road crashes 

in normal weather and road conditions during the day”. 

Cluster two mainly include side-collisions (72%) during the evening rush hour (25%) 

where there was a significant speed limit difference between the roads outside the 

intersections (53%) usually outside of built-up areas (88%) and 73% of the drivers 

ignored the red light. This cluster overlaps with the first cluster except that there was no 

difference in speed limit between the roads and unlike cluster two; the crashes were 

concentrated inside built-up areas and they were fewer traffic light violations. These 

features clearly differentiate it from the other clusters. This cluster is called “road 

crashes with traffic light violation outside built-up areas”. 

Cluster three is comprised of rear-end collisions (82%) that occurred during the winter 

season (26%) in normal weather (98%) with virtually no red light violation (99.9%) and 

no pedestrian involved (100%). It is distinct from the other clusters as it is the only 

cluster that is dominated by rear-end collisions. This cluster is called “road crashes with 

rear-end collision with no pedestrian casualty”. 

The fourth cluster involves side collisions (41%) that occurred almost entirely at night 

(99%) with public lighting (95%) during the winter season (28%). It is the only cluster 

that is dominated by night crashes. This cluster is referred to as “road crashes at night 

with public lighting”.  

The fifth cluster contains crashes that occurred during precipitation (69%) and 

consequently on wet roads with puddles (89%) during the winter season (30%). It 

overlaps with cluster four except that unlike cluster four, most of the crashes occurred 

during the day. This cluster will be labeled “road crashes during precipitation in winter”.  

The last cluster comprises collisions with pedestrians (98%) reflected by the high 

involvement of pedestrian casualty (99.9%) inside of built up areas (91%). Therefore it 

is called “road crashes with collisions between drivers and pedestrians”. 

Table 5-9: Crash types at Intersec_TL 

Cluster Crash type Size (%) 

1 Road crashes in normal weather and road conditions during 

the day. 

33 

2 Road crashes with traffic light violation outside built-up areas. 18 

3 Road crashes with rear-end collision with no pedestrian 16 
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casualty. 

4 Road crashes at night with public lighting. 13                      

5 Road crashes during precipitation in winter.  13 

6 Road crashes with collisions between drivers and pedestrians 7 

 

 

5.3.2 Intersection with a right-of-way sign B1 or B5 (Intersec_RS). 

This data set contains crashes that occurred at intersections with a right-of-way sign B1 

or B5.This is the largest data set with a total of 6968 traffic crashes making up more 

than 50% of the overall number of crashes at intersections.  The 7-cluster model was 

chosen based on the aforementioned selection criteria. The entropy criterion I(6) equals 

0.86 which indicates a good classification of crashes into clusters. Changes in BIC, AIC 

and CAIC values as the number of clusters was increased are shown on the graph in 

figure 5-10 below. The profile output from Latent Gold is provided in Appendix 2.2. 

 

 

 

Figure 5-9: Evolution of BIC, AIC and CAIC with addition of clusters (Intersec_RS) 

Cluster one consists of side collisions (79%) during the evening rush hour (30%) in 

autumn (31%) usually in normal weather (97%) and road conditions (93%) inside of 
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built-up areas (100%) and 51% of drivers did not respect the yield sign (B1) or the stop 

sign (B5). It is referred to as “road crashes in normal weather and road conditions”. 

Cluster two also involves mainly side-collisions (83%) during the evening rush hour 

(30%) in autumn (29%) with no pedestrian involvement and at least one road user 

failed to yield to right-of-way or stop sign (64%) mostly outside of built-up areas (93%). 

It overlaps with cluster one except that the crashes mainly took place outside of built-up 

areas. This cluster is referred to as “road crashes with side-collisions when a driver failed 

to respect a B1 (yield) or B5 (stop) sign”. 

The third cluster mainly comprises crashes involving rear-end collisions (62%) during the 

evening rush hour (31%) and there was almost no violation of right of way signs 

(99.9%). It is quite similar to cluster two except the collision type and violation of right 

of way. It is called “road crashes involving rear-end collisions outside of built-up areas”. 

Cluster four depicts road crashes involving side-collisions (62%) during precipitation 

(63%) and consequently on wet roads with puddles (89%) during summer (29%). These 

two features clearly distinguish it from the other clusters. It is referred to as “road 

crashes during precipitation in summer”. 

The fifth cluster comprises road crashes that occurred at night (98%) with public lighting 

(93%) during the autumn (27%) and summer (27%) seasons. This differs from the 

other clusters as it contains mainly night accidents. It is called “road crashes at night 

with public lighting”. 

The sixth cluster contains collisions between drivers and pedestrians (97%) hence; it is 

composed almost entirely of pedestrians (99.9%) inside built-up areas (87%). This 

cluster is labeled as “road crashes with collisions between drivers and pedestrians”. 

The last cluster is quite unique from the others in that the roads outside the intersections 

were principally regional roads unlike the others which were mostly municipal roads. This 

cluster is comprised of road crashes during evening rush hour (29%) in the summer 

season (28%) outside of built-up areas (91%) on intersecting regional roads. This 

cluster is referred to as “road crashes on intersecting regional roads outside built-up 

areas”. 
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Table 5-10: Crash types at Intersec_RS 

Cluster Crash type Size (%) 

1 Road crashes in normal weather and road conditions. 30 

2 Road crashes with side-collisions when a driver failed 

to respect a B1 (yield) or B5 (stop) sign. 

27 

3 Road crashes involving rear-end collisions outside of 

built-up areas. 

15 

4 Road crashes during precipitation in summer. 13 

5 Road crashes at night with public lighting. 9 

6 Road crashes with collisions between drivers and 

pedestrians.  

4 

7 Road crashes on intersecting regional roads outside 

built-up areas. 

