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Abstract

In this study, we propose a calibration method for preprocessing spiked-in microarray
experiments based on nonlinear mixed-effects models. This method uses a spike-in calibration
curve to estimate normalized absolute expression values. Moreover, using the asymptotic
properties of the calibration estimate, 100(1-α)% confidence intervals for the estimated expression
values can be constructed. Simulations are used to show that the approximations on which the
construction of the confidence intervals are based are sufficiently accurate to reach the desired
coverage probabilities. We illustrate applicability of our method, by estimating the normalized
absolute expression values together with the corresponding confidence intervals for two publicly
available cDNA microarray experiments (Hilson et al., 2004; Smets et al., 2008). This method can
easily be adapted to preprocess one-color oligonucleotide microarray data with a slight adjustment
to the mixed model.
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1 Introduction

Microarray experiments provide indirect measurements of gene expression (mRNA
abundance in a biological sample) by measuring intensities of labeled RNA target
bound to corresponding probes on the array. These measurements are not only
indirect, but are also influenced by several experimental sources of systematic and
random variation, making effective preprocessing a crucial factor in any analysis.
For preprocessing of spotted microarrays, different methods have been described.
Overviews are given, e.g., by Leung and Cavalieri (2002), Quackenbush (2002),
and Bilban et al. (2002). In general, preprocessing of spotted microarrays largely
depends on the calculation of the log-ratios of the measured intensities. However
for some analyses having access to absolute expression levels is more suitable (Kerr
et al., 2000). ANOVA models for absolute expression levels have been proposed,
e.g., by Wolfinger et al. (2001).

We propose the use of external reference RNAs (also known as spike-in controls
or spikes) to preprocess cDNA microarray data. Spike RNAs have no sequence sim-
ilarity to the genome of the studied species and they are added in defined amounts to
experimental RNA samples before labeling. The use of spikes allows not only data
preprocessing but also the evaluation of several parameters of the platform quality,
including the sensitivity and specificity of the microarray experiments, the accuracy
and reproducibility of the measurements and the assessment of technical variability
introduced by labeling procedure, hybridization and image scanning (Badiee et al.,
2003; van Bakel et al., 2004).

In this paper we obtain estimates of the actual RNA abundances by quantify-
ing the relationship between RNA abundance and measured intensity using data
from the external spikes. This problem can thus be considered as a calibration is-
sue where linear or non-linear models can be employed. In the literature, Dudley
et al. (2002) applied a linear regression method on data acquired from the same
microarray slide under the several photomultiplier tube gains to extend the linear
range of a scanner. Shi et al. (2005) assumed that the relationship between log flu-
orescence intensity and log dye RNA concentration can be reasonably described by
a Sigmoid function. However, they did not incorporate the hybridization reaction in
constructing the relationship between intensity measurements and concentrations.
The normalization procedure proposed by Engelen et al. (2006), however, is based
on a calibration method for spiked-in RNAs and integrates the hybridization reac-
tion and the dye-saturation function in building the calibration model (see Section
3 for more details). This method exploits the spikes (transcripts with known RNA
concentration in pg/ml), which are added to the hybridization solution, in order to
build a calibration curve. The underlying model compensates for the spot effect and
the non-linear behavior of both the red and the green dye and hence normalizes the
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data. The calibration curve is subsequently used to estimate the absolute expres-
sion level of the transcripts (gene expression levels) from the measured intensities.
Such an approach poses advantages over classical normalization methods: it does
not make any assumption on the distribution of the data (such as classical normal-
ization approaches based on locally weighted least squares do) and it avoids calcu-
lating ratio’s. The disadvantage of this model proposed by Engelen et al. (2006) is
that it lacks a clear statistical framework that would allow correct assessment of the
various sources of uncertainty, needed for the calculation of confidence intervals for
the predicted expression values. We therefore propose to combine the models En-
gelen et al. (2006) used in the various steps of their estimation procedure, into one
non-linear mixed model, on which the statistical calibration for spike based normal-
ization of cDNA arrays can be based, also yielding an estimate for the uncertainty
in the predictions. In Section 2, the type of experiments considered is described. In
Section 3, the hybridization and dye saturation models of Engelen et al. (2006) are
presented. Our proposed combined non-linear mixed model, together with some
implementation issues, will be introduced in Section 4. The procedures for cali-
bration and for the construction of confidence intervals are described in Sections 5
and 6, respectively, and will be illustrated extensively in the analysis of a publicly
available dataset in Section 7. Finally, a simulation study will be presented in Sec-
tion 8, to study the finite sample behaviour of the proposed confidence intervals.
Concluding remarks are given in Section 9.

2 Spike in experiments

Our proposed model makes use of spike in experiments. These are arrays that
contain spikes: control spots for which the RNA transcripts are added to the hy-
bridization solution in known concentrations prior to the labeling. These spikes
enable us to model a relationship between the concentration of a transcript in the
hybridization solution and its measured absolute intensity measurements (estimate
the intensity measurement as a function of the concentration). The purpose of the
analysis is to estimate the unknown concentrations based on a model fitted to the
measured intensities for the concentrations of the spikes.

