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Abstract

In studies with missing data, statisticians typically identify the model via necessar-

ily untestable assumptions and then perform sensitivity analyses to assess their effect

on the conclusions. Both the parameterization and the identification of the model

play an important role in translating the assumptions to non-statisticians and, conse-

quently, in obtaining relevant information from experts or historical data. Specifically

for continuous data, much of the earlier work has been developed under the assumption

of normality and/or with hard-to-interpret sensitivity parameters. We derive a simple

approach for estimating means, standard deviations and correlations that avoids para-

metric distributional assumptions for the outcomes. Adopting a pattern-mixture model

parameterization, we use non-identifiable means, standard deviations, correlations or

functions thereof as sensitivity parameters, which are more easily elicited.

Key words: Identifiability; Ignorance interval; Missing data; Pattern-mixture model; Uncertainty

interval.
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1 Introduction

In many problems with missing data, untestable assumptions, such as missing at random

(MAR), following the terminology of Rubin (1976), are required to identify appropriate

statistical models. Such assumptions are usually questionable and statisticians commonly

bypass the problem via sensitivity analyses. Specifically for continuous data, Rubin (1977),

Little (1994), Little & Wang (1996) and Daniels & Hogan (2000) propose sensitivity analyses

under assumptions of normality, while Rotnitzky, Robins & Scharfstein (1998), Scharfstein,

Rotnitzky & Robins (1999) and Rotnitzky et al. (2001) use inverse probability weighted

(IPW) methods in the context of semi-parametric models for similar purposes. Reviews of

some of these and other approaches are presented in Fitzmaurice et al. (2008, Chs. 18, 20,

and 22).

Although such methodological developments are useful in many situations, there are cases

where they may be difficult to apply. To bypass the problem in cases where the interest

lies in estimating means, standard deviations and correlations under minor and meaningful

assumptions, we combine some of these ideas and derive a simple approach. In this context,

we adopt a pattern-mixture model parameterization (Glynn, Laird & Rubin, 1986; Little

& Rubin, 2002) and employ non-identifiable means, standard deviations, and correlations,

or functions thereof, as sensitivity parameters. This strategy is similar to the one adopted

by Daniels & Hogan (2000), although we do not assume any parametric distribution for

the outcomes. We believe that, in many applications, it may be easier to elicit information

on these sensitivity parameters than on the selection-bias functions used by Rotnitzky and

colleagues. Instead of IPW methods, we simply estimate the identifiable parameters by their

sample analogues.

In Section 2, we present the data on American colleges that will be used to illustrate the

methods described in the remainder of the paper. We introduce the ideas in a univariate

setup in Section 3 and consider a multivariate extension in Section 4.
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2 The American colleges data

The U.S. News & World Report’s Guide to America’s Best Colleges 1995 collected more

than 30 variables encompassing characteristics such as admission, costs, infrastructure, and

performance of the students on 1,302 American colleges and universities. Allison (2001)

considered the estimation of means and standard deviations for 7 such variables under the

MAR assumption using the EM algorithm. For the sake of our exposition, it suffices to

focus only on 3 of them, namely, CSAT (average combined math and verbal Scholastic

Assessment Test), GRADRAT (ratio between the number of graduating seniors and the

number of enrolled students four years earlier ×100) and an indicator of public versus private

colleges. One college had a GRADRAT equal to 118 and, therefore, the corresponding

value was considered missing. The public-private college administration indicator was the

only variable without missing values. We are interested in two questions: i) do the public

and private colleges have different mean CSAT? and ii) are CSAT and GRADRAT linearly

correlated? Descriptive statistics are displayed in Tables 1 and 2. Because all American

colleges matching the criteria adopted in the study were surveyed, the data make up the entire

study population and therefore, standard errors and confidence intervals will be computed

and discussed merely for illustrative and instructive purposes.

Table 1: Counts, means and standard deviations (SD) for CSAT

College CSAT observed CSAT missing
administration Count Mean SD Count Mean SD

Public 251 945.3 107.5 219 ? ?
Private 528 978.8 129.2 304 ? ?

