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Abstract: 

Alhought access to high-resolution mass spectrometry, especially in the field of biomolecular mass 
spectrometry, is becoming readily available due to recent advances in MS technology, the 
accompanied information on isotopic distribution in high-resolution spectra is not used at its full 
potential, mainly because of lack of knowledge and or awareness. 

In this review, we give an insight on the practical problems when calculating the isotopic 
distribution for large biomolecules, and present an overview of methods for the calculation of the 
isotopic distribution. We will discuss the key events that triggered the development of various 
algorithms and explain to the reader the rationale of how and why the various isotopic-distribution 
calculations were performed. The review is focused around the developmental stages as briefly 
outlined below, starting with the first observation of an isotopic distribution. 

The observations of Beynon in the field of organic mass spectrometry that chlorine appeared 
in a mass spectrum as two variants as odds 3:1 lie at the basis of the first wave of algorithms for the 
calculation of the isotopic distribution, based on the atomic composition of a molecule. From here 
on, we will explain why more complex biomolecules such as peptides exhibit a highly complex 
isotope pattern when assayed by mass spectrometry, and explain how combinatorial difficulties 
complicate the calculation of the isotopic distribution on computers. For this purpose, we highlight 
three methods, which were introduced in the eighties. These are the stepwise procedure introduced 
by Kubinyi, the polynomial expansion from Brownawell and Fillippo, and the multinomial expansion 
from Yergey.  

The next development was instigated by Rockwood, who suggested to  decompose the 
isotopic distribution in terms of their nucleon count instead of the exact mass. In this respect, we 
could claim that the term 'aggregated' isotopic distribution is more appropriate. Due to the 
simplification of the isotopic distribution to its aggregated counterpart, Rockwood was able to use 
the convolution for the calculation of the 'aggregated' isotopic distribution. Convolution methods are 
computationally efficient and economic in their memory usage. We will spend a section on the work 
introduced by Rockwood during the nineties. 

Due to recent breakthroughs in mass spectrometric technology and the widespread high-
resolution instruments (e.g., FTICR-MS, FTOrbitrap-MS, TOF-MS) that provide high-resolution, 
isotope-resolved, accurate mass data, there is an emerging need for algorithms that can calculate 
isotopic distributions for large biomolecules. The number of recent publications on this topic does 
witness this trend. The new methods are mostly based on complex mathematical developments such 
as, e.g., cellular automata [25][25][25][25][25], dynamic programming [43][43][43][43][43], and 
hierarchical models[19][19][19][19] [19]. 

We also comment on the ideas to use Punnet squares and Pascal’s triangle to introduce the 
concept of the isotopic distribution for educational and didactic purposes.



 

Introduction 

In 1913, the mental father of mass spectrometry, J. J. Thomson, made a controversial discovery 
during a canal ray experiment. He observed that neon in a positive ray tube existed as atoms with 
different atomic masses[44][44][44][44] [44]. Moreover, he observed parabolas of Neon that 
corresponded to two different isotopes, 20Ne and 22Ne. These were the first non-radioactive isotopes 
to be discovered and measured with mass spectrometry. More-accurate mass spectrometers were 
built by Aston and by Dempster to study stable- and radio-isotopes. Doing so, they instigated the 
field of modern mass spectrometry. These events have led to a change in the meaning of molecular 
and atomic masses, and introduced mathematical combinatorics in this field. An interesting review 
on the history of isotope research by Budzikiewicz and Grigsby [6][6][6][6][6] is available for more 
background information. In this review, we provide an overview of different methods that have been 
proposed to calculate the isotopic distribution of a molecule given its elemental composition. We 
focus on how the isotopic distribution can be applied in the context of interpretation of mass 
spectrometry data. 

On Earth, particular chemical elements appear as different stable or radioactive variants. 
These variants have a different number of neutrons in their atomic nucleus and are known as 
isotopes. For example, there are two stable isotopes of carbon (C) that appear in nature:  

and . In the notation, the upper-left index indicates the mass number or nucleon number and 

represents the total number of protons and neutrons, i.e., nucleons, in the atomic nucleus.  The 
lower-left index indicates the atomic number, i.e., the number of protons in the nucleus. It should be 
noted that each elemental isotope has a different mass number. Hence, the number of neutrons in 
the nucleus can be easily determined by subtracting the atomic number from the nucleon number. In 
the remainder of the paper, we will suppress the atomic number from the notation. The natural 
abundances of the elemental isotopes in normal terrestrial matter are known, and are described by a 
Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and 
Applied Chemistry (IUPAC) in [1][1][1][1][1].  

Terrestrial molecules incorporate elemental isotopes according to their natural abundances. 
Thus, a molecule can have different isotopic variants with different masses that  depend on the 
number of different isotopes of the atomic composition of the molecule. The probability of 
occurrence of these isotopic variants can be calculated given the atomic composition and the known 
elemental isotope abundances. The result of this calculation is known as the isotopic distribution. 
Caution should be applied when computing the isotopic distribution for molecules that deviate from 
the IUPAC description. For example, some groups of plants can have a preference to incorporate 13C 
in their molecules. More information on this topic can be found in the review of Farquhar et al. 
[12][12][12][12][12]. Moreover, isotope distribution, predominantly those of oxygen, in seawater 
have varied over geologic timescales in response to climate alterations. 

The knowledge of the isotopic distribution of a molecule can be useful for several purposes. 
We will indicate its usefulness by describing two popular applications.  As a first application, it can be 
used to filter out the relevant information about peptide molecules from high-resolution mass 
spectra obtained from a biological sample. A mass spectrum usually contains a lot of noise and 



redundant information. However, a peptide molecule should be represented in a spectrum by a 
characteristic signal in the form of (short) series of regularly spaced peaks; the isotope envelope, 
which should exhibit a specific profile related to the isotopic distribution of the peptide. This typical 
signal originates from the fact that a population of ions for a particular peptide is measured, instead 
of a single ion. In this population of ions, a percentage of molecules will carry, for instance, one 13C 
isotope which leads to an increase in mass of approximately one dalton (Da) due to the extra neutron 
in 13C, etc. From prior information about the expected form of the isotopic distribution, the 
information about peptide abundance can be extracted from the spectrum. Such prior information 
can be obtained from, e.g., a prediction based on an average peptide [41, 15, 46, 47][41, 15, 46, 
47][41, 15, 46, 47][41, 15, 46, 47][41, 15, 46, 47]. For example, McIlwain et al. [21][21][21][21][21] 
proposed a scoring algorithm to annotate isotopic peaks by means of Bayes nets in combination with 
dynamic programming. As a second application, in high-resolution mass spectrometry (MS), isotopes 
of sulfur can be resolved separately in a spectrum due to the relatively large difference between the 
mass of the atomic nucleus and the sum of the masses of its fundamental particles, i.e., the mass 
defect. Therefore, high-resolution isotopic profiles of large molecules, observed in a mass spectrum, 
can be compared to a hypothesized isotopic distribution so that the information on the elemental 
composition is revealed. It should be noted that, in such a case, the elemental composition of the 
molecule is identified without the requirement of a tandem MS scan [42, 38][42, 38][42, 38][42, 
38][42, 38].  

Thus, the calculation of the isotopic distribution is an important practical tool. The need for 
an efficient calculation method is proved by the substantial number of publications on this topic. In 
this paper, we provide a chronological overview of the publications, which have led to the current 
status of algorithms for the calculation of the isotopic distribution. In our presentation, we ignore the 
methods used for the graphical representation of theoretical mass spectra. Instead, we concentrate 
on information about the isotopic distribution in the form of a discrete probability distribution for 
different mass isotopic variants of a molecule. The information can be stored as a list of masses (m) 
of the isotopic variants and their corresponding occurrence probabilities (p). The graphical 
representation of theoretical mass spectra is trivial and is usually done by rendering a Gaussian or 
Laplacian approximation which is convoluted with the obtained list of mass and probabilities, as 
discussed by Werlen [48][48][48][48][48].  