The most basic designs that are commonly applied for cDNA microarray ex-
periments are Color flip designs (see Figure 1), Reference designs, and Loop de-
signs (Churchill, 2002). The simplest microarray experiments compare expression
in two distinct conditions. A test condition (e.g. a cell line triggered with a drug
compound) is compared to a reference condition (e.g. a cell line triggered with
a placebo). Usually the test is labeled with Cy5 (red dye) while the reference is
labeled with Cy3 (green dye). Performing replicate experiments is mandatory to
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Figure 1: Color flip experiment (self-self experiment): two microarrays (Array
1:−→ and Array 2:←−) and two biological conditions; θc
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known concentrations for the condition 1 and 2 for a given gene i; (Y R
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2i ) pair of intensity measurements on array 1 and 2 respectively.

infer relevant information on a statistically sound basis. However, instead of just
repeating the experiments exactly, a more reliable approach is to perform colour
flip experiments (also called dye swap experiments). In colour flip experiments, the
same test and reference conditions are measured once more as a repeat on a second
array but the dyes are swapped, i.e., on the second array, the test condition is la-
beled with Cy3 (green dye) while the corresponding reference condition is labeled
with Cy5 (red dye). This allows better compensating for dye specific biases, to the
extent that these biases are repeatable across slides. Generally, color flipped pairs
are recommended whenever possible (Yang and Speed, 2002).

3 The hybridization and dye saturation models

Engelen et al. (2006) proposed an analysis in two stages, based on the hybridization
model and the dye saturation model. The hybridization model reflects the binding
of fluorescently labeled target mRNA (i.e. the quantities we want to measure) to its
corresponding probes on the microarray. In general, the more target mRNA present,
the more will hybridize to the microarray. This reaction however, is heavily depen-
dent on several experimental factors, such as hybridization efficiency of the target
and quality of the spotted probes; the hybridization model attempts to captures these
dependencies.

The hybridization model includes spot-specific errors, used to explain the large
observed variations of absolute intensities for a given spike concentration (Engelen
et al., 2006). The relation between the amount of hybridized target (xs) and the
concentration of the corresponding transcript in the hybridization solution (x0) is
modeled by the steady state of the reaction

x0 + s K⇐⇒ xs,

in which the unknown hybridization constant K is assumed to be equal for all spots
on a single microarray. It is also assumed that the hybridization is a first order reac-
tion, and that x0 is in excess (i.e. x0 is constant). This ensures that the amount of hy-
bridized target at the end of the reaction only depends on the initial concentration in
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the hybridization solution. The amount of probe of a spot(s) available for hybridiza-
tion will decrease with an increasing amount of hybridized target xs(s = s0− xs,s0
being the spot size or maximal amount of available probe). Hence, at thermody-
namic equilibrium, we have that

x0 =
xs

K(s0− xs)
. (1)

The spot capacity s0 is assumed to follow a certain distribution around an average
spot capacity µ . More specifically, it is assumed that s0 = µebs with bs ∼ N(0,σ2

s ).
The parameters µ and σs are assumed to be equal for all measurements of a single
array. Finally, it is assumed that the presence of distinct labels (green: Cy3 and red:
Cy5) does not influence the hybridization efficiency of the differentially labeled
target transcripts, i.e.,

x0,R

x0,G
=

xs,R

xs,G
, (2)

where x0 = x0,R + x0,G, and xs = xs,R + xs,G. It follows from (1) and (2) that the
expression for the hybridized target xs,G for a certain label (eg. green) is given by

xs,G =
x0,Gs0

(x0,G + x0,R + 1
K )

,

and for ratio controls where x0,G/x0,R = 1 : 1 this expression reduces to

xs =
Kx0µebs

(K2x0 +1)
.

The dye saturation model describes the relation between the measured inten-
sity y and the amount of labeled target xs, hybridized to a single spot on the mi-
croarray. It is a simple linear equation incorporating an additive and multiplicative
intensity error. This type of function stems from analytical chemistry (Rocke and
Durbin, 2001) and has already been used in other normalization strategies (Durbin
and Rocke, 2003; Durbin et al., 2002; Durbin and Rocke, 2004; Huber et al., 2002;
Rocke and Durbin, 2003).

More specifically, it is assumed that

y = p1xsebm + p2 + ε,

in which ε and bm are additive and multiplicative intensity errors, assumed to be
normally distributed, with means zero, and with variances σ2 and σ2

m, respectively.
It follows from the combination of the hybridization and the dye saturation mod-

els that the relation of the intensities yG and yR for the green and red label, measured

4

Statistical Applications in Genetics and Molecular Biology, Vol. 8 [2009], Iss. 1, Art. 5

DOI: 10.2202/1544-6115.1401

Unauthenticated | 172.16.1.226
Download Date | 2/14/12 3:57 PM



on a single spot s0 of a given array, and the amount of corresponding target x0, is
given by

yR = p1,R

[
x0,Rµebs

x0,G + x0,R + 1
K

]
ebm + p2,R + εR, (3)

yG = p1,G

[
x0,Gµebs

x0,G + x0,R + 1
K

]
ebm + p2,G + εG, (4)

Note that it is implicitly assumed that the spot-specific errors bs and bm are
common for both dyes, which is not assumed for the errors εG and εR. Strictly
speaking, this implies that models (3) and (4) are not identified which is why, later
on, the models will be formulated in terms of bsm = bs +bm, for new random terms
bsm, normally distributed with mean zero, and variance denoted by σ2

sm. Similarly,
p1,R, p1,G, and µ are not identified separately, while the products µ p1,R and µ p1,G
are. Therefore, from now on, µ will be restricted to µ = 105.