? denotes non-observed values

3 Univariate case

Let Yi denote the measurement on the i-th unit of the study and Ri be an indicator

variable taking on the value 1 if Yi is observed and 0, otherwise, i = 1, . . . , n. Assume,
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Table 2: Counts, means, standard deviations (SD) and correlations for GRADRAT and
CSAT

Missingness pattern GRADRAT CSAT Correlation between
GRADRAT CSAT Count Mean SD Mean SD GRADRAT and CSAT
Observed Observed 731 62.0 18.5 974.0 123.0 0.594
Observed Missing 472 57.7 19.0 ? ? ?
Missing Observed 48 ? ? 876.6 93.5 ?
Missing Missing 51 ? ? ? ? ?
? denotes non-observed values

further that n1 =
∑n

i=1Ri units are observed and n0 = n− n1 units are missing. Using the

pattern-mixture model parameterization and conditional expectation properties, we have

µ = E(Yi) = γ1µ(1) + γ0µ(0), (1)

σ2 = Var(Yi) = γ1σ
2
(1) + γ0σ

2
(0) + γ1(µ(1) − µ)2 + γ0(µ(0) − µ)2, (2)

where γr = P (Ri = r), µ(r) = E(Yi|Ri = r) and σ2
(r) = Var(Yi|Ri = r), for r = 0, 1.

We can estimate γ1 (γ0 = 1− γ1), µ(1) and σ2
(1) by their sample counterparts γ̂1 (γ̂0), µ̂(1)

and σ̂2
(1). The parameters µ(0) and σ2

(0) are not identified from the observed data, but, if we

set values for them, we may obtain an unbiased estimate µ̂(µ(0)) of µ(µ(0)) and a consistent

estimate σ̂2
(
µ(0), σ

2
(0)

)
of σ2

(
µ(0), σ

2
(0)

)
. In this setup, ω = µ(0) or ω =

(
µ(0), σ

2
(0)

)
are the

so-called sensitivity parameters for the purpose of estimating µ or σ2, respectively.

The range of estimates obtained after repeating the analysis over a set Ω of values for ω

provides a Honestly Estimated Ignorance Region (HEIR). Likewise, the union of 100(1−α)%

confidence regions obtained for different values of ω provides a 100(1− α)% Estimated Un-

certainty Region (EURO). In the same way that standard errors and confidence regions

quantify statistical imprecision stemming from sampling, ignorance regions measure the sta-

tistical ignorance on account of deficiencies of the observation process, like missing data;

likewise, the uncertainty region assesses the statistical uncertainty caused by the combina-

tion of imprecision and ignorance. Vansteelandt et al. (2006) consider a formal approach
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to the problem and provide appropriate definitions of consistency and coverage for these

regions. They show how to construct EUROs with uncertainty level 100(1−α)% for a scalar

parameter π according to each definition of the uncertainty region: (i) strong EUROs cover

π(ω) simultaneously for all ω ∈ Ω with at least 100(1− α)% probability, (ii) pointwise EU-

ROs cover π(ω) uniformly over ω ∈ Ω with at least 100(1− α)% probability, and (iii) weak

EUROs have an expected overlap with the ignorance region of at least 100(1−α)%. Strong

EUROs are conservative pointwise EUROs, which in turn, are conservative weak EUROs.

The choice among the three versions of EUROs depends on which is the more appropriate

definition for the uncertainty region and on the desired degree of conservativeness.