 

2 

 

 

5.3.3 Intersection with right of way to traffic from the right (Intersec_TR) 

This data set contains crashes that occurred at intersections with a right of way to traffic 

from the right. It is the second largest data set with 3529 observations. The model with 

five clusters was chosen as the ideal since it has the lowest BIC value. The 

corresponding entropy criterion is 0.88 indicating a good classification. Figure 5-11 below 

displays fluctuations in the BIC, AIC and CAIC values as the number of clusters were 

added. The profile output from Latent Gold is provided in Appendix 2.3. 
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Figure 5-10: Evolution of BIC, AIC and CAIC with addition of clusters (Intersec_TR) 

All road crashes at this intersection type occurred inside built-up areas. Cluster one 

mainly involves side collisions (82%) during the evening rush hour (30%) in autumn 

(30%) in good weather (97%) and road conditions (95%) and 58% of drivers failed to 

give priority to vehicles coming from the right. This cluster is typically distinct from the 

others as it is the only cluster dominated by right of way to traffic from the right 

violation. It is referred to as “road crashes in normal weather and road conditions with 

right of way violation”. 

Cluster two comprises road crashes that occurred in summer (29%) during precipitation 

(61%) on wet roads with puddles (83%). This cluster is referred to as “road crashes in 

summer on wet roads with puddles during precipitation”. 

The third cluster comprises crashes during evening rush hour (29%) mostly during the 

autumn season (35%) in normal weather (96%) and road conditions (89%) involving 

35% of rear-end collisions. This cluster will be labeled as “road crashes in autumn during 

normal weather and road conditions”. 

Cluster 4 contains mostly night crashes (98%) with public lighting (94%) during the 

summer season (27%) with about 46% of the crashes occurring during the week-end. 

This cluster is labeled as “road crashes that occurred at night with public lighting”. 
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The last cluster contains almost entirely collisions between drivers and pedestrians 

(99%) hence almost 100% of the victims were pedestrians during the summer (28%) 

and autumn seasons (26%). This cluster is called “road crashes with collisions between 

drivers and pedestrians”. 

Table 5-11: Crash types at Intersec_TR 

Cluster Crash type Size(%) 

1 Road crashes in normal weather and road conditions with 

right of way violation. 

57 

2 Road crashes in summer on wet roads with puddles during 

precipitation. 

14 

3 Road crashes in autumn during normal weather and road 

conditions. 

14 

4 Road crashes that occurred at night with public lighting. 8 

5 Road crashes with collisions between drivers and pedestrians. 7 

 

 

5.4 Discussion and Summary 

5.4.1 Interpretation of results of pre-analysis using Descriptive statistics 

The pre-analysis of the data using frequency tables and charts revealed some interesting 

information regarding road safety in Belgium. About 52% of traffic crashes at 

intersections in Belgium for the year 2005 occurred on intersections where a right- of-

way sign B1 (yield or give way sign) or B5 (stop sign) was present (Intersec_RS). This 

can be attributed to the fact that there are many intersections of this type or simply 

because these road signs can be easily violated. Moreover, taking the injury level into 

consideration, Intersec_RS comes second in terms of fatal crashes with 1.18% and 

highest in terms of severe injuries (10.11%). Surprisingly, intersections with a traffic 

policeman (Intersec_TP) had the highest fatality rate with 1.32%. However, the number 

of crash victims at this intersection type made up just 0.45% of overall crash victims.  

The least fatality rate was recorded at intersections were there was a right of way to 

traffic from the right with 0.48% (Intrsec_TR). However, usually, such types of 

intersections are common on roads where the traffic intensity is low. 

Furthermore, no traffic crash with casualty was recorded at intersections with a defective 

three-coloured traffic lights or amber flashing light and a right of way sign B1 or B5 was 
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present (Intersec_DTLRS). That notwithstanding, it cannot be hastily concluded that 

such intersections are safer. This can be attributed to the existence of few intersections 

of this type. Furthermore, it can be due to the stochastic nature of traffic crashes. This 

means that, the number of crashes at a specific road intersection can be high for a given 

year and declines the following year without any safety intervention due to mere chance. 

A possible way can be to analyse the crash rate over several years to incorporate this 

aspect of randomness. 

 

Regarding the type of collision, side collision between drivers (COL_T3) was the most 

common. More than half the number of crashes at intersections (57%) involved side-

collision between drivers. It had the third highest fatality rate of 0.9% in terms of crash 

severity and is ranked fourth in terms of serious injuries and had the second highest rate 

of slight injuries. Side collisions, also known as “T-bones” (especially in the United States 

of America) happen when a vehicle strikes another on the side. It sometimes occurs 

when a driver ignores a red traffic, disregards a stop (B5) or yield (B1) sign or a right of 

way to traffic from the right at an intersection or another vehicle is struck by an 

oncoming vehicle.  

Rear-end collision (also known as rear-end shunts especially in the United Kingdom) was 

second in terms of frequency with 15.46% of crashes and registered the least rate of 

fatal crashes (0.4%) and seriously injured casualties of 5% and the highest rate of 

slightly injured victims of close to 95%. This type of collision occurs when a vehicle hits 

the rear of the vehicle in front and could be as a result of tailgating or panic stopping. 

Tailgating is the practice of driving too close to the preceding vehicle without a 

reasonable safety distance to stop the car effectively when the brake is applied 

especially if the car in front stops abruptly (panic breaking). This collision type had the 

least possibility of victims sustaining very serious injuries as depicted by the above 

figures. 