The chronological overview is divided into three main parts. The first part mainly focuses on 
the methods based on the polynomial and multinomial expansion and stepwise addition. The second 
part is devoted entirely to the methodology proposed by A. Rockwood, in which the polynomial 
expansion is linked to the functional convolution. This link has resulted in a straightforward and 
computational efficient algorithm. The third part presents approaches, that use more advanced 
computational methods, such as dynamic programming and hierarchical algorithms, to elaborate the 
isotopic fine structure of a molecule.  

In the literature, these methods are often compared and adjusted as if they were totally 
different procedures. However, they are different formulations of the same concept. The reason for 
this confusion can tentatively be explained by emerging technologies for scientific computing in the 
early eighties. Computing power was limited, and the usage of internal memory and of the numerical 
machine precision were important issues those days. The different techniques focus on how to 



efficiently use these resources in order to obtain the isotopic distribution within a reasonable time 
interval. 

Unless specified differently, in our presentation, we focus on peptides which are mainly 
composed of carbon (C), hydrogen (H), nitrogen (N), oxygen (O), and sulfur (S). However, the 
methods mentioned in this manuscript can also be applied to other polyisotopic elements. An 
advantage of focusing on peptides is that the monoisotopic mass of a molecule corresponds to the 
lightest isotopic variant. In the remainder of this review, we will term this variant as “the 
monoisotopic variant”. The monoisotopic variant is composed of the most-abundant isotopes. For 
carbon, hydrogen, nitrogen, oxygen, and sulfur, the most-abundant (and lightest) isotopes are 12C, 
1H, 14N, 16O, and 32S. Further, we only consider stable isotopes, i.e., the isotopes just mentioned, 
together with 13C, 2H, 15N, 17O, 18O, 33S, 34S, and 36S. The considered isotopes are listed in Table 1 
together with their atomic mass and natural abundance. It is not our intention to subject the 
algorithms and software packages to a benchmark set to compare the performance, speed, and 
memory use. Instead, we will intuitively explain the concepts behind each algorithm. An isotopic-
abundance calculation involves probability theory and combinatorial analysis. Although mathematics 
and statistics cannot be avoided completely, we will emphasize practical matters, and aiming to 
answer the advantages and disadvantages related to the method. 

 

Table 1: Standard atomic weights (IUPAC 1997) for the isotopes of elements as they exist naturally in normal 
terrestrial material. 

Isotopes Atomic mass (Da) Natural abundance (%) 

12C 12.0000000000 98.93 

13C 13.0033548378 1.07 

1H 1.0078250321 99.9885 

2H 2.0141017780 0.0115 

14N 14.0030740052 99.632 

15N 15.0001088984 0.368 

16O 15.9949146 99.757 

17O 16.9991312 0.038 

18O 17.9991603 0.205 

32S 31.97207070 94.93 

33S 32.97145843 0.76 

34S 33.96786665 4.29 



36S 35.96708062 0.02 

 

 
 
 
 
PART I: The early methods 
 
The stepwise procedure and the polynomial expansion 

In 1960, Beynon [3][3][3][3][3][3][3][3][3] indicated that the probability that no heavy isotopes would 
occur in a peptide with elemental composition CvHwNxOySz was equal to 

 (1) 

where the terms Pr( 12C), Pr( 1H),Pr( 14N), Pr(16O), and Pr(32S) represent the natural abundances or, 
more specifically, the probability of the occurrence, of the particular isotopes of carbon, hydrogen, 
nitrogen, oxygen, and sulfur, respectively, as displayed in Table 1. In other words, equation (1) gives 
the probability of occurrence for the monoisotopic variant of the peptide molecule. 

The calculation of the remaining isotopic variants is less trivial, and becomes increasingly 
complex in the case of molecules that contain many polyisotopic elements; typical for biomolecules. 
Thus, as the molecule mass increases, the calculation complexity also increases. In theory, a peptide 
with a molecular formula of CvHwNxOySz has  possible isotopic variants, when taking into 

account the location of the isotope in the molecule. For example, if one 13C atom is incorporated in 
the molecule, then it can be present as any of the v carbon atoms.  

It is worth noting that a mass spectrometer cannot discern among the different locations of 
an elemental isotope in an intact molecule, because the isotope location variants are isobaric. Thus, 
what is important is the number of different elemental isotopes, and not their actual position in a 
molecule. Therefore, the number of isotopic variants, from a point of view of their mass, of a peptide 
with a molecular formula of CvHwNxOySz is actually smaller than . For completeness, we 

should discern among three types of isotopic variants. First, mathematically, we can define a set of 
all possible isotope location variants and neglect molecule symmetry. Second, chemically, previous 
set can be reduced taking into consideration the symmetry in the molecule. Third, analytically, we 
can further reduce the set towards only isobar isotopic variants.  

Initially, to calculate the isotopic variants, the stepwise procedure, introduced by Biemann 
[4][4][4][4] [4] in 1962, was used. The procedure is based on the isotope ratio of the elements that 
compose the molecule. Th isotopic distribution is calculated by the stepwise addition of the isotope 
ratio information of a particular atom to accumulate to the full molecule. For example, a chlorine 
atom has two isotopes:  and , with a natural occurrence probability of 0.7577 and 0.2423, 

respectively. Note that the probability of prevalence for  is approximately three times larger 

than the probability of occurrence of , what we can represent by odds 3:1. Now, the isotopic 

distribution of a molecule composed out of exactly two chlorine atoms can be calculated by 



multiplying the odds corresponding to the first atom (3:1) by the odds corresponding to the second 
atom (3:1). This calculation leads to the odds of 9: 3: 3: 1 for the nominal masses (35+35), (35+37), 
(37+35), and (37+37), respectively. Summing the terms with equal mass gives rise to the odds of 9: 6: 
1 for the isotopic variants with nominal masses 70, 72, and 74, respectively. This procedure is 
repeated by atom-wise adding and multiplying of the odds for each chemical element, until all the 
polyisotopic elements have been considered. By doing so, “stick spectra” are generated with one 
stick per dalton. The approach is very laborious, and it is impossible to execute it for large molecules 
with many polyisotopic atoms. For this reason, the stepwise procedure was considered only for small 
molecules and not for biomolecules. Another drawback of the method is that the probabilities (real 
numbers) of occurrences of different isotopic variants of a molecule were rounded to obtain odds 
expressed by ratios of integers (rational numbers), that can lead to bias in the calculation of the 
isotopic distribution for large molecules. Although the method is straightforward to use, it consumes 
a tremendous amount of computer memory and processor time. Many variants of the step-wise 
algorithm were introduced to aim at the most efficient use of these resources [30, 17][30, 17][30, 
17][30, 17][30, 17]. A case in point is the method proposed by Kubinyini[18][18][18][18] [18], where 
the calculation is subdivided into a binary series of steps. Instead of the atom-wise addition, 
Kubinyini introduced the concept of hypothetical clusters of atoms, called hyperatoms, e.g., C4 . 
Splitting up the calculation of the isotopic distribution of a molecule into the multiplication of the 
odds of larger hyperatoms will improve the computational efficiency. How this calculation is achieved 
will be explained in more detail at the of the section about complexity reduction. 

