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ABSTRACT 

 

Supposing that the number of sources and the number of items in sources grow in time 

according to power laws, we present explicit formulae for the size- and rank-frequency 

functions in such systems. Size-frequency functions can decrease or increase while rank-

frequency functions only decrease. The latter can be convex, concave, S-shaped (first convex, 

then concave) or reverse S-shaped (first concave, then convex). We also prove that, in such 

systems, Heaps’ law on the relation between the number of sources and items is valid. 
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Introduction 

In 1970, Naranan (1970) proved his famous theorem in the journal Nature: if the number of 

sources (e.g. journals) grow exponentially in time and if the number of items (e.g. articles) in 

these sources also grow exponentially in time (according to a possibly different exponential 

function than the one of the sources), then the size-frequency function  f j  (the number of 

sources with j  items) is a decreasing power law, i.e. is Lotka’s law (see Egghe (2005a)).  

 

Stated more exactly the theorem of Naranan is as follows. 

 

Theorem (Naranan (1970)):  

Suppose 

(i) Sources grow exponentially in time t : 

    1 1

tT t c a  (1) 

 ( 1 0c  , 1 1a  ) 

(ii) Items in sources grow exponentially in time and their growth rate in sources is the 

same for every source:  

   2 2

tp t c a  (2) 

 ( 2 0c  , 2 1a  ) 

then the size-frequency function  f j  has the form  

  
C

f j
j

  (3) 

where 0C   is dependent on t , 1j   and 

 1

2

ln
1

ln

a

a
    (4) 

Formula (3) is called the law of Lotka and   is called Lotka’s exponent ( 1  ). Formula (4) 

is linked with the fractal dimension of this system (see Egghe (2005a,b)). 

 

It is well-known that Lotka’s law is equivalent with Zipf’s law  g r  (being the number of 

items in the source on rank r , where sources are ranked in decreasing order of their number 

of items): 
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  
B

g r
r

  (5) 

0B  , 0   and  0,r T , T  being the total number of sources.  

 

The relation between   and   is 

 
1

1






 (6) 

Note that all arguments are in continuous setting (all quantities are densities, which is the 

same in continuous probability theory). The equivalence between (3) and (5) is described in 

Egghe (2005a) or in Egghe and Rousseau (2006), Appendix, where also formula (6) is proved.  

 

The basis of the proof of the equivalence of (3) and (5) is the relation 

    1 ' '
j

r g j f j dj


    (7) 

Which describes the relation between the source rank density r  and the item density j : 

formula (7) describes the number of sources with item density j  or higher; hence the source 

with this item density j  has rank density r . Formula (7) is universal and not related to 

Lotkaian informetrics. It will be used in this paper as well.  

 

Clearly, both laws (3) and (5) are convexly decreasing functions. Recently this author was 

able to give a short algebraic proof of the theorem of Naranan – see Egghe (2010): Naranan 

proved (3) and (4) and Egghe proved (5) which is equivalent with (3) (as mentioned above) 

and where we showed that 2

1

ln

ln

a

a
   which yields (4) by (6). 

 

In this article we are interested in the “power law” variant of the theorem of Naranan: sources 

and items grow according to a power law (exact formulation will be given in the next section). 

We consider this to be an important problem since it is known that not all growth functions 

are exponential (Price (1963), Egghe an Rao (1992)). In addition, power laws are one of the 

most important models in mathematics and furthermore they are very simple. What size- and 

rank-frequency function do we have in such a system? This is the topic of this paper. In the 

next section we will prove explicit formulae for the size-frequency function  f j  and the 

rank-frequency function  g r . Contrary to the Naranan case we now can have (besides 
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decreasing) increasing size-frequency functions (or even non-monotonic functions). The rank-

frequency function always decreases (as in Naranan’s case) but is not always convex (as in 

Naranan’s case):  g r  can be convex, concave, or have an S-shape (first convex, then 

concave) or a reverse S-shape (first concave, then convex). 

 

In the third section we show that Heaps’ law (in linguistics also called the law of Herdan) is 

valid in this system. Heaps’ law states (see also Heaps (1978), Herdan (1960, 1964) or Egghe 

(2007)) that, in a growing system of sources and items, denoting by T  the total number of 

sources and by A  the total number of items we have 

 T KA  (8) 

where 0K   is a constant and 0 1   is a fixed exponent (independent of time). In other 

words the number of sources is a concavely (also called sublineary) increasing function of the 

number of items. In linguistics (Herdan) this is described as: vocabulary size (distinct words, 

also called “type”) is a concavely increasing function of text size (used words, also called 

“token”). 