Figure 2 shows the graphical representation of the model. The Intercept p2,R
is the lower saturation limit, p1,R is the steepness parameter and upper saturation

limit is given by p1,R

(
µebs ebm

1+ 1
K

)
+ p2,R. The vertical downward arrow represents

the concentration corresponding to the inflection point. The inflection point is ob-
tained as half of the difference between upper and lower saturation above the lower
saturation. The slope at the inflection point is p1,R

2 .

4 A Non-linear mixed model for parameter estimation

Engelen et al. (2006) fitted the models using separate estimation procedures. First,
the standard deviations of εR and εG are estimated by the sample standard devi-
ations of the intensities at the zero concentration level, while standard errors for
multiplicative errors (σm) are estimated by performing orthogonal regression on
a selected set of data points. Estimates for all other parameters are subsequently
derived optimizing an objective function, in which the above mentioned standard
deviations are replaced by their estimates. Such a two-stage approach does not
account for the uncertainty associated with the a priori estimation of the standard
deviations, and therefore cannot be used for the calculation of standard errors for
the various parameter estimates nor for the construction of confidence intervals for
calibrated concentrations.

We therefore propose to directly fit the models (3) and (4), within the frame-
work of non-linear mixed models. Within this framework we can easily estimate
the model parameters along with their standard errors, needed to construct the re-
quired calibration intervals. Moreover, the proposed non-linear mixed effects model
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Figure 2: Calibration model: illustration of model shape (one dye only). The solid
red curve represents the relationship between concentration and intensity if all er-
rors were zero. The horizontal dashed lines indicate the upper and lower saturation
levels. The vertical downward arrow represents the concentration corresponding to
the inflection point. The inflection point is obtained as half of the difference between
upper and lower saturation above the lower saturation. The slope at the inflection
point is p1,R

2 .

combines all the steps in the previous approach (Engelen et al., 2006) into one sin-
gle model. A key feature of these models is that, by introducing random effects in
addition to fixed effects, they allow us to correctly account for multiple source of
variation. For instance in this study it allows to account both within- and between-
spot variation. Mixed models are also a powerful class of models used for the
analysis of correlated data. Here, we incorporate the correlation between the two
intensity measurements which were measured on the same spot by introducing the
spot-specific random effect.

Let yi j denote the intensity for spot i of dye j, i = 1, ...,N, j ∈ {R,G}. Models
(3) and (4) then become

yi j = p1, j

[
x0,i jµebsm,i

x0,iG + x0,iR + 1
K

]
+ p2, j + εi j, . (5)
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which is a special case of the general linear mixed model, defined as any model of
the form

yi j = f (Xi j,β ,bi)+ εi j, (6)

with Xi j a design matrix of known within-spot covariates, bi a q-dimensional vector
of spot-specific parameters, β an r-dimensional vector of unknown array-specific
parameters, and with f (·) any known function. The bi are assumed normally dis-
tributed with mean vector 0 and covariance D, independently of the errors εi j which
are assumed independent normal, with mean 0 and variance σ2.

As will be illustrated in Section 7, the standard deviation of the errors is in our
context often proportional to the mean, in contrast to the homoscedasticity assump-
tion made by model (6). We therefore adapt model (6) as suggested by (Gilberg and
Urfer, 1999), i.e., by assuming

yi j = f (xi j,β ,bi)+ f (xi j,β ,bi)εi j. (7)

Applying log transformation on both sides, model (7) can be rewritten as

y∗i j = f ∗(xi j,β ,bi)+ ε∗i j, (8)

in which y∗i j = ln(yi j), f ∗(·) = ln[ f (·)], and ε∗i j = ln(1+ εi j). The final models then
become

ln(yi j) = ln

(
p1, j

[
x0,i jµebsm,i

x0,iR + x0,iG + 1
K

]
+ p2, j

)
+ ε∗i j (9)

for which we assume bsm,i ∼ N(0,σ2
sm), ε∗i j ∼ N(0,σ2

a ), j ∈ {R,G}. Note that this
model implicitly replaces the normality assumption for the original error compo-
nents εi j by the assumption of log-normality, while the mean of the original errors
εi j now becomes exp(σ2

a /2)−1 and their variance σ2 is given by exp(σ2
a )[exp(σ2

a )−
1].

Standard maximum likelihood principles can be used to estimate the parameters
in the above models, and to calculate associated standard errors. After suitable
reparameterizations for numerical stability, the models can easily be implemented
within the SAS procedure NLMIXED. As suggested by (Davidian and Giltinan,
2002), adaptive Gaussian quadrature is used for the approximation of the likelihood,
while the optimization is based on the Newton-Raphson algorithm.

