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ABSTRACT 

 

The recently awakened discussion on the usability of averages of ratios ( AoR ) compared to 

ratios of averages ( RoA ) has lead to the mathematical results in this paper. Based on the 

empirical results in Larivière and Gingras (Journal of Informetrics, 2011 to appear) we prove, 

under reasonable conditions, the following relations between AoR  and RoA  for a set of 

points:  

(i) The regression line of RoA  in function of AoR  is the first bissectrix 

(ii)   /AoR RoA AoR  in function of the number N of papers is a cloud of points 

comprised between a multiple of 1/ N  and 1/ N  

(iii)   /AoR RoA AoR  versus RoA  has a decreasing regression line.  
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I.  Introduction 

 

The basis of this paper is mathematical: let us have N  numbers 1 2, ,..., Nx x x  and N numbers 

1 2, ,..., Ny y y  ( 1,2,3,...N  ). All these numbers are supposed to be strictly positive numbers 

(but not necessarily natural numbers). Their average of ratios ( AoR ) is defined as in formula 

(1) 

 
1

1 N
i

i i

y
AoR

N x

   (1) 

, the average of the i

i

y

x
-values. 

The terminology speaks for itself. Their ratio of averages ( RoA ) is defined as in formula (2) 
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 (2) 

The name of RoA  comes from the fact that  
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



 
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
 (3) 

, the division of the average of the iy -values and the average of the ix -values ( 1,...,i N ). 

 

The difference between AoR  and RoA  has already been studied in Egghe and Rousseau 

(1996a,b) in the connection of averages of impact factors (IFs) of N  journals. There we have 

N  journals and, for each 1,...,i N , i ix P  is the number of articles in journal i  and i iy C  

is the number of citations to these articles (one must specify the publication period and 

citation period but for the mathematical theory on (1) and (2) in this connection, this is not 

important). In this interpretation, (1) becomes 

 
1

1 N
i

i i

C
AIF

N P

   (4) 

, the average impact factor of these N  journals, and (2) becomes 
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1

N

i

i

N

i

i

C

GIF

P









 (5) 

, the global impact factor of these N  journals. The main result in Egghe and Rousseau 

(1996a) is the characterization of AIF GIF , AIF GIF , AIF GIF  in terms of the slope 

of the regression line of the cloud of points , i
i

i

C
P

P

 
 
 

 for 1,...,i N . This basic result is, 

obviously, also valid in the general setting (1) and (2) since (4) and (5) only differ from (1) 

and (2) in notation. We will repeat this result in the next section on which our basic 

assumption on a cloud of points  ,j jAoR RoA  for 1,...j M  will be based. This basic 

assumption is then capable of explaining the three graphs in Larivière and Gingras (2011) 

(more details to follow). Also in Egghe and Rousseau (1996b) we noticed that, if we replace 

in (4) and (5) the arithmetic averages (see also (1) and (3)) by geometric averages, the 

formulae (4) and (5) are identical, which is a clear advantage of geometric averages on 

rankings based on (4) or (5) (since for geometric averages the ranks are the same) (see also 

the conclusions section). 

 

Much more recent is the debate around the difference between (1) and (2), interpreted as 

“crown indicator” (for (2)) and “new crown indicator” (for (1)). The classical crown indicator, 

used by the CWTS group for years, is (2) where N  is the number of papers (e.g. of an author 

or institute), i iy C  is the number of citations to the thi  paper and where i ix f  is a field 

average in the field of paper i  (average number of citations per paper in this field). Here we 

have the notation 

 1

1

N

i

i

N

i

i

C

CI

f









 (6) 

As in (5), CI  takes into account the actual number of citations to each paper and hence can be 

considered as a “weighted” average in comparison with (1) or (4). The debate (in which we do 

not want to interfere) started in Opthof and Leydesdorff (2010) where the use of (1) is 

advocated, instead of (6). In this notation (1) becomes (“new crown indicator”) 

 
1

1 N
i

i i

C
CI

N f





   (7) 
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, see also Waltman et al. (2011a) and several “Letters to the Editor” in Journal of Informetrics 

(issues 4(3), 4(4) and 5(1)). As said, we do not wish to go into this debate but it was the basis 

for the paper Larivière and Gingras (2011) for which we will give some mathematical 

explanations for their graphs (3 types) involving CI  and CI   or, in general terminology:  

RoA  and AoR ). 