Head-on or frontal collision was the third most frequent with more than 14% of all 

collision types and had a fatality rate of 0.7% and also ranked third in both serious 

injuries and slight injuries with a rate of 10% and 89% respectively. As Thomas and 

Frampton (1999, p.1) noted, “the risk of injury in side impacts is generally higher than in 

frontal crashes because there is less vehicle structure within which to attenuate crash 

forces…”. That notwithstanding, head-on collisions are still deem to be more fatal 

especially at high speeds than other types of collision. However, even though it generally 

has a lower frequency, high severity levels have been reported in some countries. For 

example, statistics from the United States show that in 2005, head-on crashes made up 

just 2% of all crashes, but accounted for 10.1% of overall fatalities (NHTSA, 2006). 
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Driver-pedestrian collision came in the fourth rank in terms of frequency with 5.7% of 

crashes at intersections and was the second highest regarding fatality rate (2%) and the 

most severe in terms of serious injuries with 16% and had the least share of slightly 

injured victims of 82% (together with collision with an obstacle). Collision with an 

obstacle came next with the highest fatality rate of 2.7% and just like driver-pedestrian 

collisions, had the highest rate of serious crashes and consequently the least rate of 

slight injuries. This is in accordance with the report from the European Transport Safety 

Council (ETSC, 1998), which states that collisions with off-road obstacles contribute 

between 18 and 42% of fatal road crashes in several European countries. The report 

further states that, they are mostly single vehicle accidents, involving young drivers, 

excess or inappropriate speeding, use of alcohol or drugs and driver fatigue. Among the 

obstacles struck by run-off vehicles are trees, barriers, poles, lamp posts and other 

street furniture. That notwithstanding, improvements have been made over the years in 

Belgium and several European countries to make roads more forgiving and self-

explanatory. 

A minimal proportion of other collision types (or unknown) made up a share of 1.6%. 

 

Regarding the time of the day, most crashes took place during the evening rush hour (4-

6pm) making up 26% of the casualties. This is generally the period when commuters 

return from work and this can be partly attributed to driver fatigue and the increased 

traffic flow. This is followed by the afternoon period making up about 19% of crashes 

and the morning period making up 17%. The least number of crashes was recorded at 

night with 10% of crashes at intersections. 

There are no significant fluctuations of the number of crash victims that were recorded 

during the different seasons. At least more than 20% of crashes were recorded during 

each season. 28% of crashes were registered in autumn (September to November), 26% 

in summer (June to August), 25% in spring (March to May) and 22% in winter 

(December to February). It is common for many people to travel during the summer 

period especially for leisure trips thanks to the sunny weather. Hence, the km travelled 

per vehicle is also higher during this period which also increases exposure to road 

crashes. The slight reduction of crashes in winter can be attributed to the poor weather 

marked by snow and rainfall which reduces mobility. This can take the form of trip 

cancellation for less important trips or change of mode to public transport. Another 

possible explanation can be as a result of risk compensation. This means that, faced with 

the risky driving conditions such as snow-covered roads, drivers may tend to drive more 

carefully as they perceive a higher chance of getting involved in an accident. 
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More than 60% of road crashes at intersections occurred inside built-up areas. This is 

likely the case as there tends to be many intersections inside built-up areas. Finally, 

24% of crashes were recorded during the week-end (Saturday and Sunday) while the 

rest occurred during the weekdays. Drunk, reckless driving and consequently excessive 

and inadequate speeding are higher during the week-end as these are usually periods for 

partying and feasting. 

 

5.4.2 Summary of Crash types  

   

The main analysis involves clustering the different data sets representing the various 

intersection types in Latent Gold. The final models derived at the end of the procedure 

each provides cluster-dependent univariate distributions for each selected variable, with 

each cluster depicting a specific crash type. Several variables were used to segment the 

crashes including the collision type, type of road user, location of the intersection (inside 

built-up area or not) and weather and road conditions. It should be recalled that 

observations are assigned to clusters based on their posterior probabilities. 

 

The intersection type (Traffic-Con2) with functioning three-coloured traffic lights has six 

crash types. Crashes at signal-controlled intersections usually occur when road users fail 

to respect the traffic signal and runs into an oncoming road user. The first crash type 

makes up 33% and contains those crashes that occurred in normal weather and road 

conditions. The second cluster principally contains crashes that resulted from traffic light 

violation making up 18%. Moreover, rear-end collisions are likely to be high as drivers or 

other road users may react slowly to the changing signals, marked by abrupt braking, 

giving the other road users insufficient time to brake safely. This is reflected in the third 

cluster which makes up 16%. Road crashes that occurred at night had an equal share of 

13% with crashes during precipitation as denoted by clusters four and five. Finally, 

driver-pedestrian collision made up 7% of crashes at this intersection type. 

 

The intersection type with a right-of-way sign B1 (yield) or B5 (stop) present 

(Intersec_RS) has seven crash types. This intersection recorded the highest number of 

crashes with more than half the overall accidents at intersections. The first cluster makes 

up 30% and is mostly comprised of crashes in normal weather and road conditions. 

Crashes that resulted from right-of-way signs B1 (yield) and B5 (stop) violation are very 

high making up 27%. The third cluster mainly contains rear-end collisions and make up 

15% and the fourth cluster which describes crashes during precipitation makes up 13%. 
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The remaining clusters are night crashes making up 9%, driver-pedestrian collision (4%) 

and crashes at intersecting regional roads for clusters five, six and seven respectively. 

 

The fifth intersection type with a right of way to traffic from the right (Intersec_TR) has 

five crash types. The first cluster contains 57% of crashes and reflects those crashes 

that occurred when there was a right of way violation. This clearly indicates that traffic 

violation at this intersection is very high. The next cluster reflects crashes that occurred 

during precipitation making up 14%. Night crashes make up 8% and driver-pedestrian 

collisions make up 7% as reflected in clusters four and five.  

 

Table 5-12: Summary of crash types at various intersections  

Data set Number of clusters Entropy criterion (I) 

Intersec_TL 6 0.84 

Intersec_RS 7 0.86 

Intersec_TR 5 0.88 

 

 

5.4.3 Comparison of crash types at various intersections 

 

The second part of the analysis entails making a comparison among the various crash 

types that were identified at the various intersections. Some crash types identified 

shared a lot of similarities among the different intersections. For instance, the majority 

of crashes were concentrated on intersecting municipal roads (or other road type except 

motorway or regional roads). Only the last cluster of intersection with a right-of-way 

sign B1 or B5 was dominated by crashes on intersecting regional roads. 