 In the seventies, Yamamoto and McCloskey [49][49][49][49][49] and Brownawell and Fillippo 
[5][5][5][5][5] argued that, for large molecules, the isotopic distribution could be easily obtained by 
symbolically expanding a polynomial function. In the case of peptides, this becomes: 

  (2) 

The terms 12C, ..., 36S are symbolic indicators that refer to the corresponding atoms. Symbolic 
expansion of equation (2) results in many equivalent isobaric product terms, which correspond to 
molecules with the same isotope combination, but at a different location. As we have already 
mentioned, the isobaric peptide variants, i.e., all variants with identical isotope composition and 
equal mass, are indistinguishable. Therefore, these isotopic variants, often referred to as like-terms, 
can be collected. Collecting these equivalent terms and substituting the probabilities and masses 
from Table 1 into the symbolic indicator gives the probability of occurrence and its exact-mass value 
for the corresponding isotopic variant of the peptide. 

In the nineteen-eighties and nineties, the symbolic polynomial expansion was explicitly 
performed on computers [27, 14, 29, 8][27, 14, 29, 8][27, 14, 29, 8][27, 14, 29, 8][27, 14, 29, 8]. The 
advantage, as compared to the stepwise procedure, was that, in the case of the polynomial 
expansion, the isotopic variants for each element could be calculated separately before further 
multiplying across the elements. The separate calculation of  elemental-specific isotopic variants 
opened the possibility to perform adjustments to the algorithm. These adjustments could accelerate 
the calculations. It should also be noted that, in the polynomial expansion, the exact probabilities can 
be used instead of rounded ratios.  



To illustrate the concepts, we will present an example of the symbolic expansion for propane 
C3H8. In this case, we can expand the terms for carbon and hydrogen separately. For carbon, this 
calculation results in 23 possible terms: 

 

Note that the eight hydrogen atoms mathematically give rise to 28=256 possible isotope 
location variants. From previous expansion, it can be observed that even a simple molecule like 
propane can already have as many as 2048 isotopic variants. However, collecting the isobaric 
variants (like-terms) results in only four terms for the C3 fragment of propane: 

 +  

In a similar way, collecting the like-terms from the 256 isotopic variants of H8 results in only nine 
different isobaric variants. The obtained polynomials for the symbolic indicator C and H should now 
be multiplied to calculate the complete isotopic distribution for the propane molecule. This 
multiplication results in 36 terms which represent the isotopic variants with unique masses that 
range from the monoisotopic mass of 44.062 Da to 55.1228 Da. In order to calculate the isotopic 
probabilities and accurate mass, each of the 36 product terms should be separately evaluated by 
replacing the symbolic indicator variables 12C, 13C, 1H, and 2H by the corresponding occurrence 
probabilities and masses from Table 1.   

The Multinomial expansion 

As mentioned earlier, symbolically expanding the polynomial is an exhaustive and computer-
intensive method. However, there exists a more elegant way to calculate the frequency, with which a 
particular product term will appear in the expansion. Already in 1963, Margrave and 
Polansky[20][20][20][20] [20] described the binomial nature of the probability of occurrence of 
isotopic variants. This observation was also made by Carrick and Glocklin in 1967 [7][7][7][7][7]. 
Later, in 1973, Genty[13][13][13][13] [13] used the multinomial distribution to calculate the isotopic 
ratios for small molecule.  In 1983, Yergey et al. [50, 51][50, 51][50, 51][50, 51][50, 51] generalized 
the latter findings and stated that the isotopic distribution for a peptide could be calculated by the 
expansion of the multinomial distribution, because the following relationship holds: 

   (3) 

ni is the number of isotopes xi of element x present in the molecule. Note that the sum in equation 
(3) is taken over all combination of n1, n2,…, nk such that they sum to n, where n denotes the number 
of atoms of element x. The search for all possible isotope combinations n1, n2,…, nk is known as the 
money-exchange problem, and can be seen as the solution of a Diophantine equation, which will be 
discussed later in this manuscript. The left-hand side of equation (3) represents the symbolic 
expansion of the polynomial, whereas the right-hand side is its direct representation in terms of a 
sum of multinomial probability-like terms. The cumbersome process of collecting like-terms for each 



possible isotopic variant from the symbolic expansion is now replaced by calculating the multinomial 
coefficients. 

It should be noted that the previous equation is only used to calculate the probability of 
occurrence of an isotopic variant of a molecule composed out of only one type of element, e.g., C112. 
The probability of occurrence of an isotopic variant of the entire biomolecule is calculated as the 
product of the probabilities for the corresponding element-specific isotopic variants. For example, 
the probability of occurrence of the isotopic variant 12C110 

13C2 
1H165 

14N27 
16O36 of a peptide with 

atomic composition C112H165N27O36 (nucleon number: 2463) is described by the product of the 
following terms: 

 

 

 

 

The exact mass of this isotopic variant is 2466.1978 Da, with the probability of occurrence equal to 
0.2180 × 0.9821 × 0.9057 × 0.9161 = 0.1775. Now, consider the isotopic variant 12C112 

1H165 
14N27 

16O35 
18O1 with the mass of 2466.1953 Da. Its probability of occurrence is described by the product of the 
terms with the following C and O elements: 

 

 

The resulting probability is 0.2997 × 0.9821 × 0.9057 × 0.0678 = 0.0180. It should be noted that, 
although both isotopic variants 12C110 

13C2 
1H165 

14N27 
16O36 and 12C112 

1H165 
14N27 

16O35 
18O1 have the 

same nucleon number, i.e., contain the same additional amount of neutrons; their masses slightly 
differ by 0.0025 Da. This example also indicates that isotopic elements with negligible individual 
occurrence probabilities have substantial contributions to the isotopic distribution in the middle-
molecule mass range and should not be ignored. Previous statement is especially true in the case for 
carbon, where the probability of occurrence of two different carbon isotopes in the molecule is quite 
large. Figure 1(a) presents the result of the multinomial expansion of C112H165N27O36 for the 166 
components in the mass interval 2464-2470 Da. Figure 1(b) presents a zoom-in of the isotopic cluster 
with nominal mass 2468 Da. The zoom-in indicates that there are many isotopic variants of the 
molecule with a similar mass and a very small probability of occurrence.  

To calculate the isotopic distribution of a molecule, the multinomial expansion should be 
evaluated separately for all possible isotope combinations of atom. In 1984, Hsu [16][16][16][16][16] 



suggested to this aim the use of Diophantine equations. A Diophantine equation is an equation in 
which the coefficients and solutions are required to be integers, and can be expressed as 

(4) 

where n is the number of atoms for a particular element and ni denotes the number of occurrences 
of the ith isotope in a polyisotopic element with k isotopes. The solution of the Diophantine equation 
in (4) returns all possible sets of ni’s. For the calculation of the probability of occurrences for the 
isotopic variant, Hsu also propagated the use of the multinomial distribution.  

It appears that the implementation of the multinomial expansion works well for low-mass 
peptides. However, for larger molecules, the calculation of the multinomial coefficients becomes 
problematic due to overflow in the computation of factorials. An overflow takes place when the 
result of a calculation is larger than the maximum representable number on a computer. For 
example, a 64-bit floating-point representation in the IEEE Standard 754 will generate an overflow 
when calculating the multinomial coefficients for a molecule, like bovine insulin C254H337N65O75S6. To 
circumvent this problem, Yergey and Hsu both proposed to use a logarithm of the multinomial 
coefficient to facilitate the numerical computations. This representation of the multinomial  
increases the speed of their algorithms. Further, they propose to compute the multinomial 
coefficient in a recursive way. This method reduces the number of computer manipulations because 
the probability of occurrence a new isotope combination is based on a previously calculated isotope 
combination, which is updated by a ratio computed from the differences between the two isotope 
combinations. It should be noted that the concept of using ratios to update previous probabilities 
was also implicitly suggested by Biemann when considering the step-wise addition of atoms as 
adding abundance ratios. To conclude this section, many implementations of the multinomial 
expansion are available as software packages; e.g., ‘IsoPro’ from Senko [11][11][11][11][11] and 
‘Isotopica’ from Fernandez-de-Cossio et al. [40][40][40][40][40].  

