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Abstract

The mastering craft of photography aspiration is to communicate the equiva-
lent of what we saw and felt (Alfred Stieglitz). The key to obtain a satisfactory
image representation lies in reproducing the expressive scene characteristics.
Although photographic work is often regarded as a literal transcription of
the reality, due to the depiction constrains, artists perform tedious work and
employ many photographic controls to obtain a realistic representation.

In this work we address the problem of enhancing images by contrast ma-
nipulation. The importance of contrast holds not just for the perceived di-
mensionality of lightness but for colors as well. Therefore, proper techniques
for contrast manipulation in the image will automatically yield desired adjust-
ments over perceived image appearance. The presented work proposes new
ways of transforming the image color, style and appearances. Our work is
motivated by several photographic and artistic techniques being validated by
perceptual studies.

In the first part, we introduce an algorithm that decolorize images and
videos guided by the original saliency. The method is inspired by the Hering’s
opponent process theory and aims to increase the contrast of the regions of
interest, rather than over the entire image. We have based our approach on
the assumption that preserving these salient regions in the converted image
will result in a better preservation of the visual contrast and overall perceptual
appearance. After the monochromatic luminance channel is filtered and stored
as a reference, the luminance values are computed pixel-wise by mixing both
saturation and hue values, creating a new spatial distribution with an increased
contrast of the interest regions. All the pre-computed values are normalized in
order to fit the entire intensity range while the intensity is re-balanced in order
to conserve the local contrast in the initial image. Since our decolorization is
accurate and preserves finest details, we can exploit variations in chromacity
as well as luminance for application such as video decolorization, segmentation
under different illuminants, detail enhancement, wide-baseline image matching
and auditory substitution systems.
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In the subsequent part we present a novel single image dehazing strategy
built on the well known dark object (Chavez 88) principle. Since images taken
in bad weather conditions are characterized by poor contrast, the local values
are less likely to change abruptly except depth discontinuities. By an extensive
study it has been disclosed an important difference between hazy and non-hazy
image regions, by performing a per pixel comparison of the hue values in the
original image to their values in a ’semi-inversed’ image. This ’semi-inversed’
image version is obtained by replacing the RGB values of each pixel on a per
channel basis by the maximum of the initial channel value (r, g or b) and
its inverse (1 − r,1 − g or 1 − b), followed by an image-wide renormalization.
This facilitates the estimation of the airlight constant color, and enables us
to compute a good approximation of the haze-free image using a layer-based
approach.

Finally, we present two novel fusion-based techniques that deal with im-
age decolorization and image dehazing. We first demonstrate that by defining
proper inputs and weight maps, a fusion-based strategy can yield accurate
decolorized images, in which the original discriminability and appearance of
the color images are well preserved. Besides the independent R,G,B channels,
we employ as well an additional input channel that conserves color contrast,
based on the Helmholtz-Kohlrausch effect. The algorithm employs three dif-
ferent weight maps in order to control saliency, exposure and saturation. In
order to minimize artifacts introduced by the weight maps, our approach is
designed in a multi-scale fashion, using a Laplacian pyramid representation
of the inputs combined with Gaussian pyramids of normalized weights. The
second fusion-based technique deals with single image dehazing (no additional
information such as hardware and images are required). The method employs
a fusion-based strategy that takes as inputs two adapted versions of the orig-
inal image that are weighted by specific maps in order to yield accurate haze
free results. The method computes in a per-pixel fashion and is straightfor-
ward to be implemented.

Comprehensive experiments and extensive comparison with the existing
state-of-the-art related techniques demonstrate the accuracy and utility of all
our novel methods.
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Chapter 1

Introduction

Contents

1.1 Problem Statement and Motivation . . . . . . . . . 3
1.2 Summary of Contributions . . . . . . . . . . . . . . . 8

1.3 Overview of the Dissertation . . . . . . . . . . . . . 10

1.1 Problem Statement and Motivation

Photography, as the art of drawing with light, is the process of recording vi-
sually meaningful changes in the light leaving a scene. The philosophy of
photography is that the lens may never lie, however in a certain degree it may
bend the truth. The difference between camera and the human eye is mainly
due to the differences in aptitude to adapt to the acquired light. The human
eye is able to adapt locally, while the camera adjusts globally. The perception
of lightness and color is in general influenced by the existing contrast among
regions and their adjacent surroundings. Due to the light adaptation abil-
ity, the human visual system (HVS) is hypothetically more sensitive to local
changes being quite insensitive to absolute global values under normal illumi-
nation conditions (Schubert 92). As suggested by Edwald Hering and later
demonstrated by Hans Wallach (1948) (Palmer 99), the process of perceiving
lightness is greatly influenced by relative contrast. Therefore, our way of see-
ing is not just a simple registration procedure of the luminance, but a complex
balance and processing of the incoming light and the yielded contrast.

Nowadays, despite of the tremendous progress, the existing digital cam-
eras still show some limitations. For example, when taking photos of a scene
with high dynamic range of intensities the cameras will search to average



4 Introduction

out the exposure for the entire photo. The compromise solution, performed
by many photographers, is to select manually the proper exposure for the
specific part of the scene that is interested to be emphasized. However, in
both cases the dynamic range leads to under- or over- exposure for the re-
gions of the scene that are not well exposed due to this lock exposure op-
eration. Basically, when a high exposure is employed, visual details of dark
regions are well depicted while bright regions are saturated. On the other
hand, when low exposures are employed, visual details of bright regions are
well imaged, but dark regions appears in general too dark. This pretty much
trial process often may produce images that do not correspond to the real
appearance of the scene. To deal with this problem, digital cameras manu-
facturers have proposed various schemes that aim to compute the appropriate
exposure value or more complex combinations such as Auto Exposure Brack-
eting (AEB) that merges three different exposed frames into one image that
searches to find the match of the closest exposure as possible (Raskar 06).
Modern image acquisition employs High Dynamic Range(HDR) photos that
are obtained by merging a series of images captured with different exposure
times (Morimura 93; Burt 93; Tsai 93; Madden 93; Mertens 09) or more com-
plex by estimating the radiometric response function of an imaging device
before the fast merging operation (Mann 95; Debevec 97; Mitsunaga 99).

Although the progress of digital cameras persists, software post-processing
strategies are still required in many cases. Due to the exposure, aperture, tone,
color range and as well display medium there are still several long-standing
limitations (since film-style photography age) such as constraints of dynamic
range, depth of field, field of view, resolution and many others.

In the classical approach to obtain a pleasing realistic depiction of the
scene, the artists are manually employing various techniques into the dark-
room. On the same note, the newly emerging Computational Photography field
aims to produce a richer visual experience beyond of just a simple set of pixels
and to present the acquired information more machine readable. Contrast is
a fundamental attribute that influences the visual communication. Contrast
is often used by artists for content emphasis and to change the presented
information into a more legible composition. For viewers, regions characterized
by higher contrast will focus their attention. In images, contrast underlines
the message being an indispensable compromise since the dynamic range of
our visual system is several orders of magnitude greater than the ones available
to image reproduction systems.

Therefore, it is unsurprising that contrast based manipulation techniques
have been commonly involved in many applications that generally converts
the raw data from the sensors into more elaborated outputs. For instance,
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b. Vincent van Gogha. Monet c. Michelangelo

Figure 1.1: Opponent color contrast was used by famous painters.

appropriate processing might restore the image contrast from multiple im-
ages degraded by weather taken with different sensors (Schaul 09) or taken
with different polarization angles (Treibitz 09; Shwartz 06). Images shot by
different sensors are combined together to produce a better contrast render-
ing (Burt 93). Similarly, images taken in various illumination conditions are
mixed in order to obtain surrealist images and videos (Raskar 04). As a well-
known example, panoramic images are achieved by stitching a series of over-
lapping images that often involve contrast adjustment to obtain visually im-
perceptible transitions (Brown 07). Furthermore, tone mapped images are
obtained by combining multiple exposures accounting for local contrast char-
acteristics (Mertens 09).

In this dissertation we explore several novel techniques mainly founded on
the contrast analysis and manipulation. Basically, we have investigated the im-
pact of contrast manipulation for two important operators: color to grayscale
(decolorization) transformation of the images/videos and the restoration of
the hazy (foggy) images. Our aim is to overcome the existing constrains im-
posed by the image content and depiction. Since low image contrast limits
the amount of information as they are conveyed to the viewers, images with
higher contrast are in general preferred being considered perceptually more
accurate. Moreover, a higher contrast has been demonstrated to simplify the
comprehension of the visual stimulus and to increase the dynamic range of the
images like in the real scenes (Yoshida 05).

A great deal of work on this topic has been inspired by the visual percep-
tion. This field investigates the way of our brain interprets the signals received
from the eye. The knowledge of the human visual system facilitates scientists
to understand the image content, to obtain images that convey realistically the
visual sensation generated by the scene, or even more can surpass the visual
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Color image Standard grayscale

Our saliency-guided grayscale
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Contrast evaluation

90-100
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Figure 1.2: Standard grayscale conversion is unable to preserve the original
contrast.

acuity performances obtained by our system (e.g. restoring images ruined by
haze or fog). Similarly, as will be shown in the next chapters, parts of our work
have been inspired as well from perceptual assumptions and observations.

Contrast has been defined in various ways, however, the basic definition is
that the contrast reflects the disparity in luminance or color between two re-
gions (next chapter elaborates about this topic). Chromatic contrast is tightly
connected with the opponent process. Introduced by Edward Hering, aiming to
explain the phenomenology of color perception, the color opponent process has
numerous implications in visualization and color technology (we detail the sub-
ject in section 2.10). For centuries, artists have explored the subtleties of color
opponency effects to produce different psychological effects (Livingstone 08).
Using blue for the shadows and juxtaposing yellow in the near field, Monet has
increased the apparent contrast. Red and green accentuate each other dra-
matically as has been illustrated by Vincent van Gogh in Night Cafe in Arles.
Michelangelo Buonarroti has also combined colors to create mid-tones and
light tones for example, adding yellow highlights to an orange robe (note the
produced visual effect in Figure 1.1). We as well employ the opponent process
to perceptually decolorize images as will be demonstrated in chapter 3.

In addition, local contrast represents a valuable information that is as-
sociated with contours related effects that not surprisingly can influence in
a certain degree apparent contrast of the image. As an important applica-
tion is multi-scale (pyramid) image decomposition that we have exploit in our
fusion-based techniques (see chapter 5).

As we will demonstrate, the way of preserving and adjusting these contrast
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Figure 1.3: Images degraded by haze are characterized by poor contrast and
lower saturation.

relations could have a great influence to the apparent contrast of the image.
The main goal of our approaches is to detect the loss of contrast and to produce
images with higher contrast.

Grayscale conversion. Although color is an important image descrip-
tor, there are several applications such as printing, aesthetic stylization and
also computer vision applications that employs grayscale images. When the
image attributes such as contrast and saliency are depicted by the chromi-
nance channels, standard conversions that discharge the color information will
produce images that will not maintain the original visual appearance of the
image and the discriminability between different regions. Furthermore, since
the straightforward conversion averages the values of the three image channels
the resulted image in many cases presents a flat appearance. This limita-
tion is more prominent in general in the regions where the contrast is already
degraded. This assumption is verified by applying the image quality assess-
ment (IQA) metric of Aydin et al. (Aydin 08) (please refer to section 2.6.1
for details about this metric). In Figure 1.2 notice regarding the standard
grayscale conversion the loss of visible contrast marked with green color and
the reverse contrast marked with red color. To overcome the limitations of
the standard conversions we introduced two perceptually accurate decoloriz-
ing methods presented in chapter 3 and chapter 5. As can be observed in
Figure 1.2 our perceptual saliency-driven grayscale conversion increases the
contrast (the IQA blue is more prominent).

Restoration of hazy images. Contrast manipulation has found util-
ity as well for the problem of restoration of images degraded by atmospheric
phenomena. Images taken in outdoor environments might be degraded by phe-
nomena such as fog and haze. Scattering and absorption influence the reflected
light of distant objects reaching the camera lens. As a result, images taken in
bad weather conditions (or similarly, underwater and aerial photographs) are
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characterized by poor contrast, lower saturation and additional noise. Notice
in Figure 1.3 the contrast reversal (red) and amplification (blue) by applying
the same image quality assessment (Aydin 08) metric between the hazy and
restored images. We give an effective solution to this problem in chapter 4
that describes a fast approach to detect and remove the haze from a single
image. Moreover, in chapter 5 we introduce an original fusion-based single
image dehazing strategy.

1.2 Summary of Contributions

This dissertation presents several contrast-based algorithms that are able to
perceptually enhance the original image appearance. We have focused mainly
to color-to-grayscale conversion and single image dehazing, but several other
applications are considered as well.

Color to Grayscale Guided by Saliency Firstly, we introduce an effective
color-to-grayscale algorithm that preserves the image image appearance by
primary searching to maintain the contrast in the salient regions. Guided by
the original saliency, the method blends the luminance and the chrominance
information in order to conserve the initial color disparity while enhancing the
chromatic contrast. As a result, our straightforward fusing strategy generates
a new spatial distribution that discriminates better the illuminated areas and
color features. Since we do not employ quantization or a per-pixel optimization
(computationally expensive), the algorithm has a linear runtime. Extensive
experiments and a comprehensive evaluation against existing state-of-the-art
methods demonstrate the potential of our grayscale operator. Furthermore,
since the method accurately preserves the finest details while enhancing the
chromatic contrast, the utility and versatility of our operator have been proved
for several other challenging applications such as video decolorization, detail
enhancement, single image dehazing, segmentation under different illuminants,
image matching by local feature points and sound substitution systems.

A Fast Semi-Inverse Approach to Detect and Remove the Haze from
a Single Image Restoration of image degraded by atmospheric phenomena
such as fog or haze is solved in general by employing either additional im-
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ages/hardware or expensive prior-based solutions. We present a novel single
image dehazing algorithm that allows for fast identification of hazy regions
of an image, without making use of expensive optimization and refinement
procedures. By applying a single per pixel operation on the original image, we
produce a semi-inverse of the image. Based on the hue disparity between the
original image and its semi-inverse, we are then able to identify hazy regions
on a per pixel basis. This enables for a simple estimation of the airlight con-
stant and the transmission map. Our approach is based on an extensive study
on a large data set of images, and validated based on a metric that measures
the contrast but also the structural changes. The algorithm is straightforward
and performs faster than existing strategies while yielding comparative and
even better results. We also provide a comparative evaluation against other
recent single image dehazing methods, demonstrating the efficiency and utility
of our approach.

Fusion-based Image and Video Decolorization Fusion is a well-studied
topic in computer graphics that has found many useful applications, such
as interactive photomontage (Agarwala 04), image editing (Perez 03), im-
age compositing (Brinkmann 99; Grundland 06) and HDR imaging (Burt 93),
(Mertens 09). However, we are the first that demonstrate the utility of fusion
to effectively decolorize images and videos. Defining proper inputs and weight
maps, our fusion-based strategy proves to yield accurate decolorized images, in
which the original discriminability and appearance of the color images are well
preserved. The algorithm takes four inputs, beside the independent R,G,B
channels, we have additionally considered an input channel that represents
color contrast, based on the Helmholtz-Kohlrausch effect. The algorithm uses
three different weight maps in order to control saliency, exposure and satu-
ration. The concept of this approach is that guided by our defined quality
measures, the algorithm select the best pixels from the inputs and combine
them into the final result. The algorithm is designed as a multi-scale approach
and therefore prevents potential artifacts that could be introduced by apply-
ing the weight maps in a per pixel fashion.

Single Image Dehazing by Fusion We also demonstrate that the image
fusion technique is suitable to restore hazy images. The input of the fusion
algorithm are two modified versions of the original image that represent the
white balance version of the original hazy image and an adapted version that
presents increase contrast into the initial hazy regions. In the fusion pro-
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cess, the inputs are weighted by three specific computed maps for luminance,
saliency and chromatic information, in order to generate the most prominent
detected features into the final result. The method is effective since it com-
putes in a per-pixel fashion and demonstrates to yield comparative and even
better results than the more complex state-of-the-art techniques. It is suitable
for real-time applications.

1.3 Overview of the Dissertation

The dissertation is structured as follows:

Chapter 2 provides a background for vision and lightness perception. We
introduce a general description on perceived lightness. We review the vari-
ous existing definitions for global contrast and local contrast. We present the
color constancy mechanism and the tree main color theories : the trichromatic
theory, the color opponency and the dual process theory. In the final part we
briefly review several important color spaces.

In chapter 3 we first discuss the problem and the related work of color to
grayscale techniques. Afterwards, we introduce a novel contrast preservation
algorithm driven by the saliency information and built on the color opponency
principle. To validate the perceptual accuracy of our operator we performed
an extensive user evaluation of the existing state-of-the-art grayscale transfor-
mations where the participants had the entire control to analyze and compare
the results of different methods. The utility of our operator has been proved
for several other challenging applications ( e.g. video decolorization, detail en-
hancement, single image dehazing, segmentation under different illuminants,
image matching).

Chapter 4 deals with the restoration of the images degraded by atmospheric
phenomena such as fog or haze. We describe an original single image dehazing
technique that allows for fast identification of hazy regions of an image in a
pixel-wise fashion. The accuracy of our dehazing technique has been demon-
strated by a comprehensive comparison with the recent single image dehazing
methods.

In chapter 5 we analyze the fusion-based techniques that recently have been
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employed in several applications. We first present a novel fusion-based image
decolorization technique that is able to preserve accurately the original ap-
pearance and discriminability of the colors in the converted image version. As
well, we present a fusion-based solution for single image dehazing. For both
fusion-based techniques (decolorization and dehazing) we provide extensive
evaluations and comparisons against the recent related techniques.

A brief summary and as well a discussion of several future directions are pre-
sented in chapter 6.





Chapter 2
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Color and Contrast
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This chapter discusses the physiological impact of the contrast and as well
general aspects of the luminosity and color perception. Besides defining and
explaining fundamental terms that we are going to use later in this thesis,
the content of this chapter argues that the contrast plays a crucial role in the
humans visual perception (Palmer 99). Practically, this chapter represents the
background theory to understand our techniques that will be described in the
next chapters.

After discussing the perception of lightness, in the next sections we review
various definitions of the contrast, introduce the contrast sensitivity measure-
ment and as well discuss several known visual effects of the contrast on the
perceive lightness, like contour contrast and simultaneous contrast illusions.
In the last part is discussed the color perception and a brief theory of color
spaces.

2.1 Lightness Perception

Color vision is the ability to distinguish changes in the wavelength composi-
tion of a visual stimulus, that ultimately let us to discriminate objects based
on the wavelengths (or frequencies) of the light they reflect, emit or trans-
mit. Vision is distinctive from any other sensory modality due to the unique
experiences that arises from color and light perception. The way we experi-
ence the surface color is very different in structure than the physical light. A
physicist requires a large number of components to describe the spectrum of a
given light, while in comparison, a psychologist needs only three values. This
reduction of information complexity appears due to the fact that surface color
can be described by people with normal vision in three dimensions: lightness,
hue and saturation. This involves that color vision looses a certain amount of
information since a similar perception might arise from lights with different
spectrums.

Luminosity or perceived lightness is a term that characterizes the way how
human visual system (HVS) reacts to and interprets the light. Even though
the scene light reflected by an object can be easily measured, it is relatively
difficult to estimate its impact on the HVS. Understanding how HVS reacts to
the light could help scientists to have a more clear perspective about several
complex tasks such as depth estimation, spatial organization, motion and more
others, which are carried out by different parts of our visual system.

Lightness constancy is the property of the HVS to perceive a surface consis-
tent as having the same lightness despite lying in different illumination fields.
Most of our perception of lightness arises from observations of surfaces reflec-
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tions since only a few objects (bulbs, displays, sun) actually emit light. When
judging the appearance of lightness we are in a certain degree influenced also
by the contrast between regions and the surrounding background. A common
example of contrast influence to the HVS is when two surfaces that reflects
the equal amount of photons are perceived differently when surrounded by
different background.

2.2 Global Contrast

Contrast perception is one of the most important aspects of vision. A signifi-
cant research topic about contrast is whether the luminance that helps us to
determine the surface appearance are computed globally across large distances
or locally at luminance edges.

Contrast is the consequence of the luminance difference, created by the dif-
ference in the amount of the reflected light from two surfaces in their vicinities.
Contrast phenomena can be generally defined as a disparity in visual prop-
erties at which the observer can distinguish an object from the background.
The perception of contrast has mostly been defined based on trivial tests that
evaluate the appearances of patches and various backgrounds. However, it
is rather complex to measure contrast in natural images, since test images
used in the study of pattern perception contains small contrast variations.
Therefore, there are several slightly different ways to define the contrast, that
depend mainly by the specific situations and scenarios.

Apparent contrast is a perceptual measure computed as the disparity of
brightness changes, where brightness is the apparent luminance or the per-
ceived amount of light that reaches the eye from any part of the visual field.

Global contrast can be defined simply as a ratio between the maximum
and the minimum of the luminance value. Due to this property, this function
can provide information about the luminance range of the scene and as well
might help to identify light sources and to separate the foreground from the
background. Considering that the luminance covers a wider range in the real
world and also in the HDR images, a logarithmic ratio should be applied
instead. The same expression is applicable for measuring the contrast of the
perceived lightness:

CGen =
LMax

LMin
Clog = log10

LMax

LMin
(2.1)

Often employed in clinical work, the Michelson contrast is measured for
maximum LMax and minimum LMin luminance. In a similar manner, the
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Figure 2.1: First order derivative and second order derivative.

contrast can be computed employing the mean luminance LMean:

CMichelson =
LMax − LMin

LMax + LMin
CMean =

LMax − LMean

LMean
(2.2)

The root mean square(RMS) contrast is expressed as the standard devia-
tion of the pixel intensities from the average intensity of all pixels in the image
Ī. It does not account to spatial frequency content or the spatial distribution
of contrast in the image (Peli 90):

CRMS =

√√√√ 1
MN

N−1∑
i=0

M−1∑
j=0

(Iij − Ī)2, (2.3)

where intensity Iij points to the i-th j-th element from the two dimensional
image of size M by N . The image I is normalized to fit the the [0, 1] range.

The Weber contrast is measured for a background intensity Ib and for a
patch that is ΔI brighter or darker than the reference background.

CWeber =
ΔI

Ib
(2.4)

2.3 Local Contrast

In comparison with the test images, natural images are more complex since
the contrast may vary spatially over the depicted scene. Therefore, natural
scene depictions can contain both areas characterized by high contrast (e.g. a
forest wall, a field of flowers) and regions with low contrast (e.g. hazy/foggy
regions, clear sky). The contrast expressions presented before may not cap-
ture sufficient information that accurately characterize the image, especially
when the image contains both different types of contrast areas that will add
their influence to the final result. Moreover, a single global measure can be
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Figure 2.2: Laplacian of Gaussian is approximated by the difference between
the wider and the narrower Gaussian.

influenced by highlights and shadows and thus, images perceived with low con-
trast may register high contrast rates. For local contrast depiction, the same
presented measures could be applied locally to each pixel and its surrounding.
Physiology studies have connected local contrast perception with the local
gradient (Valois 90), (Magnussen 75). Indeed, local contrast measures a dis-
continuity in intensity, and the peak of the change is marking edges. Local
contrast is therefore characterized by the magnitude and the orientation of
edges. Practically, the rate of change of intensity or the intensity gradient
measures the local contrast. In computer vision and image processing the
procedure of detecting gradient variations is useful in for feature detection. In
general, detecting sharp contrast variations has large applicability, since dis-
continuities in image brightness may be related with the depth discontinuities,
scene illumination variation, changes in material properties, etc.