 

Traffic violation of right of way or priority is a common cause of crashes at the various 

intersection types though with varying degree of intensity. At priority-ruled intersections 

or intersections with priority to vehicles from the right (Intersec_TR), it was particularly 

very high. In 57% of crashes at this intersection type, at least one driver failed to give 

way to vehicles coming from the right. At Intersec_RS, (intersection with right-of-way 

sign B1 or B5) 27% of crashes consisted of instances when a driver failed to respect a 

B1 (yield) or a B5 (stop) sign. Finally, at intersections with a functioning traffic light, 

18% of the crashes involved instances when the driver ignored a red light.  
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Even though side-collisions dominated the crash types, rear-end collisions also had a 

significant share of crashes at Intersec_TL and Intersec_RS. Rear-end collisions made up 

18% of crashes at intersections with functioning traffic lights while it was 15% at 

intersections with B1 or B5 signs. Fewer rear-end collisions occurred at intersections with 

priority to traffic from the right. 

 

Furthermore, crashes during precipitation (rainfall, snowfall, and hailstorm) and strong 

winds were noticeable at the various intersection types. The percentage of crash share 

was virtually the same for the three intersection types under consideration. Intersec_TL 

and Intersec_RS had 13% each while Intersec_TR had 15%. However, for Intersec_RS 

and Intersec_TR, the crashes were concentrated during the summer season while that 

for Intersec_TL was in the winter season. 

 

Moreover, driver-pedestrian collisions were also significant at the three types of 

intersection under consideration. It made up 7% of crashes at both Intersec_TL and 

Intersec_TR and 4% of dominant crashes at Intersec_RS. 

The dominant crash types for Intersec_TR all occurred inside built-up areas. This is 

comprehensible as intersections with right of way to the right (uncontrolled 

intersections) are usually common on roads with lower speeds and lower traffic intensity 

which are more likely to be found in agglomerations. 

 

Night crashes with public lighting were also dominant at the various intersection types. 

Intersections with a functioning traffic light had the highest crash share as depicted in 

cluster four with 13%. Intersections with a right-of-way sign and that with right of way 

to traffic from the right both made up 9% and 8% respectively. 
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Chapter 6: CONCLUSION AND FURTHER         

    RESEARCH 

 

6.1 Conclusion and Findings 

Even though the rate of road traffic fatalities and injuries have been on the decline in 

Belgium and several developed countries, the current level still remains unacceptably 

high. As such, road safety remains a top priority in Belgium especially regarding the 

safety of vulnerable road users including pedestrians, bicyclists and motorcyclists. In this 

regard, the European Union encourages the dissemination of relevant road safety 

measures that can further improve the prevailing road safety situation in its member 

countries. 

Research into the causes of road crashes has led to the accumulation of huge, 

multidimensional and usually heterogeneous data sets regarding several aspects that 

surround these crashes. This has been aided by the advent of high performance 

computing algorithms. However, traditional data analysis techniques are no longer 

capable of dealing effectively with such complex data. Therefore, advanced statistical 

techniques are needed to retrieve some useful information from this huge bulk of traffic 

data. This loophole has been filled with emerging techniques from the domain of data 

mining. The importance of cluster analysis in segmenting crash data is the focus of this 

report. The main objective was to identify and compare dominant crash types at various 

types of intersections. A statistically based clustering technique called latent class cluster 

analysis (LCCA) or finite mixture models was applied to crashes that occurred at 

intersections in Belgium using data for the year 2005. A pre-analysis was conducted 

using descriptive statistics to gain a prior notion about crashes at road intersections. 

Unlike the distance-based traditional clustering methods such as the K-means and 

hierarchical clustering, this novel clustering technique has not been extensively applied 

in the domain of traffic safety. That notwithstanding, a few studies conducted so far have 

yielded good results (Geurts, Wets, Brijs and Vanhoof, 2003; Depaire, Wets and 

Vanhoof, 2008; Ayramo et al., 2009). 

The traffic crash data for Belgium in the year 2005 was segmented according to the 

different intersection types (six in all), and the respective crash types for three types 

were determined using the Latent Gold software. The main findings that were deduced 

from the analyses are presented below with regards to the research objectives: 
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The usefulness of latent class cluster analysis was clearly demonstrated in reducing the 

heterogeneity of crash data. By reducing the crash data into smaller clusters, it becomes 

easier to direct countermeasures to specific aspects of the multitude of factors that 

cause road crashes. However, crashes at intersections with a traffic policeman 

(Intersec_TP) and intersection with a defective traffic light and right of way to traffic 

from the right (Intersec_DTLTR) could not be effectively modeled in latent Gold due to 

fewer observations and little within variation. The dominant crash types at the three 

intersection types (Intersec_TL, Intersec_RS and Intersec_TR) which had sufficient 

observations were identified. Intersection with a functioning three-coloured traffic light 

(Intersec_TL) had six crash types, intersection with a right-of- way sign B1 or B5 

(Intersec_RS) had seven crash types and intersections with right of way to traffic from 

the right (Intersec_TR) had five crash types. The crash types did not differ significantly 

among the intersection types and could be summarized as follows according to 

frequency: 

 Road crashes in normal weather and road conditions (mostly involving side-

collisions). 

 Road crashes with traffic light/ right of way sign B1 or B5/ right of way to traffic 

from the right violation. 

 Road crashes with rear-end collisions. 

 Road crashes at night with public lighting. 

 Road crashes during precipitation (and strong winds). 

 Road crashes with collisions between drivers and pedestrians 

These crash types shared similarities among the various intersection types but differ in 

intensity. 

Another objective was to describe the characteristics of crashes at intersections using 

basic exploratory data analysis (EDA). Important information was discerned for example 

the collision type, time of the day or period when the accident occurred or the season 

among others. For instance, more than half the percentage of crashes occurred at 

intersections with a right-of-way sign B1 or B5. Moreover, surprisingly, intersection with 

a traffic police man had the highest fatality rate. However, as stated before, it had the 

lowest number of crashes of just 61 cases. Also, regarding the type of collision, the 

frequency distribution showed that close to 60% of crashes involved side-collisions and 

regarding the time of day, crashes occurred frequently during the evening rush hour 

which can be linked to the traffic intensity as well as driver fatigue.  
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It is clear from the analysis that, as we move from uncontrolled (priority-ruled) to 

controlled intersections (signalised), priority or right of way violation which is a key 

cause of crashes at intersections, tend to decline. Hence, intersections with  functioning 

three-coloured  traffic lights tend to be safer compared to priority rule intersections in 

this regard. It is therefore recommendable to install traffic lights at intersections where 

the traffic intensity renders it worthwhile. 