Combinatorial complexity and memory usage  

To illustrate the combinatorial complexity of the isotopic distribution, we provide a rule to calculate 
the memory space required to store the isotopic distribution of a peptide CvHwNxOySz. The calculation 
of the number of possible isotopic variants with different masses for each element separately is 
straightforward. For example, the number of possible different-mass isotopic combinations that 
correspond to v carbon atoms is equal to (v+1), because the peptide can carry 0 to v 13C isotopes. 
Similarly, hydrogen and nitrogen will contribute (w+1) and (x+1) isotopic combinations with different 
masses, respectively. Oxygen has three stable isotopes; therefore, y oxygen atoms will result in 

 possible combinations. Finally, sulfur has four stable isotopes, which results in 

  isotopic combinations with different masses. The calculation of the isotopic 

distribution for each element separately does not require much computing time, and is not 
demanding from a point of view of memory resources. However, to calculate the isotopic distribution 
for the whole molecule, the numbers of possible isotopic combinations for each element have to be 
multiplied by each other. This multiplication dramatically increases the total number of combinations 
to be computed and stored. For example, the multinomial expansion of peptide C112H165N27O36S0 
results in 113 x 166 x 28 x 703 = 369,232,472 possible isotopic variants of the peptide. In a standard 



software package, storing this amount of data for the masses and probabilities of occurrence in 
double precision (8 bytes) requires approximately 2 x 2.9539 gigabytes (GB) of memory. Adding one 
sulfur atom to the example described above would quadruple the complexity, and would require 2 x 
11.8154 GB of memory. Note that this amount would be the memory resources required to fully 
store the isotopic distribution of this peptide, irrespectively of which algorithms are used for the 
calculation. From previous, it can be seen that the polynomial and multinomial expansion methods 
have unfavorable scaling properties due to the combinatorial increase of the required storage space 
and are only suited for molecules in the lower-mass range. 

Complexity reduction 
 
To deal with the memory issues mentioned in the previous section, many methods for the calculation 
of the isotopic distribution employ a pragmatic technique called ‘pruning’ to control the number of 
isotopic variants. For example, element-specific isotopic variants can be removed from consideration 
if their probabilities of occurrence fall below a user-defined threshold. As a consequence, the total 
number of variants, which need to be stored, is controlled. However, the deletion of an 
element-specific variant with a low probability of occurrence can result in the removal of an 
abundant variant for a whole molecule, because the probability will be multiplied by probabilities of 
isotopic variants for the other elements. This numerical artifact can be observed when comparing 
Figure 1(a) and Figure 2. Figure 2 represents a pooled version of the isotopic distribution in Figure 
1(a), such that isotopic variants with similar nominal mass are summed. The dash-dotted lines in 
Figure 1(a) and 2 indicate that low-abundance isotopic variants observed in Figure 1(b) contribute 
substantially to the isotopic distribution shown in Figure 2. 
 

A more-efficient and commonly employed method to reduce the complexity of the isotopic 
distribution is to restrict the distribution to a mass region in which the isotopic variants 
experimentally can be observed. For this purpose, a threshold can be determined to stop the 
procedure after a given number of calculations for an increasing number of isotopes in the molecule. 
Isotopic variants outside the defined mass range are neglected. For instance, the computations can 
be stopped when, for each element, only those isotopic variants are considered that contain up to 9 
additional neutrons. Truncating the isotopic variants per element within this interval is justified, 
because, in a mass spectrum due to the dynamic range limitations of the detector, e.g., 37dB, 
peptide peaks are rarely visible beyond this mass interval of M+9 Da for the particular middle-mass 
peptide. Further, it is of importance that the isotopic variant with the maximum probability of 
occurrence in the elemental-specific isotopic distribution is maintained in the mass interval specified 
by the user.  
 

Applying previous strategy to C112H165N27O36 results in a Diophantine solution that considers 
10, 10, 10, and 33 isotopic variants for carbon, hydrogen, nitrogen, and oxygen, respectively. A 
multinomial expansion of the element-specific isotopic distributions yields 33,000 possible variants 
that contribute to the isotopic distribution of the molecule. Note, that the corresponding 33,000 
probabilities add up to 0.999999574429216. This high value indicates that the complete isotopic 
distribution is approximately covered by the 33,000 components, and that the remaining 
369,199,472 components contribute only a miniscule fraction to the molecule's distributional 



information. This phenomenon is exploited in the various algorithms for the calculation of the 
isotopic distribution when pruning the low probable isotopic variants. 
 

As mentioned earlier, the calculation of the factorial in the multinomial coefficient can be 
problematic for large molecules. Kubinyi [18][18][18][18][18] solved this issue in an original way by 
subdividing the calculation into steps of a binary series. For example, to calculate the possible terms 

for C256, one could reformulate the problem as  ,and apply the 

stepwise procedure. The factorial of 128 can be easily represented as a 64-bit floating-point number. 
This calculation can be further subdivided by the series C64, C32, C16, C8, C4 and C2, if necessary. These 
hyper-atoms [18][18][18][18][18] or super-atoms [38][38][38][38][38] can be pre-calculated and 
stored in a look-up table for further calculations; that process leads to an accelerated computation. 

However, the most-efficient method to reduce the complexity is achieved by taking into 
consideration only nominal masses of isotopic variants; i.e., isotopic variants with the same nucleon 
number. This premise is justified, because the resolution of a MS instrument is finite; e.g., 10000. 
Therefore, in a mass spectrum, isotopic variants with the same nominal mass are pooled and 
accumulate to an aggregated probability. It should be stressed that, by pooling the isotopic variants 
in mass bins of approximately 1 Da length, we no longer deal with the isotopic distribution, but with 
an aggregated isotopic distribution. For example, applying such a strategy to the 166 isotopic 
variants in Figure 1(a) would lead to an aggregated isotopic distribution with only 6 aggregated 
isotopic variants, which would combine the information about the 166 variants. This topic will be 
fully discussed in the next section. 

PART II: the methodology of Alan Rockwood 

Nominal mass and the nucleon number 

The masses of the isotopic variants of a molecule can be easily computed by summing the masses of 
the isotopes that compose the molecule. For example, the mass of isotopic variant 12C110 

13C2 
1H165 

14N27 
16O36 of a peptide with atomic composition C112H165N27O36 is calculated as 110 mass(12C) + 2 

mass(13C) + 165 mass(1H) + 27 mass(14N) +36 mass(16O). As mentioned earlier, isotopic variants with 
the same nucleon number can have different masses. However, one can easily show that, for isotopic 
combinations with the same nucleon numbers, the exact mass is spread less than 50 ppm 
[7][7][7][7][7]. Therefore, it is reasonable to consider only nominal masses, which aggregate isotopic 
variants with the same nucleon number. For example, consider the isotopic variants 12C110 

13C2 
1H165 

14N27 
16O36 and 12C112 

1H165 
14N27 

16O35 
18O1 of a peptide with atomic composition C112H165N27O36. They 

have slightly different masses, 2466.1978 and 2466.1953, respectively. In a mass spectrum, the 
isotopic variants would not appear as separate contributions, but as a single peak or equivalently, as 
aggregated isotopic variants , because they have the same nucleon number of 2465. 