There are many ways to determine the contrast transitions. Probably,
the most straightforward way is to compute the first order derivative (see
Figure 2.1). Typically convolution kernels such as Prewitt, Roberts and So-
bel (Rafael 08) are employed to approximate a 2D spatial gradient on an im-
age. This operation finds the approximate absolute gradient magnitude at
each point in an given grayscale image.

Since in most of the images the contrast transition is more gradual than
abrupt (e.g. ramp-like transition), it is best characterized by a contour de-
tection, where the magnitude first rises, peaks and then falls. The second
order derivative yields positive magnitude on the negative side, negative mag-
nitude on the bright side and peaks where the second derivative is zero (see
Figure 2.1).

A formulation of the second order derivative may be expressed by using
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isotropic filters such as the simple Laplacian (Rosenfeld 82). Since derivatives
of any order are linear operations, the discrete formulation can be implemented
using filter masks (Rafael 08). Given the fact that the Laplacian is a second-
order derivative, it has the property to enhance the details but also to enhance
the undesired noise of the image. An alternative approach is the Marr-Hildreth
edge detection (Marr 80) method that convolves the image with the Laplacian
of the Gaussian((LoG) function 2.6, or with Difference of Gaussians(DoG) 2.5
(DoG represents the fast approximation of the LoG).

G(x, y, σ) =
1

2πσ2
exp−x2+y2

2σ2 (2.5)

LoG(x, y, σ) =
1

πσ4
(1 − x2 + y2

2πσ2
) exp−x2+y2

2σ2 (2.6)

2.4 Multiscale Local Contrast

The Laplacian pyramid has been often described as a data structure that
captures the spatially varying contrast that is well-suited for scaled-image
analysis. The utility of this representation has been exploited for instance
to isolate important components of the image pattern for analysis and direct
transformations. Both Laplacian of Gaussian (LoG) and Difference of Gaus-
sian (DoG) approaches have been employed for pyramid decomposition. This
image representation is a close simulation of the local spatial processing and
the band-limiting nature of human vision (Palmer 99) which involves that the
image is split into several bandpass images and one lowpass image.

The well-known pyramid decomposition of Burt and Adelson (Burt 83)
splits the image into several details levels employing the LoG operator. Band-
pass information is obtained by extracting Gaussian (lowpass) pyramid level
from the next lower level in the pyramid. A significant quality of the Laplacian
pyramid is that it contains a complete image representation. To reconstruct
the image the steps can be reversed. The pyramid composition involves con-
volution of the original image with a set of Gaussian-like weighting functions.
The image I is decomposed into n variants bi each representing the local con-
trast for the level i and the low pass image l.

I =
n∑

i=1

bi + l (2.7)

We employed as well a multi-scale Laplacian decomposition in our fusion-based
techniques described in chapter 5.
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In the work of Peli (Peli 00) is presented an alternative decomposition
where the contrast is computed separately for each frequency band. The
contrast at each point in the image is the ratio between the intensity at a
pixel and the corresponding local luminance mean image:

C(x, y) =
b(x, y)
ī(x, y)

(2.8)

where b(x, y) represents the information of the bandpass-filtered image for a
certain decomposition level and ī(x, y) (with ī(x, y) > 0) is the arithmetic
local mean luminance image containing all frequencies below the band i.

In situations when is needed more accuracy, an alternative approach is
to measure the contrast in the frequency domain instead of spatial domain
by representing the image into the Fourier space. For HDR images Mantiuk
et al. (Mantiuk 06) employ the perceptual Just Noticeable Difference that is
obtained by transforming contrast magnitudes through a transducer function
that mimics their threshold (super-threshold) behavior.

2.5 Helmholtz-Kohlrausch Effect

The Helmholtz-Kohlrausch effect is an entoptic phenomenon in which a higher
saturation of hues spectral influences the brightness being perceived as part of
the color’s luminance. Therefore, chromatic luminance is induced proportion-
ally with the saturation, while white represents the standard of comparison.
The Helmholtz-Kohlrausch effect is defined as: A chromatic stimulus with the
same luminance as a white reference stimulus will appear brighter than the ref-
erence (Nayatani 97; Nayatani 98). The Helmholtz-Kohlrausch effect inspired
our grayscale operator described in chapter 3. We also employed Helmholtz-
Kohlrausch as an additional input in our fusion-based decolorization scheme
presented in chapter 5.

2.6 Contrast Sensitivity Measurement and Spatial

Frequency

Since contrast perception plays a key role in vision, much effort has been
done to define and measure the contrast sensitivity of the HVS. Contrast
sensitivity refers to the visual ability to see subtle changes in stimulus contrast.
For instance, contrast sensitivity let us to see a shade of gray on a white
background or the facial features of a person standing in a poorly lit room.
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Which are the conditions that must be respected in order to see the differ-
ence? A generally feasible formulation is the Weber equation that can be used
in many areas as a baseline to compare performance and as a rule-of-thumb.
During his experiments, E. H. Weber (1834) (Palmer 99) has gradually in-
creased the weight hold by a blindfolded man while he asked him to indicate
when he first felt the weight adjustment. Weber found that the smallest no-
ticeable difference in weight was proportional in ratio with the initial weight.
The law is suitable also for the auditory sensory, like for example in a noisy
environment a person must speak loudly to be heard while a whisper is distin-
guished in a quiet room. The Weber’s law expresses that the ratio of increment
threshold to the reference is a constant. For visual contrast sensitivity, We-
ber law’s indicates that the contrast is constant in proportion to mean local
luminance in the bright range, then decreases as illumination descends to dark.

In assessing the Contrast Sensitivity Function(CSF) the common test is
using sinusoid grating functions (see Figure 2.3) that help to examine the
perceptual response to simple stimuli at a broad range of spatial frequencies
and increasing contrast magnitudes. Typically, the best scores are recorded
at low-frequencies, while at high-frequencies the visibility decreases since the
grating (stripes) becomes very thin.

Moreover, the assessment of contrast sensitivity can be performed in a
similar way as the vision standard test that uses a letter chart (the Snellen
standard tests of visual acuity evaluates the grade we can see objects of dif-
ferent sizes at high contrast). The contrast sensitivity Pelli-Robson (Pelli 02)
chart can verify the ability to detect objects of different sizes and decreasing
contrast. The better sensitivity is obtained for medium-sized objects when
their contrast is low, while the smallest objects can be detected only when
their contrast is very high.

2.6.1 Image Quality Assessment (IQA) Metric

In general image quality metrics estimate the magnitude of visible distor-
tions of different degraded versions relative to the ideal reference image. Even
if the literature abounds of different strategies, there is no specialized metrics
to evaluate the quality of grayscale transformations and dehazing strategies
that we are going to discuss and validate in this disertation. While most of
the existing metrics (Lubin 95; Wang 02; Wang 04) are focusing mainly on
the structural changes we believe that the metric of Aydin et al. (Aydin 08)
would be more appropriate for our evaluations. This metric (with an online
implementation1) is built on a model of the human visual system (HVS), as

1http://drim.mpi-sb.mpg.de/
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Figure 2.3: Contrast sensitivity Function(CFS) diagram. Notice that
the contrast sensitivity is reduced at high frequencies. Better sensitivity is
registered for lower-frequencies or when the grating is wider.

it effectively blends the contrast detection with the structural similarity mea-
surement. Instead of detecting only the contrast changes, the metric of Aydin
et al. (Aydin 08) is sensitive to three types of structural changes: (a)- loss of
visible contrast (green) - a contrast that was visible in the reference image
becomes invisible in the transformed version, (b)- amplification of invisible
contrast (blue) - a contrast that was invisible in the reference image becomes
visible in the transformed version and (c)- reversal of visible contrast (red) - a
contrast is visible in both images, but has different polarity. As a general inter-
pretation contrast loss (green) has been related with blurring, while contrast
amplification (blue) and reversal (red) have been connected with sharpening
(see Figure 2.4 for the response of this metric for a simple example where the
contrast is increased gradually).

As will be presented in the next chapters, we employed this metric to eval-
uate the contrast changes for decolorizing techniques and as well for dehazing
methods.

2.7 Visual Saliency

Visual saliency is a broadly defined concept that indicates that some of the
scene parts pre-attentively stands-out more than other and produce within the
early stages of HVS a some form of immediate visual arousal. That means,
that when we briefly look at images, some structures will attract our immediate
attention even without scanning the entire image.

The concept of saliency is associated with the potential influence of a stim-
ulus onto our perception. Saliency detection is often researched in the context
of the visual system, but similar mechanisms operate in other sensory systems.
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contrast

Figure 2.4: Response of IQA metric to simple contrast stretching.
Contrast is increased from left to right, which results in more clipping and
generates stronger visible contrast loss and reversal responses (images courtesy
to Aydin et al. [2008]).

A number of experiments (Treisman 85) has reported that certain visual fea-
tures pop-out or are immediately perceivable within the HVS(a review of these
can be found in (Milanese 93)).

Saliency information measures the degree of conspicuousness with respect
to the neighborhood regions. Itti et al. (Itti 98) have developed a biologically-
inspired model of bottom-up, task-independent, saliency-based selective visual
attention. They have extended the original idea of Koch and Ullman (Koch 85)
of the existence, in the brain, of a specific visual map that is responsible en-
coding for local visual conspicuity. The model estimates a set of multi-scale
neural feature maps such as color, intensity and orientation. Each of the inter-
est feature map is modulated by the activity in neighboring neurons, inspired
from recent neurobiological findings. To estimate the most salient feature of
the map, this approach uses a winner-take-all neural network. In addition,
to direct the focus of attention to the next most salient region, an inhibition-
of-return mechanism (inspired from human psychophysics) is employed. This
two steps guarantee that the saliency map reflects and is scanned in decreasing
order.

A more effective approach of Achanta et al. (Achanta 09)has been inspired
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Salient regions (Itti et al. model) Salient regions (Achanta et al. model)

a. b.

Figure 2.5: From left to right: a) salient regions detected by the algorithm of
Itti et al. (Itti 98) when both color and intensity are considered. b) saliency
map estimated by the effective method of Achanta et al. (Achanta 09)

by the biological concept of center-surround contrast. They have proposed a
frequency tuned method that straightforward estimates pixel saliency using
a pixels color difference from the average image color(in the perceptual color
space CIEL∗a∗b∗). This approach is computational effective, however can be
insufficient to analyze complex variations common in natural images.

2.8 Contrast Visual Effects

2.8.1 Contour Contrast Illusions

Detection of edges may be related with several illusions. A direct transition
from low to high intensity produces the edge appearance, that is a thin con-
necting border between the two adjacent areas. Most of the transitions in the
real world are produced gradually and seem to blend the regions. Illusion may
appear in images that contains both gradual and sharp transitions.

The Mach bands effect (named after the physicist Ernst Mach) is perceived
when two regions with uniform intensity are connected by a narrower strip
with uniform gradient region. Notice that the light band 2.6 is seen to the left
side and the black band is seen to the right. This effect is explained by the
high-boosting filtering process that involves lateral inhibition (Palmer 99).

Sharp contrast transitions have also the effect to increase the apparent con-
trast. The cornsweet illusion also known as Craick O’Brian illusion (Ware 83;
Palmer 99; Livingstone 08) demonstrates that a sharp discontinuity can in-
fluence the perception of a uniform patch. In comparison with the Mach
bands where the effect appears only on areas that are close to the gradient,
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a. Sharp edge b. Mach band effect c. Cornsweet effect

Figure 2.6: The left image contains two uniform regions and a narrower strip
(with uniform lightness gradient) in between. In the Mach band illusion two
bands, a white one and a black one appear immediately to the left and to the
right of the middle strip. In mornsweet illusion is noticeable that the right
part of the image seems to be darker than the left one even though both have
exactly the same gray level.

the cornsweet illusion seems to influence the perception of the entire areas 2.6.
Notice that the adjacent region to the light part appears lighter and the region
adjacent to the dark part appears darker.

2.8.2 Simultaneous Contrast Illusion

Introduced by Michel Eugne Chevreul, simultaneous contrast involves both
achromatic perception and color perception. Simultaneous contrast may be
demonstrated by displaying regions with identical spectra surrounded by dif-
ferent backgrounds. The central regions (notice Figure 2.7) have different
perceived lightness, depending on their backgrounds. The patch within the
black square appears lightest than the patch within the white square. If the
background is cut out and the patches are examined against uniform back-
ground, it can be seen that they all have the same shade of gray. The si-
multaneous color contrast is valid as well for combining color patches against
different color backgrounds. Notice in Figure 2.7 (b,c) that when the color
patch is surrounded by a strongly colored background, the perception of the
center patch is visibly affected by the background color. The perceived color
is shifted toward the complementary hue to a degree that is proportional with
the saturation and the viewing duration. This effect is due to the chromatic
adaptation process that is depicted in the next part 2.9.

Some isoluminant color combinations (e.g. those presented in Figure 2.8)
cause illusions when placed together. The theoretic explanation is that the
human visual system treats separately luminance and color. The information
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a.

b. c.

Figure 2.7: Simultaneous contrast produced in achromatic (a) images. The
uniform patch appears darkest against white background, lightest against
a black background and intermediate lightnesses against intermediate back-
grounds. Similarly, this effect is also noticeable for color images. Notice in (b)
and (c) the color shift produced by the simultaneous hue contrast.

of WHERE (Livingstone 08) such as shapes, lighting or depth is obtained from
luminance, while the information of WHAT (Livingstone 08) like texture and
material is extracted from color. The final scene interpretation is obtained by
combining at the cognitive level this information.

2.9 Color Perception

Chromatic color constancy is the mechanism of the visual system that con-
tributes to the perception of invariant properties of a surface’s spectral re-
flectance for various changes in illumination or viewing conditions. Our per-
ception about objects that surround us seems unaltered by the illumination
changes (as examples can be considered morning versus afternoon light and
fluorescent versus tungsten). The physical phenomena is explained by the fact
that the changes in spectral of different illumination sources can cause the
modifications in the perception of the surfaces. The observed color of differ-
ent regions in a chromatic image is in theory a mathematical multiplication
between the surface reflectance spectrum and the light spectrum. It is not
fully understood yet, how can our visual system separates the wavelengths in
the reflectance from the wavelengths in the illuminating light. In theory this
is an inverse problem with no unique solution, since there are six unknown
parameters for each surface (three from the reflectance and three from the il-
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Simultaneous contrast

Red text on blue background

Figure 2.8: Some color combinations, such as the isoluminant blue and red
in this synthetic image or the red text on a blue background cause illusions -
shapes may appear jittery, text may vibrate and cast a shadow.

luminating light) and only three observation parameters (the information from
the cones output). Thus, it is remarkable the fact that our HVS is capable to
achieve, apparently with no effort, color constancy in normal conditions.

Chromatic adaptation (Palmer 99) plays a key role in color constancy. Neu-
rophysiological basis assumed that when a component, for example green is
introduced by blue-tinted glasses, the M cones (Palmer 99) will fire less due
to the fatigue induced by the constant presence. This adaptation mechanism
discharges the additional hue-shifting effect. This process of adaptation is not
enough to explain the entire effect. It is believed that an observer who faces
these conditions can make several assumptions to get the desirable solution.
Identifying these assumptions, a study case can be modeled properly and cor-
rect solutions can be achieved. In general three assumptions are made: 1.
consistency of illumination - this assumption regards the spectrum properties
of the light source that can be considered to be similar for the entire image,
with small variation of the intensity due to the distance from light, surface
orientation or shadows; 2. restricted range of light sources- in most of the
cases and especially in natural images, a person will meet only a small range
of possible light sources. We rarely meet light sources that differ consider-
ably chromatically. This assumption constrains the theoretically full range of
possible color constancy to a significant reduced searching space (Judd 64);
3. restricted reflectances - in natural image only a small amount of possible
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surface reflectances are found and even more, these tend to be smooth rather
than sharp (Cohen 64).

These constraints have been incorporated in the color constancy approach
of Maloney and Wandell (Maloney 86). The color constancy phenomena and
the evolutionary adaptation of the visual systems have been considered by
Shepard (Shepard 92) to be the explanation for the tridimensional basis of
color vision. His main idea states that variations in daylight have three degrees
of freedom. This can be interpreted by the fact that any spectral variation can
be approximated by adjusting three of the considered parameters: light/dark
level controls the quantity of considered light, that can vary on the entire possi-
ble range form the deep shade of moonlight to the midday sunlight; red/green
balance supervises the amount of long (red) versus other wavelengths with
spectral centered on green; blue/yellow level controls similarly the amount of
short (blue) versus other wavelengths with spectral centered on yellow.

Shepard’s theory (Shepard 92) can be related up to a certain point with
the Herring’s color opponency (discussed in section 2.10). A significant argu-
ment about the evolutionary role of color vision is that it enables the approx-
imately constant perception of the surfaces under various illumination condi-
tions. To accomplish this task the theory proposed a compensatory process
for the changes in the light spectrum by adapting the black/white, red/green
and blue/yellow balance.

An important question is whether color constancy is an inborn ability. The
answer may have important influence to fields such as understanding the color
perception or visual particularities like color blindness. Although there are
a few experiments on infants, they all agree so far that both chromatic and
achromatic color constancy are absent at birth and are actually learned in the
first few months of life. Dannemiller experiments(1989) (Dannemiller 89) has
demonstrated by involving infants of two and four months of age using the
adaptation paradigm, that four months old infants have developed chromatic
color constancy while two months old infants do not.

2.10 Theories of color vision

Trichromatic Theory or Young-Helmholtz three component theory
states that there are three types of color receptors in the human eye. These
elements that responds differently to the wavelength of the photons that falls
on them, were considered to produce the main psychologically primary color
sensation of red, green and blue. The trichromatic theory was proposed sev-
eral times by Mikhail Lomonosov in 1757, George Palmer in 1777 and by the
physicist Thomas Young in 1802, but since all have lacked the essential opti-
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Red - Green Blue - Yellow

Figure 2.9: Hue cancellation experiment. Notice that the intermediate
color can not be described as yellowish-blue or reddish-green.

cal tools the hypothesis was not demonstrated at that moment. The theory
has been demonstrated by the german physicist and physiologist Hermann
von Helmholtz (1821-1894) (On the Theory of Compound Colors (1850) and
Handbook of Physiological Optics (1856)). He stated that just three types
of receptors or nervous fibers and the overlapping sensitivity functions are
adequate to cause the color sensation.

Color Opponency Theory introduced by Ewald Hering (1878) is based
on the analysis of sensation of color. This theory assumes that there are six
independent unitary colors, although the color identification is not separated
in six independent systems, but is based on three counterbalancing processes:
black-white, yellow-blue, and red-green. Herring was intricated by the impos-
sibility of experimenting or even imagining any colors that can be described
as yellowish-blue or reddish-green 2.9 and by the apparent mutual canceling
of blue and yellow or of red and green when they are combined in the right
proportions (Wyszecki 00; Hubel 88). Work on the physiology of isolated fish
retinas confirmed such double-opponent cells. Stephen Kuffler (1950) and later
Nigel Daw(1967) (Conway 02) have shown that the receptive field of such cells
were organized such as center-surrounding that were activated by small spots
of a different set of wavelengths and suppressed by light of a different set of
wavelengths. Similar spatial and chromatic opponencies have been demon-
strated to exist in the human primary visual cortex (Engel 97).

The theory was considered only in the last few decades, notably by psy-
chophysicists such as Leo Hurvich and Dorothea Jameson, Deane Judd, and
Edwin Land (Hubel 88). Edwin Land color constancy demonstration on the
Mondrian like painting in the 1950s and its Retinex (Land 71) algorithm have
demonstrated the importance of this concept.

Dual Process Theory (Wyszecki 00) or Stage Theory solves the controversy
about which of the two previous theories is correct or not. The theory states
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that both of the previous concepts correspond to the two-stage theory of color
vision. The first stage, that is the receptor stage involves three photopigments
(blue, green and red cones). This is the stage that validates the trichromatic
theory. The second stage is the post-receptoral level and occurs as early as
the horizontal cell validates the opponency theory.

Lateral Inhibition is a pervasive architecture in our visual system that
is responsible for the color processing. It is considered to be responsible
for many contrast related effects such as Mach bands and simultaneous con-
trast (Ratlif 65). This neural organization occurs in a two-layers network when
each neuron in the first layer excites a corresponding neuron in the second layer
and in the same time inhibits the second-layer neurons lateral to the excita-
tory connection. The output for each neuron can be obtained by multiplying
all its connection weights with their associated inputs and summing all these
products over the input. Notice the Figure 2.10 in which the output of the
second layer shows a Mach band effect.

Since the later-inhibition is only one-dimensional, a more realistic model
for retinal processing it is necessary. An accepted solution is to implement
lateral inhibition in two-dimensional structure. That involves rotating the
one-dimensional section through a second dimension. The result is that the
given receptor spreads out in all directions from the excitatory center. This
two-dimensional structure is called center-surround organization. Therefore,
the cells in the second layer respond strongly to a bright spot that activate the
excitatory center and a dark ring surrounding the spot. By this organization
the uniform light will stimulate homogeneously the entire receptive field and
will reduce the response from the second-layer (Palmer 99; Livingstone 08).

Double Opponent Cells is generally thought responsible for the simulta-
neous color contrast effects. Identified in the visual cortex (Michael 78) this
presents a similar spatially opponent center-surround organization like the one
that considers the brightness. The main difference is that double opponent
cells have a chromatically opponent structure. That means that the center
and the surround have color-opponent coding. Therefore, a red/green double
opponent cell can be either (R+G−), excitatory to red and inhibitory to green
or (R−G+) that is excitatory to green and inhibitory to red. A blue/yellow
double opponent cell can be either (B+Y −) that is excitatory in the center to
blue and inhibitory to yellow in the surround or vice versa.

This organization is also considered to play a key role in chromatic adapta-
tion. The process is much like the light adaptation. When a person walks from
a dark room into the sunlight it is experienced the blinding brightness. This
is due to the fact that the long dark period adaptation has activated most of
the photosensitive pigment molecules in both rods and cones into their maxi-
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Figure 2.10: Lateral Inhibition. In the left part is shown one-dimensional
representation of lateral inhibition mechanism. In the right part is presented
the two-dimensional structure also known as center-surround organization.

mally sensitive state. Therefore, their response is much stronger than usually.
Continuing the exposure to sunlight triggers light adaptation by which a large
number of photo-pigment molecules are bleached and put into a less sensitive
state that reduces their response to light. In case of chromatic adaptation the
chromatic afterimages are the residual effect. Changing the view from a highly
saturated color that has been fixed in the gaze for a relative long time, will
produce the perception of the opposite hue in the corresponding retinal region
as a response to a neutral (white) text field (Palmer 99; Livingstone 08).