5 The calibration procedure

The main purpose of our analysis is to draw inferences about the concentration lev-
els x0,i j corresponding to measured intensities yi j. Inversion of (9) cannot be used
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as this would require knowledge of the spot-specific error bsm,i, which is not known
for the spots without known concentrations. Therefore, calibration will have to be
based on average calibration curves, rather than spot-specific calibration curves.

The spot-specific calibration curve, implied by model (9) is given by

E[Yi j|bsm,i] =

{
p1, j

[
x0,i jµebsm,i

x0,iR + x0,iG + 1
K

]
+ p2, j

}
exp(σ2

a /2), (10)

in which p1, j, K, p2, j are replaced by their maximum likelihood estimates, and bsm,i
by the empirical Bayes estimate (Molenberghs and Verbeke, 2005 Chapter 19). For
spots without known concentrations, bsm,i cannot be estimated, and calibration will
be based on the average curve, given by

E[Yi j] = E
[
E[Yi j|bsm,i]

]
=

{
E

[
p1, j

[
x0,i jµebsm,i

x0,iR + x0,iG + 1
K

]
+ p2, j

]}
exp(σ2

a /2)

=



p1, j


 x0,i jµe

σ2
sm
2

x0,iR + x0,iG + 1
K


+ p2, j



exp(σ2

a /2). (11)

As described by Davidian and Giltinan (2002), the concentration corresponding
to a intensity can now be estimated by inverting the average curve (11). Let β j
denote the parameters in (11), i.e., p1, j, p2, j, K, σ2

a , and σ2
sm. We then have

x0,i j = h(yi j,β j) ≡ 1
K


 yi je−

σ2
a
2 − p2, j

p1, jµe
σ2

sm
2 −2(yi je−

σ2
a
2 − p2, j)


 (12)

In practice, an estimate for x0,i j will be obtained from replacing β j in (12) by the
maximum likelihood estimate β j, i.e.,̂ x̂0,i j = h(yi j, β̂ j). Observations outside the
calibration limits need to be handled with care. If the new observation yi j is be-
low the lower saturation limit of p2 j exp(σ2

a /2) then x̂0,i j is set equal to the ob-
served minimum concentration. In case yi j is above the upper saturation limit of
[p1 jµ exp(σ2

sm/2) + p2 j]exp(σ2
a /2), then x̂0,i j is set equal to the observed maxi-

mum concentration. In case multiple observations yi j are available to estimate x0,i j,
yi j in (12) is replaced by their average yi j.

6 The construction of confidence intervals

In order to reflect the uncertainty in x̂0,i j, due to replacing the parameter β j in (12)
by the maximum likelihood estimate β̂ j, an approximate (1−α)100% confidence
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Table 1: Color flip experiment: pooled concentration

Conditions Array 1 Array 2 Pooled Estimate

Condition 1 Red Green

x̂0,iR,1 = h(yi j,1, β̂R,1) x̂0,iG,2 = h(yi j,2, β̂G,2) θ̂c
1i = x̂0,iG,2+x̂0,iR,1

2

Condition 2 Green Red

x̂0,iG,1 = h(yi j,1, β̂G,1) x̂0,iR,2 = h(yi j,2, β̂R,2) θ̂c
2i = x̂0,iG,1+x̂0,iR,2

2

interval can be calculated, using a first order Taylor series expansion of the inverse
regression function h(yi j,β j). Let yi j represent the average of n replicates for the
jth dye of a given array, estimating the average µi j = µ(x0,i j,β j) = E[Yi j]. We then
have

x̂0,i j ≡ h(yi j, β̂ j)≈ h(µi j,β j)+hy(µi j,β j)(yi j−µi j)+hT
β(µi j,β j)(β j−β j), (13)̂

in which hβ(µi j,β j) is the gradient vector of h(y,β ) with respect to β and where
hy(µi j,β j) is the first order derivative of h(y,β ) with respect to y, both evaluated at
y = µi j and β = β j. Denoting the covariance matrix of β j by Σ(̂ β̂ j), it immediately
follows from (13) that an approximation to the standard error of x̂0,i j is given by

s.e.(x̂0,i j)≈
√

h2
y(µi j,β j)Var(yi j)+hT

β(µi j,β j)Σ(β̂ j)hβ(µi j,β j). (14)

Note that an estimate for Σ(β̂ j) follows from the maximum likelihood estimation
procedure used to fit the non-linear mixed model. Further, we have that Var(yi j) =
Var(yi j)/n in which Var(yi j) immediately follows from (5) to be equal to

Var(yi j) = (1+σ2)Q2[eσ2
sm −1]+σ2[Q+ p2 j]2

with

Q =
p1 jx0,i jµe

σ2
sm
2(

x0,iR + x0,iG + 1
K

) ,

and with, as before, σ2 = exp(σ2
a )[exp(σ2

a )−1]. An estimate ŝ.e.(x̂0,i j) for s.e.(x̂0,i j)
is obtained from replacing β j by β̂ j, σ2

a by σ̂2
a , and µi j by yi j in (14).