The center mass mcenter of such an aggregated isotopic variant can be calculated as a probability-
weighted sum of the masses of the k isotope combinations that contribute to this variant, as defined 
by Roussis and Proulx [38][38][38][38][38]: 

 



where pj denotes the probability of occurrence of isotopic variant with mass mj. 

It is worth noting that all isotopic variants with equal nucleon number contribute to the aggregated 
isotopic variant and therefore are required to accurately compute the mass. Employing a ‘pruning’ to 
reduce the complexity of the calculation would result in missing isotopic variants and would 
compromise the calculation of the accurate mass of a aggregated isotopic variant[37, 32][37, 32][37, 
32][37, 32] [37, 32].  

An interesting characteristic of aggregated isotopic variants is that they are separated in 
mass by approximately 1 Da. Instead of using the masses to denote the aggregated variant, we can 
make abstraction of the mass and regard only the additional neutron content. In this respect, the 
symbolic expansion of the polynomial in equation (2) can be reformulated in function of the 
additional neutron content: 

    (6) 

where the terms Pr(12C), Pr(13C), ..., Pr(36S) denote the probability of occurrence of the 
element-specific isotopes, as displayed in Table 1. Note that the power of the symbolic indicator IP 
represents the additional neutron content with respect to the monoisotopic variant. With this extra 
indicator variable, it is easier to symbolically expand and multiply the polynomials, what  implies a 
serious reduction in the number of possible isotopic variants. For instance, a multinomial expansion 
for O75, which yields 703 isotopic variants, could be replaced by 73 aggregated isotopic variants with 
distinct masses separated by  approximately 1 Da or, equivalently, with the same additional neutron 
content.  

In summary, molecules which have the same additional neutron content, can be pooled 
together to represent an aggregated isotopic variant. The mass deficit which possibly occurs, can be 
ignored for instruments with a limited resolution. Interestingly, by considering the neutron count, we 
can easily relate the polynomial expansion to the convolution which is a mathematical operator. 
Algebraically, convolution of the coefficients of the polynomials corresponds to multiplication of the 
polynomials, as described by Rockwood in 1995 [31][31][31][31][31]. 
[26][26][26][26][33][33][33][33][25][25][25][25] 

The convolution method by the Fourier transform 

Between 1995 and 1996, Rockwood et al. published a series of papers that discussed the relationship 
between the multiplication of polynomials and the convolution by means of a Fourier transform 
method[31, 35][31, 35][31, 35][31, 35] [31, 35, 36, 34]. For convenience, we start the discussion with 
the method proposed in 1996 [34], which uses the convolution theorem to produce a ‘stick’ mass 
spectrum. Rockwood and colleagues obtained the convolution via the Fourier transform by replacing 
the symbolic indicator I, used in equation (6), by the Fourier term ei2πmμ, where i denotes the 
imaginary number, m indicates the nominal mass, and μ is a real number between 0 and 1. The 
parameter µ can be interpreted as a grid over which the harmonic function ei2πmμ is evaluated, or 



equivalently, sampled. The number of points in the grid defines the resolution of the result. By 
making these substitutions to equation (6), we obtain the following expression 

  (7) 

It should be noted that the exponential ei2πmμ represents a harmonic function, for which the 
frequency of oscillation is determined by the discrete mass value m. By casting the calculation of the 
polynomial expansion in function of harmonics, i.e., sines and cosines, we enter the field of digital 
signal processing. Consequently, the jargon, like ‘Shannon-Nyquist-Kotelnikov criterium’, 
‘subsampling’, ‘heterodyning ‘, etc. appears repeatedly in the manuscripts by Rockwood et al.  

The important advantage of the use of the Fourier transform is that a multiplication is 
equivalent to a convolution after the Fourier transformation (and vice-versa). This property can now 
be exploited by evaluating expression (7) and applying the Fourier transform. Afterwards, the terms 
are multiplied with each other and transformed back to the original space with the inversed Fourier 
transform. This computational process can be seen as an analogy of the logarithmic transformation, 
which allows one to replace multiplication with addition. 

Practically, the calculation of the aggregated isotopic distribution is obtained with the Fast 
Fourier Transform (FFT), and yields a distribution for which the aggregated isotopic variants are 
equally spaced with integer values, as can be observed in Figure 2. Note that the aggregated isotopic 
variant near 2468 Da in Figure 2 is twice as likely as the isotopic variant with the maximum 
probability of occurrence in the isotopic distribution near 2468, observed in Figure 1(b). As stated 
previously, this example clearly demonstrates that the accumulation of low-probability variants, that 
are measured by mass spectrometry, have a substantial contribution to the aggregated isotopic 
distribution of a molecule.   

After the extremely fast calculation of the aggregated isotopic distribution based on integer 
point spaces, a correction is applied such that masses are placed at non-integer values. The non-
integer masses are “semi-accurate”, i.e. typically a few millidalton, and are based on a linear 
transformation of the mass scale. This transformation forces the new distribution to have the correct 
mean and standard deviation based on information from the monoisotopic and average masses. It is 
worth mentioning that, despite the suboptimal mass accuracy for the aggregated isotopic variant, 
the correct isotopic probabilities are obtained with the convolution method. This benefit in 
probability precision is achieved because no “explicit” pruning technique is used. As a consequence, 
no information about low-probability isotopic variants is lost. Instead, the variants are aggregated in 
distinct, equally spaced bins with semi-accurate mass. Obviously, numerical errors due to digital 
filtering, FFT and rounding will occur, but these disturbances are minor compared to the loss of 
precision due to pruning.  Later in this manuscript, we dedicate a paragraph to explain what exactly is 
meant by ”none-explicit” pruning.To relate the polynomial expansion to the convolution, a trade-off 
has to be made between the isotopic fine structure and computational speed. Whether this trade-off 
is acceptable depends on the application in which information about the isotopic distribution is used. 



For example, in a peptide-centric proteomic setting, the isotopic fine structure is usually not of 
interest. However, when the focus is on elemental speciation analysis, the fine structure becomes 
much more important. 

In the manuscript published in 1995 [35], Rockwood et al. approached the isotopic 
distribution calculation differently by combining the computation of the isotopic variants with a peak 
shape convolution. The method described in this manuscript produces profile-mode distributions 
instead of the ‘stick’ spectrum discussed earlier. Profile-mode means that on top of the ‘stick 
spectrum’ a particular shape is convoluted as indicated by the dashed lines in Figure 3. Contributions 
of the convoluted isotopic variants (dashed lines) are aggregated to form a continuous function 
(line), which is sampled at equidistant intervals (stars). It should be noted that the aggregated 
isotopic variants are placed at accurate masses and no longer at integer values as described 
previously. This degree of accuracy can be achieved by substituting the masses from Table 1 in the 
corresponding Fourier terms, ei2πmμ, from equation (7). [36, 34][36, 34][36, 34][36, 34]  

In summary, the method is able to calculate the aggregated isotopic distribution in profile-
mode with accurate masses. It should be pointed out that in this scheme; the aggregated isotopic 
distribution is represented as a sampled version of a continuous function with finite peak width, 
instead of a list of isotopic variants. In theory, it is even possible to resolve the isotopic fine structure 
by adjusting the width of the peak shape and the sampling (a “stick spectrum” can be seen as having 
infinite small peak width). Factors that determine the sampling or, equivalently, the resolution of the 
convolution method, are the array size of μ and the frequency of the harmonics controlled by the 
variables m; the masses of the chemical elements. Hence, by increasing the array size and decreasing 
the peak width, one can do a calculation that resolves the isotopic fine structure, but the manuscript 
does not present this ultrahigh-resolution because array size was restricted by the computer 
compiler and limited memory resources [2].  