2.11 Color Spaces

This section presents a brief description of color spaces models. For the sake of
completeness more exact and more complex description of these models can be
found in the specialized work of (Fairchild 05; Wyszecki 00; Hunt 98; Col 86).

2.11.1 RGB/CMY K Color Spaces

The additive RGB color model is built on three additive primary colors: red,
green and blue. By mixing two primary colors can be obtained a secondary
color of light, while mixing all three primaries with the right intensity can be
produced white light. Most of our devices such as digital cameras, image scan-
ners, displays although with different technologies use the same fundamental
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Figure 2.11: Opponent cells organization. R+G− is excitatory to red and
inhibitory to green, R−G+ is excitatory to green and inhibitory to red, B+Y −

is excitatory in the center to blue and inhibitory to yellow in the surround and
vice versa for B−Y +.

RGB color model principle. Since different devices have various responses
levels of R,G,and B it implicates that this color model is device dependent.
Not less important, mixing all the primary colors can be reproduced a broad
range of colors, however since the primaries can variate only the intensities
and not also the wavelength, it is not possible to reproduce all visible colors.
In consequence, the transfer across devices implicates a certain standard of
color management. In the subtractive CMY (cyan, magenta,yellow)/CMY K
(cyan, magenta,yellow, black) model, the color is determined by the absorption
of light. The subtractive principle that is used for color printing, implicates
that black is obtained by combining the cyan, magenta and yellow colors. The
primary color of the subtractive model is the one that absorbs the primary
color of light, and for example when printing ink on paper the impurities in
the pigment produce a subtractive operation between colors.

With only a few exceptions, most of the displays employ the three primaries
(R,G and B). This implies that most of the video standards considers color
primaries in terms of the chromaticites of R,G and B and the white point
(represented by an achromatic color with the highest luminance). Digital
control of the displays is practically unintuitive, for most common users, to
be performed by simply employing the RGB color model. Typically, a color is
obtained by combining the three R,G,B values in a certain amount. However,
by simply modifying the value of one channel, this operation does not match
the way of humans perceive and expect to model the color appearance. Many
times the color processing implicates first transforming the RGB image to a
new more perceptual color space, and converting it back to RGB once the
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Figure 2.12: The CIE standard observer color matching functions

adjustments are complete.

2.11.2 Perceptual Color Spaces

Our tristimulus vision system gathers information from about 6-7 millions of
cones. The cones are found in three different categories that present sensitivity
to red(65%), green(33%) and blue(2%).

Based on the physiological perception of light, in 1931 the Commission
Internationale de l′Éclairage (CIE ) have introduced one of the first math-
ematically defined spaces. The CIEXY Z color space (Guild 31b) has the
foundation on a set of three color-matching functions called Standard Observer
functions. These CIE standard observer color matching functions depicted in
Figure 2.12 have been experimented with independently on human sight by
W. David Wright (Wright 28) and John Guild (Guild 31a). During the ex-
periments subjects have been shown patches of color and have been requested
to adjust the output of three primary colors (blue=435.8nm, green=546.1nm,
and red=700nm) in order to obtain an equivalent sensation with the test color.
The three absorption sensitivity curves are overlapped for these three varieties
mostly between red and green cones.

The CIEXY Z color space contains the human gamut and since it was
designed to be device independent, it represents the basis for most of the
color management systems. The tristimulus values X,Y ,Z for a color with a
spectral power distribution I(λ) is obtained by employing the color-matching
functions 2.12, called x(λ), y(λ), and z(λ):

X =
∫ ∞

0
I(λ)x(λ) dλ (2.9)
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Y =
∫ ∞

0
I(λ) y(λ) dλ (2.10)

Z =
∫ ∞

0
I(λ) z(λ) dλ (2.11)

where λ represents the wavelength of the equivalent monochromatic light (mea-
sured in nanometers).

Soon, after the CIE diagram has been presented, it has been observed that
CIEXY Z color space does not cover uniformly the color gradation. Measure-
ments have disclosed that distances between two distinguishable colors are
unequal over the entire space and the trace of the minimal discernible colors
around a point form and ellipse, called the MacAdam ellipse. Another draw-
back that has been noticed for CIE1931 was a consequence of the Field of
View (FOV) for the test patches. The initial measurements has been done
by using small patches and the angle subtended by the eye’s fovea. Since
the cones density falls rapidly from the center of fovea, only color patches
that falls in the FOV under four degree are validated by the measurements of
CIE1931. For larger patches it has been introduced a new set of measurements
called the CIE1964. However based on the assumption that most displays and
print materials present combinations of small color patches the CIE1931 is
still maintained as a reference for analysis. Additional several transformations
have been proposed (in 1948 the CIELab and in 1960 the CIEUCS (Uniform
Chromaticy Space)) aiming to obtain a uniform chromatic space.

In 1976 two more intuitive 3D color spaces derived from the tristimulus
CIEXY Z have been introduced. The CIEL∗a∗b∗ (1976) and the CIEL∗u∗v∗

present the advantage of being better perceptual uniform considering that the
differences in the color space are more correlated with the perceived difference
between colors. Beside of being more intuitive, the color spaces axes of both
CIEL∗a∗b∗ and CIEL∗u∗v∗ estimate the perceive lightness L∗, chroma C∗

and hue H∗ (where C∗ and H∗ are the computed from a∗, b∗ respectively u∗

and v∗).
As defined by Fairchild (Fairchild 05) lightness is the brightness of a re-

gion judged relatively to the brightness of a similarly illuminated area that
appears to be white or highly transmitting.

The lightness is computed from the luminance Y and the reference white
of the luminance Yn:

L∗ = 116 f(Y/Yn) − 16 (2.12)

In both color spaces L∗ is the lightness axis, and the two channels are repre-
senting the decorrelated chromatic channels. In CIEL∗a∗b∗ the two axes rep-
resents the red-green and yellow-blue opponent color pairs. The CIEL∗a∗b∗
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color axes are obtained as a derivation from CIEXY Z using the reference
white:

a∗ = 500 [f(X/Xn) − f(Y/Yn)] (2.13)

b∗ = 200 [f(Y/Yn) − f(Z/Zn)] (2.14)

f(t) =

{
t1/3 t > (6/29)3
1
3

(
841
108

)
t + 4

29 otherwise
(2.15)

where Xn, Yn and Zn represent the normalized X,Y and Z tristimulus values
for a specified reference white point. For the common uses, the standard CIE
illuminant D65 is chosen because it roughly corresponds to the daylight aver-
age. The exponent 1/3 of function f(t) corresponds to non-linear perception
of the eye to the increased luminance (e.g. dynamic range compression). The
function f(t) is assumed linear below value t = t0 and match the t1/3 in value
and in slope. To match in value : t

1/3
0 = at0 + b and in slope 1

(3t
2
3
0 )

= a. For

a chosen value of b = 16/116, the two equations can be solved for δ = 629 :
a = 1

(3δ2)
= 7.787037 · · · and t0 = δ3 = 0.008856 · · · . The slope at the joint is

b = 16
116 = 2·δ

3 .
The derivation of the CIEL∗u∗v∗ color axes from CIEXY Z is obtained

by applying a subtractive shift of a specified white object (Col 86) reference:

L∗ =

{
29
3

3 Y
Yn

Y
Yn

> 6
29

3

116 Y
Yn

1
3 − 16 otherwise

(2.16)

u∗ = 13L∗ · (u′ − u′
n) (2.17)

v∗ = 13L∗ · (v′ − v′n) (2.18)

u′ =
4X

X + 15Y + 3Z
(2.19)

v′ =
9Y

X + 15Y + 3Z
(2.20)

It has been shown that is more intuitively to employ the cylindrical version
of CIEL∗C∗Hab and CIEL∗C∗Huv. The main reason is that the chromatic
dimensions are H∗ that represents the hue angle over the color disk and C∗

that represents the perceived colorfulness.

C∗
ab =

√
(a∗)2 + (b∗)2 C∗

uv =
√

(u∗)2 + (v∗)2 (2.21)
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Hab = tan−1 b∗

a∗
Huv = tan−1 v∗

u∗ (2.22)

Although there are several modes to define saturation s, the most common
way to define it is the perceived colorfulness of a stimulus with respect to its
lightness.

sab =
C∗

L∗ =

√
(a∗)2 + (b∗)2

L∗ suv =
C∗

L∗ = 13
√

(u′ − u′
n)2 + (v′ − v′n)2 (2.23)

The chromatic contrast or the color difference is in general computed by
employing the Euclidean distance of the (L∗, u∗, v∗) or the (L∗, a∗, b∗) 2.24.

ΔEa∗b∗ =
√

Δ(a∗)2 + Δ(b∗)2 + Δ(L∗)2 (2.24)

However, since the color difference is illuminant dependent more complex mea-
sures such as the one described in (Fairchild 05) can be employed as well.

2.11.3 HSL, HSV , HSI Color Spaces

As already discussed, since RGB color space does not correspond to human
perception of color more perceptual and intuitive alternative color spaces have
been proposed in literature (Smith 78). Compared with CIE color spaces ,
the HSV and HSL color spaces are straightforward transformations of the
non-perceptually-based RGB model. In comparison with the related models
as defined by CIE, these models are not strictly connected by the photometric
color-making attributes. Nevertheless, they are widely accepted and involved
in image editing and graphic software. The hexagonal HSL/HSV models are
obtained by projecting the RGB color cube along its main diagonal (the gray
axis) onto a plane perpendicular to the diagonal. Colors seen along the gray
axis on the cube become the interior points of the transformed color space.

The definition for value/brightness, lightness and intensity although at the
first glance seems to represent the same thing, they are all different. The val-
ue/brightness is obtain from the maximum of the R,G,B component, lightness
is the midpoint value between the maximum and the minimum of the R,G,B
values and finally, the intensity is the average of the R,G,B value:

I =
R + G + B

3
(2.25)

V = max(R,G,B) (2.26)
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L =
(max(R,G,B) + min(R,G,B))

2
(2.27)

In the hexagonal projection, hue represents the rate distance around the
edge of the hexagon which passes through the projected point. For image
analysis the hue is usually defined by the cartesian-to-polar coordinate trans-
formations that is expressed as:

H = atan2
1
2(2R − G − B)√

(R − G)2 − (R − B)(G − B)
(2.28)

Finally, the saturation attribute is defined slightly different in these color
spaces:

SHSV =

{
0, if max(R,G,B) − min(R,G,B) = 0
max(R,G,B)−min(R,G,B)

V , otherwise

SHSL =

⎧⎪⎨
⎪⎩

0, if max(R,G,B) − min(R,G,B) = 0
max(R,G,B)−min(R,G,B)

2L , if L ≤ 1
2

max(R,G,B)−min(R,G,B)
2−2L , if L > 1

2

SHSI =

{
0, if max(R,G,B) − min(R,G,B) = 0
1 − min(R,G,B)

I , otherwise

(2.29)



Chapter 3

Perceptual Decolorization of
Images and Videos

Colors are only symbols; reality is to be found in lightness alone

Pablo Picasso
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This chapters takes a more in-depth look at the perception of apparent
brightness. We discuss the influence of the color contrast on it, mainly of the
color opponency process. Combining two opponent colors increases the ap-
parent contrast of the image, effect that has been exploited by many artists
(see chapters 1.1, 2.10). Often in photography or publishing, images that
have higher contrast can have a stronger visual impact. Due to the prefer-
ence for higher contrast, color-to-grayscale techniques searches to increase the
contrast to enhance or otherwise to improve the standard luminance of the
original image. We present the limitations of the standard transformation and
then we overview the work that has been done in this area. The goal of our
novel approach is to restore the impression of color contrast that we relate
with overall appearance and especialy of the most salient features. Preserv-
ing the salient area, the conversion increases the discriminability of the scene
objects ensuring that color local contrast in that areas is well maintained. In
section 3.5.1, 3.5.2, 3.5.3 we explore the potential of decolorizing images for
several applications such as detail enhancing, segmentation under different il-
luminants and image matching. Finally we discuss the potential of employing
the proposed novel straightforward method for auditory substitution systems.

3.1 Introduction

Recent efforts to accurately integrate properties of human visual perception
have fueled an impressive improvement not only in digital photography but
also in color manipulation tools. Color is one of the main attributes that in-
fluences human visual system, being ultimately the result of our experience
and perception. However, several important applications such as substitution
systems for visually impaired people, the display of medical imaging, printed
textbooks and aesthetical stylization still require a reliable grayscale represen-
tation of images.

Mapping three dimensional color information onto a single dimension while
still preserving the original appearance, contrast and finest details is not a
trivial task. Standard monochromatic transformations, found in commercial
image editing software, neglect the color distribution, and as a result they are
commonly unable to conserve the discriminability of the original chromatic
contrast (see Figure 3.1). Consequently, isoluminant colors are mapped to
similar grayscale levels which increases the ambiguity in the decolorized image
version. Although luminance is a definite value, our subjective interpretation
that measures apparent brightness is very important in image decolorization
process. Mastering the craft of photography is to be able to communicate “the
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Color Images

Standard Grayscale Conversion (Luminance)

Figure 3.1: Limitation of the standard grayscale transformation. Standard
monochromatic transformation, found in commercial image editing software,
neglects the color distribution, and as a result they are commonly unable to
conserve the discriminability of the original chromatic contrast.

equivalent of what we saw and felt“ (Alfred Stieglitz (1864-1946) - photogra-
pher).

This problem has recently been addressed by several approaches. Apart
from solving the discriminability of the compressed chromatic levels, other
characteristics are also very important for a perceptually accurate and efficient
conversion. In general, due to quantization strategies or prohibitive function
optimization, many of the existing approaches fail to render the original image
appearance, preserving the finest details and luminance consistency (shadows
and highlights should not be reversed). Additionally, a crucial problem is the
computational efficiency for real time applications. We argue that the concept
of image decolorization is not to obtain a perfect optical match, but rather to
obtain a plausible image that maintain the overall visual appearance and also
the most salient features, which improves the discriminability of the scenes
objects. However, due to the fact that black-and-white pictures are not able
to render the entire luminance range, such images will always be to some
degree an interpretation of their original.

In section 3.3 we introduce an alternative decolorization approach. In our
scheme, the luminance level is progressively augmented by the chromatic vari-
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ation of the salient information. Saliency, a well studied topic in computer
vision, aims to emulate the attention mechanism of human visual system. We
have based our approach on the assumption that preserving these salient re-
gions in the converted image will result in a better preservation of the visual
contrast and overall perceptual appearance. Guided by the prominent chro-
matic information, our technique introduces a mapping based on the color
opponency theory (Judd 66), generally accepted as the foundation of many
visual saliency models (Itti 98). After the monochromatic luminance chan-
nel is filtered and stored as a reference, the luminance values are computed
pixel-wise by mixing both saturation and hue values, creating a new spatial
distribution with an increased contrast of the interest regions. All the pre-
computed values are normalized in order to fit the entire intensity range. The
intensity is re-balanced in order to conserve the amount of glare in the initial
image. For extreme lighting conditions, we apply several constraints in order
to avoid clipping and fading of the apparent details.

The method has been verified on a large database of color images, including
the standard examples commonly used to test grayscale techniques. In order
to validate our technique we have performed a comprehensive comparison
to the existing state-of-the-art methods, including a perceptual evaluation.
Our approach, although conceptually straightforward, is able to decolorize
images competitively with the more elaborate techniques. In contrast, the
runtime of our algorithm is linear, which means it becomes suitable for real-
time applications. A small set of parameters allow the users to control the
grayscale conversion. The method performs well with default parameters.

Since our decolorization is accurate and preserves finest details, we can
exploit variations in chromacity as well as luminance to enhance color im-
ages simply, blending the processed luminance levels with the initial color.
Observed also by Gooch et al. (Gooch 05), the human visual system has bet-
ter spatial acuity in luminance than in chrominance; by fusing the chromi-
nance with co-located luminance changes, weak chroma variations are rendered
sharper and better-localized. In the last part of this chapter are demonstrated
the utility of our operator for tasks like segmentation under different illumi-
nants, detail enhancement and wide-baseline image matching. Furthermore,
we show that the approach can also be applied robustly to video decoloriza-
tion, which is more challenging due to the temporal coherence constraints that
may introduce flickering artifacts.
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3.2 Related Work

Traditional conversions disregard the chrominance information and consider
the luminance level of different color spaces (e.g. CIEL∗a∗b∗, YCbCr,
HSL/HSV ) (Wyszecki 00). As a result, in many situations they fail to re-
produce the original image appearance. This is a limitation that has been
addressed particularly in the last years. Gooch et al. (Gooch 05) introduced a
technique that iteratively searches the gray levels that best represent the color
differences between all color pairs. Considering the spatial distribution, each
color pixel value is compared with the average of its neighbor region in order
to preserve the local contrast in the converted image. This approach demon-
strates good results for images with reduced number of chrominance values
but its main drawback, O(N4) complexity, determines to be computationally
prohibitive.

Rasche et al. (Rasche 05) suggested a similar solution that seeks to op-
timize a quadratic objective function that incorporates both contrast preser-
vation and luminance consistency. The initial color levels are quantized to a
reduced set - landmark points, in order to express a solution in terms of linear
programming. Still computationally expensive, this approach may introduce
artifacts mainly due to the quantization strategy.

Bala and Eschbach (Bala 04) carried out a small experiment to evaluate the
perceptual quality of their results. They exploit the Helmholtz-Kohlrausch ef-
fect (Judd 66) to preserve the local chrominance edges. Smith et al. (Smith 08)
developed a two-step algorithm built also on the Helmholtz-Kohlrausch effect.
First, the image is transformed in a pixel-wise manner while maintaining the
apparent color lightness. Then, a multiscale chromatic filter is applied in or-
der to enhance the discriminability over the salient color features. Despite
classified in the Cadik’s study (Cadik 08) as one of the most accurate, due
to the unsharp mask-related strategy, the method may introduces strong dis-
continuities along edges even for fine chromatic contrast adjustments in their
provided range of values (see Figure 3.2).

The approach of Neumann et al. (Neumann 07) computes the gradient field
based on the Coloroid (Nemcsis 87) decomposition. The values of relative lu-
minance indices have been assigned based on an extensive user-study. The
Decolorize method (Grundland 07) performs the transformation in their YPQ
color space, a direct derivation of the RGB space. The algorithm performs a
dimensionality reduction using the predominant component analysis, a related
technique of the principal component analysis (PCA). Although, more compu-
tationally efficient, this approach does not take into consideration chromatic
differences that are spatially distant, mapping in some cases different colors
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Color image

CIE Y Ours (+20%) Ours (+60%)Ours (+40%)

Smith et al. (+10%) Smith et al. (+20%) Smith et al. (+50%)

Figure 3.2: Robustness of parameters to discontinuities. Top line: Initial color
image and the results of Smith et al. [2008] when varying contrast impact
parameter with 10% , 20% and 50% of the default range (the maximum value
is 4). Bottom line: CIE Y (luminance channel) fails to preserve the original
appearance and our results when the equivalent parameter, γ, is varied with
20%, 40% and 60%. Note the robustness of our method that does not introduce
artifacts even for large variations of the parameter γ.

into very similar gray levels. Moreover, because a single chromatic axis is not
able to depict differently the existing chromatic changes the highlights can be
mapped to obscure gray levels. As observed in our experiments this method is
not suitable for enhancing operations presented in this work (see application
section).

More recently, Kim et al. (Kim 09) have introduced a technique derived
from Gooch et al. (Gooch 05) that aims to optimize a nonlinear global map-
ping function. It is more computationally effective, but like the previous
optimization-based techniques (Rasche 05; Gooch 05) this strategy risks to
destroy some of the fine details (see Figure 3.11). Moreover, the technique is
not able to optimize reliably the considered parameters when images contain
only a reduced number of colors (please observe their results of image sets
2,13,18,21,22 3.11 3.12 3.13).
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3.3 Saliency-guided Decolorization

In this section we introduced the our decolorization algorithm. These model
is inspired by the color opponency theory and requires knowledge about tonal
values and saliency of the image.

3.3.1 Overview

Inspired of the art of photography (Adams 81), our algorithm is founded on
similar principle as color filters. In the first step, the algorithm searches for
information about saliency and tone structure. This step is motivated by
the fact that using filters is tightly related with the existing tonal values of
the scene but also with the object/part of interest of the scene. Next, a
contrast enhancement scheme driven by the color filter calibrated on the fitted
values (advantaging the regions that lost the saliency after decolorization) is
employed. The result values of luminance are normalized and re-balanced to
avoid an image with an over/under-exposure look and scene re-illumination.
Finally, the luminance is mixed with the initial value in a proportion influenced
directly by the output of the first step. This ensures consistent results, also
for images with large chromatic range, where strategies based on a single
dominant color axis may fail to preserve a consistent appearance since a single
hue is highly advantaged (as will be discussed in results section).

Our approach is guided by the prominent chromatic information and in-
troduces a mapping based on the color opponency theory (Judd 66), generally
accepted as the foundation of many visual saliency models (Itti 98). Color
opponency theory has also been successfully applied in related areas, such as
color harmonization (Cohen-Or 06), detail enhancement (Benavente 03) and
tone management (Pattanaik 98). As will be shown, the luminance values are
computed pixel-wise by mixing both saturation and hue values, creating a new
spatial distribution with an increased contrast of the interest regions. All the
pre-computed values are normalized in order to fit the entire intensity range.
The intensity is re-balanced in order to conserve the amount of glare in the
initial image. For extreme lighting conditions, we apply several constraints in
order to avoid clipping and fading of the apparent details.

3.3.2 Our Decolorization Approach

The algorithm has been implemented in the perceptually uniform CIEL∗c∗h∗

and HSV/HSL color spaces. In both cases, the strategy has shown robust-
ness in preserving the initial color contrast discriminability and details (see
Figure 3.4). However, we have determined experimentally that HSV/HSL,
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besides being faster, has the advantage to be more robust against adjusting
parameters (e.g. the offset angle range can be highly compressed).

As we have mentioned earlier, the main goal of the algorithm is to in-
crease the contrast of visually salient areas while maintaining the average
gray shades that already exist in the image. Based on psychophysical experi-
ments (Calabria 03), it seems that achromatic images are perceived to have a
significantly higher level of contrast than images with only 20% of the origi-
nal image chroma. The perceived contrast increases monotonically for images
with chroma levels above this threshold. Therefore, enhancing the contrast of
the luminance based on the chrominance information by a given degree γ can
be expressed as:

L = L (1 + γS) (3.1)

where L is the monochromatic normalized value of the luminance channel
while S, the saturation, represents the chroma C normalized by lightness L.

In our approach, to integrate the chromatic polarity gain of the opponent
colors(e.g. red pixels need to be mapped lighter when green pixels became
darken), the output luminance value L is computed based on the following
chromatic filtering formula:

L = L (1 + γcos(Hκ + φ)S) (3.2)

where H represents the hue information of the chrominance channels and κ
is the period. The parameter φ represents the offset angle of the color wheel
(0 − 360◦) (see Figure 3.5). Its main effect is to set the chromatic enhancing
filter on the offset position that best advantages the hue from the region that
has lost its saliency due to the decolorization. By adjusting this coefficient,
the shades are re-mapped to different gradients. The subsequent subsection
goes into detail about how to optimally set this parameter.