 

Another interpretation of (1) and (2) is given in Rousseau and Leydesdorff (2011) where N  is 

the number of years, i iy C  is the number of citations to i  years ago of a fixed journal J and 

i ix P  is the number of publications in journal J , i  years ago ( 1,...,i N ) (and similar for 

other impact factors).  

 

Also in Egghe and Rousseau (2002/2003), different interpretations (examples) of AoR  versus 

RoA  are given. There, also relative variants of these indicators are given.  

 

In view of the different interpretations above, we will, in the sequel, use the general notation 

(1) and (2) and we will explain three types of graphs that occur in Larivière and Gingras 

(2011). In the next section we will repeat the main result on the relation between AIF  and 

GIF  (in the general notation AoR  and RoA ). On this result we will base ourselves to make a 

simple assumption (“axiom”) on a cloud of points  ,j jAoR RoA , 1,...,j M . This is then 

used to explain three types of graphs in Larivière and Gingras (2011). In the third section we 

will prove that the regression line of RoA  in function of AoR  is the first bissectrix. In the 

fourth section we show that the relation   /AoR RoA AoR  in function of the number N  (of 

papers in the crown indicator terminology) is a cloud of points comprised between a multiple 

of 1/ N  and 1/ N . In the fifth section we prove that   /AoR RoA AoR  versus RoA  

has a decreasing regression line. 

 

The paper ends with a conclusions and comments section.  
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Basic assumption on a cloud of points (AoRj,RoAj), 

j=1,…,M based on the main result in Egghe and 

Rousseau (1996a) 

 

In Egghe and Rousseau (1996a) we used the notation of formulae (4) and (5) but in this paper 

we will use the general notation as in formulae (1) and (2). In this notation, we proved in 

Egghe and Rousseau (1996a) the following basic result.  

 

Theorem 1 (Egghe and Rousseau (1996a)):  

If z a bx   denotes the regression line of the cloud of points , i
i i

i

y
x z

x

 
 

 
 for 1,...,i N , 

then the following assertions are equivalent: 

(i) RoA AoR  if and only if 0b   

(ii) RoA AoR  if and only if 0b   

(iii) RoA AoR  if and only if 0b   

 

Let us have M cases 
      1 2, ,...,

j

j j j

Nx x x  and 
      1 2, ,...,

j

j j j

Ny y y , 1,...,j M . Let us denote 

 
 

 
1

1 jN j

i
j j j

ij i

y
AoR

N x




    (7) 

and  

 

 

 

1

1

j

j

N

j

i

i
j j N

j

i

i

y

RoA

x

 



 




 (8) 

for 1,...,j M , representing M  cases where (1) and (2) can be calculated (as in (7) and (8)). 

Based on Theorem 1, j j   can occur as well as j j   ( 1,...,j M ). We therefore make 

the following basic assumption.  
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Assumption: 

For all points  ,j j   where j  is fixed, the average of the j s is equal to this fixed value. 

To formulate this mathematically, we re-index the set   , 1,...,j j j M    as follows: 

Denote by 
  1,...,
k

k K   all different j  values for 1,...,j M . Denote by 

  ,
1,..., kk l

l L   all values j  corresponding to a fixed 
 k

 -value. Then we assume, for all 

1,...,k K : 

 
 ,

1

1 kL

k k l
lkL

 


   (9) 

Note that 

 
1

K

k

k

L M


  (10) 

by definition. In other words 

         ,
, 1,..., , 1,..., ; 1,...,j j kk k l

j M l L k K        (11) 

 

This assumption is used in this paper as an “axiom” but it is intuitively clear that, if we have 

many data points (i.e. if M  is high) that (9) can be assumed, based on Theorem 1 and the 

defining equations (7) and (8).  

 

In the sequel we will also use the next simple Lemma. 