Rockwood et al., presented a variant of the profile-mode distribution in 1996 [36] that does 
not require a large array size for the calculation of the isotopic fine structure. This method also uses 
Fourier transforms. By zooming into a limited mass range (typically 0.2 Dalton) and focusing the 
sampling in that region, an isotopic distribution with a higher resolution is obtained. Technically, this 
zooming involves heterodyning and digital filtering in order to shift the isotopic distribution towards 
0 Da. Via subsampling, the available datapoints, i.e., the array size of μ, are confined towards a 
particular region such that a higher resolution (millidalton) is obtained. This is also a sampled version 
of a profile-mode distribution with a peak shape convoluted into the results. This calculation is not 
particularly fast, primarily because of the need to do digital filtering, but it does allow one to do an 
ultrahigh-resolution calculation using a small array size. It should be noted that filtering and 
subsampling to a specific mass window can attenuate the signal.  

[34][34][34][34]To reiterate, the FFT-based convolution method does not seem to require an 
“explicit” user-defined threshold in order to improve computational speed, though the choice of the 
array size of μ, used to sample or bin the isotopic variants, can be seen as a global threshold. 
Nevertheless, we should stress that, in the approach of Rockwood et al., isotopic variants are 
assembled when the resolution is limited, instead of being pruned. In this respect, an analogy with 
MS instrumentation can be made. In a low-resolution mass spectrometer that does not resolve the 
isotopic variants of a molecule such that only one molecule peak is visible in a spectrum, no ions are 



omitted from this peak, but they are pooled over time on the mass detector.  However caution 
should be applied. If the mass range defined in µ is inadequate then there will be a kind of aliasing in 
the calculation. For example, high mass peaks that are outside of the computational window will 
wrap around and appear at the low mass end of the mass window. This distortion will be dependent 
on the implementation of the algorithm, and in particular whether the implementation uses a 
strategy that selects a mass window that is sufficiently wide or is externally supplied.  To conclude, 
previous versions of the algorithm are implemented in the Mercury software. Mercury contains two 
methods for calculating isotope distributions, one giving the full isotopic distribution and the other 
giving an ultrahigh resolution picture of a single nominal isotopic variant.  

In 2004  Rockwood and colleagues changed focus towards the calculation of isotopic 
combinations and the exact-center masses of the aggregated isotopic variants, i.e., no resolved 
isotopic fine structure. This algorithm does not require the use of Fourier transforms[37, 32][37, 
32][37, 32][37, 32] [37]. Thus far, we presented the aggregated isotopic variants as labeled with an 
integer number; i.e., the nucleon number or with a semi-accurate mass obtained via a linear 
transformation. Little attention was given to the computation of the exact-center masses for the 
aggregated isotopic variants. Exact-center masses are especially important for large molecules 
because accumulation of the mass defect causes considerable deviation from the nominal mass. 
Moreover, Thurman and Ferrer proposed to use this phenomenon as a tool to filter molecular 
formulas[45][45][45][45] [45].  

One approach to compute the accurate mass is to determine first all isotopic combinations 
that contribute to the aggregated variant. Based on the obtained isotopic combinations list, the exact 
masses and the probability of occurrence can be calculated. As mentioned earlier, the center mass of 
the aggregated isotopic variant can now be computed based on the previous isotopic probabilities 
and the exact isotopic masses, as stated by Roussis and Proulx [38][38][38][38] [38]. Therefore, 
Rockwood et al. suggest a two-step procedure that is based on the idea that one can determine the 
isotopic composition of an aggregated isotopic variant by removing atoms from the molecule. First, 
an aggregated isotopic variant of the molecule for which exact mass is required, is selected. Keep in 
mind that this calculation will produce the correct probabilities if the FFT-method in [34] is used. 
Second, for each element in the molecule, the isotope contribution to the selected aggregated 
isotopic variant is calculated. The isotope contribution is based on the intermediate distribution of 
the molecule for which an atom is omitted. Together with the probability of occurrence associated to 
the isotope of each element, the isotope contribution can be calculated. 
[18][18][18][18][38][38][38][38]In general this algorithm is intermediate in speed between the 
method presented in references [35] and [36]. 

A variant on previous theme was published in 2006 [32]. This method also calculates the 
exact-mass center and probability of a selected aggregated isotopic variant, as does the method in 
the previous paragraph, but it does not generate composition information. Instead the method 
breaks the calculation down to a series of direct convolution steps arranged in a certain order to 
minimize the time required for the calculation. Internally it throws away the information required to 
resolve isotopic fine structure, but it keeps the accurate mass information. The procedure is strongly 
related to the step-wise procedure of Kubinyini ][18], because it uses the concept of super-atoms to 
facilitate the calculations.  Finally, to calculate the exact center mass, it uses the probability-weighted 



sum of masses in equation (5) proposed by Rousis and Proulx][38], where the probabilities represent 
the contribution of the elemental isotopes. 

In 2003, Rockwood and co-authors extended the idea of the convolution towards the 
problem defined by O’Connor et al. [26] for the isotopic assignment of product-ion spectra from a 
tandem MS experiment, when only a single non-monoisotopic isotopic peak of the precursor ion was 
selected for fragmentation [33]. The approach can be seen as the reverse of the stepwise-addition of 
Kubinyini, because in each step the precursor ion is deciphered into smaller “molecules” to calculate 
the isotopic distribution of the neutral fragment that leaves the precursor ion. Meija and Caruso also 
apply a separation strategy to the aforementioned problem  and use the method of Rockwood et al. 
for the isotope pattern deconvolution of isobaric interferences in tandem MS [25].  

PART III: Current progress 
 
Modern methods 

As discussed by Roussis and Proulx in 2003[38][38][38][38] [38], the stepwise addition of 
hypothetical atom clusters in Kubinyi’s algorithm is computationally efficient, produces the correct 
probabilities, and does not have the unfavorable scaling properties of the polynomial and 
multinomial method. However, a limitation is that it does not yield the correct masses, because it 
assumes that the isotopic variants have mass differences of exactly one Dalton; i.e., they also use 
aggregated isotopic variants. To resolve the mass-accuracy issue, Rousis and Proulx proposed to 
calculate the accurate mass of the aggregated isotopic variant by a probability-weighted sum of the 
masses of the isotopic variants that contribute to that aggregated variant. Whenever a new 
‘superatom ‘or ‘hyperatom’ is added, the mass is updated accordingly. Kubinyini defined a 
hyperatom as a cluster with 2, 4, 8,…, 2n atoms of the same type; e.g., C2 , C4, … , Cn. Rousis and 
Proulx extended this idea to superatoms which are hypothetical atom clusters across the different 
atoms; e.g., CO. Latter approaches can be seen as a built-up method, where the isotopic probabilities 
and masses are calculate by stepwise combination of hyper- or superatoms. In contrary, the 
approach of Rockwood et al. [37, 32] can be seen as a break-down method where the aggregated 
isotopic probabilities are decomposed into clusters of isotopic variants. 

In 2007, Snider [43][43][43][43][43] presented a variant of Biemann’s stepwise addition of 
elements algorithm based on dynamic programming. Instead of working with aggregated isotopic 
variants, Snider proposed to keep track of all obtained isotopic variants when adding a single 
element to the molecule. The probability related to each isotopic variant after addition of an element 
depends completely on the probabilities of the isotopic variants before the addition and on the 
isotope probabilities of the added element. To efficiently calculate the isotopic distribution, Snider 
frames the problem in terms of a Markov process that operates on a discrete state space.  