The coefficient γ tempers the impact of the saturation and acts like a
modulator that controls the amount of chromatic contrast. We found that
for common desaturated images, the algorithm works well for γ set to small
values (0.3) while for highly saturated images γ is assigned a higher value
(≈ 1). This parameter ensures a linear dependency between saturation and
global contrast that makes intense saturated images to be rendered with a
higher global contrast (see the impact of varying γ in Figure 3.2). To generate
the results in this thesis we used a default value γ = 0.7.

In our scheme, the multiplication by cosine plays an important role since
it polarizes the LS gain value (equation 3.2) according to the period κ. In
the absence of the cosine trigonometric function and for γ = 1 and if L and
S have comparable levels then after the post-normalization process the new
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value of the luminance remains almost constant. If L and S have different nor-
malized values then the new luminance value increased/decreased according
to saturation.

During our experiments, we found that in HSV/HSL color space a de-
fault value of κ = 2 results in a significant robustness of our operator. This
robustness practically means that it is possible to considered a compressed
range of offset angles φ (case that is often preferred due to target application
requirements) and adjusting the γ parameter in a large range will not intro-
duce significant degradation of the results. As our results demonstrate by
setting a value of κ = 2 the color opponency is well preserved. The color op-
ponency theory introduced by Ewald Hering (1878) assumes six independent
unitary colors being based on three counterbalancing processes: black-white,
yellow-blue, and red-green. Practically, our decolorized images display com-
plementary gray levels for these color pairs. Moreover, as shown in Figure 3.6,
this default value yields accurate preservation of the most salient regions ex-
tracted with the model of Itti et al. (Itti 98) that is characterized by a color
map built on the Hering’s color opponent system.

For a value of κ = 1(that theoretically ensures the color opponency) in both
CIEL∗c∗h∗ and HSV/HSL color spaces our conversion performs decently, but
in some cases the global contrast may be decreased (see Figure 3.4). The way φ
is chosen makes the choice of κ = 1 less attractive since we have experimentally
observed that our operator is less robust due to the fact that the offset angle
range cannot be compressed to a reduced number of values as for κ = 2, and
therefore a larger dataset of images would be required.

To prove the robustness of our operator the results in this work and the sup-
plementary material have been generated automatically in HSV/HSL color
space using the default parameter of κ = 2 and the compressed range of offset
angles that contains only 3 main values (see subsection 3.3.3).

In some particular cases, the general equation 3.2 yields discontinuities on
highlight areas. This is due to the fact that matte surfaces have a higher
proportion of diffuse reflections while glossy surfaces exhibit a greater ratio
of specular reflections. In order to solve this problem, for the pixels of the
regions with the detected deviations, the LS gain is replaced by the average
value LS:

LS = (
∑
Ω

Lx,ySx,y)/N Sx,y ≥ μ and Lx,y ≥ ν (3.3)

In this formula μ and ν are thresholds that filter highlighted regions without
discontinuities, while N represents the total number of image pixels in the
detected region Ω. The values of the thresholds that compensate for the
saturation and intensity, μ and ν, are dependent on the selected color space.
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In this work we generate the results using default values μ = 0.1 and ν = 0.6.
Adding previous constraints to equation 3.2, the luminance Lconstr can

now be expressed as:

Lconstr =

⎧⎪⎨
⎪⎩

L + γLScos(Hκ + φ) , S ≤ μ and L ≥ ν

L [1 + γcos(Hκ + φ)S] , otherwise

(3.4)

The next step is to normalize the luminance values to match the initial
range:

Lres = χ
Lconstr − Lmin

Lmax − Lmin
(3.5)

where Lmin, Lmax are the maximum and the minimum values after equa-
tion 3.4 has been computed on the entire image. The parameter χ (default
value, χ = 0.9) adjusts the global intensity being important to avoid an image
over/under-exposure look or scene re-illumination. For a perceptually uniform
output the luminance levels have to be related to the initial color values. It is
well known that simultaneous combinations between middle gray and whiter
or darker areas yield subjectively distinctive appearance due to simultaneous
contrast(previously presented in section 2.8.2. Similar effects may be observed
when combining colors (Adams 81; Fairchild 05) (e.g. red-green and red-blue).
We state that the luminance has to remain in a certain range without exceeding
the original levels of the input color channels R,G,B. Therefore, the inten-
sity is restricted to remain in the range [Min(R,G,B),Max(R,G,B)]. This
slicing technique is similar to the process found in electrical amplifier circuits,
where a transducer can not amplify over the supplied power.

This step ensures that the original grayer, whiter or highlighted and darker
or shadowed regions of the initial color image are preserved while enhancing
the contrast. As a real example, for a scene in which the lightest object is a
white paper, in comparison, a gleaming blue surface has far greater intensity
than the diffuse white surface. This is inspired from the art of photography
where the aim is to generate printouts in which specular reflections are brighter
than diffuse areas since they lend a sense of brilliance (Adams 81).

A comparable postprocessing step has been applied also by Grundland and
Dodgson (Grundland 07) but their conversion may fail due to the dimension-
ality compression when the color varies along dissimilar directions (please refer
to the additional material) and therefore, in such cases the initial highlights
appearance is not conserved.

Finally, the decolorized image Idec is the result of blending the initial
luminance intensity L with the amount of chromatic enhanced luminance Lres
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computed with equation 3.5:

Idec = (Lres + ηL)/(η + 1) (3.6)

where η is the parameter that controls the mixture ratio of the initial L and
the enhanced luminance Lres values. We believe that the way η is chosen may
create a bridge between the color opponency and the well-known Helmholtz-
Kohlrausch effect used in other grayscale conversions (Smith 08). We observed
that selecting higher values (in the default range η ∈ [0, 2] ) yields comparable
results as with Helmholtz-Kohlrausch predictors. Please note in Figure 3.3 our
result for η = 2 that has a comparable appearance with the grayscale palette
of Smith et al. (Smith 08). To decolorize images and for image enhancing
applications we set this parameter to η = 0.2. For videos, to yield consistent
results, an average value of η = 1.1 is more beneficial. By using this value
of η, the transition artifacts between adjacent frames are minimized while the
saliency is well preserved.

3.3.3 Offset Angle Selection

In this section we elaborate on how the offset angle parameter φ is determined,
based on the image’s color distribution. In order to find the optimal offset
angle, our algorithm requires a dataset of reference images with an offset angle
previously assigned to each image.

The reference images may be real images (see Figure 3.8 for examples)
or synthetically generated using patterns of different color combinations (e.g.
red-green, yellow-blue, red-green-blue, red-green-yellow etc.). The allocated
offset angle of a reference image is the one associated with the most preferred
decolorized version among all possible decolorized variants obtained in the
entire range 0◦-360◦. Therefore, in order to simplify the procedure, it is de-
sirable that this range is compressed as much as possible. Theoretically, a
various dataset of reference images would ensure a more accurate selection
of the offset φ since, this would better reflect the user’s preferences but it
would require a great deal of work to create such a large data set. Using this
additional information, the offset angle of a given image is determined based
on a histogram matching with a selection of images from the reference image
database.

After extensive testing (on +4000 images) we found out that in HSV/HSL
color space and with κ = 2 the offset angle mainly needs to cover the 180◦-
360◦. As previously discussed in HSV/HSL color space for κ = 2 this range
can be extremely compressed to the discrete range of 200◦ , 250◦, 300◦ with
little loss of accuracy. This feature of our operator can be exploited in real
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time application and for video decolorization. In other color spaces (such as
CIEL∗c∗h∗ but also in HSV/HSL for κ = 1) the offset angle selection might
be more problematic since such a large discretization of the optimal angle
range is not possible.

For more accurate results, we developed a simple yet effective procedure
that selects the optimal offset angle by only taking the most salient regions of
the input image into account, rather than using the entire image. This strat-
egy aims to preserve the main salient regions (in both color and decolorized
images). In order to identify the salient parts of the image, we have opted for
the well-known method of Itti et al. (Itti 98)1 that consists of several biolog-
ically motivated steps. The model extracts three different feature maps that
are blended into a final saliency map: intensity, orientation and color. The
color map of this model is built with the intent of preserving the chromatic
opponency. Other more recent models (Liu 07; Marchesotti 09; Wang 09) that
search for the saliency can be applied as well. Even though they are slightly
more precise in terms of segmenting the salient regions, these recent methods
are more computationally expensive.

Based on this model we first identify the most salient regions in both the
color and the standard grayscale (luminance channel) images (see Figure 3.7).
For grayscale images we suppressed the color map of the model (Itti 98). A
circular region is considered to preserve the saliency only if its position remains
relatively constant in both versions (color/grayscale) of the image. We use
the default parameters of the model and restrict to a number of maximum
five regions (green circles). After comparison, the regions with diminished
saliency, seen as regions which lack chromatic contrast, are easily identified
(marked as green circular regions in Figure 3.7). Practically, the distribution
of the hue H in these regions determines the selection of the offset angle φ.

The results presented in the thesis used also in the validation, were gen-
erated based on this fast strategy using the HSV/HSL color space (κ = 2)
and only the discrete range of 3 values (200◦ , 250◦, 300◦) employed for the
selected salient regions.

As shown in Figure 3.7, our operator is robust: it is still able to perform
generally plausible even though the entire image is considered in the matching
process. If the offset angle were randomly selected, the discriminability and
the fine details may be lost.

Figure 3.6 shows the most salient regions extracted using the model of Itti
et al. (Itti 98). For all grayscale images the color map was suppressed and
therefore, only the intensity and orientation maps influence the final result.

1http://ilab.usc.edu/bu/theory/index.html
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As can be observed, our method compared to the standard grayscale and the
method of Smith et al. (Smith 08), is able to preserve similar salient regions
as in the original color image.
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Color palette Grundland & Dogdson [2007]

Smith et al. [2008] Our palette

Figure 3.3: Grayscale representation of the color palette. Strategies
based on a single dominant color axis may fail to preserve a consistent appear-
ance since a single hue is highly advantaged (notice Grundland and Dodgson
[2007]). Our result generated using default parameters in HSL color space:
κ = 2, γ = 0.7 while the offset was set to φ= 250◦.
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Color image

HSL
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CIE L*c*h*

( =1)k
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Figure 3.4: Implementation in different color spaces (HSL and
CIEL∗c∗h∗). The original color images are displayed on the top line. In
the middle line are shown the results obtained by our operator in HSL
and CIEL∗c∗h∗ for κ = 1 and the other parameters set on default val-
ues (γ = 0.7, χ = 0.9); the selected offset angles φ from left to right:
300◦,290◦,240◦,160◦,320◦,280◦. The bottom line displays the results ob-
tained by our fast saliency-based strategy in HSL by using default param-
eters (κ = 2, γ = 0.7, χ = 0.9) and only the compressed offset range
(200◦,250◦,250◦,300◦,300◦,300◦).
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initial 90°45°0°

225° 270° 315°180°

Figure 3.5: Direct influence of the offset angle φ to the grayscale representation
of the original color image. Note that our approach for entire range of the
hue offset angle φ is able to preserve the initial white color of the background
margins. The rest of the parameters are set to their default values.
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Original image Standard grayscale

Smith et al. [2008] Our result

Our resultStandard grayscaleOriginal image

Figure 3.6: Saliency preservations. Giving a color image, our approach,
compared with standard grayscale conversion and Smith et al. [2008], is able to
conserve the initial color salient regions (yellow circular regions). Our results
have been generated in HSL using default parameters κ = 2, γ = 0.7 while
offset angle was set to φ= 200◦ (top image) and φ= 250◦ (bottom image).
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Salient regions

determine offset angle

Entire image

determines offset angle

Bad selected region

determines offset angle

Salient regions with

color map suppressed

Salient regions

with color map

Figure 3.7: The influence of salient regions on the offset angle se-
lection. From left to right: the color image with the salient regions extracted
when the original Itti et al. model is applied (including the color map). In
the second column are shown the salient regions extracted by Itti et al. model
when color map was suppressed. The green circular salient regions (shown in
the first images) are those that were not preserved after suppressing the color
map. These regions determine the optimal offset angle - φ= 250◦ (top) and
φ= 250◦ (bottom) (the decolorized images presented in the next column ). Next
are shown the results when the offset angle (φ= 300◦ (top) and φ= 300◦ (bot-
tom)) is selected by using the entire image in the process of matching (note the
details of the dragon, hats and sky). The last column show the results when a
bad region (red rectangle) determine the selection of the offset angle φ= 200◦

(top) and φ= 200◦ (bottom).

Figure 3.8: Example of reference images. From left to right the assigned
offset angles (HSL color space) are 200◦, 250◦ and 300◦.
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3.3.4 Results and Discussion

A common problem of existing color to grayscale conversions is the param-
eters tweaking. Despite seeming complicated on the first glance, the results
shown in this thesis and supplemental material (e.g. the entire testing set
of 24 images 3.11 3.12 3.13) have been generated using the default values of
the parameters discussed and motivated in previous section. The reliability
of this automatic function of our operator has been obtained due to an ex-
tensive analysis based on a large dataset of images. However psychophysical
experiments (Calabria 03) indicate that (especially) naive observers have large
response variability in chroma-contrast experiments. For this reason, decol-
orization methods need to provide a set of intuitive parameters to the users.
Besides personalized perception, this alternative allows creative interpreta-
tions. For example in a natural scene, the shades of gray that portray a water
surface can vary over a considerable range. However, for such cases we sought
for parameters that are robust against artifacts. The scheme proposed by
Smith et al (Smith 08) offers several free parameters to the users, but tuning
them risks to introduce artifacts close to edges (see supplementary material).

The runtime of our operator is linearly dependent on the image resolu-
tion and therefore it is computationally effective being suitable for real-time
applications. The saliency employed is unfortunately highly computational
expensive. We plan in the future to employ the more recent technique of
Achanta (Achanta 09). However we have noticed several limitations of this
techniques of this technique that we have employed in the decolorization by
fusion algorithm (present in section 5.2.2). This saliency algorithm can fail to
produce a consistent regional contrast since only the global contrast difference
are accounted. We would like to extend this technique in order to consider
simultaneously the global contrast and the spatial coherence.

During tests of the fusion algorithm, we have noticed that the employed
saliency can fail to produce a consistent regional contrast since only the global
contrast difference are accounted.

A limitation of our scheme is the amplification of already existing artifacts
in the images or video frames due to compression. Furthermore, manually
adjusting the offset angle parameter can yield reversed chromatic contrast
(e.g. red may appear darker than green). Our saliency-based strategy may
fail in cases when the employed regions (marked with green circle) do not
reflect the true salient information of the image. This mainly occurs when
specular reflections are identified as salient regions (see Figure 3.9), but also
when the object/region of interest is not clearly distinct from the background.

The algorithms is able to generate robust results even for high variations of
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Figure 3.9: Conversion failure. The saliency-based strategy may fail in
cases when the employed region (marked with green circle) does not reflect
substantially the true salient information of the image. In this case the dis-
criminability between red and green regions is not reflected in the grayscale
version.

the parameters. This fact relies on the well-defined constraints. For visually-
substitutions systems or for automatic systems that use decolorized images,
this is an important requirement, otherwise the image process can be affected
by input errors. Most of the available algorithms are highly dependent by the
parameters, and the result is not validated in any way. We show in figure 3.10
that our straightforward constraints can be applied successfully for other op-
erators. The main effect of the constraints is that the shades of gray, white
and black appearance are recovered and the results presents less artifacts.

Color Image CIE Y Gooch et al.

Grundland &

Dodgson Rasche et al. Smith et al.

Bala &

Eschbach Coloroid Kim et al. Our results

Constrained

Results

Constrained

Results

Figure 3.10: Constraints effect To demonstrate the effect of the final constraint
we have applied it on several decolorized images obtained by different techniques.
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Figure 3.11: Comparative results. From left to right: color image, CIEY (stan-
dard luminance), Gooch et al. (Gooch 05), Grundland and Dodgson (Grundland 07),
Rasche et al. (Rasche 05), Smith et al. (Smith 08), Bala and Eschbach (Bala 04),
Coloroid (Neumann 07), Kim et al. (Kim 09) and our results with the employed pa-
rameters.
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Figure 3.12: Comparative results. From left to right: color image, CIEY (stan-
dard luminance), Gooch et al. (Gooch 05), Grundland and Dodgson (Grundland 07),
Rasche et al. (Rasche 05), Smith et al. (Smith 08), Bala and Eschbach (Bala 04),
Coloroid (Neumann 07), Kim et al. (Kim 09) and our results with the employed pa-
rameters.
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Figure 3.13: Comparative results. From left to right: color image, CIEY (stan-
dard luminance), Gooch et al. (Gooch 05), Grundland and Dodgson (Grundland 07),
Rasche et al. (Rasche 05), Smith et al. (Smith 08), Bala and Eschbach (Bala 04),
Coloroid (Neumann 07), Kim et al. (Kim 09) and our results with the employed pa-
rameters.



60 Perceptual Decolorization of Images and Videos

3.3.5 Validation

Similar to Cadik’s study (Cadik 08), for completeness we also managed a per-
ceptually validation of the grayscale operator. The evaluation considers in ad-
dition to our technique and CIEY (luminance channel) several recently intro-
duced decolorization strategies (Bala 04; Gooch 05; Rasche 05; Grundland 07;
Neumann 07; Smith 08; Kim 09). For the test 14 volunteers were been in-
volved (9 computer graphics students and researchers and 5 participants with
no particular knowledge of computer graphics techniques) in the group of ages
(21-45). Before starting the evaluation the grayscale problem has been briefly
introduced to the volunteers (written instructions were also available during
the test). All volunteers had normal or corrected-to-normal visual acuity and
no issues of the color vision. The participants have been asked to rank the
grayscale images focusing mainly to the overall appearance, details and con-
trast preservation. All the grayscale transformations together with the initial
color image could be visualized simultaneously by Cooliris2, a transparent and
very intuitive interface to use.
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Figure 3.14: Statistical interpretation of the perceptual evaluation results based on
ANOVA (p=1.6242E-06, F=5.67).

The images have been visualized on a calibrated 24-inch LCD monitor (Sam-
sung SyncMaster 245B+) at native resolution in a segregated room where the

2http://www.cooliris.com
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level of darkness was maintained approximately constant for all tests. Dif-
ferent than Cadik’s study (Cadik 08) (where the test took about 20 min per
observer), the volunteers had the entire control resulting in an average time
of 90 min per test. The following ranking strategy has been used: for ev-
ery set of images the best four results received high scores (80%, 60%, 40%
and 20%) while the rest of them have been classified as acceptable (scored
with 10%) or not acceptable (not scored). The results have been interpreted
statistically using analysis of variance (ANOVA) (Tabachnick 05). As a gen-
eral remark, analyzing the graphic of Figure 3.14, the method of Smith et
al. (Smith 08) and our approach have been ranked as the most perceptually
accurate methods. Additionally, as in Cadik’s study it can be observed that
the methods (Rasche 05; Gooch 05; Kim 09) that optimize an objective func-
tion have been classified as less perceptually accurate.

3.4 Video Decolorization

An important utility of this task is in substitution systems for visually impaired
people (Durette 08) that provide assistance for visually disabled persons by
exploiting other available senses. For this task, in order to compress the
amount of information that needs to be translated, processed grayscale frames
are employed. Since the goal is to guide the subjects’s focus to prominent
regions in order to better localize objects in the scene, in such cases rendering
the most salient features is more critical than for people with normal visual
acuity.

Seen as an extension of the image grayscale conversion, decolorizing videos
is more complex due to the temporal coherence that needs to be preserved
between adjacent frames. Firstly, in our algorithm we search in the entire
sequence for the color palette that appears in each image (mostly identified
with the static background). For sequences in which the color palette remains
relatively constant, a single offset angle (φ) value computed for the middle
frame, yields pleasant results. For more challenging cases (e.g. scenes that
alternate very distinctive color palette schemes), the offset φ is precomputed
as an average value of several frames, while constraining its variation in a
certain range. To minimize the details loss, for the video decolorization task
a value of η=1.1 (the other parameters are set to their default values) yields
consistent outputs. Since this value influences the mean value of the image,
the transition artifacts are minimized.

Compared with Smith et al. (Smith 08) approach (see Figure 3.15) our
decolorized frames have a higher discriminative chromatic contrast, thus better
preserving the initial saliency. For the entire movie (one of its frames is shown
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Original frame Photoshop Smith et at. [2008]

Ours (offset =300) Ours (offset =330) Ours (offset =350)

Figure 3.15: Video decolorization. From left to right: initial color frame, stan-
dard grayscale (Photoshop), Smith. et al [2008] and our result for φ values of 300◦,
330◦ and 350◦.

in Figure 3.15) the optimal offset angle was fount to be φ = 300◦. It should
be noted that even though an globally optimal value could be found for the
video, there will always be a trade-off as in some frames different particular
details will be lost. For example in case of this video when increasing the
offset angle value (330◦,350◦) even though the global contrast is enhanced, on
a closed inspection some of the details might be lost. For the complete video
sequence the reader is referred to the supplementary material.

3.5 Other Applications

As our decolorization is accurate and preserves finest details, we can exploit
variations in chromacity as well as luminance to enhance color images simply,
blending the processed luminance levels with the initial color. Observed also
by Gooch et al. (Gooch 05), the human visual system has better spatial acuity
in luminance than in chrominance; by fusing the chrominance with co-located
luminance changes, weak chroma variations are rendered sharper and better-
localized. To the best of our knowledge we are the first to demonstrate such as
wide applicability of a grayscale operator. We obtain comparable results with
specialized techniques for tasks like segmentation under different illuminants,
detail enhancementand wide-baseline image matching that will be presented
and discussed in the following subsections.
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3.5.1 Detail Enhancing

The main goal of image detail enhancement is to emphasize the image features
for display and analysis. As observed by Gooch et al. (Gooch 05) substituting
the luminance channel with the grayscale conversion and recoloring back can
yield more pleasant color and grayscale images for printouts. Due to the con-
tinuous grayscale mapping and preserving initial details, our technique quali-
fies for this operation. The LDR image in Figure 3.16 was obtained by tone
mapping with the photoreceptor (Reinhard 05) and therefore the large varia-
tions in luminance among regions can not be solved by employing standard
operators (e.g. brightness, contrast adjustment available in the commercial
tools) that shed details. For this task we employ an iterative colorizing/de-
colorizing strategy that starts from the offset angle φ, computed as presented
in the previous section, and successively blends the resulting luminance after
every iteration with the color that has been corrected. For color correction we
employed the algorithm of Mantiuk et al. (Mantiuk 09) while the rest of the
parameters are kept to their default values.

The method has an effect comparable to contrast filters (Adams 81). Our
operator has abilities to manipulate global chromatic contrast without using
additional information (e.g. images or hardware). The concept is similar to
the center-surround (Benavente 03) frequently used by local enhancing meth-
ods, where the mapping varies spatially dependent by the neighborhood of the
pixel. However, our strategy applies this concept as a global operation em-
ploying the same mapping to all image pixels. Because of the global character
of our operator, the presence of haloing artifacts commonly associated with
local methods are significantly reduced.