The paper closes with some conclusions and open problems.  

 

Study of the system in which the number of sources 

and number of items in sources grow according to a 

power law 

Similar to the Naranan formalism we suppose the following assertions 

(i) Sources grow according to a power law in t : 

 1

1( )
aT t c t  (9) 

where 1 0c  , 1 0a   

(ii) Items in sources grow according to a power law in t  and their growth rate in sources is 

the same for every source:  

   2

2

ap t c t  (10) 

 where 2 0c  , 2 0a  . 

 

Note that the above also includes linear growth in case 1 1a   and/or 2 1a  . 
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We adopt the method, developed in Egghe (2010) for the Naranan framework which yields a 

closed expression for the rank-frequency function  g r . 

 

Theorem 1:  

In the framework of power law growth of the number of sources and of the number of items 

we have the following expression for the rank-frequency function  g r  in function of time t : 

  

2

1

1

2

1

a

ar
g r c t

c

 
     
  

 

 (11) 

where 1

10,
a

r c t    and where 1c , 2c , 1a  and 2a  are the parameters appearing in (i) and (ii) 

above. 

 

Proof: 

The defining equation for the rank-frequency function  g r  is, by (9) and (10): for every 

 0,1  : 

       1 2

1 2

a a
g r g c t c t t     (12) 

where   1

1

a
r c t  from which we derive 

 
1

1

1

1ar

c t


 
  
 

 (13) 

But (12) and (13) combined yield  

  

2

1
2

1

2

1

1
1

a

a
a r

g r c t
c t

 
     
  

 

 

from which (11) readily follows. 

  

 

Now we study the shape of  g r . It will turn out that  g r  is decreasing (as in the Naranan 

case) but  that it has several different shapes (in the Naranan case,  g r  was always convex). 
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Theorem 2: 

 g r  in (11) is always strictly decreasing. It has an inflection point if and only if 

 1

2 1

1
1 0

a

a a


 


 (14) 

and it has no inflection point if and only if 

 1

2 1

1
0

a

a a





 

or  1

2 1

1
1

a

a a





 (15) 

or if 1 2a a . In case of (14),  g r  has an S-shape (first convex, then concave) if and only if 

1 1a   and it has a reverse S-shape (first concave, then convex) if and only if 10 1a  . In 

case of the first inequality of (15),  g r  is convex if and only if 2 1a a  or if 1 2a a  and 

1 1a   and  g r  is concave if and only if 2 1a a  or if 1 2a a  and 10 1a  . In case of the 

second inequality of (15),  g r  is convex or concave for non-determined values of 1a and 2a .  

If 1 2 1a a  , then  g r  is a decreasing straight line.  

 

Proof: 

  

2

1 1

1
1 1

1

2 2

1 1 1 1

1
'

a

a ar r
g r c a t

c a c c


   

              
      

   

  

which is clearly negative (hence  g r  strictly decreases which is also clear from (11) or 

(12)). So we have  

  

2

1 1

1
1 1

1

1 1

'

a

a ar r
g r D t

c c


 

         
    

 

 (16) 

where 2 2

1 1

0
c a

D
c a

   . 

    

2

1 1 1

2
1 1 1

1 1

2

1 1 1 1 1

1
'' 1

a

a a ar r r
g r D a t

c a c c c


    

                   
        

   

  

 

2

1 1

1
1 1

2

1 1 1 1

1 1
1

a

a ar r
D t

c a c c


 

            
     

 
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Noting that 0D  ,  ''g r  has the sign of 

  
1 1

1 1

2

1 1 1 1

1 1
1 1

a ar r
a t

a c c a

 
               
      

 

 (17) 

If we denote 

 
1

1

1

:
ar

x
c

 
  
 

 (18) 

 

for simplicity, we see that  ''g r  has the sign of  

    2 1 11x a a t a    (19) 

Hence  g r  has no inflection point if 1 2a a : if 10 1a  , then  g r  is concave since (19) 

is 0 ; if 1 1a   then  g r  is convex since (19) is 0 . Let us now assume that 1 2a a . Then 

 g r  has an inflection point if and only if ( x  must be t  by (18) and since 1

1

ar c t ) 

 
 1

0

2 1

1
0

t a
t x

a a


  


 (20) 

(since  g r  is not defined on negative values) and has no inflection if and only if  

1

2 1

1
0

a

a a





 

or  1

2 1

1
1

a

a a





                                       

(21) 

 

(20) and (21) prove (14) and (15) since 0t  . 