 

 6.2 Limitations and Further Research 

There are certain shortcomings about the method of latent class clustering which can 

lead to biased results. These include: 

 The occurrence of boundary solutions: These occur when estimated probabilities 

equal to 0 or 1, or the log-linear parameters equal to or minus (or plus) infinity. 

The resultant effect can be complications in the estimation algorithms, occurrence 

of local solutions, difficulties in computing the standard errors and the number of 

degrees of freedom (df) of the goodness-of-fit tests. However, these can be 

avoided by imposing constraints or taking into consideration other types of 

information on the model parameters. 

 The presence of local solution or local maxima: Given that the log-likelihood 

function of latent class models is not always concave; the obtained solution can 

be the local instead of the global solution. This implies that the solution depends 

on the initial or starting parameter values. This problem is resolved in Latent Gold 

by estimating the model with different sets of random starting values. Several 

sets of values therefore converge to the same highest log-likelihood value, 

thereby reducing the possibility of a local solution. The Latent Gold programme 

uses 10 different sets of starting values to minimize the occurrence of local 

solutions. 

 Local independence assumption: The fundamental assumption underlying latent 

class or finite mixture models is that of local independence among crash 

variables. It is possible to relax this assumption on the covariance matrix but this 

will cause parametric complexity and longer computing times. 

Further research on the identification of dominant crash types can focus on standardizing 

relevant variables that can be used to describe crashes at intersections. This will 

facilitate comparison between regions or countries or from one period to another. 

Moreover, due to the stochastic or random nature of road crashes, it can be of 

importance to use data for several years which is representative of the “true” number of 
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crashes or casualties. This will also ensure that there are enough observations for each 

intersection type for which cluster analysis can be conducted such as the cases of 

intersection with a traffic policeman (Intersec_TP) and that with a defective three-

coloured traffic light or amber flashing light and there was right of way to traffic from the 

right (Intersec_DTLTR) which did not have sufficient observations. This was also the case 

for intersections with a defective three coloured traffic light or amber flashing light and 

there was right of way sign B1 or B5 (Intersec_DTLRS) which did not have any 

observation at all. This will produce more realistic results as common pitfalls in dealing 

with crash data such as regression to the mean (RTM) and the migration of crashes can 

be mitigated. 

In a nutshell, latent class cluster analysis (LCCA) is an effective technique which can be 

used to reduce the heterogeneity of road crash data. As Cameron (1992) stated, 

clustering techniques in general, are important tools when analysing traffic accidents as 

these methods are capable of identifying groups of road users, vehicle types and road 

segments which could be suitable targets for countermeasures. 
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Appendices 

 

Appendix 1: SAS Codes 

/* Creating a library named JOHN to store the data */ 

LIBNAME JOHN "F:\DATA";  

 

/* Importing the Accidents sheet into SAS 9.2 */ 

PROC IMPORT OUT= JOHN.accidents 

            DATAFILE= "F:\DATA\accident data 2005.xlsx"  

            DBMS=EXCEL REPLACE; 

     RANGE="accidents$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

RUN; 

/* Selecting crashes that occurred at intersections only using SQL*/ 

PROC SQL; 

  CREATE TABLE CRASH AS           

  SELECT * 

  FROM JOHN.accidents 

  WHERE r4 = 1; 

QUIT; 

/* Adjusting the traffic control variable */ 

  IF r7_1 = "1" THEN traffic_control = "1";                                

  IF r7_1 = "2" THEN traffic_control = "2"; 

  IF r7_1 = "3" AND r7_2 = "4" THEN traffic_control = "6"; 

  IF r7_1 = "3" AND r7_2 = "5" THEN traffic_control = "7"; 

  IF r7_1 = "4" THEN traffic_control = "4"; 

  IF r7_1 = "5" THEN traffic_control = "5"; 

/* Creating the variable SEASON from months */ 

IF r3_2 IN (1 2 12)    THEN season="Winter";                                 

  IF r3_2 IN (3 4 5)   THEN season="Spring"; 

  IF r3_2 IN (6 7 8)   THEN season="Summer"; 

  IF r3_2 IN (9 10 11) THEN season="Autumn"; 

/* Splitting hours into specific periods */ 

  IF r3_4 IN (6 7 8 9)           THEN Hour="Morning";                      

  IF r3_4 IN (10 11 12)          THEN Hour="Late morning"; 

  IF r3_4 IN (13 14 15)          THEN Hour="Afternoon"; 

  IF r3_4 IN (16 17 18)          THEN Hour="Evening rush"; 

  IF r3_4 IN (19 18 20 21)       THEN Hour="Evening"; 

  IF r3_4 IN (0 1 2 3 4 5 22 23) THEN Hour="Night"; 
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/* Splitting the data based on intersection type */ 

DATA Intersec_TP; 

  SET CRASH; 

  WHERE traffic_control = "1"; 

 RUN; 

 

DATA Intersec_TL; 

  SET CRASH; 

  WHERE traffic_control = "2"; 

 RUN; 

 

 DATA Intersec_RS; 

  SET CRASH; 

  WHERE traffic_control = "4"; 

 RUN; 

 

 DATA Intersec_TR; 

  SET CRASH; 

  WHERE traffic_control = "5"; 

 RUN; 

 

DATA Intersec_DTLRS; 

  SET CRASH; 

  WHERE traffic_control = "6" 

 

 

 DATA Intersec_DTLTR; 

  SET CRASH; 

  WHERE traffic_control = "7"; 

 RUN; 

 

Appendix 2: Latent Gold output 

 

2.1: Intersection with Functioning Three-coloured Traffic Lights (Intersec_TL) 

