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Abstract: Interactive simulation of point spread functions is an invaluable tool for evaluating optical designs. We present
an interactive method for simulating the point spread function for designs that require diffraction and interfer-
ence effects. These effects occure when the design contains apertures whose size approaches the wavelength
of light, typically in the form of gratings or masks. Traditional ray-based techniques are not suitable here,
whereas wave-based methods are not immediately amenable to an efficient implementation due to their com-
plexity. We propose a method based on the Wigner Distribution function. This function models wave optics at
gratings, but does so in a ray-based framework. This enables us to simulate diffraction and interference effects
efficiently, even for multiple gratings. The resulting computation is in the order of a fraction of a second,
thereby enabling the user to interactively manipulate the optical configuration or the projection plane. The
proposed method can be scaled down in precision in order to achieve real-time performance.

1 INTRODUCTION

Designing optical instruments such as lenses is an im-
portant task in various fields such as scientific imag-
ing, photography, microscopy and holography. Be-
fore actually building, it is desirable to evaluate the
design performance through a simulation. These de-
signs often consist of a set of lenses and masks or
apertures placed at different depths. The goal of the
simulation is to obtain a point spread function (PSF),
which is the recorded light intensity on the image sen-
sor created by a single point light source. The PSF
is indicative for the performance of the lens which in
practice may translate into the image quality of a pho-
tographic lens, for instance. This paper deals with an
efficient method to carry out such simulations.

Rendering a point spread function using geo-
metric optics is straightforward and computationally
efficient. Yet, it is inherently limited to large scale
apertures as diffraction and interference effects are
ignored. As the size of the masks shrinks to a scale
closer to the size the wavelength of the light, these ef-
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Figure 1: We present an point spread function simulation of
light passing through a set of lenses and gratings. (Top) An
example configuration of a lens system with several masks
creating a diffraction pattern on the sensor. (Bottom) The
point spread function calculated using simpel phase track-
ing and our speed optimized method.

fects become more prominent. For instance, designs
based on wavefront coding (Dowski and Cathey, ;
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Horstmeyer et al., 2010; Schechner et al., 1996) will
demand diffraction and interference. A typical ap-
plication example is a lens with a depth-independent
PSF.

Diffraction and interference effects are governed
by laws from wave optics rather than geometric op-
tics. This increases the implementation complexity
but also the computation time of the simulation. The
latter is not desirable when multiple iterations are re-
quired to find the optimal positions for each mask.
The Wigner distribution function (Wigner, 1932) is
a popular light representation and is applicable for
diffraction and interference simulations in the op-
tics community. It basically models light transport
through a grating as a mathematical operation, and
can be applied in a successive fashion for multiple
gratings. The Wigner distribution function is de-
fined in the space–spatial frequency domain which
has recently been shown to have similar properties as
the space–angle domain of the light field representa-
tion (Zhang and Levoy, 2009; Oh et al., 2010). Oh et
al (Oh et al., 2010) demonstrated this idea to render
interference patterns. This technique is valid in both
close or far range (near-field and far-field), however it
is a slow process as it relies on brute-force ray tracing.

We propose a Monte Carlo-based simulation tech-
nique for the Wigner distribution function. As these
calculations are easy to perform in parallel, a GPU
implementation is presented. We show an example
configuration and corresponding PSF on Figure 1 and
show the calculation speed–up compared to the naive
calculation. The resulting computation is in the order
of a fraction of a second, thereby enabling the user
to interactively manipulate the optical configuration
or the projection plane. The proposed method can be
scaled down in precision in order to achieve real-time
performance.