 

Let us now assume (15). Suppose that we have the first inequality in (15). If 2 1a a , then by 

(15) 1 1a   and hence the sign of (19) is 0 . Hence  g r  is convex. If 2 1a a  then by (15), 

10 1a   and hence the sign of (19) is 0 . Hence  g r  is concave. Suppose that we have 

the second inequality in (15). If 2 1a a  then 2 1a   hence 1 1a   and the sign of (19) is not 

determined. If 2 1a a  then 2 1a   hence 1 1a   and the sign of (19) is not determined. 

 

Let us now assume (14). Hence in this case,  g r  has an inflection point. In 0r x  , (19) 

(hence  '' 0g ) has the sign of 
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1 1a   (22) 

since 0t  . If 
10 1a   then (22) is 0  and hence  g r  starts concave and then, after the 

inflection point (20), is convex. Hence  g r  has a reverse S-shape. If 1 1a  , then (22) is 0  

and hence  g r  starts convex and then, after the inflection point (20), is concave. Hence 

 g r  has an S-shape. 

  

Further properties of the rank-frequency function are given in Theorem 3. 

 

Theorem 3: 

(i)   2

20
ag c t  (23) 

(ii)  1

1 0
a

g c t   (24) 

If  g r  in 0r   is convex then  ' 0g   . If  g r  in 0r   is concave then  ' 0 0g  . If 

 g r  in 1

1

ar c t  is convex then  1

1' 0
a

g c t  . If  g r  in 1

1

ar c t  is concave then 

 1

1'
a

g c t   . 

 

Proof: 

(23) and (24) follow readily from (11). From (16) we have that  ' 0 0g   if 10 1a   and 

 ' 0g    for 1 1a   (since 0D  ). Hence this are the only two possible values for  ' 0g . 

From (16) we have that  1

1' 0
a

g c t   if 2 1a   and that  1

1'
a

g c t    if 20 1a  , since 

0D  . Hence this are the only two possible values for  1

1'
a

g c t .  

 

These results prove Theorem 3 since, if  g r  is convex in 0r  ,  ' 0 0g   and if  g r  is 

concave in 0r  ,  ' 0g   . The same argument if 1

1

ar c t .     

 

This means that, according to the values of 1a  and 2a , described in Theorem 2, we have the 

possible shapes of  g r  as shown in Figs. 1, 2, 3, 4. 

 

 



 9 

 

Fig.1. Concave shape of  g r  

 

 

Fig.2. Convex shape of  g r  

 

 

Fig.3. Reverse S-shape of  g r  

 

r
0 c

1
t
a1

g

c
2
t
a2

r
0 c

1
t
a1

g

c
2
ta2

r
0 c

1
ta1

g

c
2
t
a2
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Fig.4. S-shape of  g r  

 

If  g r  has an inflection point (Figs. 3, 4) then this point is   0 0,r g r , where 

 

1

1
0 1

2 1

1
a

a
r c t

a a

 
  

 
 (25) 

  
2

2
0 2

2 1

1
a

a
g r c t

a a

 
  

 
 (26) 

This follows from (20) and (11). Note that here 1 2a a  since in this case  g r  has no 

inflection point (see Theorem 2). 

 

Fig. 2 is a classical shape for a rank-frequency function. The S-shape in Fig. 4 occurs, e.g., in 

Mansilla et al. (2007) Martinez-Mekler et al. (2009), Lavalette (1996), Campanario (2010), 

Egghe (2009) and Egghe and Waltman (2011) both for the rank-order function of the impact 

factor ( )IF r  and its logarithm   ln IF r . 

 

Now we turn our attention to the size-frequency function f  that is equivalent with the already 

studied rank-frequency function g .  

 

The equivalence between the rank-frequency function  g r  and the size-frequency function 

 f j  is expressed by the equation (7), from which it follows that 

  
  1

1

'
f j

g g j
   (27) 

r
0 c

1
ta1

g

c
2
t
a2
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From (27) we can deduce the function  f j  based on the results that we have obtained on the 

function  g r . This is described in the next theorem.  