Models BIC AIC CAIC Npar 

1 67968 67731 68008 40 

2 66808 66370 66882 74 

3 65651 65012 65759 108 

4 65223 64383 65365 142 

5 64979 63938 65155 176 

6 64514 63271 64724 210 

7 64596 63152 64840 244 

8 64681 63036 64958 278 

9 64857 63011 65169 312 

10 64944 62896 65290 346 
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  Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 

Cluster Size 0.3275 0.1823 0.1555 0.1343 0.1284 0.0721 

ROAD_T1             

1 0 0.0332 0.0372 0.0281 0.006 0 

2 0.0374 0.2353 0.242 0.1257 0.1129 0.0455 

3 0.9626 0.7315 0.7208 0.8462 0.881 0.9544 

ROAD_T2             

  0 0.0061 0.0047 0.008 0 0 

1 0.0045 0.0426 0.0159 0.0125 0.0204 0.0051 

2 0.0152 0.0955 0.0707 0.0337 0.0393 0.0202 

3 0.9803 0.8558 0.9088 0.9458 0.9403 0.9747 

LIGHT_C             

1 0.8207 0.7613 0.7758 0.0007 0.4805 0.7248 

2 0.0339 0.062 0.0524 0.0288 0.0949 0.0404 

3 0.1428 0.1699 0.1643 0.9541 0.3993 0.2298 

4 0.0015 0.0068 0.0075 0.0164 0 0 

9 0.0012 0 0 0 0.0254 0.0051 

FATS             

  0.0075 0.0223 0 0.0322 0.009 0.0152 

SER_INJ             

  0.077 0.1632 0.0845 0.1758 0.102 0.1568 

SLI_INJ             

  1.2532 1.4717 1.5254 1.4033 1.3501 0.8961 

HOUR             

      0.0004 0.0004 0.0005 0 0.0003 0.0003 

After 0.2034 0.2017 0.2203 0 0.1742 0.1493 

EvenR 0.2559 0.2549 0.2656 0 0.2368 0.218 

Evenx 0.1685 0.1686 0.1676 0 0.1685 0.1666 

L_mor 0.1741 0.1749 0.1659 0 0.1882 0.1998 

Mornx 0.1853 0.1869 0.1692 0.0063 0.2164 0.2468 

Night 0.0124 0.0125 0.0108 0.9937 0.0156 0.0191 

SEASON             

Autumn 0.3145 0.2991 0.2587 0.2478 0.2239 0.265 

Spring 0.2467 0.2434 0.2327 0.2292 0.2208 0.2346 

Summer 0.2261 0.2315 0.2446 0.2478 0.2544 0.2427 

Winter 0.2128 0.2261 0.264 0.2751 0.3009 0.2577 

PEDESTRIAN             

0 0.9968 0.9977 1 0.9974 0.9997 0.0008 

1 0.0032 0.0023 0 0.0026 0.0003 0.9992 

MOP_C             

0 0.8688 0.939 0.9833 0.9435 0.9251 0.9797 

1 0.1312 0.061 0.0167 0.0565 0.0749 0.0203 

WEATHER             
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1 0.969 0.9679 0.9837 0.7635 0.1837 0.6924 

2 0.0011 0.0033 0.0001 0.1751 0.6913 0.2521 

3 0.0006 0.0195 0.0084 0.0082 0.0086 0 

4 0.0293 0.0093 0.0078 0.0532 0.1164 0.0556 

ROAD_C             

1 0.9266 0.8649 0.8223 0.6504 0.0006 0.6166 

2 0.0656 0.1351 0.1777 0.319 0.8926 0.3531 

3 0 0 0 0.0158 0.0345 0.0101 

4 0.0022 0 0 0 0 0 

5 0.0056 0 0 0.0149 0.0723 0.0202 

BEHAV1             

0 0.6012 0.2717 0.9995 0.6704 0.6521 0.6463 

1 0.3988 0.7283 0.0005 0.3296 0.3479 0.3537 

SL_D             

0 0.8816 0.4702 0.53 0.7385 0.6742 0.8583 

1 0.1184 0.5298 0.47 0.2615 0.3258 0.1417 

WEEKEND             

0 0.8035 0.8027 0.7316 0.5394 0.7624 0.8229 

1 0.1965 0.1973 0.2684 0.4606 0.2376 0.1771 

COL_TYPE             

  0.0098 0 0.0439 0.0132 0.0129 0 

1 0.2181 0.2435 0.0528 0.1545 0.1653 0.0002 

2 0.132 0.0306 0.8243 0.2407 0.2894 0.005 

3 0.5957 0.7187 0.0018 0.4096 0.4546 0.0154 

4 0 0 0 0 0 0.9793 

5 0.0272 0 0.0601 0.1716 0.0524 0 

6 0.0171 0.0072 0.017 0.0103 0.0252 0 

BU_A             

0 0.9205 0.1176 0.3065 0.5915 0.5809 0.9087 

1 0.0795 0.8824 0.6935 0.4085 0.4191 0.0913 

 

 

 

2.2: Intersection with the Right of Way sign B1 or B5 Present (Intersec_RS) 

 

Models BIC AIC CAIC Npar 

1 164630 164356 164670 40 

2 162180 161666 162255 75 

3 160381 159628 160491 110 

4 159183 158190 159328 145 

5 157119 155886 157299 180 
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6 156402 154929 156617 215 

7 156263 154551 156513 250 

8 156445 154493 156730 285 

9 156258 154066 156578 320 

10 156260 153828 156615 355 

 

 

  Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7 

Cluster Size 0.3038 0.2714 0.1476 0.1294 0.0872 0.0356 0.025 

ROAD_T1               

1 0 0 0.0053 0.0014 0.0101 0.004 0.4079 

2 0.0479 0.1364 0.1024 0.0933 0.1016 0.0444 0.5868 

3 0.9521 0.8636 0.8923 0.9053 0.8883 0.9515 0.0054 

ROAD_T2               

  0 0.0005 0 0 0.0051 0 0.0913 

1 0.0037 0.0417 0.0135 0.0113 0.0359 0.004 0.3458 

2 0.0027 0.0314 0.0234 0.0342 0.0377 0.0121 0.4019 

3 0.9936 0.9264 0.9631 0.9544 0.9213 0.9838 0.1611 

LIGHT_C               

1 0.85 0.8702 0.8437 0.6217 0.0012 0.6896 0.7239 

2 0.0504 0.0442 0.0406 0.102 0.0395 0.0646 0.0627 

3 0.0974 0.0818 0.1101 0.2565 0.9298 0.2337 0.1924 

4 0.0017 0.0038 0.0056 0.0099 0.0279 0.0121 0.021 

9 0.0006 0 0 0.0098 0.0016 0 0 

FATS               

  0.004 0.028 0.0078 0.0078 0.0405 0.0483 0.0061 

SER_INJ               

  0.0944 0.2072 0.0967 0.107 0.1895 0.1926 0.1303 

SLI_INJ               

  1.1456 1.231 1.3015 1.3438 1.2343 0.8816 1.5032 

HOUR               

After 0.2074 0.222 0.223 0.1725 0 0.1542 0.1949 

EvenR 0.2951 0.3044 0.305 0.2694 0 0.2539 0.2865 

Evenx 0.1201 0.1194 0.1193 0.1204 0 0.1196 0.1205 

L_mor 0.1757 0.1683 0.1678 0.1934 0 0.2024 0.1821 

Mornx 0.1957 0.1806 0.1796 0.2365 0.0231 0.2609 0.2096 

Night 0.0059 0.0053 0.0052 0.0078 0.9769 0.0091 0.0065 

SEASON               

Autumn 0.3086 0.2902 0.2782 0.1972 0.2695 0.2406 0.2207 

Spring 0.2614 0.2574 0.2544 0.2258 0.2521 0.2432 0.2358 

Summer 0.2492 0.257 0.262 0.2912 0.2655 0.2767 0.2837 

Winter 0.1808 0.1953 0.2053 0.2858 0.2129 0.2395 0.2598 

PEDESTRRIAN               
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0 0.9995 1 0.9987 0.9968 0.9984 0.0006 1 

1 0.0005 0 0.0013 0.0032 0.0016 0.9994 0 

MOP_C               

0 0.8122 0.892 0.9255 0.8874 0.926 0.9636 0.9997 

1 0.1878 0.108 0.0745 0.1126 0.074 0.0364 0.0003 

WEATHER               

1 0.9708 0.9669 0.952 0.256 0.8053 0.8332 0.8399 

2 0.0012 0.0008 0.0023 0.6295 0.1138 0.1264 0.0839 

3 0.0045 0.0051 0.0138 0.0255 0.034 0.004 0.0172 

4 0.0235 0.0271 0.032 0.0889 0.047 0.0364 0.059 

ROAD_C               

1 0.9283 0.9203 0.8713 0.0045 0.6941 0.7614 0.6916 

2 0.0685 0.0774 0.1045 0.8889 0.2772 0.2023 0.3001 

3 0.0006 0.0007 0.0109 0.0475 0.0193 0.0242 0.0034 

4 0 0.0016 0.0107 0 0 0 0 

5 0.0026 0 0.0026 0.0591 0.0094 0.0121 0.0049 

BEHAV1               

0 0.4886 0.3661 0.9997 0.5704 0.6903 0.6819 0.7072 

1 0.5114 0.6339 0.0003 0.4296 0.3097 0.3181 0.2928 

SL_D               

0 0.9172 0.5557 0.7479 0.7203 0.7383 0.8697 0.5712 

1 0.0828 0.4443 0.2521 0.2797 0.2617 0.1303 0.4288 

WEEKEND               

0 0.812 0.777 0.7052 0.7991 0.5268 0.8103 0.7338 

1 0.188 0.223 0.2948 0.2009 0.4732 0.1897 0.2662 

COL_TYPE               

  0.0053 0 0.0673 0.0219 0.0329 0 0.0221 

1 0.1322 0.134 0.1104 0.1386 0.117 0.003 0.088 

2 0.0503 0.0173 0.6234 0.1766 0.097 0.0121 0.2952 

3 0.793 0.8347 0.0083 0.6174 0.3838 0.0012 0.4441 

4 0 0 0 0 0 0.9721 0 

5 0 0.0017 0.1589 0.0345 0.3594 0.0116 0.1377 

6 0.0192 0.0124 0.0318 0.011 0.0098 0 0.0129 

BU_A               

  0 0 0 0.0011 0 0 0 

0 0.9958 0.0723 0.4119 0.4837 0.5363 0.8701 0.0914 

1 0.0042 0.9277 0.5881 0.5152 0.4637 0.1299 0.9086 
 

 

 

 

2.3: Intersection with Right of Way to Traffic from the Right (Intersec_TR) 
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Models BIC AIC CAIC Npar 

1 75513 75266 75553 40 

2 73775 73312 73850 75 

3 72624 71946 72734 110 

4 71843 70949 71988 145 

5 71728 70618 71908 180 

6 71806 70479 72021 215 

7 72066 70523 72316 250 

8 72117 70358 72402 285 

9 72355 70381 72675 320 

10 72461 70271 72816 355 
 

 

  Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 

Cluster Size 0.5729 0.1371 0.1359 0.0795 0.0746 

ROAD_T1           

1 0.0015 0.0021 0.0021 0.0036 0 

2 0.0091 0.0181 0.008 0.0107 0.0114 

3 0.9894 0.9798 0.9899 0.9857 0.9886 

ROAD_T2           

  0.0005 0 0 0 0 

1 0.0038 0.0136 0.0036 0.0071 0 

2 0.0015 0 0.0041 0.0036 0 

3 0.9942 0.9864 0.9923 0.9893 1 

LIGHT_C           

1 0.8781 0.6539 0.8338 0.0006 0.7448 

2 0.0351 0.0842 0.0643 0.0048 0.0532 

3 0.0837 0.2264 0.0944 0.9479 0.1944 

4 0.0031 0.0168 0.0075 0.0467 0 

9 0 0.0186 0 0 0.0076 

FATS           

  0.0052 0.0021 0.0113 0.0106 0.0076 

SER_INJ           

  0.0866 0.0828 0.1217 0.1151 0.1719 

SLI_INJ           

  1.208 1.1987 1.1676 1.3432 0.9075 

HOUR           

After 0.2376 0.203 0.2152 0 0.1642 

EvenR 0.2992 0.2786 0.2864 0 0.2501 

Evenx 0.1232 0.125 0.1245 0 0.1245 

L_mor 0.1728 0.1911 0.1846 0 0.2113 

Mornx 0.1585 0.191 0.1789 0.0236 0.2343 
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Night 0.0087 0.0114 0.0104 0.9764 0.0156 