An alternative solution (Smith 06) is to manipulate the chrominance for
detail restoration. In order to measure the quality of the produced results we
opted for the recent metric of Aydin et al. (Aydin 08) that identifies three
classes of contrast changes relative to the original image: loss of visible con-
trast (green), amplification of invisible contrast (blue) and reversal of visible
contrast (red) (practically (Aydin 08), green is related with blurring while
blue and red are related with sharpening operation).
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Figure 3.16: Detail Enhancement. From top to bottom: LDR initial color image
and Aydin et al. [2008] quality metric, details enhanced by Smith et al. [2006] ,
Grundland and Dodgson [2007] and our enhanced results (HSL color space, κ = 2,
γ = 0.7, χ = 0.9, η = 0.2 and φ=250◦). Notice that our approach is able to enhance
outdoor details while interior details (e.g. curtain texture) become more visible. The
right column shows the image quality assessment results while the bottom line shows
the selected salient regions when the Itti et al. model is employed with color map (left
image) and after color map was suppressed (right image).
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Grundland and Dodgson [2007]

Chong et al. [2008]

Our result (default parameters)GAC++

Our result

Figure 3.17: Segmentation under different illuminants. Considering the same
image illuminated differently (left-right), the top line displays results obtained by em-
ploying the perceptual color space of Chong et al. [2008] after they tweaked parameters
for GAC++. Below, the approach of Grundland and Dodgson [2007] yields inconsis-
tent results. The next two lines show our results with and without default GAC++
parameters (we kept the same parameters for our operator). Note that the rounded
white object in the left bottom is correctly unselected in our approaches in comparison
with the others since the foreground color is yellow. Additionally, the middle opening
in the flowers is observed only by our operator when tweaking the GAC++ parame-
ters. To generate our results except for the χ we used the default parameters in HSL
with φ=300◦.
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3.5.2 Segmentation under Different Illuminants

Image segmentation, a classical computer vision problem, aims to segregate
distinctive foreground objects from the background. Despite of the impor-
tant progress that has been made in the analysis and formalization of the
segmentation it remains an unsolved problem in the general case. A known
difficulty in image segmentation is that due to the illumination variation highly
inconsistent outputs are observed. The recently introduced perceptual color
space (Chong 08) was designed to solve the illumination invariance. By only
minor adjustments, our operator may represent a decent solution for this prob-
lem. For this particular task, we disable the constraint of our algorithm that
limits the illumination to remain in the range [Min(R,G,B),Max(R,G,B)].
As presented in the algorithm section parameter χ controls the global intensity
of the images. Therefore, for this task we simply set χ to the default value
(0.9) for the reference image (the one that is relatively well illuminated) while
for the second image in order to compensate the differences of illumination
it varies proportionally with the luminance ratio of two corresponding points
selected from the foreground.

Since the offset (φ) selection depends on the salient regions, the scene is
reliably decolorized while favoring objects from the foreground. Running the
same algorithm ( the geometric active contour GAC + + 3) for the same pair
of images used in the work of Chong et al. (Chong 08), rendered by varying
the light, we obtained comparable results. The same strategy has been applied
for the other grayscale operators (Figure 3.17 displays only the results of the
Decolorize (Grundland 07) approach). As can be noticed in Figure 3.17, we
firstly employed the GAC++ algorithm with default parameters and afterward
we applied the GAC + + with tweaked parameters for the same grayscale
images (the parameters of our operator have been the same as in the first
example).

3.5.3 Matching by Local Feature Points

Image matching is one of the fundamental problems in computer vision being
mainly performed for grayscale image versions (luminance channel). Given
at least two different views of the same scene, the 3D geometry is commonly
recovered by matching robust local feature points (Tuytelaars 08). Recent
evaluations (Mikolajczyk 05; Moreels 07) disclosed that the most powerful
operators are those derived from the well-known SIFT (Lowe 04). How-
ever, these studies have been performed only considering grayscale images

3http://cvsp.cs.ntua.gr/software/GAC++/
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Figure 3.18: Improving wide-baseline matching performances. Initial image
and versions taken under different view-angle differences of the camera. When
view-angle between cameras is 50◦ our approach (green crosses), by only vary-
ing the offset angle φ between 240◦ and 360◦ with 10◦ step , is able to find
54 good matches compared to only 5 correct matches obtained by the original
SIFT approach (red squares). If the difference is 40◦, SIFT filters 20 valid
matches while our strategy finds 145 correct matches.

yielded by the standard conversion. However, adding the color informa-
tion (Abdel-Hakim 06; Huang 08) it does not seen to improve significantly
the matching results.

On the other hand, local contrast preservation is crucial in the process of
matching by local operators. This has been observed as well by Lowe (Lowe 04)
and therefore for the SIFT operator the candidate keypoints with low contrast
are rejected in order to decrease the ambiguity of the matching process. In our
experiments we considered the well-known SIFT operator (Lowe 04) tested for
the images of the OXFORD4 dino toy model in cases where the view-angles
change with 40◦ and 50◦, respectively. Note that the dino toy model does not
contain large planar surfaces, and as such it is an instance of a challenging

4http://www.robots.ox.ac.uk/ vgg/data/data-mview.html
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wide-baseline matching problem.
Kolomenkin and Shimshoni (Kolomenkin 06) observed in their work, where

SIFT was also employed in the context of image matching, that the standard
contrast enhancement approaches are not able to exploit the photometric in-
formation for this task. They presented a complex and computationally expen-
sive approach that after images were segmented assigns with a probability two
segments that originate from the same surface. Even then, their experiments
have shown only a slight improvement over the results of the original SIFT
approach. Our technique, by only varying the chromatic offset parameters
(the rest of the parameters are set to their default values) for the same pair of
images, is able to filter a significant additional number of correct matches (see
Figure 3.18). The accuracy of the geometry is verified for both approaches
by the method of Forssen and Lowe (Forssén 07). Note that for a viewing
angle difference of 50◦, SIFT is unable to find sufficient matches to estimate a
reliable epipolar geometry. For this example, our approach is able to produce
54 valid matches. The proportion of mismatches (not shown here) remains
constant for both approaches. Since this task relies on the locality of the fea-
ture points, the accuracy of our conversion does not distort the finest details,
but rather enhances the local and global contrast.

3.5.4 Decolorizing Images for Auditory Substitution Systems

Our ability of mobility and orientation is based on the capacity of mentally
mapping the spaces and the possible navigation paths in the environment.
Since much of this information is acquired through the sight sense, visually
disabled persons face great difficulties to orient in novel environments. Re-
cently, there has been an increasing attention in the development of portable
non-invasive substitution systems (Meijer 92; Capelle 98; Pun 07) designed
for visually disabled persons. To compensate the deficiency in visual sense,
these systems translate the acquired image and make it available to other
senses. The aim of such systems is to induce representations or mental images
for visually disabled users (in general proficient users) due to imaginary pro-
cess. Investigations in the field of neural rehabilitation are explaining these
phenomena through cross-modal brain plasticity, where large areas in brain
cortex (of the visually disabled persons) are recruited to process non-visual
tasks (Capelle 98; Auvray 05; Bavelier 02).

In general the existing substitution systems employ decolorized images,
obtained by standard grayscale transformation, and modulate the amplitude
of signal proportional with the pixel intensity value. However, the standard
technique that considers only the luminance channel, may fail to interpret ac-
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Figure 3.19: From left to right on the first row: color image, standard grayscale
and our decolorized result. On the second raw the comparison results after em-
ploying the metric of Aydin et al. (Aydin 08). Notice that standard grayscale
loses some of the visual contrast, while our decolorization amplifies the visual
contrast.

curately the scene appearance due to the fact that the color information is not
considered (see Figure 3.19). Separately, the color does not provide enough
information about objects shapes and scene geometry. Nevertheless, by mod-
eling a gray translation with color information we can implicitly identify color
cues (mostly corresponding to texture or particular classes such as sky, grass
or flowers) beside those cues that are provided by intensity variations. Addi-
tionally, a good interpretation of the most salient regions overcomes deprived
information about the most attractive areas in the scene and leads to focus the
attention to the important regions. By this strategy the chances to identify
objects and persons into the scene are substantially increased (see Figure 3.20).

On the designing process of the vision substitution system there are some
initial assumptions on tailoring the vision sensory over the sound sensory.
These constraints can increase the quality and the quantity of the transferred
information of the vision sensory. Sound segregation capacity has some similar
correspondences with the scene analysis (Wilson 99). Experiments on auditory
segregation (Bregman 90) showed that an alternate sequences of high and low
frequencies tones played at different rates influence the segregation sensation.
When the stream is played at slower rate, the listener is able to follow the entire
sequence of tones. At higher rates, the sequence splits into two streams, one
high and one low pitch, being difficult to follow the entire sequences of tones.
Auditory stream segregation related with the sound frequencies seems to follow
the characteristics of apparent motion in human vision systems (Strybel 98).

Since our decolorizing operator is able to preserve the high contrast ap-
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Color-to-gray conversion Image scanning Audio translation Sound spectrum

Image saliency

Figure 3.20: Overview of the vOICe auditory-substitution system (Meijer 98).

pearance of salient regions we found appropriate to employ our strategy for
auditory-substitution systems. Different than existing techniques that employ
quantization and expensive optimization (Rasche 05; Gooch 05; Kim 09), our
fast decolorization method that enhances the contrast of the grayscale image
to optimally reflect the chromatic contrast of the initial color image. Ad-
ditionally, our goal is to reduce the loss of visual information of the con-
verted image. The utility of our decolorizing operator has been investigated
for the sound substitution systems. Among the existing sound substitution
systems (Cronly-Dillon 99; y Rita 03; Valazquez 05; Capelle 98; Arno 99),
(Auvray 05), we integrate our strategy into the well-known vOICe (Meijer 98)
system that is described briefly in the remaining part of this section.

The vOICe (Meijer 92; Meijer 98; Amedi 05) system translates the ac-
quired frontal images into a time-multiplexed auditory representation. Each
image is rendered with a resolution of 64 × 64 pixels in an approximate con-
version time of T = 1.05 seconds. The translation operation is a per-pixel
operation by encoding the vertical position into frequency and the horizontal
position into time. The pixel intensity gives the oscillation amplitude, there-
fore white is mapped into loudness and black is mapped into silence of its
associated oscillator.

Firstly the image matrix elements are associated with one of the G gray
tones:

Pk = (pk
ij) , pk

ij ∈ {gi, ..., gG}
i, j = 1 . . . N,N = 64

(3.7)

where i and j represent the columns and lines indexes that are limited to the
maximum values N = 64 (the input image has a resolution of 64× 64 pixels).
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Figure 3.21: Time-frequency multiplexed auditory representation.

Each of the N column that corresponds to the signal s(t) is played in T/N
seconds. As already presented, the amplitudes of sinusoidal components of
the s(t) signal are proportional with the intensity levels. Considering that
ωi = 2πfi the sound pattern transformation is mathematical expressed as
following:

s (t) =
∑N

i=1 pk
ij · sin(ωit + θk

i )
t ∈ {

tk + (j − 1) · T
N , tk + j · T

N

}
j = 1 . . . N, k = 1, 2, . . .

(3.8)

The algorithm computes frequency distribution equidistant as expressed
in equation 3.9. In addition to linear frequency distribution the approach
allows also exponential distribution of frequency to render the patterns (see
equation 3.10):

fi = fl + i−1
N−1 · (fh − fl), i = 1 . . . N (3.9)

fi =
(

fh
fl

) i−1
N−1 · fl, i = 1 . . . N (3.10)

where fl (default fl = 500Hz) and fh (default fh = 5KHz) are the lowest and
respectively the highest frequency.

Finally, after each image, as a distinct end-of-frame mark is inserted a
synchronization click sound that indicates the end of the played image, re-
spectively the beginning of a new input.
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3.6 Conclusions

In this chapter we described an straightforward yet effective decolorization
algorithm that enhances the contrast with respect to the appearance and the
quality of the original color image. In our strategy the monochromatic lu-
minance channel is intensified by mixing both saturation and hue channels
resulting in enhanced chromatic contrast. This yields a new spatial distri-
bution that finally is re-balanced in order to conserve the amount of glare
impression that characterizes the original version. The main advantage of our
algorithm is that it generates conversions with higher saturation aspects, while
conserving fine detail in the highlighted regions. Besides efficient decoloriza-
tion, we proved the utility of our technique for several challenging applications.
In general, decolorization is very subjective being dependent by how human
beings perceive the chroma and color distribution. Therefore, we undertook a
perceptual evaluation that demonstrates the potential of the new method to
preserve the original saliency of the color images. As future work we intend
to investigate the potential of our method using different saliency techniques.
We plan to research this method in the context of several other applications
such as scene relighting and single image reconstruction.



Chapter 4

Single Image Dehazing

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Optical Model . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Single Image Dehazing by Per-Pixel Haze Detection 78

4.4.1 Haze Detection . . . . . . . . . . . . . . . . . . . . . 79
4.4.2 Airlight Color (A∞) Estimation . . . . . . . . . . . . 82
4.4.3 Layer-based Dehazing . . . . . . . . . . . . . . . . . 83
4.4.4 Experimental Results and Discussion . . . . . . . . 85
4.4.5 IQA Assesment of Dehazing Methods . . . . . . . . 90

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 92

An important consideration for any digital image whether taken indoor
or outside, it is differences in brightness or colourfullness that have a strong
and direct influence to the visual stimulus with which we are presented. This
difference, named contrast (presented on chapter 2), represents an important
piece in the visual process of the HVS. It allows a viewer to asses the main
difference between present surfaces, to detect the object boundaries, to inter-
pret depth relationships and finally, to understand the scene representation.
In this chapter we introduce a fast method to classify outdoor images, mainly
to detect haze into an image. Image dehazing has been represented an impor-
tant research topic in the last decade. However, to the best of our knowledge,
automatic haze detection has yet not been considered. We demonstrate that
it is possible to detect haze into an image based on an per-pixel operation be-
tween the image and its inverse image or the complementary image(introduced
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Foggy image Histogram equalization Local contrast stretching Our result

Figure 4.1: Standard techniques limitations. From left to right: initial foggy
images, histogram equalization, local contrast stretching and our restored re-
sult.

in chapter 2.10). Finally, the quality of the results is determined by contrast
evaluation.

4.1 Introduction

In outdoor environments, light reflected from object surfaces is commonly
scattered due to the impurities of the aerosol, or the presence of atmospheric
phenomena such as fog and haze. Aside from scattering, the absorption co-
efficient presents another important factor that attenuates the reflected light
of distant objects reaching the camera lens. As a result, images taken in
bad weather conditions (or similarly, underwater and aerial photographs) are
characterized by poor contrast, lower saturation and additional noise.

Image processing applications commonly assume a relatively transparent
transmission medium, unaltered by the atmospheric conditions. Outdoor vi-
sion applications such as surveillance systems, intelligent vehicles, satellite
imaging, or outdoor object recognition systems need optimal visibility condi-
tions in order to detect and process extracted features in a reliable fashion.
Since haze degradation effects depend on the distance, as disclosed by previ-
ous studies (Fattal 08; Tan 08) and observed as well in our experiments (see
Fig. 4.1), standard contrast enhancement filters such as histogram stretching
and equalization, linear mapping, or gamma correction are limited to perform
the required task introducing halos artifacts and distorting the color.

The contrast degradation of a hazy image is both multiplicative and ad-
ditive. Practically, the haze effect is described by two unknown components:
the airlight contribution and the direct attenuation related to the surface radi-
ance. The color ambiguity of the radiance is due to the additive airlight, which
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increases exponentially with the distance. Enhancing the visibility of such im-
ages is not a trivial task, as it poses and inherently under-constrained problem.
A reliable restoration requires an accurate estimation of both the true colors
of the scene and the transmission map, closely related to the depth-map.

Recently, there has been an increased interest in the vision and graphics
communities in dehazing single images (Fattal 08; Tan 08; He 09; Tarel 09;
Kratz 09). In this chapter we present an alternative approach to solving this
challenging problem. Our technique is based on the remark that the distance
from the observer to the scene objects is highly correlated with the contrast
degradation and the fading of the object colors. More specifically, by an
extensive study it has been disclosed an important difference between hazy
and non-hazy image regions, by performing a per pixel comparison of the hue
values in the original image to their values in a ’semi-inversed’ image. This
’semi-inversed’ image version is obtained by replacing the RGB values of each
pixel on a per channel basis by the maximum of the initial channel value
(r, g or b) and its inverse (1 − r,1 − g or 1 − b), followed by an image-wide
renormalization. This observation has been validated on a large set of images,
and allows for the detection of the hazy image regions by applying only a
single simple operator. This facilitates the estimation of the airlight constant
color, and enables us to compute a good approximation of the haze-free image
using a layer-based approach.

Our single image dehazing strategy is characterized by three main contri-
butions. First of all, we are the first to introduce a single image algorithm
for the automatic detection of hazy regions. Second, our approach works on
a per pixel basis. This makes it suitable for parallelization, and allows us
to retain sharp detail near edges. Finally, our layer-based fusion dehazing
strategy yields comparative and even better restored results than the existing
approaches but performs faster and is suitable for real-time applications.

The remainder of this chapter is organized as follows. We will first review
the most recent and influential methods, followed by a brief description of
the optical model. Then, we will illustrate our approach to the automatic
detection of haze within an image. Building upon this, we elaborate on our
strategy of estimating the transmission and airlight. Before concluding the
chapter, we present several comparative results together with an evaluation
of the existing single image dehazing techniques, using the recent objective
image metric of Aydin et al. (Aydin 08).
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4.2 Related Work

An important area of application for dehazing algorithms can be found in
multi-spectral remote sensing applications, where specialized sensors installed
on satellites capture a specific band of the reflected light spectrum. Due to
aerosol impurities and cloud obstruction, the recorded images require specific
processing techniques (Chavez 88; Moro 06) to recover the original informa-
tion. The method of Chavez (Chavez 88) searches based on the intensity dis-
tribution the value that corresponds to the darkest object. A similar principle
has been used as a prior information in the recent method of He et al (He 09).

Many haze-removal techniques have used additional information in order
to facilitate the search for a solution to this underconstrained problem. The
existing dehazing methods can be grouped in several main classes.

Earlier haze-removal techniques are based on multiple images or supple-
mental equipment. Such methods (Narasimhan 00; Narasimhan 03a) that em-
ploy several input images of the same scene taken under various atmospheric
conditions have shown to significantly improve the visibility in the restored
image. However, in general scenarios these strategies are not practical since
only a single degraded image is available as an input.

Another class of methods are the polarization techniques (Treibitz 09),
(Shwartz 06), (Namer 09). These strategies exploit the fact that airlight is
partially polarized. By taking the difference of two images of the same scene
under different polarization angles, it becomes possible to estimate the mag-
nitude of the polarized haze light component. A strategy with two different
angles of the mounted polarization filter (when taken photographs of the same
scene) has been used in the recent techniques of (Shwartz 06; Namer 09). Al-
though the results are quite accurate, in situations with dense haze in which
the polarization light is not the major degradation factor the results may be
less robust. As well these methods seem to have some limitations when dealing
with dynamic scenes.

Another category of techniques assume a known model of the scene. Nara-
simhan and Nayar (Narasimhan 03b) employ an approximated depth-map
obtained after collecting information from several users about areas that are
degraded or not by the poor weather conditions. Deep Photo (Kopf 08) is a
more precise system since it uses the existing georeferenced digital terrain and
urban models to restore foggy images. An iterative registration method aligns
the 3D models with the outdoor images to provide the depth-map information
used in the restoration process. Obviously, these methods suffer when no
information of the scene geometry is available to the user.

On the other hand, single image resaturation is more challenging. Re-
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cently, several single image based methods (Fattal 08; Tan 08; He 09; Tarel 09;
Kratz 09) have been introduced. The method of Fattal (Fattal 08) uses a
graphical model that solves the ambiguity of airlight color based upon the as-
sumption that image shading and scene transmission are locally uncorrelated.
The approach of (Kratz 09) proposed a related method with (Fattal 08) solu-
tion. This method models the image with a factorial MRF(Markov random
fields) and computes the albedo and depth independently like two statistically
independent latent layers. In Tan’s approach (Tan 08), the restoration aims
to maximize the local contrast. He et al. (He 09) employ the dark channel
image prior, based on statistical observation of haze-free outdoor images, in
order to generate a rough estimation of the transmission map. Subsequently,
due to the fact that they approximate the scene using patches of a fixed size,
a matting strategy is required in order to extrapolate the value into unknown
regions, and refine the depth-map. Tarel and Hautiere (Tarel 09) introduced a
contrast-based enhancing approach to remove the haze effects, aimed at being
faster than the previous approaches.

In this chapter we propose an alternative single image dehazing technique
which is able to detect with a decent accuracy the spoiled hazy regions. Our
technique has the advantage to be a per-pixel strategy that works relatively
fast with no additional postprocessing steps (such as alpha-mating used in He
et al. (He 09)) required.

4.3 Optical Model

The optical model used in this thesis is similar to the one employed in previous
single image dehazing methods (Fattal 08; Tan 08; He 09; Tarel 09), initially
described by Koschmieder (Koschmieder 24). For the sake of completeness,
we provide a brief description of this model in this section.

When examining an outdoor scene from an elevated position, features
gradually appear lighter and fading as they are closer towards the horizon.
Only a percentage of the reflected light reaches the observer as a result of the
absorption in the atmosphere. Furthermore, this light gets mixed with the
airlight (Koschmieder 24) color vector, and due to the scattering effects the
scene color is shifted (illustrated in Fig. 4.2). Based on this observation, the
captured image of a hazy scene Ih is represented by a linear combination of
direct attenuation D and airlight A contributions:

Ih = D + A = I ∗ t (x) + A∞ ∗ (1 − t (x)) (4.1)

where Ih is the image degraded by haze, I is the scene radiance or haze-
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Figure 4.2: The employed optical model.

free image, A∞ is the constant airlight color vector and t is the transmission
along the cone of vision. This problem is clearly ill-posed, and requires us to
recover the unknowns I, A∞ and t(x) from only a single input image Ih. In
a homogeneous atmosphere, the transmission t is considered to be modulated
as:

t (x) = exp(−β ∗ d(x)) (4.2)

where β is the attenuation coefficient of the atmosphere due to the scattering
and d represents the distance to the observer.

From equation 4.1, it becomes apparent that the chrominance attenuation
becomes increasingly influenced by the airlight, as the optical depth increases:

A
D =

A∞ ∗ (1 − t(x))
I ∗ t(x)

(4.3)

Theoretically, if the transmission and the airlight are known, the haze-free
image can be easily computed:

I = A∞ − (A∞ − Ih) /t(x) (4.4)

4.4 Single Image Dehazing by Per-Pixel Haze De-
tection

In this section is presented our novel single image dehazing technique. First,
we introduce our haze detection strategy. Next, we describe how the airlight
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Figure 4.3: Haze detection. The first row shows the original hazy images I.
In the second row, we show the yielded semi-inversed image Isi. Finally, in the
third row, we label the pixels identified as not under the influence of haze with
a blue mask. In these regions, the intensity of the blue color is proportional
with the hue disparity.

constant color is estimated and as well how the ’semi-inversed’ image version
enables us to compute a good approximation of the haze-free image using a
layer-based approach.