 

Theorem 4: 

Under the assumptions (i) and (ii) in this paper we have that the size-frequency function 

 f j  has the following expression 

  
1

2
2 2

1 1

1
1

1 1
1

2 2

2

a

a
a a

a c
f j

j
a c t j

c






 

     
  

 

 (28) 

Proof: 

According to (27) we need expressions for 'g  and for  1g j
. The derivative 'g  has already 

been calculated – see (16). For  1g j
, note that, by (11),  

  

2

1

1

2

1

a

ar
j g r c t

c

 
      
  

 

  

where 

  

1

2

1

1

1

2

a

aj
r g j c t

c



 
      
  

 

 (29) 

Note that (29) has the same form as (11) upon replacing r  by j  and the index 1 by 2 and 

vice-versa. Now (16), (29) and (27) yield 

  
1

2 2

1 1

1
1 1

12 2

2 2

1
a

a a

a c
f j

a c
j j

t
c c





 

        
    

 

 

from which (28) follows.  

 

In the Appendix we present a second proof of (28), again based on (27) but now using the 

implicit defining relation (12) for g , hence confirming the correctness of (28). 

 



 12 

We will now study the increasing and decreasing aspects of the size-frequency function  f j  

in (28). 

(1) Let 1 1a  . 

Then, by (28) 

  
2

1
1

a

C
f j

j


  (30) 

where 
2

1 1

1/

2 2

a

a c
C

a c
 . If 2 1a   we then have that  f j decreases strictly. We could say that (30) 

is then Lotka’s law but with the unusual exponent   (Egghe (2005)) 

 
2

1
0 1 1

a
     (31) 

If 20 1a  , then  f j  strictly increases in j . For the cases 1 1a   and 10 1a   we need 

the following Lemma, proved in Egghe and Waltman (2010) (see Lemma II.3 there). 

 

Lemma 1 (Egghe and Waltman (2011)): 

Let f  and g  be general size- (rank-)frequency functions. Let g  be decreasing. Then we 

have the following equivalence: f  is first increasing and then decreasing if and only if g  has 

an S-shape, first convex and then concave.  

 

We also need the following Lemma which is proved in the same way 

 

Lemma 2: 

Let f  and g  be as above and let g  be decreasing. Then we have the following equivalence: 

f  is first decreasing and then increasing if and only if g  has a reverse S-shape, first concave 

and then convex.  

 

The proof of Lemma 2 follows the lines of Theorem II.5 (using (6)) in Egghe and Waltman 

(2011) and Lemma II.3 (with g  replaced by 1g  ) in Egghe and Waltman (2011). 

 

We now start the study of the cases 1 1a   and 10 1a  . 
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(2) Let 1 1a  . 

If 2 1a  , then it is clear from (28) that  f j  decreases strictly in j .  

If 20 1a  , then (20) is valid. Hence  g r  has an inflection point. But, since 1 1a  , (22) is 

positive. As argued below (22), g  has an S-shape (first convex, then concave). By Lemma 1, 

f  is first increasing and then decreasing.  

 

(3) Let 10 1a  . 

If 20 1a  , then it is clear from (28) that  f j  strictly increases in j . 

If 2 1a  , then (20) is positive and hence  g r  has an inflection point. But, since 10 1a  , 

(22) is negative. As argued below (22), g  has a reverse S-shape (first concave, then convex). 

By Lemma 2, f  is first decreasing, and then increasing.  

 

 

Proof of the validity of Heaps’ law (or Herdan’s law) 

in systems where sources and items grow according 

to a power law 

So we suppose that assumptions (i) and (ii) of the previous section are valid. In formula (9), 

 T t  denotes the total number of sources at time t . Let us denote by  A t  the total number 

of items at time t . In the next theorem we show the validity of Heaps’ (or Herdan’s) law. 