The different states can be interpreted as the isotopic variants, whereas the discrete steps 
correspond to the addition of elements. Obviously, at each discrete step, the number of possible 
states or, equivalently, the isotopic variants increases. Figure 4 shows how the Markov process looks 
in the case of carbon monoxide. At step 1, only two states are available. In this case, the probabilities 
of these two states correspond to the probability of occurrence of the carbon isotopes. In step 2, 
oxygen is added and the number of possible states becomes equal to six. According to the Markov 
property, the probabilities of future states depend on the probabilities of the current state. Future 



probabilities are calculated by summation over all possible state sequences, while taking into 
consideration the isotopic distribution of the newly added element. The probabilities that 
correspond to the states can now be efficiently calculated via the forward algorithm, which is a form 
of dynamic programming. Snider also recognizes that a brute-force calculation of all possible isotopic 
variants is not feasible given the vast amount of data. To deal with the intrinsic numerical complexity, 
two reduction modes were proposed:  

1) Most-Probable Exact Masses: after adding an element, only the Nmax most-probable states 
with exact masses are maintained. Note that eliminating states will prune potential path 
combinations in the Markov chain, and therefore will distort the probability values, as 
described by Rockwood [31, 35, 36, 34][31, 35, 36, 34][31, 35, 36, 34][31, 35, 36, 34][31, 35, 
36, 34]. 

2)  Exact Probability Distribution: after adding an element, combine the probabilities of isotopic 
variants that are closest together in terms of mass values, until Nmax states are maintained. 
This binning approach is similar in spirit to the one proposed by Rockwood . However, the 
method of Rockwood, i.e., with fixed array size, is a global binning of isotopic variants, 
whereas the method proposed by Snider groups the isotopic variants locally. Local binning 
uses memory resources in a more optimal manner than global binning.  The mass for binned 
isotopic variant is calculated as a probability-weighted sum of the masses 
[38][38][38][38][38].  

  

In 2008, Li et al. [19][19][19][19][19] rediscovered the properties of the Markov process to 
calculate the isotopic distribution, but called it a hierarchical algorithm, by making an analogy with 
atomic physics, which relates the possible isotope configurations to the excitation states of atoms. 
They described the isotopic variants with equal nominal mass as the main electron shells of atoms 
which are symbolized by the principal quantum number. This representation corresponds to the 
gross structure of line spectra. The fine structures are caused by spin-orbit coupling, and describe the 
splitting of the spectral lines of atoms, which represent the isotopic variants within an aggregated 
isotopic variant. In other words, isotopic variants with an equal nucleon number are grouped at the 
same level. The top level (level 0) only contains the lightest isotope (ground state) of that molecule; 
the bottom level only contains the heaviest isotope (highest excited-state) of that molecule. So keep 
in mind that each level corresponds to a particular nucleon number. For each level, the split across 
the possible isotope combinations is calculated. To keep track of the isotope combinations, a 
bookkeeping device, similar in spirit to the ones proposed by Kubinyini [18][18][18][18][18] and 
Rockwood [32][32][32][32][32], is used to record the isotope combination as a binary series. If the 
levels are arranged by nucleon number, then they form a hierarchical structure, as can be seen in 
Figure 5. The difference in nucleon numbers between adjacent levels is equal to one. As a 
consequence, the Boolean difference between the binary representations of isotope combinations 
between adjacent levels is also equal to one.  

The hierarchical aspect comes from the fact that the probabilities of the isotopic variants in a 
higher level, i.e., for a higher nominal mass, only depend on the probabilities of the isotopic variants 
in the previous level. In fact, the hierarchical algorithm of Li et al. is a different representation of the 
Markov process proposed by Snider. The probabilities of transition from one excitation level, i.e., 
isotope combination, to a neighboring level are calculated via the recursive formula already 



proposed by Yergey [50][50][50][50][50] to avoid repetitive calculation of the factorial. In this 
respect, Yergey implicitly assumed a form of hierarchy for the calculation of the isotopic distribution. 

The fine structure of the isotopic distribution can be calculated as an iterative process that starts 
with the ground state. To calculate the next level, or equivalently, isotopes with a higher nucleon 
number, only the information about the two previous levels should be kept in memory. To save 
memory resources, the information for each level is output separately to the hard-drive. 

For large molecules, the number of isotopic variants in a level, or equivalently, aggregated 
isotopic variant, can be large. Therefore, Li et al. limit the possible number of isotopic variants in a 
level to 100,001 and propose a truncation scheme to calculate only the major mass states of 
molecules. For this purpose, they use the monotonic decreasing property of isotopic probabilities 
once it has reached a maximum value. After this maximum, an isotopic variant with a low probability 
in a particular level will have a lower probability in the next level; i.e., 1 additional neutron. This 
truncation scheme is similar in spirit to the pruning approach discussed in the section on complexity 
reduction, where isotopic variants for each element can be restricted to a certain mass window. 

As mentioned earlier, Snider and Li et al. both present the calculation of the isotopic distribution 
as a Markov process, though there are some fundamental differences. They both interpret the 
possible isotope combinations as states, but the transition is differently formulated. A transition in 
the Markov model of Snider can be seen as the addition of an atom, whereas the transition in the 
context of Li et al. can be seen as the addition of a neutron. Li et al. start with a molecule with no 
isotope present, and gradually go through all the possible combinations per level. Snider starts with a 
single atom and considers all possible isotope combinations for each newly formed molecule. Only 
the last step, i.e., the entire molecule, returns the final isotopic distribution. Calculations for the 
previous “molecules” can be seen as intermediate steps. In contrast, the method of Li et al., 
generates the complete isotopic distribution from the beginning; each step adds all isotopic variant 
within an additional neutron. For example, if only the variants up to M+4 Da are needed, then the 
calculation can be stopped at level 3. Such an approach is not possible in the case of the method 
proposed by Snider. 
 

More recently, Olson and Yergey [28][28][28][28][28] proposed an alternative approach to 
calculate the isotopic distribution. Instead of pruning or aggregating low-probability isotopic variants 
at the molecule level, Olson and Yergey introduce a virtual element which enables them to calculate 
the isotopic distribution in terms of equatransneutronic isotopes (ETN). The ETN isotope is a group of 
isotopes that  differ from their element’s most abundant isotope by the same number of neutrons. In 
other words, elemental isotopes with the same number of additional neutrons are clustered. In the 
case of peptides, which are composed out of C, H, N, O, and S, three sets of ETN isotopes can be 
defined. Namely, isotopes with 1 additional neutron [13C, 2H, 15N, 17O, 33S], isotopes with 2 additional 
neutrons [18O, 34S], and isotopes with 4 additional neutrons [36S]. Next, the probability of occurrence 
for each ETN is calculated by taking into consideration the number of elements in the molecule and 
their elemental isotopic distribution. The calculation of the molecule’s isotopic distribution is defined 
in terms of the ETN’s instead of the individual elements. As a result, the solution of the Diophantine 
equation becomes feasible, and the computation of the probabilities is more efficient. By grouping 
elemental isotopes according to their additional neutron content, Olson and Yergey actually present 
the masses of the elemental isotopes with their nominal mass, similarly to the stepwise addition 



proposed by Biemann[4][4][4][4] [4] and Kubinyini[18][18][18][18] [18]. In fact, the method is the 
probabilistic explanation of the convolution and digital filtering approach of Rockwood et al. It is 
worth keeping in mind that Rockwood et al. implicitly assumed discrete elemental masses. This 
assumption can be observed in equation (6), where the indicator variable I is phrased in terms of the 
additional neutron count. Rockwood et al. did not directly compute the combinatorial complexity via, 
e.g., the Diophantine or multinomial coefficient, but rather counted it via the FFT-variant of the 
polynomial method. 
 