Assuming x̂0,i j to be approximately normally distributed, an approximate Wald-
type (1−α)100% confidence interval for x0,i j is obtained by x̂0,i j± zα/2 ŝ.e.(x̂0,i j),
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in which zα/2 is the appropriate quantile of the standard normal distribution. Of-
ten, concentrations in biological experiments are positively skewed (Davidian and
Giltinan, 2002). We therefore propose to construct the confidence interval assuming
normality for ln(x0,i j) instead of̂ x0,i j. An estimate for the standard error of ln(̂ x̂0,i j)
then easily follows from the transformation theorem (Serfling 1980, Chapter 3).
In cases where yi j is outside the calibration limits, no confidence interval can be
calculated.

As explained in Section 1 the major objective of this study is to estimate the
absolute expression levels (i.e., unknown concentrations) for every gene in each of
the tested biological conditions in a color flip experiment. As depicted in Table 1,
such experiments yield one concentration for each condition, but each is estimated
twice, once from the Green channel, and once from the Red channel. As different
arrays are assumed independent, the two estimates can easily be combined by aver-
aging (also shown in Table 1), and the standard error of the combined estimate can
easily be obtained from the standard errors of the original individual components.

7 Application

7.1 Analysis of dye-swap experiment

To illustrate the applicability of our method we used a two publicly available datasets.
First, we consider a dye-swap experiment based on data from (Hilson et al., 2004).
This experiment contains the necessary spots for measuring external control spikes,
which are required for estimating the parameters of our model. A series of exter-
nal controls (Lucidea Universal Scorecard; Amersham Biosciences) consisted of
10 calibration spikes (added to the hybridization solution in a ratio 1:1 and span-
ning up to 4.5 orders of magnitude), eight ratio spikes provided at both low and
high concentration and two negative controls, each of them spotted once per pin
group, resulting in a total of 24 repeats of each spike probe per array. The experi-
mental design included only a single biological condition (self-self experiment; all
hybridizations were conducted with the same RNA sample, extracted from aerial
parts of germinating Arabidopsis thaliana seedlings).

Measured intensities and observed concentrations for red and green channels
for this experiment are given in Figure 3. The black dots shown in the left panel of
Figure 3 are the spots where the concentration ratios between green and red are 1:1.
The right panel of Figure 3 depicts the nonlinear relationship between measured
intensities and concentrations. However, in our analysis, both dynamic (X:Y) and
ratio (1:1) control spikes will be used to estimate the model parameters. Figure 4
shows the variance of the intensities at unique concentration levels versus the true
concentrations in original and log scale for arrays 1 and 2. This reveals that the
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Table 2: Results of dye-swap experiment. Maximum Likelihood estimators for Orig-
inal parameters and Standard errors via Delta Method : Array 1 and 2

Array 1 Array 2
Parameter Estimate (s.e.) Estimate (s.e.)

K 0.030 (0.009) 0.047 (0.012)
p1,R 0.978 (0.076) 0.998 (0.082)
p2,R 0.927 (0.019) 0.877 (0.021)
p1,G 0.835 (0.013) 0.717 (0.013)
p2,G 0.930 (0.011) 0.727 (0.010)
σ2

sm 1.363 (0.108) 1.506 (0.119)
σ2

a 0.028 (0.002) 0.036 (0.002)
−2× log-likelihood 811.3 1020.6

variance changes with the mean leading to heterogeneous errors, motivating the use
of the heteroscedastic model (9).

7.2 Model fitting and informal model assessment

Models (9) were fitted using the SAS procedure NLMIXED, using numerical quadra-
ture methods for the approximation of the likelihood (Molenberghs and Verbeke,
2005 Chapter 14). It is wellknown that, in the context of nonlinear mixed-effects
models, optimization procedures can be sensitive to the parameter values from
which the iteration is initiated. Therefore, the models were fitted repeatedly, for
a variety of starting values. Also, various numbers of quadrature points were used
(3, 5, 11, 21, 25, 31 and 35), and likelihoods and parameter estimates were found
to be stable. Table 2 summarizes the maximum likelihood estimates and their asso-
ciated standard errors, for both arrays separately.

Based on these results, the implied fitted marginal (average) relations (11) were
calculated and are shown in Figure 5, for both arrays. The original observations are
also added. Note the sigmoid shape of the estimated curves reflecting the nonlinear
relationship between concentrations and the intensity measurements. Further, em-
pirical Bayes estimates b̂sm,i of bsm,i can be used to calculate spot-specific residuals

ε̂∗i j = y∗i j− f ∗(xi j, β̂ j, b̂sm,i),

for which graphical exploration did not reveal any deviations from the normality
assumption made in our model (Figure not shown).
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Figure 6: Dye-swap experiment: Estimated versus true concentration for condi-
tions C1 and C2, on log-scale.