For categorical missing data, the set Ω may cover an in-depth grid of the whole parameter

space of ω, but for continuous data, this strategy is clearly not feasible. Therefore, when

there is no prior information to choose Ω under a certain parameterization, the elicitation

task may become easier if we reparameterize. For example, in lieu of using µ(0) as sensitivity

parameter, we may prefer to use α, β, or p, where µ(0) = α + µ(1), µ(0) = βµ(1), chiefly for

positive variables, and µ(0) = F−1(1) (p), the p-th quantile of the theoretical distribution of the

observed units. The variance of the estimator of µ depends upon which sensitivity parameter

strategy is used, e.g., for the first three cases, we have

Var
[
µ̂(µ(0))

]
=
γ1σ

2
(1)

n
+
γ1(1− γ1)(µ(1) − µ(0))

2

n
, (3)

Var [µ̂(α)] = σ2
(1)E

(
1

n1

)
+
γ1(1− γ1)α2

n
, (4)

Var [µ̂(β)] = σ2
(1)

[
β2E

(
1

n1

)
+

2β(1− β)

n
+
γ1(1− β)2

n

]
+
γ1(1− γ1)µ2

(1)(1− β)2

n
. (5)

Since no sensible analysis can be accomplished if all outcomes are missing, i.e., if n1 = 0,

we could have computed (3)–(5) assuming that n1 follows a positive binomial distribution

(Stephan, 1945) instead of a binomial distribution with parameters n and γ1. However, the

changes required for such purposes generate cumbersome formulae and improve accuracy

only when nγ1 is small. Simple approximations for the first negative moment of the positive
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binomial distribution are discussed, for example, by Grab & Savage (1954) and Mendenhall &

Lehman (1960). We adopt E(1/n1) ∼= 1/(nγ1+1−γ1) in practice; this is usually accurate to at

least two decimal places if nγ1 > 10 (Grab & Savage, 1954). Nevertheless, comparing (3)–(5)

is easier when using the cruder approximation 1/nγ1 and, then, the following relationships

hold for large n:

Var
[
µ̂(µ(0))

]
< Var [µ̂(α)] ≤ Var [µ̂(β)] , if β ≤ β1 or β ≥ 1,

Var
[
µ̂(µ(0))

]
≤ Var [µ̂(β)] < Var [µ̂(α)] , if β1 < β ≤ β2 or β3 ≤ β < 1,

Var [µ̂(β)] < Var
[
µ̂(µ(0))

]
< Var [µ̂(α)] , if β2 < β < β3,

(6)

where β1 = (−1 − γ1)/(1 − γ1), β2 = (−γ41 − γ1)/(1 − γ1) and β3 = (γ41 − γ1)/(1 − γ1). As

β1 < β2 < β3 < 0 and β will generally be positive, the last inequality of (6) will hardly occur

in practice.

Using expressions for the asymptotic variances and covariances of order statistics (Sen,

Singer & Pedroso de Lima, 2009, p.223), we obtain

Var [µ̂(p)] ∼=
γ1σ

2
(1)

n
+

p(1− p){
f(1)
[
F−1(1) (p)

]}2 [γ1 − 2

n
+ E

(
1

n1

)]
+
γ1(1− γ1)

[
µ(1) − F−1(1) (p)

]2
n

+
2

n

[
E

(
1

n1

)
− 1

n

]{ k∑
j=1

pj(1− p)
f(1)
[
F−1(1) (pj)

]
f(1)
[
F−1(1) (p)

] +

n1∑
j=k+1

p(1− pj)
f(1)
[
F−1(1) (p)

]
f(1)
[
F−1(1) (pj)

]} ,
(7)

where f(1) denotes the density of the observed units, pk < p < pk+1 and pj = j/n1 +o(n
−1/2
1 ),

j = 1, . . . , n1, such that 0 < p1 < p2 < . . . < pn1 < 1, e.g., pj may be equal to (j− 0.5)/n1 or

to one of the other three definitions discussed by Hyndman & Fan (1996) that satisfy their

Property 5. Figure 1 portrays estimates of the square root of (3)–(5) and (7) for the data

in Table 1, obtained by replacing the parameters in the formulae by their sample analogues;

f(1) in (7) was replaced by a Gaussian kernel density estimate (Silverman, 1986). The 4

horizontal axes indicate equivalences among the 4 sensitivity parameters for estimating µ;
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for instance, p = 0.9, β ∼= 1.15, α ∼= 138 and µ0
∼= 1, 083 lead to the same µ̂ for public

colleges, but to different estimates of its standard error.