 

Lemma 1: 

Denote by   the average of the values  1,...,j j M   and by   the average of the values 

 1,...,j j M  . Then  

    (12) 

Proof: 

By definition, 

 
1 1

1 1M M

j j

j jM M
   

 

     

  
1

1 M

j j

jM
 



   
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    ,

1 1

1 kLK

k k l
k lM

 
 

   

by definition of 
 k

  and 
 ,k l

 . But this last expression equals 

 
   ,

1 1

1
0

kLK

k k k l
k l

L
M

   
 

 
    

 
   

by (9). Hence    is proved.   

 

Based on this assumption we will be able to explain the three types of AoR  versus RoA  

graphs in Larivière and Gingras (2011).  

 

 

RoA versus AoR 

 

In Larivière and Gingras (2011) one studies RoA  versus AoR  in the interpretation of (6) and 

(7) (“crown indicator” versus “new crown indicator”) in four cases: individuals (A), 

departments (B), institutions (C) and countries (D) for Canadian papers published in the 

period 2000-2008, based on Web of Science (WoS) data (more details can be found in 

Larivière and Gingras (2011)). Fig.1 (also Fig.1 in Larivière and Gingras (2011)) shows the 

relationship between RoA  in function (or versus) AoR .  
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Fig. 1. Relation between RoA and AoR in 4 cases in Larivière and Gingras (2011). 

 

It is intuitively clear that in all cases, the regression line of the cloud of points 

    , ,j j j jAoR RoA    

1,...,j M  is the first bissectrix (even in case B the majority of the points follow the first 

bissectrix). This will be proved in the next theorem.  

 

Theorem 2: 

Denote by  

 R a bA   (13) 

the regression line of the cloud of points    , ,j j j jAoR RoA    for 1,...,j M . Then 0a   

and 1b  , hence the first bissectrix R A . 
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Proof 

According to classical statistics (see e.g. Egghe and Rousseau (2001), p.56), we have the 

following formulae for a  and b : 

 
1

22

1

1

1

M

j j

j

M

j

j

M
b

M

   

 














 (14) 

 a b    (15) 

So, to prove that 1b   we need to show that 

 
2

2

1 1

1 1M M

j j i

j iM M
     

 

     

By Lemma 1 this boils down to showing that 

  
1

0
M

j j j

j

  


   

But 

         ,
1 1 1

kLM K

j j j k k l k
j k l

     
  

     

by the notation in the previous section. The last expression equals 

            , ,
1 1 1 1

0
k kL LK K

kk k l k k k l k
k l k l

L     
   

   
      

   
     

by (9). This proves that 1b  .  

But then (15), Lemma 1 and the fact that 1b   prove that 0a  . Hence the regression line of 

the cloud of points    , ,j j j jAoR RoA    is the first bissectrix.  

 

Note that assumption (9) already shows that, for every fixed 1,...,k K , the averages of the 

values 
  ,

1,..., kk l
l L   are equal to 

 k
  and hence are on the first bissectrix, as a function 

of 
 k

 . But this does not yield a proof of Theorem 2. 

 

Note 

In Waltman et al. (2011b) similar graphs as in Fig. 1 are produced, yielding more practical 

evidence for validity of Theorem 2. 
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In return, the fact that the Assumption (9) is capable of proving Theorem 2, which is verified 

in practice (Fig.1), is a justification for the approximate validity of the Assumption.  

 

 

(AoR – RoA)/AoR versus the number of papers 

 

If we look at Fig.2 (is also Fig.2 in Larivière and Gingras (2011)), we clearly see a cloud of 

points 

 , ,
j j j j

j j

j j

AoR RoA
N N

AoR

 



    
      

   

 (16) 

1,...,j M , that is, more or less, symmetrically distributed around the x-axis and whose 

thickness decreases (with increasing jN ) in a non-linear way). The first property can be 

understood if we calculate the average of the values  

 
j j

j

j

 




   (17) 

for 1,...,j M . 

