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a b s t r a c t

The Naranan formalism supposes that the number of sources and the number of items in
sources grows exponentially. Here we extend this formalism by assuming, very generally,
that the number of sources grows according to a function ϕ(t) and that the number of
items in sources grows according to a functionψ(t). We then prove formulae for the rank-
frequency function g(r) and the size-frequency function f (j) in terms of the function ϕ(t)
andψ(t). As a special case, we obtain Naranan’s original result that f (j) is the law of Lotka
if ϕ and ψ are exponential functions.

We also prove relations between the rank- and size-frequency functions of two systems
where the second system is built on the same functions ϕ and ψ as the first system but in
reverse order. Results of ϕ = ψ follow from this as a consequence.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

General information production processes (IPPs) are systems, where one has sources (e.g. journals, authors, . . . ) and
where these sources contain (or have or produce) items (e.g. articles produced by authors or published in journals). The
classical way to describe such systems is by studying their rank- and size-frequency functions. They are defined as follows
(cf. [1,2]) in a continuous framework. The size-frequency function f (j) (j > 0) is the density of sources with j items, i.e. for
everym, n > 0,m < n n

m
f (j)dj (1)

denotes the number of sources with a number of items between m and n. The corresponding rank-frequency function g(r)
is defined as

r =


∞

j
f (j′)dj′ = g−1(j) (2)

where j = g(r), where g−1 denotes the inverse of the injective function g (injective because g−1 strictly decreases, by (2)).
So g(r) denotes the number of items in the source on rank r (where sources are arranged in decreasing order of their number
of items). By (2), g follows from f but f also follows from g since (2) implies (supposing that g is differentiable)

f (j) = −
1

g ′(g−1(j))
. (3)
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General rank- and size frequency functions are studied in [2] where one proves the following results.
(i) f decreases if and only if g is convex
(ii) f is first increasing and then decreasing if and only if g has an S-shape: first convex and then concave.

See [2,3] (and references therein) for examples of both cases. In the same way one can prove characterizations of concave g
or reversely S-shaped g (first concave and then convex) (see also [4]).

A dynamic theory of IPPs (or, simply, systems) can be developed if we assume that the number of sources grow in time
t and that the number of items in these sources also grow in time t . Naranan, in his historic paper in Nature [5] studied this
for the case of exponential growth of sources and of exponential growth of items in sources. The exact result is as in the next
Theorem.

Theorem 1 (Naranan).
(i) Let the number of sources ϕ(t) grow exponentially in time t:

ϕ(t) = c1at1 (4)
c1 > 0, a1 > 1.

(ii) Let the number of items ψ(t) in each source grow exponentially in time t and this function is the same in each source:

ψ(t) = c2at2 (5)
c2 > 0, a2 > 1.

Then this system has a size-frequency function f (j) which is a power law (i.e. Lotka’s law, see [1])

f (j) =
C
jα
. (6)

C > 0, α > 1, j ≥ 1 and Lotka’s exponent α equals

α = 1 +
ln a1
ln a2

. (7)

Based on this, such systems can be considered as a self-similar fractal with fractal dimension α − 1 (see [1,6]).
It is well-known that Lotka’s law is equivalent with Zipf’s law (as rank-frequency function):

g(r) =
B
rβ
. (8)

B, β > 0, 0 < r ≤ T (the total number of sources) and where

β =
1

α − 1
. (9)

The proof is based on relations (2), (3) and can be found in [1], Exercise II.2.2.6 or in [7] where a proof is given in the
Appendix.

Based on this equivalence a second, shorter, proof of Naranan’s theoremwas given in [8] by showing that fromNaranan’s
assumptions it follows that (8), hence (6) is valid and where also (7) could be reproved.

In [4], a variant of Naranan’s theorem is studied by replacing the exponential functions (4) and (5) by power functions.
There we show that the rank-frequency function g can have the shapes: convex, concave, S-shaped (first convex, then
concave), or reverse S-shaped (first concave, then convex). Note that in Naranan’s case the function g can only be convex as
follows from (8).

In this paperwe replace the exponential functions (4) and (5) by general functionsϕ(t) andψ(t), which are differentiable.
In the next sectionwewill give explicit formulae for the rank-frequency function g and the size-frequency function f in terms
of general growth functions ϕ(t) and ψ(t). For all results we will give examples by using Naranan’s exponential functions.