2 RELATED WORK

Light is often described as an electromagnetic field
with amplitude and phase. The Huygens–Fresnel
principle is often used to represent wave propagation,
which is a convolution of point scatterers (Goodman,
2005). In contrast, geometrical optics treats light as
a collection of rays. Among the extensive efforts to
connect wave and ray optics (Wolf, 1978), the no-
table ones are the generalized radiance proposed by
Walther (Walther, 1973) and the Wigner Distribution
Function (Bastiaans, 1977; Bastiaans, 1981; Basti-
aans, 1979), where light is described in terms of lo-
cal spatial frequency, which has a simple relationship
with the angular domain. Although the generalized

radiance or the WDF can be negative, they exhibit
convenient properties and explain diffraction rigor-
ously and conveniently (Bastiaans, 1997). We pre-
fer this light representation as it allows us to create
a probability function in space and spatial frequency
for a more efficient Monte Carlo sampling.

In computer graphics, light simulation often in-
volves solving the rendering equation (Kajiya, 1986)
that describes the light propagation. Multiple tech-
niques have been proposed to render wave phenom-
ena in computer graphics. Moravec proposed a
wave model to render complex light transport effi-
ciently (Moravec, 1981), which is based on phase
tracking. This technique keeps track of the travel dis-
tance of a ray and calculates its phase. Ziegler et al.
developed a wave–based framework (Ziegler et al.,
2008), where complex values can be assigned for oc-
cluders to account for phase effects. They also imple-
mented hologram rendering based on wave propaga-
tion (with the spatial frequency) (Ziegler et al., 2007).
Stam implemented a diffraction shader based on the
Kirchhoff integral (Stam, 1999) for random or peri-
odic patterns. Unfortunately, this technique assumes
the light source and observer to be at infinity, and
therefore not suitable for our system.

3 WIGNER DISTRIBUTION
FUNCTION

The Wigner distribution function is a representation
of light commonly used in the optics community. It
is used to simulate of light in both near–field and far–
field provided that the paraxial approximation is valid.
This approximation assumes that the incoming light
direction is close to the normal direction. For the pur-
pose of plane to plane propagation of light, this as-
sumption is valid.

The microstructure geometry of a diffracting sur-
face can be represented as a complex function t(x) in
space. The amplitude a(x) of t(x) is the amount of
light passing through at position x. The phase part
f(x) of t(x) represents the phase delay introduced to
the light due to the thickness(height profile) and/or
the refractive index of the surface. We can calculate
the Wigner distribution function (Wigner, 1932) of the
microstructure as

W (x;u) =
Z
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x+
x0
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�
t�
�

x� x0
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�
e�i2px0udx0 (1)

where x is the position, u the spatial frequency and �

is the complex conjugate operator. As an incoming
wavefront parallel with the diffracting surface is dis-
torted due to the phase delay, the outgoing wave front
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Figure 2: The Wigner distribution function of an aperture.
(Top) The aperture has an amplitude function which is 1
where the light is passing and 0 elsewhere. (Bottom) The
Wigner distribution of this aperture calculated using Eq 1.

is represented using the same equation in position and
spatial frequency. An example is shown on Figure 2.

The spatial frequency contains the directional in-
formation of a wavefront. There is a simple relation-
ship with the propagation direction q:

u = sin(q)=l (2)

where l is the wavelength of the light. The basic
concept of the Wigner distribution function is to de-
compose the correlation function of a complex wave-
front into a set of local plane wavefronts with differ-
ent starting positions and spatial frequencies. The in-
tensity of each local plane wavefront is a real value,
which could be negative as well.

3.1 Properties

In order to simulate light propagating through a sys-
tem of lenses and gratings we need a few additional
operators of the Wigner distribution function:

Propagation through Mid–air. The Wigner distri-
bution function Wz(x;u) of a complex wavefront will
shear due to the traveling distance z, similar to the
light field.

Wz(x;u) =W (x�luz;u) (3)

Propagation through a Grating. The Wigner dis-
tribution function Wo of an outgoing wavefront is a
convolution in spatial frequency of the Wigner distri-
bution function of an incoming wavefront Wi and the
Wigner distribution function of the grating W :

Wo(x;u) =
Z

Wi(x;u0�u)W (x;u0)du0 (4)
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Figure 3: Schematic overview of the calculation of px and
p. (a) The Wigner distribution function of the wavefront in
position–spatial frequency (b) The projection of the wave-
front along u is used to calculate px (c) At a position xi, we
construct p(xi;u) using the absolute values of W (xi;u).