 

Propostion 1: 

 
1

1
0

M

j

jM 

     (18) 

Proof:  

 
1 1

1 1M M
j j

j

j j jM M

 

 


    

 
   

 

,

1 1

1 kLK
k k l

k l k
M

 

 


   

 
    

 

,
1

1

1

kL

k k lK
l

k k
M

 











  

 
   

 

,
1

1

1
0

kL

k k k lK
l

k k

L

M

 








 


  

by (9).  
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The second property (decreasing thickness of the cloud of points, for increasing jN ) is a 

consequence of several results in probability theory and statistics. The main result that we use 

is the fact that a sample mean x  (of size N ) has a variance  V x  equal to 

  
2

V x
N


  (19) 

, where 2  is the population variance (see e.g. Blom (1989), p.196). We will also use that the 

average of the x  equals 

  E x   (20) 

, the population mean (Blom (1989), p.196). We will also need the following results in Blom 

(1989), p.124, 125. For any random variable X  we have 

 
 

1 1
E

X E X

 
 

 
 (21) 

    
41

V V X E X
X

 
     

 
 (22) 

, where   is Gauss’s approximation. The product XY  of two independent random variables 

satisfies the following relations: 

          
2 2

V XY V X E Y V Y E X         (23) 

and 

      E XY E X E Y  (24) 

 

We will use these relations since independence between the x- and y-values can be supposed. 

We then have Theorem 3. 

 

Theorem 3: 

Denote by   one of the values 
j j

j

 




. Then  

  
1

V
N

  (25) 

, where  means 
a

N
  where a  is a constant.  
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Proof: 

The above formulae (19) – (24) will be repeatedly used. 

 

1

1

1

1

1

1

N

iN
i i

N
i i

i

i

N
i

i i

y
y

N x
x

y

N x











 







 (26) 

 1

1 1

1

N

i

i

N N
i

i

i i i

y

N
y

x
x



 

  


 
 

 1
y

y
x

x

  
 
 
 

 (27) 

where 
y

x

 
 
 

 denotes 

 
1

1 N
i

i i

yy

x N x

 
 

 
  (28) 

, the average of the 
y

x
-values. Hence, 

  
y

V V
y

x
x

 
 
  
  
  
  

 

    

2

21 1
V y E V E y

y y
x x

x x

    
    
       

        
       

       

 

    

2

4

21 y y
V y E V x E x E y

x xy
x

x

  
                                            

   
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 

     

2

2 4

2 2

1
V y E

y
x

x

y y y
V x E V E x E x E y

x x x

  
  
  
   
   

   

                                                          

 

 

2 2 22
/ 2 6

2 2

1y y y xx
x y

y xN N N

  
 

 

 
   

  

 (29) 

But 

    
2

22

/

1 1
y x

y
V V y E V E y

x x x


      
            

      
 

    
42 2

2

1
y y

x

V x E x 


      

So 

 2 2 2 4 2

/ 2

1
y x y x x y

x

    


   

and hence 

  
2 2 22

2 4 2 2 6

2 2 2

1 1y y yx
x x y x y

y x x

V
N N N

  
    

  

  
       

   

 

 

Since all 2

x , 2

y , x , y  are population variances and means, they are independent of N . 

Hence  

  
1

N
    

 

So, the standard deviation (    V    ) is proportional with 
1

N
 and this determines the 

shape of the cloud of points in Fig.2: a decreasing thickness (in function of N) proportional to 

1

N
. Of course, 

1
lim 0
N N

  showing that the decreasing thickness goes to 0  for N  going 

to  . 
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Fig. 2. Relationship between (AoR–RoA)/AoR and the number of papers in 4 cases in 

Larivière and Gingras (2011). 

 

 

(AoR – RoA)/AoR versus RoA 

 

If we look at Fig.3 (is also Fig.3 in Larivière and Gingras (2011)); we see a cloud of points 

 , ,
j j j j

j j

j j

AoR RoA
RoA

AoR

 




    
      

   

 (30) 

1,...,j M , that has a decreasing regression line. This will be proved in the next Theorem. 
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Fig. 3. Relation between (AoR–RoA)/AoR and RoA in 4 cases in  

Larivière and Gingras (2011). 

 

Theorem 4: 

The slope of the regression line of the cloud of points (30) is negative. 