In the third section we will consider two systems: one as above with growth functions ϕ(t) and ψ(t) and a second one
with ϕ(t) and ψ(t) interchanged. We prove relations between the rank- and size-frequency functions of both systems and
we also prove relations between these functions if ϕ(t) = ψ(t) as a special case.

The paper ends with a conclusion section where we also give suggestions for further research.

2. Theory of the generalized Naranan framework

The Naranan framework (4), (5) in Theorem 1 is generalized as follows.

2.1. Generalized Naranan framework

(i) Let the number of sources grow according to the differentiable injective function ϕ(t).
(ii) Let the number of items in each source grow according to the differentiable infective function ψ(t) which is the same

for every source.
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Theorem 2. For all t, the rank-frequency function g(r) of this system is given by

g(r) = ψ(t − ϕ−1(r)) (10)

where ϕ−1 denotes the inverse of the injective function ϕ.

Proof. Let t be fixed and θ ∈ [0, 1]. By definition of the generalized Naranan framework we have that sources that are
‘‘born’’ at θ t , have at time t , a period equal to t − θ t to ‘‘grow’’ items. Hence, ranking sources in decreasing order of their
number of items, we have, by definition of the rank-frequency function g(r):

r = ϕ(θ t) (11)

and

g(r) = g(ϕ(θ t)) = ψ(t − θ t). (12)

Formulae (11) implies

θ =
1
t
ϕ−1(r), (13)

so (13) in (12) yields

g(r) = ψ(t − ϕ−1(r)),

proving (10). �

We have the following lemma, in preparation of the calculation of the size-frequency function f (j) (cf. formula (3)).

Lemma 3.

g ′(r) = −
ψ ′(t − ϕ−1(r))
ϕ′(ϕ−1(r))

(14)

and

r = g−1(j) = ϕ(t − ψ−1(j)). (15)

Proof. Eq. (14) follows from formula (10) by applying the well-known rules of differentiation. Also by formula (10),

j = g(r) = ψ(t − ϕ−1(r))

from which r = g−1(j) as in (15) readily follows. �

Theorem 4. For all t, the size-frequency function f (j) of this system is given by

f (j) =
ϕ′(t − ψ−1(j))
ψ ′(ψ−1(j))

. (16)

Proof. By formula (3):

f (j) = −
1

g ′(g−1(j))

=
ϕ′(ϕ−1(g−1(j)))

ψ ′(t − ϕ−1(g−1(j)))

(by (14))

=
ϕ′(ϕ−1(ϕ(t − ψ−1(j))))

ψ ′(t − ϕ−1(ϕ(t − ψ−1(j))))

by (15). Hence

f (j) =
ϕ′(t − ψ−1(j))
ψ ′(ψ−1(j))

.

So (16) is proved. �
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Example. For the functions (4) and (5) of Naranan, we have

r = c1aθ t1
so

θ =

ln


r
c1


t ln a1

. (17)

So (12) gives, by (17)

g(r) =
c2at2

a
ln


r
c1


ln a1

2

g(r) =
B
rβ

(18)

where

β =
ln a2
ln a1

(19)

and

B = c2at2


c

ln a2
ln a1
1


(20)

after some elementary calculation.
This is (8), hence, by (9) and (19) we have (6) and (7), hence Naranan’s result, which can also be calculated from (16):

calculating ϕ′, ψ ′ and ψ−1 (from (4) and (5)) yields

f (j) =
C

j1+
ln a1
ln a2

which is (6) and (7). Here

C =
c1at1 ln a1

ln a2
c

ln a1
ln a2
2 (21)

for later use.
These are the basic models with which we can work further on in the sequel. In the next section we will compare this

generalized Naranan framework with the one where the growth functions ϕ(t) and ψ(t) are interchanged.

3. Comparison of two systems

Let us first have a generalized Naranan system as described in the previous section: number of sources grow according
to ϕ(t) and number of items in sources grow according to ψ(t). Let us have a second system where the functions ϕ(t) and
ψ(t) are interchanged. Then we have the following theorem.