7.3 Calibration on external control spike data

In order to investigate the accuracy of the proposed calibration method, we first
apply the procedure on spike data where we know the true concentration values. In
this example, the two conditions C1 and C2 represent the same biological mRNA
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Figure 7: Dye-swap experiment: Calibration estimates by nonlinear mixed-effects
model: Estimated concentration on log scale: biological conditions C1 vs C2. The
dashed line indicates the bisector.

samples. Figure 6 shows the estimated versus true concentrations, on log-scale,
for both conditions separately. Note that very small true concentrations tend to be
overestimated, while the opposite is true for very large true concentrations. This
bias results from intensity levels below and above the lower and upper saturation
limits respectively (Section 5).

Further, we used the estimated model parameters to obtain absolute expression
levels (the unknown concentrations) for every gene in each of the tested biological
conditions in a color flip experiment. Figure 7 shows the estimated concentration
on log scale for biological conditions 1 and 2. Because C1 and C2 represent the
same biological condition, all estimates are centered along the first bisector. Fig-
ure 8 shows estimated 95% confidence intervals for each calibrated concentrations,
for both conditions separately. Similar to the bias observed before for the estimates,
we find wide confidence intervals for extreme estimated concentrations, due to ob-
served intensities outside the calibration limits.

7.4 Analysis of loop design experiment

So far we have applied our method to a simple dye-swap experiment. The method in
itself however, is capable of tackling real world designs of any complexity. To illus-
trate, we analyzed a more complex spiked-in cDNA microarray dataset published
by Smets et al. (2008). A total of 5928 genes were measured for three different
yeast strains (Wild-Type, Rim-mutant, and Sch9-mutant) across five consecutive
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Figure 9: Loop design (Yeast data: Wild-Type Strain ). 5 microarrays (Array 1: ↘,
Array 2:↙, Array 3: ←−, Array 4: ↖, and Array 5: ↗) and 5 biological condi-
tions; θc
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4i, and θc

5i are the unknown concentrations for the condition
1,2,3,4, and 5. For a given gene i (Y R
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2i ), (Y R
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4i , Y G
4i ), and (Y R

5i ,
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5i ) are pair of intensity measurements on array 1,2,3,4, and 5 respectively. Each
array shares two conditions and each condition shares two arrays.

time points after adding rapamycin (0, 15, 30, 60, and 120 min), resulting in a total
of 15 different biological conditions. A loop design was applied, with one loop for
the Wild-Type (see Figure 9), one for Rim samples and one for the Sch9 samples,
resulting in two measurements for each of the 15 RNA samples. All the arrays in
this experiment were outfitted with the LucideaT M Universal ScorecardT M (Amer-
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sham Biosciences), generating a series of external control spikes. For more detailed
information regarding the experimental protocol we refer to Smets et al. (2008).

Using the data from the external control spikes, our proposed calibration model
was fitted for each array. The maximum likelihood estimators for model parameters
along with their standard errors are tabulated in Table 3. Based on those parameter
estimates absolute value expression levels have been estimated along with their
standard errors for all genes under all 15 conditions surveyed in the experiment. We
give an overview of our main findings here. Figure 10 shows estimated expression
profiles along with their 95% confidence bands for randomly selected four genes.
Interestingly, these expression profiles and their confidence bands can be used to
answer relevant biological questions. For instance, downstream analysis such as
selecting differentially expressed genes and identifying corresponding biologically
important conditions and strains can benefit from these results.

8 Simulation study

The confidence intervals discussed in Section 6 are based on Taylor series expan-
sions which are asymptotic in nature and are therefore only guaranteed to perform
well in very large (infinite) samples. The only way to check their accuracy in more
realistic settings is in a simulation study, where the following steps are followed.
First, data are simulated from a model that is sufficiently realistic to cover real
data situations. In our paper, we used the model that was found to be a reasonable
description of the data analysed in Section 7. Second, the model is fitted to the
simulated data and the approximate confidence intervals are computed. When con-
fidence intervals have the correct 95% coverage, we expect that 5% of them would
not contain the correct values (which are known in the simulated data). In order
to estimate the realized coverage of the intervals, the simulation is repeated many
times and it is counted how often the constructed intervals contain the true values.
In Section 8.1, we will do this in the context of the dye-swap experiment from Sec-
tion 7. Afterwards, in Section 8.2, we will repeat the simulation for a more complex
design, i.e. a loop design.

8.1 Simulation for the dye-swap experiment

We generated 1000 data sets from model (9), with all parameters replaced by the
estimates obtained in Section 7 for the original data in array 1. As concentration
levels, we also used the original concentrations from the spike data, hence all gener-
ated data sets are of the same structure as the original data. For each data set, model
(9) was fitted, and the calibration procedure was applied. All calculations were per-
formed using the SAS software version 9.1 (SAS Institute, North Carolina, US).
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Figure 10: Analysis of yeast data. Estimated expression profiles along with their
95% confidence bands for four randomly selected genes. WT: Wild-Type, Rim:
Rim-mutant, and Sch9: Sch9-mutant
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Table 3: Results of yeast analysis: Maximum likelihood estimators (standard errors)