4.4.1 Haze Detection

The dark object method (Chavez 88) is a well-known technique within the
remote sensing community. This technique is employed to remove haze from
homogeneous scenes by subtracting an estimated value that corresponds to
the darkest object of the image. More recently, He et al. (He 09) have pre-
sented a new derivation of this approach, called the dark channel strategy. A
disadvantage of this new method is its inability to properly preserve edges,
which is caused mainly by the employed erosion filter during the stage of com-
puting the dark channel. In order to recover the refined transmission map and
the latent image, this patch-based approach requires a complex postprocessing
stage. By employing the dark channel prior (He 09), it has been shown that
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Figure 4.4: Results from applying our haze detection procedure on a large
data set of images. Overall, haze-free images contain 96% pixels labeled as
haze-free (masked in blue), while hazy and sky images are characterised by a
significant decrease in haze-free pixels (less than 13%).

each patch of a natural image contains at least one point that is dark for non-
sky or haze-free regions. The validity of this observation is mainly motivated
by the fact that natural images are colorful and full of shadows (He 09)).

In this work we introduce a novel per pixel method that aims at generalizing
the previous dark-channel approach. During our experiments, in which we
analyzed a large set of natural images degraded by haze, we have observed
that in haze-free and non-sky images, pixels in the neighborhood of dark pixels
have a low intensity value in at least one color channel (r, g or b). On the dark
channel, patches representing sky and hazy regions contain high values, as the
local minimal intensity of such patches is high. Similarly, it has been observed
that pixels in sky or hazy areas have high values in all color channels. These
observations confirm the assumption that values in hazy image patches vary
smoothly, except at depth discontinuities.

Based on these observations, we introduce a direct haze detection algo-
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rithm that operates in a pixel-wise manner. We create a semi-inversed image
Isi(x) =

[Ir
si,Ig

si,Ib
si

]
. This image can be obtained by replacing the RGB

values of each pixel x on a per channel basis by the maximum of the initial
channel value and its inverse:

Ir
si(x) = max

x∈I
[Ir(x), 1 − Ir(x)]

Ig
si(x) = max

x∈I
[Ig(x), 1 − Ig(x)] (4.5)

Ib
si(x) = max

x∈I

[
Ib(x), 1 − Ib(x)

]
where Ir(x), Ig(x) and Ib(x) represent the RGB channels of a considered im-
age pixel x. Because the operations performed in equation 4.5 map the range
of all pixels of the semi-inversed image Isi onto the range [0.5, 1], renormal-
ization is required.

The reason of hue disparity is due to the image characteristics that have
been previously described. In haze-free areas at least one-channel is charac-
terized by small values. The operation will replace that value with its inverse.
In regions of sky or haze since all values are characterized by high values,
the max operation will return the same values. Therefore, by this direct hue
comparison of the semi-inverse with the original image version, we are able to
find pixels that need to be restored while conserving a similar color appearance
with the original one.

As illustrated in Figure 4.3, this simple operation produces a semi-inversed
image Isi in which hazy areas are rendered with enhanced contrast, while the
unaltered areas appear as the inverse of the initial image. To identify the
regions affected by haze, we compute the difference between the hue channels
of the original image I and Isi, and threshold it using a predefined value τ .
The value of τ facilitates the selection of those pixels that present similar
aspect in both the initial and the semi-inverse version. We have generated the
results with the default value τ = 10◦. Only pixels that have a hue disparity
below this threshold τ are labeled as hazy pixels. In our approach the hue
information is represented by the h∗ channel after the image is transformed
into the perceptual CIE L∗c∗h∗ color space.

By applying this simple strategy, we are able to estimate the hazy regions
with acceptable precision. In order to check the validity of our observation,
we collected a large database of natural images from several accessible photo
sites (e.g. Flickr.com, Picasaweb.com, Photosig.com). All the selected images
have been taken in daily light conditions. We defined three main categories of
outdoor images: haze-free images without sky, sky images, and hazy images.
After manually selecting 800+ images for each of these classes, we evaluated
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the variation of the hue using the strategy previously described. The main
conclusion is that the haze-free images are characterized by a vast majority of
pixels affected by significant hue variations, while in the other two categories
this variation is considerably less. We illustrate this in Figure 4.4. In or-
der to differentiate between the latter categories, it is possible to detect sky
regions using existing techniques (Tao 09). In the results and discussion sec-
tion 4.4.4 we present a comparison of our haze detection component with the
dark channel method of He et al. (He 09).

4.4.2 Airlight Color (A∞) Estimation

One important correlation for dehazing algorithms constitutes the relation
between optical depth and airlight (R.C.Henry 00; Treibitz 09). The airlight
A becomes more dominant as the optical depth increases. The optical model
(equation 4.1) reveals the fact that two objects with different reflectance prop-
erties, located at the same distance from the observer, have identical airlight
offsets. Consequently, when observing the values of A in a small area around
a scene point, they usually show only minor variations, except when depth
discontinuities occur. Moreover, the A∞ constant can be acquired from the
areas with the highest additive contribution, which are commonly the areas of
the image characterized by high intensity.

These properties of the hazy images have been exploited as well in the
previous approaches to estimate the airlight constant A∞. As observed by
Narasimhan and Nayar (Narasimhan 03a), this constant is best estimated in
the most haze-opaque areas. He et al. (He 09) choose the 0.1% brightest pixels
of the dark channel as their preferred region. Another approach (Tan 08) is
to search for this component in regions with the highest intensity, assuming
that the sky is present and that there are no saturated pixels in the image.

The key advantage of our approach is that we are able to clearly identify
hazy regions. As explained in previous section, these regions are identified in a
straightforward manner by observing the hue disparity between the image and
its semi-inverse. In order to mask the most haze-opaque areas, we perform
the same procedure, but with the intensity of the semi-inverse increased by
a factor ξ (with a default value of ξ = 0.3). During our experiments, we
found that for images where the sky is present, the resulted mask contains
mostly the sky region, which decreases the searching space. The extraction of
the airlight color vector A∞ is performed by determining the brightest pixel
only in the positive (unmasked) region (see Figure 4.3). The winning value
of A∞ is extracted from the original foggy image from the same location as
the brightest pixel. This approach has shown to be more robust than only
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searching for the most brightest pixels in the entire image.

4.4.3 Layer-based Dehazing

The contrast within a dehazed image is directly correlated with the estimated
airlight A and the inferred transmission t(x) at each point. Due to the phys-
ical additivity of the airlight (see equation 4.1), it is possible to estimate the
direct attenuation D once the A∞ is known, by varying A = A∞∗(1 − t (x)) in
all possible values of its range (Tan 08). Previous approaches have introduced
many constraints and cost functions that favor certain image characteristics
based on local image patches, thus limiting this range, and making it possi-
ble to compute an approximate transmission map. In previous strategies, the
transmission map is commonly refined further using an energy minimization
approach, based on the assumption that for local neighborhoods the airlight
shows only very minor deviations (an assumption that breaks down at depth
discontinuities). The main drawback of such approaches is that the employed
search methods, even though they are commonly very expensive, are unable to
ensure an accurate transmission map. In contrast, we present a fast method
which segments the image in regions that do not contain abrupt depth dis-
continuities. Our strategy was inspired by the approach of Narasimhan and
Nayar (Narasimhan 03a), which aims to normalize the pixels in so-called iso-
depth neighborhoods. However, the previous method requires two pictures
in order to identify such regions for their normalization operation. When
using multiple images, it becomes possible to identify such iso-depth neigh-
borhoods, as they are invariant to the weather conditions and do not contain
sudden depth discontinuities (Narasimhan 03a).

There are many possible strategies to creating a dehazed image after a
per pixel identification of hazy regions. In this work, we propose a layer-
based method, which aims to preserve a maximum amount of detail, while
still retaining sufficient speed. We initiate our algorithm by creating several
new images Ii, with i ∈ [1, k] and k layers, in which we remove a decreasingly
growing portion of the airlight constant color A∞ from the initial hazy image
I:

Ii = I − ci · A∞. (4.6)

with the iteratively increasing airlight contribution factor ci.
After applying our haze detection operation on Ii, only the pixels with

a sufficiently low hue disparity are labeled as being part of layer Li. In the
absence of the scene geometry, discretization of the image in k distinct layers
enables us to estimate the values of ci that correspond to the most dominant
depth layers of the scene. For instance, when the scene contains two objects
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Figure 4.5: Layer-based dehazing. Top line: the initial foggy image; the
rough transmission map that corresponds to I0; the result of a naive method
which simply pastes all layers Li upon each other, introducing artifacts; the
result of our method, which applies soft blending of the layers. Middle line:
the mask regions for each layer. Bottom line: the computed layers Li.

located at different depths, the transmission map will be characterized by
two dominant values, as the airlight is correlated with the distance. Finally,
these layers are blended into a single composite haze-free image. In order to
smooth the transitions between the different layers, the number of extracted
layers k needs to be at least 5 or more. As can be observed in Figure 4.5
every layer (except the first one) includes the pixels of the previous layer,
but with different levels of attenuation. To obtain the haze-free image I0, the
layers are blended in the descending order of the airlight contribution. A naive
approach would consist of simply copying the pixels from each layer on the
next, but this might generate unpleasing artifacts due to small discontinuities
(see Figure 4.5). In order to remove such undesirable transitions artifacts,
each layer will contribute a small percentage onto the next layer, according to
the following equation:

I0 =
k∑

i=1

χiLi. (4.7)



4.4 Single Image Dehazing by Per-Pixel Haze Detection 85

Foggy image Naive Semi-inverse dehazingNaive dark channel dehazing Our fast final result Result using bilateral filter

Figure 4.6: Haze removal results From left to right: initial foggy images,
dehazed result using dark channel (He 09), our naive dehazed result using
semi-inverse, our final refined result and comparative refined result using bi-
lateral filter.

where χi weights the contribution of the layers pixels, increasing exponentially
according with the layer number. Practically, this is performed by employing
alpha channels(or masks) for each layer. To smooth the transition, the algo-
rithm smooths the masks by applying a Gaussian. Splitting the input image
into non-uniform neighborhoods that contains approximately uniform airlight
generates good results, even when using only a single image. In comparison,
algorithms that are based upon fixed-size patches may introduce artifacts be-
cause these uniform patches do not consider the intensity distribution of the
small region. Moreover, our straightforward pixel based strategy is compu-
tationally effective overcoming the existing single image dehazing approaches
(see the next section for comparative processing times).

The solution proposed is not unique, and other standard available methods
can be used to smooth the transitions and minimize the artifacts. In figure 4.6
are demonstrated the difference between the naive result obtained by applying
dark channel and also our naive result using our semi-inverse approach. Can
be observed that our approach introduces less visible visual artifacts except
some transitions. This is the main reason that our refinement and therefore the
dehaze method is more efficient than the one proposed by He et al. (He 09).
On the right side of the figure is shown the dehazed result obtained after
applying the edge preserving bilateral filter.

4.4.4 Experimental Results and Discussion

As we have stated in the introduction, we believe to be the first to present an
algorithm for per pixel haze detection. It could be stated that the algorithm of
He et al. (He 09), an extension of the dark object technique common in the re-
mote sensing community (Chavez 88), could also be regarded as a method for
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Foggy images Our result Transmission Tan [2008]

Kratz & Nishino [2009]

He et al. [2009]

Figure 4.7: Comparative haze removal results. From left to right: initial foggy
images, our restored results, our estimated transmissions (depth map) and the
corresponding results obtained by Tan (Tan 08) , He et al. (He 09) and Kratz
and Nishino (Kratz 09) respectively.

haze area detection. However, in order to create the dark channel, their tech-
nique employs a patch-based approach which is unable to properly preserve
fine detail. When taking a closer look at Figure 4.8, the patch-like structure
of the dark channel images immediately becomes apparent. The black regions
associated with haze-free areas do not reflect the true haze-free area borders.
It is important to note that these transitions need to be recovered properly,
as edges between two regions characterized by large illumination differences
can generate prominent halo artifacts. This is the result of using patches
with a constant dimension, which do not consider the intensity distribution of
the small region. In constrast, our method employs a pixel-wise multi-layer
strategy, which decomposes the image in regions that are characterized by
small illumination variations. This approach does not suffer from halo arti-
facts, because the regions are non-uniform and respect the image intensity
distribution.

We have tested our approach on a large data set of natural hazy images.
Figure 4.7 illustrates results (our dehazed image and the computed transmis-
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Foggy image Semi-inverse image He et al. [2009]Haze detection maskHue variation mask

Figure 4.8: Our technique is able to identify hazy regions on a per pixel basis.
Comparing the haze mask produced by our technique to the dark channel mask
of He et al. (He 09) clearly shows that we are able to preserve significantly
more detail.

sion map) obtained for three foggy images by our technique, compared to the
methods of Tan (Tan 08),He et al. (He 09) and Kratz and Nishino (Kratz 09).
All the figures presented in this thesis contain the original restored images
provided by the authors. As can be observed, we are able to enhance the
images while retaining even very fine details. Furthermore, our method accu-
rately preserves the color of the objects in the scene. Another set of images
will be provided in Figure 4.12, where the top lines show comparative results
obtained by the techniques of Fattal (Fattal 08), He et al. (He 09), Tarel and
Hautiere (Tarel 09) and our method. It should be noted that in the discussion
above, we have limited ourselves to images in which the scene is sufficiently
illuminated. Even though the method performs generally well, for poorly lit
scenes (an extreme case of such problem), like previous single image dehazing
techniques, our approach is limited to accurately detect hazy regions. This
limitation is due to the hypothesis of the considered optical model that as-
sumes that regions characterized by small intensity variations contain no depth
discontinuities. As can be seen in the example presented in Figure 4.9 in the
absence of significant intensity variations of distant regions our approach may
have trouble to accurately restore images.

As previously mentioned our approach has the advantage to perform faster
than related algorithms. Our method implemented in Matlab processes an
600 × 800 image in approximately 4-5 seconds.
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a.

b.

c.

Figure 4.9: Limitation of our approach. In the absence of significant
intensity variations of distant regions our approach may have trouble to ac-
curately restore images. Considering the initial foggy image (a) our method
using only 5 layers yields the result shown in the middle (b). In spite of in-
creasing the degree of visibility, our algorithm may introduce several artifacts.
By increasing the number of layers our method (c) amplifies these artifacts
(see the yellow box region). This is due to the general assumption that regions
characterized by small intensity variations contain no depth discontinuities.
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Foggy image Our result

Figure 4.10: Additional restored images by our technique.
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Foggy image Kopf et al. [2008] Tarel & Hautiere [2009] Our result

Figure 4.11: From left to right: initial foggy image, the result obtained by
Deep Photo (Kopf 08) that employs additionally an approximated 3D model
of the scene, the result of Tarel and Hautiere (Tarel 09) and our result.

The method of Tan (Tan 08) requires more than 5 minutes per image while
the technique of Fattal (Fattal 08) computes an 512×512 image in 35 seconds.
The algorithm of He et al. (He 09) takes approximately 20 seconds per image
while the computation times of the techniques of Kratz and Nishino (Kratz 09)
were not reported.

4.4.5 IQA Assesment of Dehazing Methods

Since there is no specialized evaluation procedure of the dehazing techniques
we searched the recent literature for an appropriate method for this task. Tarel
and Hautiere (Tarel 09) evaluate the quality of dehazing techniques based
on a visibility resaturation procedure (Hautiere 08). Because this procedure
only applies to grayscale images and is mainly focused on finding the most
visible edges, we searched for a more general method that is able to perform
a pixelwise evaluation of the dehazing process.

In this work, we have employed the Image Quality Assessment (IQA) qual-
ity measure introduced recently by Aydin et al. (Aydin 08). The IQA metric is
sensitive to three types of structural changes: loss of visible contrast (green),
amplification of invisible contrast (blue) and reversal of visible contrast (red).
As a general interpretation (please refer to chapter 2 for more details about
this metric), contrast loss (green) has been related with image blurring, while
contrast amplification (blue) and reversal (red) have been connected to image
sharpening.

Since these modifications are closely related to our problem, we have found
this measure to be more appropriate as a means to evaluate the resaturation
of hazy regions after applying different dehazing techniques.
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Fattal [2008] He et al. [2009] Tarel and Hautiere [2009] Our resultFoggy image
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Figure 4.12: Evaluation of the results using the IQA metric. The top two
lines present the comparative results obtained by Fattal (Fattal 08), He et
al. (He 09), Tarel and Hautiere (Tarel 09) and our method. The bottom two
lines show the results after applying the IQA between initial image and the
restored version. The left bottom table presents the ratio of the color pixels
(with a probability scale higher than 70%) counted for each method.

Figure 4.12 shows the comparative results of applying the IQA metric
on two foggy images and their dehazed versions, using the method of Fa-
tal (Fattal 08), He et al. (He 09), Tarel and Hautiere (Tarel 09) and ours.
The bottom-left table of Figure 4.12 displays the comparative ratios of the
(colored) pixels yielded by the IQA measure when applied to the results of
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the considered dehazing methods. Following the recommendation of Aydin et
al. (Aydin 08), in order to reduce the possibility of misclassification, only the
pixels with a probability scale higher than 70% have been considered. Based
on the results from the table, it becomes clear that compared with the other
techniques, the structural changes yielded by our algorithm are more closely
related to sharpening operations (blue and red pixels) and less related with
blurring (green pixels).

4.5 Summary

In this chapter we have focused to the single image dehazing problem. We have
presented a single-image dehazing strategy which does not make use of any ad-
ditional information (e.g. images, hardware, or available depth information).
Our approach is conceptually straightforward. Based on a per pixel hue dis-
parity between the observed image and its semi-inverse, we are able to identify
the hazy regions of the image. After we have identified these regions, we are
able to produce a haze-free image using a layer-based approach. The limita-
tions of this technique are inherited from the dark object, meaning that when
the color information is absent the technique may fail. The processing time of
our optimized technique is very low when compared to previous methods who
were designed and optimized for speed. As future work we plan to investigate
the potential of our method for video-dehazing. Additionally, we intend over-
come the noticed limitations of our algorithm for the more complex case of
non-homogeneous haze images. A possible application of the haze-detector is
to develop the technique to be suitable for sky detection. Existing methods
are still limited to recover in many cases the images degraded by haze because
the hazy regions are often characterized by noise. To increase the quality of
the results, we propose to combine the image dehazing with other techniques
such as image denoising and superresolution techniques. As also mentioned
in (He 09) the optical model would greatly benefit by further investigations.
We plan to address this problem and also we intend to extend the visibility
enhancement problem for other research areas such as underwater images.
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Two or more images can be combined into a single image, that in some
way can be more suitable for some intended purposed. Image fusion is a
well-known technique that is designed to maximize the amount of relevant
information into fused image. The most relevant example for this application is
tone-mapping by combining multiple multiple exposures (Mertens 07). In this
chapter we use the fusion technique for single image manipulation, mainly for
image decolorization and single image dehazing. We show that this technique
can be adapted to solve these two different problems. In the preceding chapters
we have presented that contrast plays a key role in image decolorization and
single image deahzing. We show that fusion algorithm can be engineer also
based on various contrast measurements, such that fusion result incorporate
the relevant information. For the best of our knowledge this is the first work
that employ fusion for decolorization purpose. Hyperspectral-image fusion is
similar with other fusion techniques such as exposure-fusion (Mertens 09) and
depth-of-field extension (Burt 83). We show, in particular, that fusion can be
used as an effective mode for single image dehazing, even in the absence of
additional information. We opted for multiresolution fusion-approach because
it proves effective at avoiding seems.

5.1 Introduction

Image fusion is a fundamental technique that blends data from multiple sources
and has been successfully applied in different fields such as remote sensing,
medical imaging, microscopic imaging, robotics, enhancing and restoration
in image processing. A great deal of effort has been made in recent years
to develop efficient image fusion methods for specific applications. All-in-
focus imagery is obtained by combining images captured when the camera
focus is varied (Haeberli 94). In multi-spectral imagery (Socolinsky 02) fu-
sion has been applied by merging satellite images obtained as an output of
different sensors and wavelengths. As shown by Raskar et al. (Raskar 03),
context enhancement could be achieved by blending nighttime and daytime
images into day-night imagery. Their basic idea (Raskar 04) was to increase
the information density in a set of low quality images by exploiting the con-
text from a higher quality image captured under different conditions from the
same view. Blending images has shown utility for image editing (Perez 03)
and interactive photo montage (Agarwala 04). Image fusion has been applied
as well for image compositing (Brinkmann 99; Grundland 06). Grundland et
al. (Grundland 06) adapted the classical linear interpolation in order to pre-
serve the original saliency and global contrast of the input images. Fusing
images with multiple exposures has been employed for tone-mapped depiction
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of HDR images (Burt 93; Mertens 07; Mertens 09).
In this chapter we present two novel fusion-based techniques. Firstly, we

present a fusion-based strategy to decolorize images accurately. The algo-
rithm employs the three independent RGB channels and an additional image
that conserves the color contrast, based on Helmholtz-Kohlrausch effect, as
image inputs. This fourth input better preserves the global appearance of
the image, as it enforces a more consistent gray-shades ordering. Our al-
gorithm uses Three weights based on three different forms of local contrast:
a saliency weight map (which assesses the saliency of the input); a second
weight map that advantages well-exposed regions; and a chromatic weight map
(which increases color contrast in addition to the effect of H −K (Helmholtz-
Kohlrausch) input). This approach is designed in a multi-scale fashion, using
a Laplacian pyramid representation of the inputs combined with Gaussian
pyramids of normalized weights. This solution is preferred as it is capable to
reduce the possible artifacts that may appear due to the weight maps.

To the best of our knowledge we are the first that introduce a fusion-based
decolorization technique. Our method performs faster than existing color-to-
gray methods since it does not employ color quantization (Rasche 05), that
tends to introduce artifacts, or cost function optimization, which commonly
is computationally expensive (e.g. Gooch et al. (Gooch 05) approach) and
risks not converging to a global extremum. The new operator has been tested
on a large dataset of both natural and synthetic images. In addition, we
demonstrate that our operator is able to decolorize videos. Our multi-scale
fusion approach demonstrates consistency over varying palettes, and is able to
maintain temporal coherence within videos. Furthermore, we have performed
a comparative evaluation of the contrast enhancement qualities of the recent
state-of-the-art color-to-grayscale techniques.

Secondly, we introduce a novel single image strategy that is able to ac-
curately dehaze images using only the original degraded information. Our
approach is based as well on a fusion strategy that takes two inputs derived
from the original image. These inputs are weighted by three normalized weight
maps and finally blended in a multi-scale fashion that avoids introducing ar-
tifacts. The method is fast being straightforward to implement and shows to
outperform the related operators in the contrast-based evaluation where IQA
measure (Aydin 08) has been used. Several advantages advocate our technique
against the previous single image dehazing methods. First, our approach per-
forms an effective per-pixel computation, different than the majority of the
previous methods (Fattal 08; Tan 08; He 09) that consider patches. A proper
per-pixel strategy reduces the amount of artifacts since patch-based methods
have some limitations due to the assumption of a constant airlight in every
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patch. In general this assumption is not true and therefore additional post
processing is required (e.g. the method of He et al. (He 09) needs to smooth
the transmission map by alpha-matting). Secondly, the complexity of our ap-
proach is more reduced than the previous strategies. Finally, our technique
performs faster being suitable for real-time applications.