(a) (b)

Figure 1: Estimates of standard errors of µ̂ using µ(0), α, β or p as sensitivity parameter for
(a) public and (b) private colleges

Assume that five experts were consulted and that their beliefs were interpreted according

to the sensitivity parameter β, equally for public and private colleges, with Ω = [c; 1.00],

where c was equal to 0.90, 0.91, 0.94, 0.95 and 0.96, respectively. That is, they stated that

the mean CSAT for both public and private colleges that did not inform the CSAT is equal or

slightly smaller than the mean CSAT for those colleges that reported it. Table 3 shows that

the conclusions may be different depending on Ω and on the choice of the EURO version,

which should be set a priori: the mean CSAT for public and private colleges is considered

different for Ω = [0.96; 1.00] irrespectively of the adopted EURO, for Ω = [0.95; 1.00] when

weak and pointwise EUROs are chosen, and for Ω = [0.94; 1.00] in the case of weak EURO;

for the other combinations of Ω and EUROs, the results do not allow us to conclude whether

there is a difference between the means. However, as the data of Section 2 are free from

imprecision and all uncertainty comes from the ignorance regarding the missing data, HEIR
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provides all the information we need.

Table 3: HEIR and 95% weak, pointwise and strong EUROs for the difference of the mean
CSAT between private and public colleges

Ω for β HEIR Weak EURO Pointwise EURO Strong EURO
[0.90; 1.00] [−2.3; 77.5] [−5.9; 81.2] [−16.8; 92.1] [−19.6; 94.9]
[0.91; 1.00] [ 1.3; 73.1] [−2.9; 77.4] [−13.2; 87.6] [−15.0; 90.4]
[0.94; 1.00] [ 12.0; 59.9] [ 5.6; 66.3] [ −2.4; 74.4] [ −5.2; 77.1]
[0.95; 1.00] [ 15.6; 55.5] [ 8.3; 62.8] [ 1.2; 69.9] [ −1.6; 72.7]
[0.96; 1.00] [ 19.2; 51.1] [ 10.8; 59.5] [ 4.7; 65.5] [ 2.0; 68.3]

Looking at the estimation of σ in (2), it may be more meaningful to work with λ in

σ2
(0) = λ2σ2

(1) than with σ(0). A simple way to obtain an estimate of the variance of σ̂, whether

we use
(
µ(0), σ

2
(0)

)
or any other parameterization, is to employ the nonparametric bootstrap

(Efron & Gong, 1983). As an example of how the standard error may vary considerably

depending on the parameterization, setting σ0 = 134.3 or λ = 1.25 for public colleges, both

with β = 0.90, we obtain the same estimate for σ (129.6), but the estimates of the standard

errors of σ̂ are 2.3 and 5.1, respectively. In Table 4 we display estimated intervals for the mean

and standard deviation of CSAT for each type of college administration using Ω = [0.90; 1.00]

for β and Ω = [0.80; 1.25] for λ. Wherever the bootstrap has been employed in the paper,

we generated 10,000 replicates of the statistic. In addition to what was previously concluded

based on Table 3, the results of Table 4 do not suggest a difference in dispersion of the CSAT

scores between public and private colleges.

Table 4: HEIR and 95% weak, pointwise and strong EUROs for µ and σ of CSAT using
Ω = [0.90; 1.00] for β and Ω = [0.80; 1.25] for λ

Admin. Parameter HEIR Weak EURO Pointwise EURO Strong EURO
Public µ [901.2; 945.3] [897.0; 949.5] [890.0; 956.4] [887.8; 958.6]

σ [ 98.0; 129.6] [ 95.3; 132.8] [ 90.7; 138.0] [ 89.3; 139.7]
Private µ [943.0; 978.8] [939.3; 982.4] [933.7; 988.0] [931.9; 989.8]

σ [120.4; 149.5] [117.8; 152.6] [113.5; 157.5] [112.1; 159.0]
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4 Multivariate case

Let Yi = (Yi1, . . . , YiJ)′ where Yij denote the j-th response of the i-th unit of the study, i =