Microarray number
Strain Parameter 1 2 3 4 5

Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)
K 0.050 (0.007) 0.036 (0.006) 0.058 (0.007) 0.056 (0.008) 0.042 (0.006)
p1,R 5.304 (0.320) 4.931 (0.296) 5.762 (0.301) 7.966 (0.457) 7.580 (0.454)
p2,R 5.062 (0.216) 4.459 (0.171) 3.810 (0.132) 6.012 (0.221) 8.236 (0.371)

WT p1,G 1.128 (0.068) 0.919 (0.048) 1.144 (0.050) 0.990 (0.046) 1.263 (0.079)
p2,G 6.703 (0.273) 4.702 (0.173) 4.926 (0.164) 3.733 (0.142) 5.960 (0.282)
σ2

sm 1.213 (0.397) 2.979 (0.530) 2.290 (0.359) 2.748 (0.363) 0.540 (0.317)
σ2

a 0.509 (0.023) 0.394 (0.019) 0.310 (0.015) 0.346 (0.016) 0.594 (0.026)
6 7 8 9 10

K 0.020 (0.005) 0.024 (0.004) 0.028 (0.005) 0.029 (0.005) 0.023 (0.004)
p1,R 3.717 (0.258) 2.837 (0.173) 4.051 (0.230) 3.180 (0.178) 4.553 (0.253)
p2,R 4.750 (0.240) 3.512 (0.153) 3.369 (0.142) 3.173 (0.121) 5.019 (0.224)

Rim p1,G 1.004 (0.076) 1.087 (0.070) 0.936 (0.054) 0.850 (0.045) 0.936 (0.059)
p2,G 4.497 (0.227) 3.482 (0.151) 3.909 (0.158) 2.699 (0.100) 3.212 (0.148)
σ2

sm 1.310 (0.530) 1.185 (0.407) 1.824 (0.372) 1.922 (0.348) 0.433 (0.308)
σ2

a 0.791 (0.035) 0.596 (0.025) 0.496 (0.021) 0.397 (0.017) 0.653 (0.026)
11 12 13 14 15

K 0.024 (0.005) 0.025 (0.005) 0.029 (0.005) 0.027 (0.005) 0.019 (0.004)
p1,R 3.765 (0.250) 3.288 (0.213) 3.326 (0.194) 6.742 (0.401) 2.439 (0.155)
p2,R 5.541 (0.251) 4.919 (0.211) 3.235 (0.132) 8.720 (0.294) 2.543 (0.124)

Sch9 p1,G 0.735 (0.052) 0.788 (0.053) 0.809 (0.046) 0.731 (0.036) 0.973 (0.069)
p2,G 3.896 (0.175) 3.504 (0.150) 2.686 (0.107) 5.718 (0.192) 3.208 (0.151)
σ2

sm 1.236 (0.475) 1.358 (0.431) 1.906 (0.385) 3.521 (0.671) 1.521 (0.520)
σ2

a 0.649 (0.028) 0.585 (0.025) 0.466 (0.020) 0.355 (0.019) 0.741 (0.032)
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Table 4: Simulation study results: Summary of parameter estimates

K p1,R p2,R p1,G p2,G σ2
sm σ2

a

True values ψ 0.0303 0.9783 0.9269 0.8348 0.9301 1.3628 0.0282

ψ̂ =
1

1000 ∑
s

ψ̂s 0.0339 1.0130 0.8504 0.8780 0.8863 2.0576 0.0127

Bias= ψ̂−ψ -0.0035 -0.0347 0.0765 -0.0432 0.0437 -0.6948 0.0155

RMSE 0.0104 0.0825 0.0190 0.0722 0.0092 0.1446 0.0013

The models (9) were fitted with the procedure NLMIXED, using Newton-Raphson
optimization, adaptive Gaussian Quadrature with 21 quadrature points, and with
10−15 as convergence criterion for absolute parameter values.

Table 4 summarizes the results from fitting the models (9) to the 1000 gener-
ated data sets, for the various parameters in the model. For each parameter, let
ψ denote the true value, as reported in Table 2 (Array 1). Then each generated
data set yields an estimate ψs for ψ , s = 1, . . . ,1000. The average estimatê ψ̂ is
obtained from averaging the estimates ψ̂s over all simulations. The bias ψ̂−ψ re-
flects the systematic error in the estimation of ψ , while the root mean squared error
RMSE = ∑s(ψs−ψ)2/1000 reflects the average quadratic difference between thê
estimated and true paramater value. We observe that the bias and mean squared
error is small for all parameters, but somewhat larger for the random-effects vari-
ance σ2

sm, where a slight overestimation seems to occur. This overestimation of
variability may affect the coverage probabilities of the confidence intervals.

Figure 11 shows the estimated coverage probabilities of the confidence inter-
vals at each level of the true concentrations. The actual coverage was calculated as
the proportion of intervals (out of 1000) that included the true concentration. For
all concentrations, the coverage probability is very close to the nominal 95%, in-
dicated that our calibration method performs well in samples of size similar to our
application analysed in Section 7.