It is straightforward to see that working with discrete element masses facilitates the calculation 
and circumvents the need for pruning, as argued earlier. Nevertheless, mass accuracy remains an 
important issue. Although the method of Olson and Yergey adds in a correction for the mass of the 
most-abundant isotope, it suffers from an inaccuracy, especially for high-mass molecules.  
This issue can be solved by the methods which enable high-accuracy mass calculations for the 
aggregated isotopic variants, as proposed by Rockwood et al., [37, 32][37, 32][37, 32][37, 32][37, 32]. 
 

In 2010, Fernandez-de-Cossio [10, 9] extended the idea of Rockwood et al. [31, 35, 36] to use 
the FFT for the calculation of the isotopic distribution. They propagate the use of the two-
dimensional FFT, in order to split the calculation of the isotopic distribution into separate 
dimensions. The extreme levels of detail, i.e., the coarse structure (Da) and details about the fine 
structure, i.e., millidaltons, allow to concentrate the sampling in the informative surroundings of the 
isotopic variants.  By doing so, a more optimal and efficient algorithm is obtained which is 
implemented in the DEUTERIUM software.   
 
Educational aspects 
 

Isotopic information is crucial to interpret mass spectra, and to gain insight in the structure 
of molecules. However, the concept of isotopic variants and their distribution can be difficult, 
especially for students with little training in mathematics. For this purpose, Sein [39][39][39][39][39] 
propagates the use of Punnett  squares in order to make an analogy between isotopic variants and 
genetic trait variants. Sein argues that most university students are familiar with the concept of 
Punnett square from basic courses in Medelian law, and that this multiplication table can 
conveniently represent the probabilistic formulation for the calculation of isotopic distributions.  For 
example, Figure 6 depicts the normalized Punnett square for a molecule composed of two chlorine 
atoms.  The areas of the boxes are proportional to the probability of the isotopic variant. Isotopic 
variants with equal nominal mass are displayed in the same color. Using Punnet squares as a visual 
aid, would help understanding the formation of isotopic variants 
 

Molecular Isotope patterns are combinatorial convolution products of atomic isotopes. To 
facilitate the understanding about binomial combinatorics, the result of a binomial expansion can be 
arranged in a triangle; i.e. the Pascal’s triangle. To this aim, Meija organized a challenge where the 
fractal patterns of a Sierpinski triangle were given, whereas the competitors had to infer the element 
responsible for this isotopic pattern [22, 23][22, 23][22, 23][22, 23][22, 23].  Furthermore, related to 
the use of Pascal’s and Sierpinski’s triangle, Meija suggested that cellular automata could be used to 
graphically represent the construction of the isotopic distribution [24][24][24][24][24].  
 



As a didactic example in numerical mathematics, the calculation of the multinomial 
expansion for large numbers could be issued. From previous discussion, we know that the calculation 
of isotopic distributions for large molecules via the multinomial distribution is problematic. The first 
problem is that the multinomial coefficient in equation (3), e.g.,  

 

cannot be calculated due to the overflow when evaluating the factorial. A second problem is the 
multiplication of very small values, because of the high powers the probabilities are raised to. For 
example, calculating the probability =  which can lead to underflow (cfr. 

overflow). Naively, the first problem can be solved by vectorizing the calculation in the following 
algorithm: 

- Vector A = [701, 702, …, 1000] 

- Vector B = [1, 2, …, 300] 

- C = elemental-wise division of vector A and vector B 

- D = product of the elements in C 

D is equal to the multinomial coefficient described above. The calculation of D circumvents the direct 
evaluation of the factorials. 

The calculation can be further simplified by taking the logarithm of the multinomial 
distribution. This transformation leads to the calculation of  

 

for which the exponential is taken afterwards. Simple rewriting the formulae improves numerical 
stability and avoids the use of approximations for the multinomial distribution. Note that the 
aforementioned formulation can easily be extended for elements with more than two isotopes. 

The method of Monte Carlo sampling, mentioned by Senko et al. [41] and Rockwood et al. 
[37], is worth further exploring to generate the isotopic distribution.. It is well known that Monte 
Carlo methods can be used to break the computational efficiency logjam for some problems. 
However, the main problems with Monte Carlo methods are that: 

1)  the results are non-deterministic (assuming a different seeds for the starting of the random 
number generator)  

2)  convergence to the true answer slows dramatically as the calculation proceeds because it 
converges as the square root of the number of sampling points.  

Nevertheless, convergence to a usefully accurate result may be faster than polynomial-based 
methods which suffer from a combinatorial explosion of terms when applied to large problems. As an 
additional benefit, it is possible to get some statistical estimates of the variability one might expect 
from an experimental result obtained with a finite number of ions. Further, Monte Carlo simulations 
can be used to simulate ultrahigh-resolution spectra. 



Conclusion 

A number of methods have been employed to elucidate the isotopic distribution and the aggregated 
isotopic distribution of biomolecules. Every method tries to describe the multinomial character of the 
isotopic distribution, and deals with computation efficiency and memory resources in different ways.  

A broadly used method to calculate isotopic distributions is the polynomial method and the 
multinomial expansion. Straightforward implementations of the polynomial method on computers 
are  computationally involved and memory intensive, particularly for large biomolecules like DNA and 
proteins. Alternate approaches which focus on the calculation of the aggregated isotopic distribution 
of a molecule have been proposed. Some approaches trade accuracy for speed. This trade-off, is 
often justified in a mass spectrometry-based peptide-centric proteomic approach where the infinite 
resolution of the polynomial method is often not required. All these approaches, however, have two 
things in common. First, they all try to avoid the combinatorial explosion with a pruning or binning 
strategy. Second, they all contain a user-specified threshold to control the accuracy and 
computational speed. 

The main reason for the development of the different methods is that, in the early eighties, 
due to improved mass spectrometry instruments, the calculations of isotopic distributions became of 
importance. But back then, computer power and memory were limited. To solve this problem, 
creative algorithms which focused on numerical stability, memory-usage, and computation time 
were needed. 

As a first bottleneck, the multinomial expansion becomes unfeasible for large molecules on 
computers and underflow occurs because of the multiplication of low probabilities. Modern methods 
like, e.g., dynamic programming, are used to circumvent the calculation of the multinomial 
coefficient [43][43][43][43][43]. However, inventive numerical representations to calculate the 
multinomial expansion [50][50][50][50][50] or approximations of the multinomial coefficients via 
Stirling’s approximation can also solve the problem. 

To circumvent the second bottleneck related to the large number of possible isotopic 
variants, a user-defined threshold can be used to limit the number of isotopic variants. Alternatively, 
information about isotopic variants can be stored on hard-drives. If accurate masses are required in a 
mass region, i.e., for a specific nominal mass with low-probability isotopic variants, i.e., region not 
covered by the user-defined threshold, then it is still possible to calculate the isotopic terms by 
restricting the variants to the desired mass interval. This idea is in the same spirit as described by 
Rockwood et al. [36, 37][36, 37][36, 37][36, 37][36] and Li et al. [19][19][19][19] [19]. 

To conclude, the multinomial expansion of the separate elements, followed by a polynomial 
expansion across the elements, is the mathematical method  that describes most closely the 
underlying physical mechanism, by which isotopic distributions are generated. However, the method 
often computes more details than required. If the fine isotopic resolution of the isotopic variants is 
not required, then the convolution method, which uses the Fourier transformation and produces the 
correct probabilities[31][31][31][31] [31], is an elegant and efficient alternative to calculate the 
aggregated isotopic distribution. 
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