Projection on a Surface. The measured intensity
when the light hits a surface such as a camera sensor
is the projection along all spatial frequencies u

I(x) =
Z

W (x;u)du (5)

Even though the Wigner distribution function con-
tains possible negative values, the observed intensity
I(x) on a surface is always positive (Bastiaans, 1997).

3.2 Monte Carlo Simulation

In order to speed up these calculations, we want to nu-
merically estimate the PSF using Monte Carlo simu-
lations. As a simple example, we show the projection
of our wavefront on a plane:

I(x) =
Z

W (x;u)du (6)

� (umin�umax)
N

å
i=1

s(x;a) (7)

where s is a sample contributing to the PSF at position
x. This sample is calculated as

s(x;a) =W (x;a)p(x;a) (8)

Which states that we can randomly sample a spatial
frequency a at a position x in the wavefront and add
this value to the total intensity I at position x. The
function p defines the probability of selecting this
spatial frequency and is added for normalization. In a
case where we uniformly sample a is

p(x;a) =
1
N

(9)

with N the amount of samples. This however is sim-
ilar to phase tracking as we select N different paths
thoughout the optical elements.

Alternatively, we can efficiently sample I(x) by
selecting our spatial frequency samples (a) according
to its probability function (p). If we sample a within
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Figure 4: An overview of the Monte Carlo simulation of
the point spread function. An initial random position and
spatial frequency is sampled according to px and p. With
each additional grating, a new outgoing spatial frequency
is sampled until it reaches the final plane. The intensity of
the sample is calculated based upon the Wigner distribution
function of each grating.

a range of [umin;umax], the probability function is cal-
culated as

p(x;u) =

R u
umin
jW (x;a)jdaR umax

umin
jW (x;a)jda

: (10)

This is not possible with phase tracking as the
importance of a direction is unknown. An example is
demonstrated on Figure 3(a)(c).

When the wavefront has to propagate through
space before it gets projected we have to include the
traveling distance of the light z and a sample is can
therefore be calculated as

s(x+lzu) =W (x;a)p(x;a) (11)

We can solve this by forward propagation, this in-
volves choosing a random start position xi and sample
the spatial frequency ui according to p. This sample
will define a position x after a propagation distance
z and is added to I(x). Similar to the selective sam-
pling of the spatial frequency we can sample the start
position xi using the probability function

px(x) =

R x
xmin

R
jW (a;u)jdudxR xmax

xmin

R
jW (a;u)jdudx

: (12)

This function is a also shown on Figure 3(b).

Finally, when a wavefront passes through a grat-
ing, we can also estimate this convolution as

Wo(x;uo) =
Z

W (x;uo�ui)Wi(x;ui)dui (13)

�
N

å
i=1

W (x;uo�a)
p(x;uo�a)

Wi(u;a) (14)

Which we simulate by sampling an outgoing spa-
tial frequency ui according to p(x;u). A schematic
overview of this simulation is illustrated in Figure 4.

4 IMPLEMENTATION

Because of the nature of Monte Carlo simulations,
this technique is very suitable for parallel execution.
Therefore we implement part of the algorithm on the
GPU. The implementation can be divided into a pre-
processing step calculating the Wigner distribution
functions and other lookup tables, and rendering step
calculating the diffraction pattern. The implementa-
tion on the CPU is written in C++ for speed and effi-
ciency. The GPU part is implemented using OpenGL
and Cg shaders.

4.1 Pre-processing

We start by calculating a discrete Wigner distribution
function for each diffraction grating micro-structure
t, provided by the user. For example, a rectangular
aperture as shown in Figure 2 has an amplitude func-
tion of a(x) = rect(x=A), where A is the size of the
aperture. We used the fast Fourier transform for an ef-
ficient calculation of the correlation function and the
Fourier decomposition in Eq. (1). This information is
stored into a lookup table in the form of a texture. As
textures are build to hold positive valued intensities,
the positive values of the Wigner distribution function
is stored in the red channel and the negative values in
the green channel.