 

Proof: 

The slope b  of the regression line of the cloud of points (30) is given by (see e.g. Egghe and 

Rousseau (2001)) 

 
1

2
2

1

1

1

M
j j j j

j

j j j

M

j

j

M
b

M

   
 

 

 





    
      

   







 (31) 

where  
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j j

j

 



 
  
 

 

denotes the average of the values 
j j

j

 




, 1,...,j M . Since the denominator is positive 

(being the variance of the j -values) we have to show that the numerator is negative, hence 

that  

 
1 1 1

1M M M
j j j j

j j

j j jj jM

   
 

   

     
       

    
    (32) 

or 

 

2

1 1 1 1

1M M M M
j j

j j

j j j jj j

M
M

 
 

    

  
     

  
     

 
1 1 1

1M M M
j

j j

j j j jM


 

  

  
     

  
    

So we have to prove that  

 

2

1 1 1

1M M M
j j

j

j j jj jM

 


   

  
    

  
    (33) 

Putting (33) in the notation of the Assumption, (33) becomes  

 
 

 
 

 

 

2

, ,

,
1 1 1 1 1 1

1k k kL L LK K K
k l k l

k l
k l k l k lk k

M

 


      

  
      

    (34) 

But, using (9) twice, (34) is equivalent with 

 
 

 
 

2

,

1 1 1 1

1kLK K K
k l

k kk
k l k kk

L L
M




   

  
   

  
    (35) 

Now, using (10), (35) is equivalent with 

 
 

 
 

2

,

1 1 1

kLK K
k l

k k
k l kk

L



  

   (36) 

For (36) it suffices to prove that, for every 1,...,k M  

 
 

 
 

2

,

1

kL
k l

k k
l k

L





  

or 

 
   
2 2

,
1

kL

kk l k
l

L 


  (37) 
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But, again using (9), we see that  

 
   ,

1

kL

kk l k
l

L 


  

Hence 

 
     

2

2 2 2

, ,
1 1

k kL L

k kk k l k l
l l

L L  
 

   
    
   
   (38) 

by the inequality of Cauchy-Schwarz. Now (38) implies (37), supposing that not all 
 ,k l

 , 

1,..., kl L  are equal, for every 1,...,k K  (in which case the studied regression line is 

horizontal and all points are on the regression line – a trivial case which we exclude here). 

This ends the proof of this theorem.   

 

 

Conclusions and comments   

 

We proved that, using a simple assumption, the regression line of RoA  in function of AoR  is 

the first bissectrix. We also showed that the cloud of points   /AoR RoA AoR  in function of 

N  (the number of papers) is comprised between a multiple of 1/ N  and 1/ N . Finally 

we showed that the slope of the regression line of   /AoR RoA AoR  in function of RoA  is 

negative.  

 

In this way we could explain the three graphs that were published in Larivière and Gingras 

(2011) in an informetrically consistent way. We do not go into the “Dutch” discussion 

described in the introduction. We, simply, want to make a few remarks.  

(i) As shown in Egghe and Rousseau (1996b), using the geometric average in the 

definition of AoR  and RoA  (instead of the arithmetic average), yields the same 

indicator. The proof is very short and is repeated here. Replacing in (1) the 

arithmetic average by the geometric one yields the indicator denoted  g AoR : 

  

1

1 2

1 2

...
N

N

N

yy y
g AoR

x x x

 
  
 

 (39) 

Doing the same in formula (2), now denoted  g RoA , we have (use formula (3)) 
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  
 

 

1

1 2

1

1 2

...

...

N
N

N
N

y y y
g RoA

x x x

  (40) 

Hence, trivially 

    g AoR g RoA  (41) 

(ii) The fact that the regression line of RoA  in function of AoR  is the first bissectrix 

(as shown here) and the fact that the cloud of points is very close to this line (see 

Fig.1) shows that RoA  and AoR  are very similar valuewise (in most cases). 

(iii) The fact that the cloud of points   /AoR RoA AoR  in function of N  (the 

number of papers) is centered around the x-axis and that its thickness goes to zero 

for N large shows again that AoR  and RoA  are very similar valuewise (in most 

cases). 

(iv) In Egghe, Rousseau and Van Hooydonck (2000) we showed, however, that 

rankings based on RoA  can be very different from rankings based on AoR . 
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