Even thought we used the same principle as the most of the previous fu-
sion methods, as will be presented in the next two sections, our approaches
present several distinctive features that allow to compress (the decolorization
approach) the three-dimensional color image in a grayscale version that pre-
serves the original contrast and fine details and as well to restore accurately
the hazy regions.

5.2 Image Decolorization by Fusion

5.2.1 Overview

Discussed as well in chapter 3, although color plays an important role in
images, applications such as compression, visualization of medical imaging,
aesthetical stylization, and printings require reliable decolorized image ver-
sions. The widely-used standard color-to-grayscale conversion employs the
luminance channel only, disregarding the important loss of color information.

In this section we present a novel decolorization method, built on the
principle of image fusion. The main difference between fusion methods, that
makes them application-specific, is the choice of inputs and weights. Our
algorithm employs the three independent RGB channels and an additional
image that conserves the color contrast, based on Helmholtz-Kohlrausch effect,
as image inputs. This fourth input better preserves the global appearance of
the image, as it enforces a more consistent gray-shades ordering. The weights
used by our algorithm are based on three different forms of local contrast: (a)
a saliency weight map which aims to preserve the saliency of the original color
image; (b) a second weight map that advantages well-exposed regions; and (c)
a chromatic weight map which enhances the color contrast in addition to the
effect of H −K input. In order to minimize artifacts introduced by the weight
maps, our approach is designed in a multi-scale fashion, using a Laplacian
pyramid representation of the inputs combined with Gaussian pyramids of
normalized weights.

Our fusion-based decolorization algorithm, the way of choosing the weights
and the inputs and as well how we blend them is detailed in the next subsec-
tions.
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Figure 5.1: An overview of our fusion-based approach. Based on the original
input image, we derive four input images (R, G, B and H −K lightness) and
three weight maps that blended by a multi-scale image fusion strategy yields
the decolorized output.

5.2.2 Our Algorithm

The standard grayscale transformation tends to reduce the amount of varia-
tions and sharpness within an image. Qualitatively, the dull appearance is due
to the loss of contrast that is more visually noticeable on dimmed highlights
and shadows. In order to obtain pleasing decolorized images, photographers
might compensate these limitations by tedious work in the darkroom, apply-
ing elaborate lighting techniques or using photo-editor programs to manually
adjust the contrast, luminance or histogram distribution.

We argue that the image appearance in black-and-white is tightly con-
nected with models of color appearance, and that measurable values like salient
features and color contrast are difficult to integrate by simple per pixel blend-
ing, without introducing artifacts into the image structure. For this reason,
we have opted for the multi-scale approach of image fusion, combining the
Helmholtz-Kohlrausch lightness predictor (Fairchild 91) with a set of pixel
weights depending on important image qualities. This will ensure that re-
gions with superior gain are well depicted in the decolorized image. Practi-
cally, the resulted grayscale image is obtained by fusing four input images (a
lightness image that incorporates the H − K effect, and the R, G, B color
channels), weighted by normalized coefficients maps determined by saliency,
pixel exposure, and chromatic weights. An overview of our approach is given
in Figure 5.1.
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a. b. c. d.

Figure 5.2: a. The four image fusion inputs (R, G, B and H − KLightness)
and the corresponding Gaussian pyramids of the image fusion weights (b.
saliency; c. exposedness ; d. chromatic ).

5.2.3 H − K Chromatic Adapted Lightness

Our algorithm requires four input images to be used in the fusion process. Be-
sides the color channels R, G, B , we define an additional input that preserves
the global contrast, based on Helmholtz-Kohlrausch effect. As observed by
Smith et al. (Smith 08), the H −K effect can be used to resolve potential am-
biguities regarding the difference between the isoluminant colors. Therefore,
given two isoluminant patches, the most colorful one will be mapped onto a
brighter output intensity. For this fusion input channel, we used Fairchild’s
chromatic lightness metric (Fairchild 91), which predicts the H − K effect,
defined in the CIEL∗c∗h∗ color space by the expression:

LH−K = L∗ + (2.5 − 0.025L∗)(0.116
∣∣∣∣sin

(
h∗ − 90

2

)∣∣∣∣ + 0.085)c∗ (5.1)

This LH−K predictor has also been used in the work of Smith et al. (Smith 08),
in which it was demonstrated to be more appropriate for the task of image
decolorization than the chromatic lightness metric of Nayatani (Nayatani 98).



5.2 Image Decolorization by Fusion 99

The Nayatani (Nayatani 98) predictor often tends to map bright colors to
white, which makes it harder to discriminate between images that contain
bright isoluminant colors. However, as can be observed in the comparative
results (see the image but as well video results of Smith et al. (Smith 08)),
relying only to the Helmholtz-Kohlrausch effect the decolorized outputs might
not preserve accurately the original saliency. This feature is mostly ensured
in our operator by integrating the saliency weight map.

5.2.4 Weight Maps Assignment

In the following section, we present how the weight maps are defined in our
fusion-based decolorization algorithm. Our approach is based on the principle
that the output decolorized image needs be both visually pleasing and meet
the application requirements: In the case of grayscale conversion, aside from
the luminance which is the main contributor to the perceived lightness, there
are also several other image qualities that guide our visual system during its
analysis of the incoming light. Practically, the attention of an observer tends
to be focused on the salient regions that stand-out within their neighborhood.
In order to maintain this focus, it is desirable that these predominant regions
are well preserved by the grayscale version. Therefore, in order to meet this
requirement, we first introduce a saliency weight map. Furthermore, as com-
monly the over- and underexposed regions are advantaged by the saliency map,
we also define an exposedness weight map that overcomes perception degra-
dation in these regions. Finally, we assign a third weight map, the chromatic
weight map, which has the main goal of balancing the influence of chromatic
stimuli into the perception of lightness. Practically, by smoothly fusing the
input channels weighted by these weight maps, the original consistency of
the image is well preserved, while ghosting and haloing artifacts are reduced.
Moreover, we believe that these weight maps are intuitive concepts for the
users.

The maps are explained in more detail in the following paragraph:
Saliency weight map (WS) reveals the degree of conspicuousness with

respect to the neighborhood regions. For this measurement, our algorithm
employs the recent saliency algorithm of Achanta et al. (Achanta 09). Their
strategy is inspired by the biological concept of center-surround contrast. The
saliency weight at pixel position (x, y) of input Ik is defined as:

WS(x, y) =
∥∥∥Ik

μ − Ik
ωhc

∥∥∥ (5.2)

where Ik
μ represents the arithmetic mean pixel value of the input Ik while Ik

ωhc

is the blurred version of the same input that aims to remove high frequency
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a.

b.

c.

d.

Inputs of our fusion algorithm

Corresponding normalized weight maps

Color image

Our result

Figure 5.3: From color to gray: from the original color image (a), we obtain
our decolorized result (b) by applying an image fusion approach, using the
four inputs (c), weighted by the corresponding normalized weight maps (d).

noise and textures. Ik
ωhc

is obtained by employing a small 5×5 ( 1
16 [1, 4, 6, 4, 1])

separable binomial kernel with the high frequency cut-off value ωhc = π/2.75.
For small kernels the binomial kernel is a good approximation of its Gaus-
sian counterpart, but it can be computed more effectively. The approach of
Achanta et al. (Achanta 09) is very fast, and has the additional advantage of
the extracted maps being characterized by well-defined boundaries and uni-
formly highlighted salient regions, even at high resolution scales. Based on
extensive experiments, we found that this saliency map tends to favor high-
lighted areas. In order to increase the accuracy of results, we introduce the
exposedness map to protect the mid tones that might be altered in some spe-
cific cases.

Exposedness weight map (WE) estimates the degree to which a pixel is
exposed. The function of this weight map is to maintain a constant appearance
of the local contrast, neither exaggerated nor understated. Practically, this
weight avoids an over- or underexposed look by constraining the result to
match the average luminance. Pixels are commonly better exposed when
they have normalized values close to the average value of 0.5. Inspired by
the approach of Mertens et al. (Mertens 09), who employ a similar weight in
the context of tone mapping, the exposedness weight map is expressed as a
Gaussian-modeled distance to the average normalized range value (0.5):

WE(x, y) = exp

(
−(Ik(x, y) − 0.5)2

2σ2

)
(5.3)

where Ik(x, y) represents the value of the pixel location (x, y) of the input
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image Ik, while the standard deviation is set to σ = 0.25. This mapping
conserves those tones that are characterized by distance close to zero, while
larger distance values are related with the over- and underexposed regions. As
a result, the impact of over- and underexposed regions filtered by the saliency
map is tempered, keeping the original image appearance well preserved.

Chromatic weight map (WC) controls the saturation contribution of the
inputs in the decolorized image. This is expressed as the standard deviation
between every input and the saturation S (in HSL color space) of the original
image. Due to the fact that in general humans prefer increased saturation, it
is desirable that more saturated areas are mapped onto brighter tones. This
balances the chromatic contrast loss with the desired amount of enhancement.
We have observed that the impact of this gain is reduced for the H − K
chromatic adapted lightness input.

In our framework these weight maps (saliency, exposedness and chroma)
have the same contribution to the resulted decolorized images. As an example,
Figure 5.2 shows the computed weights for the considered inputs.

5.2.5 Multi-scale Fusion of the Inputs

Having defined the inputs (R, G, B color channels and H − K chromatic
adapted lightness) and the weight maps, in the following section we present
how this information is blended by our fusion strategy. As previously men-
tioned, during the fusion process the inputs are weighted by specific maps in
order to conserve the most significant features, and finally combined into a
single output image:

F(x, y) =
K∑

k=1

W̄k(x, y)Ik(x, y) (5.4)

where the value of every pixel location (x, y) of the fused result F is obtained
by taking the sum of the corresponding locations of the inputs Ik (k is the
input index), weighted by the normalized weight maps W̄k. The number of the
inputs is counted by the index k (in our case K = 4). The normalized weights
W̄ are obtained by normalizing over the M weight maps W (M = 3) in order
that the value of each pixel (x, y) weights to sum up to unity (

∑Wk = 1 for
each pixel location) (see Figure 5.3).

Unfortunately, applying eq. 5.4 directly sometimes introduces haloing ar-
tifacts, mainly in locations close to strong transitions between weight maps.
In order to solve this problem, a more effective strategy needs to be devised.
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Generally, this task is solved by multi-scale decomposition strategies that use
linear (Burt 83; Rahman 97) or non-linear filters (Durand 02; Farbman 08;
Subr 09). While the class of non-linear filters has shown to be better at
preserving edges, the linear filters are computationally more effective. Even
though more refined multi-scale solutions might be applied as well, we have
opted for the classical multi-scale Laplacian pyramid decomposition (Burt 83).
In this linear decomposition, every input image is represented as a sum of pat-
terns computed at different scales based on the Laplacian operator. The inputs
are convolved by a Gaussian kernel, yielding a low pass filtered versions of the
original. In order to control the cut-off frequency, the standard deviation is in-
creased monotonically. To obtain the different levels of the pyramid, initially
we need to compute the difference between the original image and the low
pass filtered image. From then on, the process is iterated by computing the
difference between two adjacent levels of the Gaussian pyramid. The resulting
representation, the Laplacian pyramid, is a set of quasi-bandpass versions of
the image.
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Grundland

& DodgsonRasche et al. Our resultColor image

Figure 5.4: Coherence of color-to-gray methods. Note how differently the
methods map the background (e.g. leaves) and the flower. Compared with
the methods of (Rasche 05; Grundland 07) our operator maps into the same
grayscale level the leaves while the flower is converted into different grayscale
levels.
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In our case, each input is decomposed into a pyramid by applying the
Laplacian operator to different scales. Similarly, for each normalized weight
map W̄ a Gaussian pyramid is computed. Considering that both the Gaussian
and Laplacian pyramids have the same number of levels, the mixing between
the Laplacian inputs and Gaussian normalized weights is performed at each
level independently yielding finally the fused pyramid:

F l(x, y) =
K∑

k=1

Gl
{
W̄k(x, y)

}
Ll

{
Ik(x, y)

}
(5.5)

where l represents the number of the pyramid levels (determined by the im-
age dimensions), L {I} is the Laplacian version of the input I, and G

{W̄}
represents the Gaussian version of the normalized weight map W̄. This step
is performed successively for each pyramid layer, in a bottom-up manner.
Basically, this approach solves the cut and paste problem among the inputs
with respect to the normalized masks. A similar adjustment of the Laplacian
pyramid, but in the context of exposure fusion has been applied in other con-
texts (Mertens 09). The final decolorized image is obtained by summing the
fused contribution of all inputs.

This linear multi-scale strategy performs relatively fast (takes approxi-
mately 1.4 seconds per image in our unoptimized MATLAB implementation)
representing a good trade off between speed and accuracy. By employing inde-
pendently a fusion process at every scale level the potential artifacts due to the
sharp transitions of the weight maps are minimized. Multi-scale techniques
are broadly used due to their efficiency in image compression, analysis and ma-
nipulation. This operation has the advantage that it respects the perceptual
system of the human eye, which is known to be more sensitive to modifications
into high frequencies than changes in low frequencies.

5.2.6 Results and Discussion

Our fusion-based approach addresses the preservation of several important
image features: saliency, well-exposedness and chromatic contrast. One major
benefit of fusing the inputs guided by weight maps is that this principle allows
for a direct transfer of the important characteristics of the color image to
the decolorized version. We believe that strong perceptual similarity between
colorized and decolorized images can be obtained by algorithms that consider
both global and local impressions. In our approach, the global appearance of
the image is preserved by imposing a gray-shades order that respect the H−K
color appearance model. The weight maps contribute to the local preservation
of the original relations between neighbor patches. A similar idea has been
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experimented with, using Poisson solvers (Fattal 02) in a related approach of
Gooch at al. (Gooch 05). However, their approach performs poorly for images
with extended disconnected regions that represent isoluminant features. The
main reason for this is that the Poisson solver ignores differences in gradients
over distances larger than one pixels. Our fusion technique proves that by
employing well defined quality measures and inputs, consistent results can be
produced even for these difficult cases.

The new operator has been tested extensively for a large set of images.
Figure 5.6 presents several comparative results against recent grayscale oper-
ators.

5.2.7 Video Decolorization

Video decolorization adds an other dimension to the problem of image decol-
orization, as temporal coherence needs to be guaranteed for the entire video
sequence. In order to speak of consistency, an algorithm has to map similar
regions from the color input onto similar areas in the decolorized output. Re-
cently Smith et al. (Smith 08) have shown that local approaches are suitable
for this task. As our strategy retains both global and local characteristics, it
is able to maintain consistency over varying palettes (see Figure 5.4), yield-
ing temporal coherence for videos (see as well Figure 5.5). Figure 5.4 shows
several versions of the same image, in which the flower is colored differently
at each instance. Global pallet mapping techniques like the one of Grund-
land and Dodgson (Grundland 07) generate dissimilar gray levels for the same
region on different instances (note the leaves and the background mapping).
Our operator and the method of Smith et al. (Smith 08) yield more consistent
outputs.

A similar limitation can be observed by analyzing Figure 5.5 that displays
the frames of a synthetically generated footage with isoluminant color patches.
By a close inspection it might be seen that even thought the technique of
Grundland and Dodgson (Grundland 07) decolorizes each frame perceptually
accurate, this technique is not able to preserve the same grayscale level cor-
responding to the same color patch along the entire sequence of the frames.
On the other hand, the method of Smith et al. (Smith 08) introduces some
non-homogeneity artifacts along edges.

5.2.8 Evaluation of Grayscale Operators

In order to measure the quality of the conversions, we performed a contrast-
based evaluation of the recent state-of-the-art operators. For this task we
adapted the recent technique of Aydin et al. (Aydin 08), which is used to
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Original color sequence

Grundland & Dodgson

Smith et al.

Our fusion-based result

Figure 5.5: Isoluminant video test. For a well consistency the same color
patch needs to be converted into a similar gray level in all images. Notice the
artifacts introduced by Smith et al. (Smith 08) approach but also the differ-
ent grayscale mapping of the same colored patch yielded by Grundland and
Dodgson method (Grundland 07) (please refer to the supplementary material
for the entire sequence).

compare a pair of images with significantly different dynamic ranges. Instead
of detecting only contrast changes, this metric is sensitive to three types of
structural changes: loss of visible contrast (green) - a contrast that was visible
in the reference image becomes invisible in the transformed version, amplifica-
tion of invisible contrast (blue) - a contrast that was invisible in the reference
image becomes visible in the transformed version and reversal of visible con-
trast (red) - a contrast is visible in both images, but has different polarity.
They observed that the contrast loss (green) is related with blurring, while
contrast amplification (blue) and reversal (red) with sharpening. An online
implementation1 of this metric is made available by the authors.

We tested several grayscale operators for a set of 24 images that have
also been used in the perceptual evaluation of Cadik (Cadik 08). Besides
the CIEY , Bala and Eschbach (Bala 04), Gooch et al. (Gooch 05), Rasche et
al. (Rasche 05) , Grundland and Dodgson (Grundland 07),
Coloroid (Neumann 07), Smith et al. (Smith 08) methods, we also reviewed
the recent technique of Kim et al. (Kim 09) and our fusion-based decoloriza-
tion operator. The measure of Aydin et al. (Aydin 08) is applied using the

1http://www.mpi-inf.mpg.de/resources/hdr/vis metric/
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Eschbach Coloroid Our resultsKim et al.

Figure 5.6: Comparative results. From left to right the grayscale re-
sults obtained by applying CIEY , Bala and Eschbach (Bala 04), Gooch
et al. (Gooch 05), Rasche et al. (Rasche 05) , Grundland and Dodg-
son (Grundland 07), Coloroid (Neumann 07), Smith et al. (Smith 08), Kim
et al. (Kim 09) methods and our fusion-based operator.

default parameter set of the authors, and considering the original color image
as a reference. The results of applying the IQA measure are shown in Fig-
ure 5.7. The graphics in the figure display the average ratio over the 24 IQA
images of the pixels with the contrast changed after applying the correspond-
ing transformation. Only the pixels with a probability higher than 70% have
been counted.

Based on these graphics, we can observe that our operator, together with
Smith et al. (Smith 08) and Kim et al. (Kim 09), shows the minimal amount
of produced blurring artifacts (rendered with the green after applying IQA).
Regarding the sharpening effects (blue and red pixels), in general all methods,
except the one of Smith et al. (Smith 08) and CIEY , perform in a relative
similar range of values.
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Gooch et al.

Grundland

& DodgsonRasche et al. Smith et al.

Bala &

Eschbach Coloroid Kim et al.CIE Y Our results

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Figure 5.7: IQA evaluation of operators. In the top are shown the results
obtained by applying the contrast-based measure of Aydin et al. (Aydin 08)
between the original color and decolorized images. In the bottom part are
displayed the graphics that plot the average ratio (over the complete set of
images) of the pixels with the contrast changed after applying the correspond-
ing transformation. Green is related with blurring while blue and red are
related with sharpening.

Furthermore, we present as well a direct comparison between the fusion-
based decolorization method presented in this chapter and our method de-
scribed previously in the chapter 3 (see Figure 5.8).

In our extensive experiments, the fusion-based operator performed gener-
ally well. However, we observed that in some situation due to the inexact
selection of the saliency map, our technique is unable to improve substantially
the results yielded by standard conversion. In general, the chosen weights can
yield proper results.
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Figure 5.8: Comparison between our fusion-based color-to-grayscale method
and the results yielded by our saliency-guided method presented in chapter 3.
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As well, the algorithm shares a weight map related problem in common
with other fusion algorithms. As noticed by previous methods (Mertens 09),
the exposedness map may generate an artificial appearance of the image when
its gain is exaggerated.

Our algorithm is computationally effective (our unoptimized implementa-
tion takes approximately 2.5 seconds for a 800x600 image), having a process-
ing time comparable to recent CPU approaches (e.g. Smith et al. (Smith 08)
method takes 6.7 - 10.8 seconds for 570x593 image, Decolorize (Grundland 07)
-unoptimized code - 3.5 seconds for a 800x600 image and the (extremely) op-
timized code of Kim et al. (Kim 09) decolorizes a 800x600 image in 1-2 sec-
onds). However, even relatively fast since it employs an effective nonlinear
global mapping optimization, the method of Kim et al. (Kim 09) did not solve
the rendering limitations of the related technique of Gooch et al (Gooch 05),
tending to diminish the global contrast and to loose the original saliency. In
addition, we believe that an optimized CPU implementation would make our
operator suitable for real-time applications.
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5.3 Fusion-based Single Image Dehazing

5.3.1 Overview

As discussed as well in the chapter 4, the single image dehazing is an ill-posed
problem that can be solved by a regularized optimization that maximizes the
contrast (Tan 08). He et al. (He 09) built their approach on the statistical
observation of the dark channel (Chavez 88) that allows a roughly estima-
tion of the transmission map. Fattal (Fattal 08) assumed that image shading
and scene transmission are locally uncorrelated and formalize them using a
Gauss-Markov random field model. This approach has been generalized re-
cently (Kratz 09) by a factorial Markov random field.

Since in general the previous methods are computationally burdensome we
searched for a different solution that processes very fast with minimum loss in
accuracy.

In this section we introduce a fusion techniques that employs only the
inputs and weights derived from the original hazy image. Image fusion has a
wide applicability (e.g. remote sensing, medical imaging, microscopic imaging,
robotics) and the main idea is to combine several images into a single one,
keeping only the most significant features of them. By choosing appropriate
weight maps and inputs, our fusion-based method is able to effectively dehaze
images. Our strategy bears some similarity with the recent methods of He et
al. (He 09) and Tarel and Hautiere (Tarel 09).

Fogy image Tarel [2009] Our result

Figure 5.9: Comparison with the fast method of Tarel and Hautiere (Tarel 09).
Our method performs faster yielding as well more accurate results than
(Tarel 09). Notice the sky and sea regions.

Both of this methods can be seen as filtering solutions since the dark chan-
nel can be related with an erosion problem while in (Tarel 09) employed their
defined median of median filter in order to preserves both edges and corners.
However, our approach is fundamentally different since it removes haze from
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images by simply blending the inputs weighted by several maps. Our strategy
combines the input information in a per-pixel fashion minimizing the loss of the
image structure. Moreover, even though both approaches perform relatively
fast, compared with the results of Tarel and Hautiere (Tarel 09), our strategy
yields more pleasing results with low degree of artifacts (see Figure 5.9).

5.3.2 Definition of the Inputs

Our fusion method takes two inputs derived from the original image. The first
input I1 is obtained by white balancing the original hazy image. The white
balance step ensures the natural rendition of images by eliminating chromatic
casts that are caused by the atmospheric color. Due to the fact that haze
is dominating the image, an average value is computed for the entire image.
Similar as in (Tan 08; Tarel 09) a straightforward biasing of the image average
color toward pure white is employed. This step assures that atmospheric light
color constant V∞ is equal to one and the normalized image values are in the
range [0, 1]. As well observed in (Tarel 09), when the light color varies in the
image it is more robust to perform this bias operation using the local average
value.