Having this lookup table also allows precomput-
ing the probability functions p(x;u) and px(x) as pro-
vided by Eq. (10) and Eq. (12). As we work with a
discrete function, we can easily invert both these func-
tions which we store in the blue and alpha channel of
the texture. This makes sampling of a position and
orientation according to the probability very cheap as
it only requires a single texture lookup.

4.2 Rendering

The rendering consists of N samples which travel
from the first grating through the system until they
reach a projection surface. We start by creating these
samples as a set of vertex points in OpenGL. The co-
ordinates of these vertices are randomly chosen be-
tween 0 and 1 as we do not have a function to gener-
ate random values on the GPU. We used the NVidia
Cg library to create a vertex shader that performs the
Monte Carlo simulation based on the random val-
ues provided by the coordinates of the vertex and
the probability function provided by the precomputed
textures.

For each sample, we calculate the position on the
projection screen and translate the sample to this po-
sition in the vertex shader. The intensity is calculated
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Figure 5: The amount of samples creates a trade–off between accuracy and speed. Here we show four different renderings of
light passing through a single aperture.

through this path and saved in the red and green
color channels of the vertex similar to the creation
of the textures. These samples are then summed
up using the blend function of the GPU. Due to
the separation of the positive and negative values
of each sample (we can enable the blending using
glBlendFunc(GL ONE;GL ONE)). For precision
we render this process to a 32bit floating point frame
buffer.

5 RESULTS

The accuracy of the Monte Carlo simulation greatly
depends on the amount of samples we use. This, how-
ever, also increases the calculation speed. Figure 5
shows a comparison between the PSF calculated us-
ing our method and a ground truth of a rectangular
aperture. We notice that by increasing the amount of
samples our results converges to the ground truth.

In the preprocessing step, the lookup–tables are
created and stored into a texture on the GPU. This
step depends on the resolution of the lookup–tables.
To calculate a Wigner distribution lookup table of a
resolution of 1024�1024 and the probability lookup
tables with a resolution of 1024 takes around 800 ms
to calculate on a Intel Core2 6300 – 1.8GHz CPU.
The rest of the result in this section are performed on
an NVidia GeForce 8800 GT.

Depth = 15 cm Depth = 7 cm Depth = 1 cm

Figure 6: The Monte Carlo sampling works both in near–
field and far–field. We show the PSF of a rectangular aper-
ture measured at three different depths. We used 3 million
samples to generate these renderings, which is performed at
80 ms for each rendering.

A speed–up compared to the naive implementation
of the operators of the Wigner distribution function
is presented in Figure 1. The propagation through a
single grating using the naive method requires a com-
putation of 150 ms, which can be reduced to a 15 ms
using our method. Propagating through multiple grat-
ings can reduce the time from 28s to 0.2s.

Finally, we show its applicability in both near–
field and far–field, which is necessary to construct
PSFs of systems with relative small distance between
the masks. Figure 6 illustrates a PSF of a rectangu-
lar aperture in both near– and far–field. The PSF is
calculated in both x and y directions and multiplied to
achieve the presented results.

6 CONCLUSIONS

We presented an efficient implementation for calcu-
lating PSFs using the Wigner distribution function.
Using this representation, we are able to calculate
the diffraction and interference created by small scale
structures of gratings or lenses. Utilizing Monte Carlo
sampling on this function, we are able to simulate the
PSF at interactive speeds. This allows users to inter-
actively adjust parameters.

6.1 Future Work

We demonstrate the calculation of a PSF created by a
1D or 2D gratings which are separable in the 2 dimen-
sions. Extending the theory to a full 2D gratings is
straight forward, but requires a large amount of mem-
ory as the Wigner distribution becomes a function of
4D variables. In order to cope with the limited mem-
ory, we require an intelligent compression method for
data.
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