SEASON           

Autumn 0.3034 0.2179 0.3462 0.2703 0.2628 

Spring 0.2466 0.2218 0.2537 0.2388 0.2368 

Summer 0.2607 0.2935 0.2418 0.2744 0.2773 

Winter 0.1892 0.2668 0.1583 0.2165 0.2231 

PEDESTRI           

0 0.9986 0.9938 0.9958 0.9965 0.0007 

1 0.0014 0.0062 0.0042 0.0035 0.9993 

MOP_C           

0 0.8466 0.8644 0.8189 0.9058 0.9543 

1 0.1534 0.1356 0.1811 0.0942 0.0457 

WEATHER           

1 0.9711 0.249 0.9584 0.7819 0.8098 

2 0 0.6087 0.0001 0.158 0.1104 

3 0.0031 0.0138 0.0023 0.0072 0.0038 

4 0.0258 0.1285 0.0392 0.0529 0.076 

ROAD_C           

1 0.9448 0.0202 0.8927 0.6834 0.7111 

2 0.0539 0.8345 0.073 0.2859 0.2282 

3 0 0.0552 0.005 0.0172 0.0076 

4 0.0013 0.0055 0.0162 0.0036 0 

5 0 0.0846 0.0131 0.01 0.0532 

BEHAV1           

0 0.419 0.5524 0.9974 0.6462 0.7634 

1 0.581 0.4476 0.0026 0.3538 0.2366 

SL_D           

0 0.9085 0.9171 0.935 0.9085 0.9734 

1 0.0915 0.0829 0.065 0.0915 0.0266 

WEEKEND           

0 0.7831 0.8322 0.7176 0.5441 0.787 

1 0.2169 0.1678 0.2824 0.4559 0.213 

COL_TYPE           

  0.0021 0.0166 0.0831 0.0419 0 

1 0.1409 0.1704 0.3167 0.1341 0.0006 

2 0.0226 0.1003 0.3494 0.0447 0.0024 

3 0.8241 0.6743 0.0058 0.5106 0.0022 

4 0 0 0 0.0001 0.9948 

5 0.0014 0.0166 0.191 0.2654 0 

6 0.0088 0.0218 0.0539 0.0032 0 

BU_A           

  0 0.0021 0 0 0 

0 0.8301 0.8334 0.7981 0.8466 0.9885 

1 0.1699 0.1645 0.2019 0.1534 0.0115 
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Appendix 3: Additional Descriptive Statistics for Intersec_TP 
 

Table 3.1a. Frequency distribution of COL_T 

COL_T Frequency Percentage (%) 

COL_T1 9 46.67 

COL_T2 12 20 

COL_T3 28 15 

COL_T4 8 13.33 

COL_T5 3 5 

 

 

 

Figure 3.1b: Collision types 

 

Table 3.2a: Frequency distribution of HOUR 

 

Hour Frequency Percentage (%) 

Mornx 9 14.75 

L.Mor 9 14.75 

After 16 26.23 

EvenR 15 24.59 

Evenx 8 13.11 

Night 4 6.56 
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Figure 3.2b: Crashes according to time of the day (HOUR) 

 

Figure 3.3a: Crashes during the week-end 
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Yes 18 29.51 

No 43 70.49 
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Figure 3.3b: Crashes during the week-end. 

 

Table 3.4a: Seasonal distribution of crashes 

Season Frequency Percentage (%) 

Winter 6 9.84 

Spring 8 13.11 

Summer 17 27.87 

Autumn 30 49.18 

 

 

 

Figure 3.4b: Seasonal distribution of crashes 

 

Table 3.5a: Pedestrian involvement in crashes 

Pedestrian Frequency Percentage 

No 53 86.89 

Yes 8 13.11 

 

0

5

10

15

20

25

30

Winter Spring Summer Autum

N
u

m
b

e
r 

o
f 

cr
as

h
e

s

Season

Seasonal distribution of crashes



 

- 120 - 
 

 

 

Figure 3.5b: Pedestrian involvement in crashes 

 

Appendix 4: Additional Descriptive Statistics for Intersec_DTLTR 

 

Table 4.1a. Frequency distribution of Collision types 

 

COL_T Frequency Percentage (%) 

COL_T1 22 11 

COL_T2 37 18.5 

COL_T3 127 63.5 

COL_T4 7 3.5 

COL_T5 6 3 

COL_T6 1 0.5 
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Figure 4.1b: Collision types 

 

Table 4.2a: Frequency distribution of HOUR 

 

Hour Frequency Percentage (%) 

Mornx 40 19.61 

L.Mor 35 17.16 

After 33 16.18 

EvenR 48 23.53 

Evenx 25 12.25 

Night 23 11.25 
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Figure 4.2b: Crashes according to time of the day (HOUR) 

 

Table 4.3a: Crashes during the week-end 

Week-end Frequency Percentage (%) 

No 145 71.08 

Yes 59 28.92 

 

 

 

Figure 4.3b: Crashes during the week-end 
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Table 4.4a: Seasonal distribution of crashes 

Season Frequency Percentage (%) 

Winter 50 24.51 

Spring 38 18.63 

Summer 55 26.96 

Autumn 61 29.9 

 

 

 

 

Figure 4.4b: Seasonal distribution of crashes 

 

Table 4.5a: Pedestrian involvement in crashes 

Pedestrian Frequency Percentage (%) 

No 191 93.63 

Yes 13 6.37 
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Figure 4.5b: Pedestrian involvement in crashes 
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