The second input I2 is selected in order to increase the contrast in hazy
regions. In our approach this is obtained automatically by subtracting from
the original image I the average luminance value of the entire image Ī. This
operation has the effect to amplify the visibility in regions degraded by haze
but yielding some degradation in the rest of the image. A similar effect may
be obtained by general contrast enhancing operators (e.g. gamma correction,
histogram stretching) that also amplify the visibility in the hazy parts while
destroying the details in the rest of the image. However, this degradation is
solved by employing proper weight maps (please refer to the next subsection
and Figure 5.10). Practically the second input is calculated by the expression:

I2 = γ (I − Ī) (5.6)

where γ is the factor that increases linearly the luminance in the hazy regions
(default value is γ = 2.5). In general hazy images are too dark and therefore
is preferred to increase the global luminance. The parameter γ has a similar
impact as the tone mapping stage of (Tarel 09) applied on the the haze-free
regions assumed to be in the bottom third part of the original image. Basically,
the equation 5.6 first identifies the regions that have greater values compared
to the average and afterward the values of detected range is redistributed
onto the entire luminance range by multiplication with γ. The γ can also be
computed as γ = 2(0.5 + Ī). Thanks to the haze dominance in the image, the
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Fusion inputs Corresponding weight maps of the two inputs

Luminance map Chromatic map Saliency map Our result

He et al. [2009]

Figure 5.10: In the left side are shown the two inputs. In the middle are
displayed the three weight maps corresponding to the inputs. Finally, the
results of He et al. (He 09) and ours are shown.

regions with values higher than the mean, are identified as hazy. To improve
the exposedness, this operation centers the values of the hazy regions around
the original mean range value (0.5).

5.3.3 Weight Maps

Luminance weight map manages the luminance gain in the output image.
This gain map computes at each pixel the standard deviation between every
R,G and B color channel and luminance L of the input. This overcomes the
degradation induced by I2 in the haze-free regions ensuring a seamless tran-
sition between the inputs I1, I2. This map also tends to reduce the global
contrast and colorfulness. However, these effects are overcome by defining two
additional weights: chromatic (colorfulness) and saliency (global contrast).

Chromatic weight map controls the saturation gain in the output image.
To obtain this map, for every pixel is computed the distance between its satu-
ration value S and the maximum of the saturation range using a Gauss curve:
d = exp

(
− (S−Smax)2

2σ2

)
with a standard deviation σ = 0.3. Thus, weights close

to zero are assigned to the pixels with smaller saturation while the most sat-
urated pixels have weights close to one. This weight map is motivated by the
fact that in general humans prefer increased saturation, being desirable that
more saturated areas to be better depicted in the haze free image.
Saliency weight map identifies the degree of conspicuousness with respect
to the neighborhood regions. In our approach is used the recent saliency algo-
rithm of Achanta et al. (Achanta 09) mainly because due to its computation-
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ally efficiency but also due to the fact that the yielded map has well-defined
boundaries and uniformly highlighted salient regions even at high resolution
scales. The impact of this gain is to increase the global contrast appearance
since it increases the contrast in highlighted and shadowed parts.

To yield consistent results, we employed the normalized weight values W̄,
by constraining that the sum at each pixel location of the weight maps W to
equal one.

5.3.4 Fusion Process

In the fusion process, the inputs are weighted by specific computed maps in
order to conserve the most significant detected features. Each pixel (i, j) of
the output F is computed by summing the inputs Ik weighted by correspond-
ing normalized weight maps W̄k: F (i,j) =

∑
k

¯W(i,j)
k I(i,j)

k . The naive solution
to implement directly this equation might introduce halos artifacts, mostly
in the locations characterized by strong transitions of the weight maps. To
prevent these image degradation problems, we opted for the adapted solution
that employs a classical multi-scale pyramidal refinement strategy (Burt 83).
We tested as well several more recent edge preserving techniques (e.g. WLS
(Farbman 08)) but did not obtain significant improvement. However, these
methods need in general to tweak the parameters and are more computa-
tionally expensive. Practically, in our case, each input is decomposed into a
pyramid by applying Laplacian operator at different scales. Similarly, for each
normalized weight map W̄ a Gaussian pyramid is computed. Considering that
both the Gaussian and Laplacian pyramids have the same number of levels,
the mixing between the Laplacian inputs and Gaussian normalized weights is
performed at each level independently yielding the fused pyramid:

F (i,j)
l =

∑
k

Gl

{
W̄(i,j)

k

}
Ll

{
I(i,j)

k

}
(5.7)

where l represents the index of the pyramid levels and L {I} is the Laplacian
version of the input I while G

{W̄}
represents the Gaussian version of the

normalized weight map of the W̄. This step is performed successively for
each pyramid layer, in a bottom-up manner. The final haze-free image J is
obtained by summing the fussed contribution of all inputs.



5.3 Fusion-based Single Image Dehazing 115

Fattal [2008]

He et al. [2009]
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Kratz & Nishino [2009] Tan [2008]
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Figure 5.11: Comparison results among the recent single image dehazing meth-
ods.
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5.3.5 Results and Discussion

In order to prove the robustness of our method we have tested a large dataset of
natural hazy images. We also considered the complete sets of images provided
by the authors of the previous single image dehazing methods. As can be seen
in Figure 5.11 our operator is able to perform competitive with more complex
methods. Some comparative results are shown as well in Figure 5.12.

Tan Fattal He Tarel Kratz Ours

Ampl.(%) 0.15 0.34 1.4 0.23 0.38 1.56
Loss(%) 2.7 1.9 2.2 1.74 2.47 1.34

Table 5.1: Amplification and loss of contrast induced by several operators by
applying IQA measure

However, compared with most of the existing techniques, an advantage of
our strategy is the computation time since our unoptimized implementation
(Matlab) processes an image in approximately 3-4 seconds. In comparison,
the method of Tan (Tan 08) needs more than 5 minutes per image while He
et al. (He 09) requires 20 seconds.

In addition we performed a contrast preservation evaluation. For this task
we employed the measure of Aydin et al. (Aydin 08). By comparing the origi-
nal hazy image with the haze-free versions restored by different operators, this
quality measure finds the regions where the contrast has been amplified (rep-
resented with blue pixels in their scheme) and regions where the contrast has
been lost (green pixels). For more details please refer section 2.6.1. Table 5.1
displays the average ratio (%) of the pixels that have been filtered by applying
IQA measure on several images provided by the authors. As can be observed
compared with the other methods our operator is able to amplify better the
original contrast (first row) while the loss of details is reduced.

Even though the method performs generally well, as the previous methods,
a limitation of this algorithm is when the images are characterized by non-
homogenous haze layers.
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Foggy image Tan [2008] Our method

Foggy image Fattal [2008] Our method

Foggy image He et al. [2009] Our method

Foggy image Kopf et al. [2008] Our method

Foggy image Tarel & Hautiere [2009] Our method

Figure 5.12: Additional comparative results against the recent single image
dehazing methods (except Deep Photo, the method of Koph et al. (Kopf 08),
that employs additionaly an approximate 3D model).
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Foggy image Our fusion-based methodOur methodsemiinverse

Figure 5.13: Comparative results against our single image dehazing method
presented in chapter 4.
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On the other hand, by comparing our fusion-based dehazing technique
with our method presented previously in chapter 4, a general observation
would be that both are able to restore relatively accurate the hazy regions
(see Figure 5.13) while processing relatively fast.

5.4 Summary

In this chapter we analyzed the classical concept of image fusion. As a main
difference among fusion methods that makes them application-specific, is the
choice of inputs and weights. We first demonstrates that the concept of image
fusion can be used to decolorize accurately color images while preserving the
original appearance and contrast. The algorithm employs the three indepen-
dent RGB channels and an additional image that conserves the color contrast,
based on Helmholtz-Kohlrausch effect, as image inputs. The weights used by
our algorithm are based on three different forms of local contrast: saliency
weight map, exposureness weight map and chromatic weight map.

Next, we demonstrate a novel fusion strategy to restore hazy images while
using no additional information about the scene. The method is fast being
straightforward to implement and shows to outperform the related operators in
the contrast-based evaluation where IQA measure (Aydin 08) has been used.

For both methods we perform extensive experiments and provide compre-
hensive comparison against the existing state-of-the-art techniques.





Chapter 6

Conclusions

This thesis presents several techniques that manipulate the contrast of im-
ages, aiming to overcome the depiction limitations, due to the medium or
image content. Contrast plays a vital role in achieving vivid, crisp and nat-
ural images with reduced amount of visual artifacts. Inspired by the work
in perceptual image processing and color appearance, in this dissertation we
addressed mainly two specific problems: image and video decolorization and
restoration of images degraded by haze.

Perceptual image decolorization aims to maintain the original contrast
appearance and the fine details, including those visible differences that are
contained on the color channels. There are several proposed grayscale conver-
sion algorithms from straightforward global mapping to much more complex
and expensive optimizations. Generally, they are tightly dependent on the
local image content and color pallets. Most of them are not suitable for video
conversion due to the fact that color palettes change frequently.

The process of enhancing the visibility of the images is a challenging case
that requires restoring both color and details from foggy regions. It has a
wide applicability such as satellite imaging, surveillance systems and intelligent
vechicles, all requiring optimal visibility conditions. General contrast enhance-
ment techniques, such as histogram equalization or local contrast stretching
are unable to produce reliable results. Due to the fact that the restoring pro-
cess requires estimation of both airlight and direct attenuation, the problem
is not trivial, as it is an under-constrained problem. Due to this fact, earlier
haze-removal techniques make use of multiple images. Recently the complex
case of single image dehazing has been addressed based on several well-defined
assumptions or found prior information.
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6.1 Summary of Contributions

Image and Video Decolorization

We presented a straightforward yet effective perceptual decolorization algo-
rithm (Ancuti 11a) that enhances the contrast of the images while maintaining
the initial appearance and quality. Aiming to preserve the original saliency,
the monochromatic luminance channel is intensified by mixing both satura-
tion and hue channels. This yields a new spatial distribution, which then is
re-balanced in order to conserve the amount of glare impression that charac-
terizes the original version. In general, decolorization is very subjective as it is
dependent on how human beings perceive the chroma and color distribution.
The perceptual experiments demonstrate the potential of the new method to
preserve the original saliency of the color images. The novelty of this ap-
proach is that besides for effective decolorization, our operator is appropriate
for several applications such as video decolorization, detail enhancement, seg-
mentation under different illuminants, image matching by local feature points
and auditory substitution systems.

In addition, we introduced a fusion based color-to-grayscale conversion
strategy, in which we employ a multi-scale fusion algorithm (Ancuti 10g).
We have shown that by choosing appropriate weight maps and inputs, an
image fusion strategy can be used to effectively decolorize images. We per-
formed an extensive evaluation against the recent decolorization operators.
Moreover, our fusion-based operator is able to transform color videos into a
decolorized version that preserves the original discriminability and appearance
in a consistent manner. The originality of this algorithm is that it fuses the
three independent R,G and B colors with an additional image that reflects
the Helmholtz-kohlausch effect. The algorithm furthermore accounts for three
different types of contrast which aims to measure and to preserve the color
image appearance after decolorization.

Single Image Dehazing

We have presented a layer-based single-image dehazing strategy (Ancuti 10e)
that has the advantage to not using any additional information (e.g. images,
hardware, available depth information). Based on a per pixel hue disparity
between the observed image and its semi-inverse, we are able to identify the
hazy regions of the image. After we have identified these regions, we are able
to produce a haze-free image using a layer-based approach. Our approach
is conceptually straightforward while the processing time is very low, even
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when compared to previous methods which were designed and optimized for
speed. The algorithm has the main advantages: it is able to detect hazy re-
gions, performs on a per-pixel basis and retains sharp details near transmission
discontinuities.

Furthermore, we developed a fusion-based image dehazing solution for the
same problem (Ancuti 10c). Our approach takes two inputs derived from the
original image. These inputs are weighted by three normalized weight maps
and finally blended in a multi-scale fashion that avoids introducing artifacts.
Our technique has been tested for a large data set of natural hazy images.
In general, the method performs faster than existing single image dehazing
strategies yielding accurate results.

6.2 Future Work

In the recent years tremendous interest has been witnessed in the utilization
of the contrast for image content manipulation purposes. The success of the
existing methods shows that the depiction medium can be overcome by mod-
ifying the algorithms to detect the contrast changes and to adjust it to fit
for each specific problem. We hope that our results will fuel further research
on the perception-based contrast images manipulation field. We believe that
there is still room for new research, especially in tone-reproduction based on
scenes classification. Potential research direction that we intend to address in
the future work (but not limited to):

Image decolorization :

Since image decolorization is quite subjective, we believe that one single so-
lution will hardly satisfy all the expectations. One of the major drawbacks is
caused by the saliency algorithm, it independently needs to identify the most
salient regions in the image. In many situations the image content plays a key
role and therefore saliency detection may fail. We would like to extend the
saliency algorithm by including additional information such as scene classifi-
cation, or objects identification. During tests of the fusion algorithm, we have
noticed that the employed saliency can fail to produce a consistent regional
contrast since only the global contrast differences are accounted. We want to
extend this technique to consider simultaneously the global contrast and the
spatial coherence. We believe that the algorithm can be included by other
applications such as edge preserving filtering, single image depth estimation
and segmentation. Additionally, we would like to investigate the potential of
our algorithm for several other pattern recognition applications that are still
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relying to the standard decolorizing technique. We intend to develop an ob-
jective color-to-grayscale measure that is able to evaluate both the potential
of preserving finest details and the original discriminability.

Image dehazing :

As a future direction, we intend as well to extend our dehazing strategies
to the problem of videos. Additionally, we plan to address the more complex
case when the images are characterized by non-homogenous haze. We would
like to investigate a more comprehensive optical model that would allow to re-
store more generally the images. We plan to extend the algorithm for visibility
recovery for underwater images. We believe that a promising direction is to
combine the dehazing with superresolution and image denoising techniques,
since in many cases the recovered regions require further enhancement mainly
due to the noise.
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Scientific Contributions and
Publications

The following list of publications, presented at scientific international confer-
ences, contains work that is part of this dissertation:

(Ancuti 11a) Codruta O. Ancuti, Cosmin Ancuti & Philippe Bekaert. Enhancing
by Saliency-guided Decolorization. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2011

(Ancuti 10g) Codruta O. Ancuti, Cosmin Ancuti, Chris Hermans & Philippe Bekaert.
Image and Video Decolorization by Fusion. In Proceedings of 10th Asian Con-
ference on Computer Vision (ACCV) (oral presentation), 2010

(Ancuti 10e) Codruta O. Ancuti, Cosmin Ancuti, Chris Hermans & Philippe Bekaert.
A Fast Semi-Inverse Approach to Detect and Remove the Haze from a Single
Image. In Proceedings of 10th Asian Conference on Computer Vision (ACCV),
2010

(Ancuti 10c) Codruta O. Ancuti, Cosmin Ancuti & Philippe Bekaert. Effective
Single Image Dehazing by Fusion. In Proceedings of 17th IEEE International
Conference on Image Processing (IEEE ICIP), 2010

(Ancuti 10b) Codruta O. Ancuti, Cosmin Ancuti & Philippe Bekaert. Decoloriz-
ing Images for Robust Matching. In Proceedings of 17th IEEE International
Conference on Image Processing (IEEE ICIP), 2010

(Ancuti 10f) Codruta O. Ancuti, Cosmin Ancuti, Chris Hermans & Philippe Bekaert.
Fusion-based Image and Video Decolorization. In Conference Abstracts and
Applications ACM SIGGRAPH ASIA - Sketches, 2010

(Ancuti 10h) Codruta O. Ancuti, Cosmin Ancuti, Chris Hermans & Philippe Bekaert.
Layer-based Single Image Dehazing by Per-Pixel Haze Detection. In Conference
Abstracts and Applications ACM SIGGRAPH ASIA - Sketches, 2010



128 Scientific Contributions and Publications

(Ancuti 10a) Codruta O. Ancuti, Cosmin Ancuti & Philippe Bekaert. CC-SIFT:
Exploiting Chromatic Contrast for Wide-Baseline Matching. In Proceedings of
35th IEEE International Conference on Acoustics, Speech, and Signal Process-
ing (IEEE ICASSP), 2010

(Ancuti 09b) Codruta O. Ancuti, Cosmin Ancuti & Philippe Bekaert. An effective
grayscale conversion with applications to image enhancement. In Conference
Abstracts and Applications ACM SIGGRAPH ASIA - Sketches, 2009

(Ancuti 09a) Codruta O. Ancuti, Cosmin Ancuti & Philippe Bekaert. ColEnViSon:
Color Enhanced Visual Sonifier. A Polyphonic Audio Texture and Salient Scene
Analysis. In Proceedings of International Conference on Computer Vision The-
ory and Applications (VISAPP), February 2009

(Ancuti 09d) Codruta O. Ancuti, Cosmin Ancuti & Philippe Bekaert. Preserv-
ing Visual Saliency in Image to Sound Substitution Systems. In Proceedings
of SPIE Human Vision and Electronic Imaging (HVEI 2009), January 19-21
2009

Several publications that have not been included in this dissertation:

(Ancuti 08b) Cosmin Ancuti, Codruta O. Ancuti & Philippe Bekaert. Robust
Matching of Images Across Large Viewpoint Changes. In Proceedings of Visu-
alization, Imaging and Image Processing (VIIP 2008), 2008

(Ancuti 08a) Cosmin Ancuti, Codruta O. Ancuti & Philippe Bekaert. Image De-
blurring by Corresponding Regions. In Conference Abstracts and Applications
ACM SIGGRAPH, August 11-15 2008

(Ancuti 09c) Codruta O. Ancuti, Cosmin Ancuti & Philippe Bekaert. Effective
Sound-Vision Substitution System Guided by Salient Regions. 2009

(Ancuti 09f) Cosmin Ancuti, Codruta O. Ancuti & Philippe Bekaert. An Efficient
Two Steps Algorithm for Wide Baseline Image Matching. In Journal of Visual
Computer, (Computer Graphics International Conference), May 2009

(Ancuti 09e) Cosmin Ancuti, Codruta O. Ancuti & Philippe Bekaert. Deblurring
by Matching. In Computer Graphics Forum, (Eurographics), April 2009

(Ancuti 10i) Cosmin Ancuti, Codruta O. Ancuti & Philippe Bekaert. A Frame-
work to Improve Matching Results of Widely Separated Views. In Proceed-
ings of International Conference on Computer Vision Theory and Applications
(VISAPP), 2010
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(Ancuti 10d) Codruta O. Ancuti, Cosmin Ancuti & Philippe Bekaert. Robust
Grayscale Conversion for Vision-Substitution Systems. In Proceedings of Inter-
national Conference on Computer Vision Theory and Applications (VISAPP),
2010

(Ancuti 10j) Cosmin Ancuti, Codruta O. Ancuti & Philippe Bekaert. Video Super-
Resolution using High Quality Photographs. In Proceedings of 35th IEEE
International Conference on Acoustics, Speech, and Signal Processing (IEEE
ICASSP), 2010

(Gerrits 11) Mark Gerrits, Bert de Decker, Cosmin Ancuti, Tom Haber, Codruta O.
Ancuti & Philippe Bekaert. Stroke-based Creation of Depth Maps. In IEEE
Internation Conference on Multimedia and Expo (IEEE ICME), 2011

(Ancuti 11b) Codruta O. Ancuti, Cosmin Ancuti & Philippe Bekaert. Enhancing
Underwater Images by Fusion. In Conference Abstracts and Applications ACM
SIGGRAPH- Posters, 2011

(Ancuti 11c) Codruta O. Ancuti, Cosmin Ancuti & Philippe Bekaert. Fusion-based
Restoration of the Underwater Images. In Proceedings of 18th IEEE Interna-
tional Conference on Image Processing (IEEE ICIP), 2011





Appendix B

Samenvatting (Dutch
Summary)

Ondanks de recentetechnologische vooruitgangondervinden digitale camera’s
tot op heden vaak vele beperkingen. Hierdoor vereisen de meeste systemen
nog nabewerking van de gemaakte foto’s. Een groot deel van ons werk is gen-
spireerd op de visuele perceptie van de mens. Dit onderzoeksgebied houdt
zich bezig met de wijze waarop onze hersenen signalen afkomstig van de
ogen interpreteren. De kennis van het menselijke gezichtsvermogen maakt
het voor wetenschappers mogelijk om de inhoud van afbeeldingen te begri-
jpen, afbeeldingen op een meer accurate wijze voor te stellen op basis van
de feitelijke perceptie van een scne of zelfs het visuele waarneembare detail
te verbeteren (beeldherstelling van nevel of mist). Naast het gebruik van het
menselijke gezichtsvermogen, is ons werk ook gebaseerd op perceptuele veron-
derstellingen en observaties. In dit proefschrift onderzoeken we verschillende
nieuwe technieken. Deze zijn voornamelijk gebaseerd op het analyseren en
manipuleren van contrast in een afbeelding. Constrast is niet enkel van be-
lang voor het waarnemen van de ‘lichtheid’ van een scne, maar ook voor het
waarnemen van kleur. Het gebruik van een geschikte techniek voor contrast
manipulatiezal er dus voor zorgen voor dat er een gewenste verbetering is in
de algemene weergave van de afbeelding. Dit werk presenteert nieuwe tech-
nieken voor de transformatie van kleur, stijl en weergave van een afbeelding.
We hebben de impact van constrast manipulatie onderzocht voor twee belan-
grijke toepassingen: kleur naar grijsschaal transformatie (decolorization) van
afbeeldingen/videos en herstelling van nevelige of mistige afbeeldingen (de-
hazing). Onze bedoeling is om de bestaande beperkingen, opgelegd door de
inhoud van een beeld, te voorkomen. Daar afbeeldingen met laag contrast de
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hoeveelheid visuele zichtbare informatie beperken, worden afbeeldingen met
hoger contrast doorgaans meer accuraat waargenomen. Bovendien is aange-
toond dat een hoger contrast zorgt voor een vereenvoudiging van de visuele
stimulus en een verhoging van de dynamic range van een afbeelding zoals
waarneembaar in de scne zelf. In het eerste deel introduceren we een algoritme
voor decolorization van afbeeldingen of videos gebaseerd op de oorspronkeli-
jke saliency. Deze methode is genspireerd op de opponent process theorie van
Hering en heeft als bedoeling het constrast enkel te verhogen in regio’s die
belangrijk zijn. In het daaropvolgende deel presenteren we een nieuwe dehaz-
ing techniek die gebruik maakt van een enkele afbeelding en het gekende dark
object principe. Tot slot presenteren we twee nieuwe fusion-based technieken
die toepasbaar zijn voor decolorization en dehazing van afbeeldingen. Eerst
demonsteren we dat, door het definirenvan geschikte invoer en gewichtmap-
pen, een fusion-based strategie accurate resultaten kan opleveren en zo de
waarneming en verscheidenheid van de visuele informatiein kleurenbeelden be-
houden blijft of verbeterd wordt. Uitgebreide experimenten en vergelijkingen
met bestaande state-of-the-art technieken zijn opgenomen in dit proefschrift
en tonen de accuraatheid en bruikbaarheid van onze nieuwe methodes aan.
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