 

Theorem 5: 

Heaps’ (or Herdan’s) law is valid: there exists a constant 0K   and a constant  , 0 1  , 

independent of time t  such that, for every 0t   we have 

  ( )T t KA t


  (32) 

Furthermore 

 
2

1

1

1
a

a

 



 (33) 
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Proof:  

Formula (9) yields  

   1

1

aT t c t  (34) 

 

The equation (10) or (12) imply that  the total number of items in all sources at time t  equals 

      
1

2
1

1 2
0

a
a

A t c t c t t d     (35) 

Indeed t  goes from 0  to t , covering the growth of sources and items up to time t . Hence 

(35) equals 

    
2

1 2 1
1

1 2
0

1
a

a a a
A t c c t d  

   (36) 

The integral in (36) cannot be evaluated in an analytical way. In fact it is the beta function 

    
2

1
1

2 1
0

1, 1 1
a

a
B a a d       (37) 

However, what is important here is that (37) is a constant. Denote  

  1 2 2 11, 1D c c B a a    

then we have that 

   1 2a aA t Dt 
  (38) 

Formula (34) implies 

 
  1

1

1

aT t
t

c

 
  
 

 (39) 

(39) in (38) yields 

  
 

1 2

1

1

a a

aT t
A t D

c



 
  

 
  

Hence  

  
 

1

1 2

1

a

a aA t
T t c

D

 
  

 
 (40) 

Denote  

 
1

1 2

1

a

a a

c
K

D


  

, then (40) reads 
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    
2

1

1/ 1
a

aT t KA t
 
 

   (41) 

hence Heaps’ (or Herdan’s) law with constant exponent  

 
2

1

1
0 1

1
a

a

  



  

 

Note that   only depends on the quotient 2

1

a

a
 of the power law exponents in (9) and (10).  

 

 

Conclusions and open problems 

In this paper we studied a variant of the Naranan formalism: instead of exponential growth of 

the number of sources and items (by Naranan (1970)), we suppose that the number of sources 

and items grow according to a power law. We prove explicit formulae for the rank- and size-

frequency functions in such systems. The latter can decrease and/or increase (in Naranan’s 

model, there is only a power law decrease: Lotka’s law) while the former can only decrease 

(by definition (7)) but it can have the convex, concave, S-shape or reverse S-shape (while in 

Naranan’s case it can only decrease convexly: Zipf’s law).  

 

We also proved the validity of Heaps’ law (from information retrieval) (or equivalently 

Herdan’s law from linguistics) in these systems.  

 

This paper showed that informetric systems do not always have Lotka’s law as a size-

frequency function or Zipf’s law as a rank-frequency function: based on a simple assumption 

of power law growth of items and sources we could prove (11) for the rank-frequency 

function and (28) for the size-frequency function. This implies that many results from 

Lotkaian informetrics (see Egghe (2005a)) could be re-studied in the present context. Besides 

these open theoretical problems, we also need empirical results to show the use-ability of the 

present results. 

 

The fact that Heaps’ law is a consequence of power law growth of sources and items and the 

fact that Heaps’ law (Herdan’s law) occurs in many cases in informetrics and linguistics, 



 16 

shows that the growth model studied here has some advantage over other source-item growth 

models. 

  

It would be very interesting to study other variants of the Naranan formalism, e.g. where 

sources grow exponentially and items (in sources) grow according to a power law (or vice-

versa).  
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Appendix 

 

Second proof of formula (28).  

 

The defining relation for  g r  is (12): for   1

1

a
r c t  (  0,1  ), 

       21 1 2

1 2 1
aa a a

g r g c t c t     (A1) 

Since   1

1

a
r c t  we have 

 
1

1

1

1ar

c t


 
  
 

 (A2) 

Furthermore 

  
   

'
dg r dg r d

g r
dr d dr




   

   22 1

1

1
1

1

2 2 1/

1 1

1 1 1
1

aa a

a
c t a r

t c a





    

 

2

2 1
1

1

1
1

11 1
2 2

1/

1 1 1

1
1

a

a a
a

a

c t a r
r

c a c t



 
 

      
  

 

 (A3) 

by (A1) and (A2). By (A1),  

     221 1

2 1
aa

r g j g c t      

 1 1

1

a ac t   (A4) 

 

Since  j g r , we have, by (A1),  

   22

2 1
aa

j c t    

whence 

 
2

1

2

1
1

aj

c t


 
  

 
 (A5) 

Hence (A4) and (A5) yield  
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  

1

2
1

1

1

1

2

1
1

a

a
a j

r g j c t
c t



 
      
  

 

 (A6) 

 

Finally (27), (A3) and (A6) yield (28) after some elementary calculation.  

 

 