Theorem 5. If we denote by fi, gi (i = 1, 2) the size-frequency functions, respectively the rank-frequency functions of
system 1 and 2, with variables x = j1 = r2 and y = r1 = j2, then we have

g2(x) = g−1
1 (x) (22)

g−1
2 (y) = g1(y) (23)

g ′

2(x) = −f1(x) (24)

g ′

1(y) = −f2(y). (25)

Proof. Formula (23) is equivalent with (22) and they follow from (10) and (15). Formulae (24) and (25) follow from (14) and
(16). That x = j1 = r2 and y = r1 = j2 follows from the interchanging of ϕ and ψ: by definition of the generalized Naranan
frameworks:

r1 = ϕ(t) = j2 := y
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and

j1 = ψ(t) = r2 := x. �

Example. In case we have functions (4) and (5), we have, for the first system

g1(r1) =
B1

rβ11

. (26)

with B1 as in (20) and β1 as in (19) and

f1(j1) =
C1

jα11
(27)

with C1 as in (21) and α1 as in (7). For the second system we have

g2(r2) =
B2

rβ22

(28)

with B2 as in (20) but with the indices reversed:

B2 = c1at1


c

ln a1
ln a2
2


(29)

and β2 as in (19) but with the indices reversed:

β2 =
ln a1
ln a2

(30)

and

f2(j2) =
C2

jα22
(31)

with C2 as in (21) but with the indices reversed:

C2 =
c2at2 ln a2

ln a1
c

ln a2
ln a1
1 (32)

and α2 as in (7) but with the indices reversed:

α2 = 1 +
ln a2
ln a1

. (33)

It is now an elementary calculation to prove formulae (22)–(25) in this example, based on the results (26)–(33).

The case ϕ = ψ .
Let us now suppose that the growth of the number of sources is equal to the growth of the number of items in the sources

(but ϕ = ψ remains a general injective differentiable function). Then both systems in Theorem 5 are the same. Hence we
have the result as in the next theorem.

Theorem 6. In a system in the generalized Naranan framework, where both growth functions are equal, we have that

f (x) = −g ′(x) (34)

and

g(x) = g−1(x). (35)

Proof. This follows readily by Theorem 5 since g = g1 = g2 and f = f1 = f2. Note that here x := j = r since ϕ = ψ . �

Example. In the case of (4) and (5) we have that ϕ = ψ implies a1 = a2. By (7), we have that α = 2. Hence, by (6) and (8)

f (j) =
C
j2

(36)

and

g(r) =
B
r
. (37)
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It is now readily verified that f (x) = −g ′(x) and g−1(x) = g(x) (x = j = r).
We close this section by the following theorem.

Theorem 7. Under the conditions of Theorem 6 we have

f (x)f (g−1(x)) = 1. (38)

Proof. This follows readily by (3) and (34). �

Example. In the case of (4) and (5) we have (36) and (37). These formulae yield (noting that g−1(x) = g(x) here)
formulae (38).

3.1. Some further comparisons of two systems

It is clear from (10) and (16) that multiplying ψ with a constant yields a rank-frequency function being the first
one multiplied by this constant. Also: multiplying ϕ with a constant yields a size-frequency function being the first one
multiplied by this constant. Taking a power of the function ψ yields a rank-frequency function being the first one to this
power. The latter is not true for the size-frequency function when we take a power of the function ϕ.

4. Conclusions and suggestions for further research

The Naranan formalism describes the growth of the number of sources and the growth of the number of items in these
sources by exponential functions. In this paper these exponential functions are replaced by general functions ϕ(t) andψ(t).
Explicit formulae for the rank-frequency function g(r) and size-frequency function f (j) are presented.

These systems are compared with similar systems but where the growth functions ϕ(t) and ψ(t) are interchanged.
Relations between the rank- and size-frequency function of both systems are proved. As a consequence, results are obtained
in case both growth functions are the same: ϕ = ψ .

Further research on such ‘‘generalized Naranan’’ systems is needed, both in the very general case ϕ(t) and ψ(t) and in
the case of special functions ϕ and ψ . Which functions can be taken should follow from practical experiments on growth
properties of sources and items.

Can Naranan’s framework be further generalized to the situation where the number of items in sources do not grow in
the sameway in different sources? Are there other ways to describe the dynamics of IPPs apart from already existingmodels
of IPPs dependent on time t (see e.g. [1], Chapter 1)?

Can the general rank-frequency function

g(r) = K
(N + 1 − r)b

ra
(39)

be generated from a generalized Naranan framework? This function appears in [9–11] and is capable to describe convexly
decreasing rank-frequency functions (b ≥ 1 and b = 0, corresponding to Zipf’s law) as well as S-shaped rank-frequency
functions (0 < b < 1) — see [2].

More generally, can ‘‘any’’ given rank- (or size-) frequency function be generated froma generalizedNaranan framework?
As suggested by one of the referees it is a nice challenge to investigate how this general framework can be applied in

ecological or biological studies.
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