8.2 Simulation for the loop design

The methodology developed can also be applied in settings far more general than
the dye-swap experiments considered so far. As an illustration, we consider the
so-called loop design, represented graphically in Figure 12. The loop design con-
tains tests on four biological conditions on four arrays. The simulation study from
Section 8.1 was repeated for the loop design. We now generated data for 1000 loop
designs resulting in 4000 data sets (each loop design is composed of four microar-
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Figure 11: Simulation study based on single condition and single microarray: True
Concentration vs Coverage results from 1000 simulations for the nominal level of
95%: Confidence intervals are estimated by linearizing the inverse regression func-
tion. Vertical small bars indicate the 95% confidence intervals for coverage proba-
bilities.

rays). As in Section 8.1, calibration intervals are estimated and coverage probabil-
ities for each of the experimental conditions are summarized and shown in Figure
13. As before, all coverage probabilities are around the nominal level of 95%, con-
firming that the calibration interval estimation method can easily be extended to
more complex designs.

9 Discussion

We have developed a spike based normalization procedure based on a nonlinear
mixed-effects model. This approach not only allows accurate estimation of absolute
expression levels from cDNA arrays based on a spike derived calibration curve, but
it also makes it possible to derive confidence bands for each estimated concentra-
tion level. This model incorporates parameters and error distributions representing
both the hybridization of labeled target to complementary probes and the subse-
quent measurement of fluorescence intensities. External control spikes were used
to estimate the model parameters. The estimated model parameter values are then
used to obtain absolute levels of expression for the remaining genes. For each com-
bination of a gene and a tested biological condition, a single absolute target level is
estimated, while considering the specificities of the design.

The simulations conducted have shown that our proposed calibration method
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4i are unknown concentrations for the condition 1,2,3, and 4 respectively;
(Y R

1i ,Y
G
1i ), (Y R

2i ,Y
G
2i ), (Y R

3i ,Y
G
3i ), and (Y R

4i ,Y
G
4i ) pair of intensity measurements on array

1,2,3, and 4 respectively.

yields valid estimates for unknown concentrations, with associated confidence lim-
its that reach the requested nominal coverage levels. Although the simulation results
are promising, one has to keep in mind that no good estimation of concentration
levels is possible whenever the observed intensity levels are outside the calibra-
tion limits. It is expected that this problem will be more prominent as the residual
variability σ2

a gets larger. However, if multiple intensity measures are available, cal-
ibration will be based on their average. Since such averages have smaller variability
than single measurements, we then expect this bias problem to be less severe.

Our approach computes absolute expression levels together with their 95% con-
fidence intervals, avoiding the use of intensity ratios. Moreover, for the described
experiment, the estimated absolute expression levels (calibration estimates) approx-
imate the actual concentrations fairly well. Although the calibration method was
developed in the context of simple dye-swap experiments, we also illustrated that
it can fairly easily be extended to more complex designs. This was done for loop
designs, but others can be considered as well.

Finally, our method can also be adapted to preprocess one-color oligonucleotide
microarray data (such as Affymetrix, Draghici, 2003) with a slight adjustment to
our model. For cDNA arrays we have kept the hybridization constant K the same
for all measurements of the same array as probe sequences for spotted microar-
rays are often very long specifically selected to have properties that obviate large
differences in transcript specific hybridization effects. On the other hand, average
spot capacities were allowed to vary across probes, because two-color cDNA ar-
rays show large differences in intensities for probes that are effectively measuring
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Figure 13: Simulation study based on Loop design: True concentration versus
coverage results from 1000 simulations for the nominal level of 95%. Confidence
intervals are estimated by linearizing the inverse regression function (see Section
6). The broken horizontal line indicates the nominal level of 95%. (a) Condition 1
(b) Condition 2 (c) Condition 3 (d) Condition 4

the same transcript, which are due to the large variation in spot capacities (Engelen
et al., 2006; Rocke and Durbin, 2001). For oligonucleotide arrays (e.g. Affymetrix),
this is not much of an issue: spot capacities are a lot more homogeneous because
the array production process is generally a lot more controlled than with spotted
cDNA microarrays. Measured intensities however, also show a large variation for
Affymetrix arrays, but due to an entirely different issue: because the small size of
the probes (∼ 25nt), the hybridization efficiencies (reflected in the parameter K)
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show large differences. So for Affymetrix arrays we would keep the average spot
capacity the same for all probes, but allow individual probe values for hybridiza-
tion constant K to differ. This is contrary to our model for two-color arrays, where
we could assume K the same for all probes in a given array. Because of the short
probe length and resulting effects on hybridization efficiencies, Affymetrix arrays
use on average around 15-20 probes (all with different K’s) per gene, i.e. they all
measure the same transcript. When we allow the parameter K to differ across the
probes for a given gene, our model will be changed and will have a random ef-
fect for parameter K. Further, the original spot specific random effect bsm,i will be
treated as a fixed effect and can be merged with parameter µ . From the statistical
point of view this is still a random-effects model and hence, our general method-
ology for estimating calibration intervals will follow the same procedure, but will
require slightly different computations. Hence absolute expression levels and con-
fidence intervals can be obtained under the one-color microarray settings as well.
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