1, . . . , n, j = 1, . . . , J . In addition, define a vector of response indicators Ri = (Ri1, . . . , RiJ)′

with Rij = 1 if Yij is observed and Rij = 0 otherwise. Relations (1) and (2) are then the

univariate versions of

µ =
∑
r∈R

γrµ(r), (8)

Σ =
∑
r∈R

γrΣ(r) +
∑
r∈R

γr(µ(r) − µ)(µ(r) − µ)′, (9)

where µ = (µ1, . . . , µJ)′ = E(Yi), Σ = Cov(Yi), R contains all observed values of r,

γr = P (Ri = r), µ(r) = (µ1(r), . . . , µJ(r))
′ = E(Yi|Ri = r) and Σ(r) = Cov(Yi|Ri =

r). Often, we prefer to work with correlations ψjk(r) = Corr(Yij, Yik|Ri = r) instead of

covariances σjk(r) = Cov(Yij, Yik|Ri = r), j 6= k, and therefore we let Σ(r) = Dσ(r)
Ψ(r)Dσ(r)

,

where Dσ(r)
denotes a diagonal matrix with the elements of σ(r) along the main diagonal,

σ(r) = (σj(r), j = 1, . . . , J)′, σ2
j(r) = Var(Yij|Ri = r) and Ψ(r) = Corr(Yi|Ri = r); the

corresponding definitions for the unconditional variances, covariances and correlations follow

analogously.

In the bivariate version of Table 2, there are 4 missingness patterns and 11 non-identifiable

parameters for estimating µ and Σ using (8) and (9). They are 4 means, 4 standard devi-

ations and 3 correlations, as indicated by the non-observed values in Table 2. For J = 10

variables subject to missingness, there are 2J = 1, 024 potential missingness patterns that

would lead to 44,800 non-identifiable parameters: J × 2J−1 = 5, 120 means, 5,120 standard

deviations and
∑J−1

j=0

(
J
j

) [(
J
2

)
−
(
j
2

)]
= 34, 560 correlations. The challenge here is not only

that the number of sensitivity parameters may increase exponentially depending on the miss-

ingness patterns and number of variables, but also that there are additional options for the

parameterization. For instance, in the bivariate problem, instead of using µ1(0,1) and µ1(0,0)
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as sensitivity parameters, we may prefer to employ functions of these parameters along with

the identifiable ones, namely, µ1(1,1) and µ1(1,0), or yet to use other alternatives, such as

quantiles of the distribution of Yi1 conditional on Ri = (1, 1) or on Ri = (1, 0). Optionally,

we may decide to use the distribution of Yi1 conditional on Ri1 = 1, that is, all available

data for this variable, or its mean µ1(1) = E(Yi1|Ri1 = 1) as, for example,

µ1(0,1) = β11µ1(1), µ1(0,0) = β10µ1(1).

Likewise, we may reparameterize

µ2(1,0) = β21µ2(1), µ2(0,0) = β20µ2(1),

σ2
1(0,1) = λ211σ

2
1(1), σ2

1(0,0) = λ210σ
2
1(1).

σ2
2(1,0) = λ221σ

2
2(1), σ2

2(0,0) = λ220σ
2
2(1),

where µ2(1) = E(Yi2|Ri2 = 1) and σ2
j(1) = Var(Yij|Rij = 1), j = 1, 2.

Because of the large number of alternative parameterizations that may be combined for

a set of variables, we computed the variance of µ̂ only for the case where the sensitivity

parameters are the non-identifiable means in µ(r). In the Appendix, this result as well as

(8) and (9) are expressed in matrix formulation useful for computational implementation.

Again we appeal to the non-parametric bootstrap to obtain estimates for the standard error

of µ̂ under other parameterizations for the sensitivity parameters as well as of σ̂, Ψ̂ and

functions thereof.

In Table 5 we exhibit estimated intervals for means and standard deviations of GRADRAT

and CSAT and their correlation using Ω = [0.90; 1.00] for {βjk}, Ω = [0.80; 1.25] for {λjk}

and Ω = [0; 1] for ψ12(r), r 6= (1, 1). The lower and upper bounds of the ignorance region of

each parameter were obtained, respectively, by minimizing and maximizing the correspond-

ing function over the sensitivity parameters. Note, though, that all 11 sensitivity parameters
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need to be used only when the target is the correlation; as presumed by (1) and (2), when the

target is a mean of one variable, the optimizations may be carried over the non-identifiable

means of this variable (i.e., 2 sensitivity parameters) and, for standard deviations, it may

be performed over the non-identifiable means and standard deviations (4 sensitivity param-

eters). From the results displayed in Table 5, we conclude that GRADRAT and CSAT are

positively linearly correlated; the magnitude of the correlation, however, is difficult to assess,

given the ignorance caused by the missing data. This conclusion remains when only the set

Ω corresponding to ψ12(r), r 6= (1, 1), is changed to [−0.5; 1]. This notwithstanding, if we

believe that GRADRAT and CSAT may have a linear correlation smaller than −0.5 when

any of the variables is missing, the results do not allow us to conclude whether the two

variables are linearly correlated.

Table 5: HEIR and 95% weak, pointwise and strong EUROs for µ, σ and ψ12 of GRADRAT
and CSAT using Ω = [0.90; 1.00] for {βjk}, Ω = [0.80; 1.25] for {λjk} and Ω = [0; 1] for
ψ12(r), r 6= (1, 1)

GRADRAT CSAT
Interval Mean SD Mean SD Correlation
HEIR [59.9; 60.4] [18.6; 19.3] [929.1; 968.0] [114.3; 144.8] [0.288; 0.795]

Weak EURO [59.1; 61.2] [18.2; 19.7] [927.4; 969.7] [112.8; 146.6] [0.300; 0.786]
Pointwise EURO [59.0; 61.3] [18.0; 19.8] [922.3; 975.1] [108.8; 151.1] [0.262; 0.817]

Strong EURO [58.9; 61.4] [17.9; 20.0] [921.0; 976.5] [107.7; 152.3] [0.257; 0.821]

5 Concluding remarks

Selection models and pattern-mixture models are likely the most common frameworks

for incomplete data modelling. In the univariate case, Scharfstein, Daniels & Robins (2003)

showed that the assumption

logit P (Ri = 0|Yi = y) = constant + q(y) (10)
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under the selection model is equivalent to the restriction

f(0)(y) = f(1)(y)
exp[q(y)]∫∞

−∞ exp[q(s)]f(1)(s)ds
, ∀y, (11)

under the pattern-mixture model, where q is the so-called selection-bias function. Beyond

the direct interpretation of these expressions, they also noted that, if q(y) = δ log(y), for

example, we obtain from (10) that exp(δ) is the odds ratio of missingness between subjects

who differ by one unit of log(y); from (11), δ > 0 (< 0) indicates that the distribution of Yi

for the missing outcomes is more (less) heavily weighted towards large values of Yi than the

distribution of Yi for the observed outcomes. These insights are fundamental to carry out a

sensitivity analysis. Nevertheless, the functional form of q(y) as well as the range of values

to be considered for δ are hard to assess.

When the target of inference is the mean, the standard deviation, the correlation or some

function thereof, we may employ their non-identifiable counterparts as sensitivity parameters.

Elicitation is never a trivial task, but these sensitivity parameters are easier to elicit than the

selection-bias functions because the former are directly related to the parameters of interest.

However, there are connections between both strategies; for example, for a specified q(y), we

can use (11) to compute the corresponding results for µ(0), α, β, p, σ(0), and λ of Section 3.

Some of these ideas on parameterization were considered previously in the literature.

For instance, Rubin (1977) uses (1) to develop a Bayesian solution assuming normality and

Daniels & Hogan (2000) consider a pattern-mixture model of multivariate normal distri-

butions wherein the model identification is accomplished through b(d) = µ(d) − µ(d+1) and

C(d) = Σ
1/2
(d) Σ

−1/2
(d+1), d = 1, . . . , J , where d = 1 +

∑J
j=1 rj is the drop-out indicator and b(d)

and C(d) are, respectively, pre-specified vectors and matrices. We extended the results by

dropping the normality assumption and allowing a greater flexibility for the identification

of the model. First, we not only considered absolute differences of means of missingness

patterns but also relative differences and the possibility of relating non-observed means to
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quantiles of observed distributions. Second, we replaced the hard-to-elicit functions of co-

variance matrices by relative differences of standard deviations and by correlations. Third,

in the multivariate case, we showed that a non-identifiable mean (or standard deviation) may

be related to an identifiable one not only in cases with a single specific missingness pattern

but also in cases with sets of missingness patterns wherein the corresponding variable is ob-

served. With these alternatives, it is easier to extract information from experts or historical

data and, consequently, to produce more meaningful and more plausible sensitivity analyses.

When Vansteelandt et al. (2006) show how to construct EUROs, they assume that the

values of the sensitivity parameters that correspond to the lower and upper bounds of the

ignorance interval are independent of the observed data. This assumption is satisfied when

the target of inference is the mean, but it may fail for standard deviations and correlations.

Consider, for example, the target σ under the univariate case of Section 3, and assume that

Ωσ(0) = [σL(0);σ
U
(0)] and Ωµ(0) = [µL(0);µ

U
(0)] are specified. Looking at (2) after replacing the

identifiable parameters by their sample counterparts, we note that σL(0) and σU(0) are the values

of σ(0) in the set Ωσ(0) that, respectively, minimize and maximize σ̂(µ(0), σ(0)) irrespectively

of the data and of µ(0). However, as

arg min
µ(0)∈Ωµ(0)

σ̂(µ(0), σ(0)) =


µL(0), if µ̂(1) < µL(0),

µU(0), if µ̂(1) > µU(0),

µ̂(1), otherwise,

arg max
µ(0)∈Ωµ(0)

σ̂(µ(0), σ(0)) =

 µU(0), if (µ̂(1) − µU(0))2 > (µ̂(1) − µL(0))2,

µL(0), otherwise

clearly depends on the data through µ̂(1), the assumption is violated. We note though that,

for this specific case with only two missingness patterns, the assumption is satisfied if we

switch the sensitivity parameter µ(0) to α or β. Vansteelandt et al. (2006) present another

example wherein the assumption fails and, therefore, compute bootstrap estimates of the

13



coverage probability to show that no undercoverage or overcoverage is detected. Nevertheless,

in a set-up like ours, where the estimate of the standard error is already computed with the

bootstrap, implications for computation time would be considerable.
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Appendix

With some algebra, (8) and (9) may be conveniently rewritten as

µ = γ ′∗µ(∗),

Σ = γ ′∗Σ(∗)(1P ⊗ IJ) + γ ′∗S(∗)(1P ⊗ IJ),

where γ∗ = γ ⊗ IJ , γ = (γr, r ∈ R)′, ⊗ denotes the Kronecker product, IJ represents an

identity matrix of order J , µ(∗) = (µ′r, r ∈ R)′, Σ(∗) and S(∗) are block diagonal matrices

with blocks Σ(r) and S(r) = (µ(r) − µ)(µ(r) − µ)′, r ∈ R, respectively, 1P denotes a P × 1

vector with all elements equal to 1 and P represents the number of missingness patterns, i.e.,

the cardinality of R. When employing as sensitivity parameters the non-identifiable means
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of µ(r), stacked in the vector µNI, the covariance matrix of µ̂ is specified as

Cov
[
µ̂(µNI)

]
=

1

n
γ ′∗Σ

I
(∗)(1P ⊗ IJ) +

1

n
µ′D[(Dγ − γγ ′)⊗ (1J1

′
J)]µD,

where µD = (Dµr
, r ∈ R)′ and ΣI

(∗) is obtained from Σ(∗) by replacing the non-identifiable

parameters by 0.
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