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We study the succinctness of the complement and intersection of regular expressions. In partic-

ular, we show that when constructing a regular expression defining the complement of a given

regular expression, a double exponential size increase cannot be avoided. Similarly, when con-
structing a regular expression defining the intersection of a fixed and an arbitrary number of

regular expressions, an exponential and double exponential size increase, respectively, can not be

avoided. All mentioned lower bounds improve the existing ones by one exponential and are tight
in the sense that the target expression can be constructed in the corresponding time class, i.e.,

exponential or double exponential time. As a by-product, we generalize a theorem by Ehrenfeucht

and Zeiger stating that there is a class of DFAs which are exponentially more succinct than reg-
ular expressions, to a fixed alphabet. When the given regular expressions are one-unambiguous,

as for instance required by the XML Schema specification, the complement can be computed in

polynomial time whereas the bounds concerning intersection continue to hold. For the subclass of
single-occurrence regular expressions, we prove a tight exponential lower bound for intersection.

Categories and Subject Descriptors: F.4.3 [Theory of Computation]: Mathematical Logic

and Formal Languages—Formal Languages; I.7.2 [Computing Methodologies]: Document and

Text Processing—Document Preparation; F.1.1 [Theory of Computation]: Computation by
Abstract Devices—Models of Computation

General Terms: Languages, Theory

Additional Key Words and Phrases: Complexity, Regular expressions, Intersection, Complement,
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1. INTRODUCTION

The two central questions addressed in this paper are the following. Given regular
expressions (REs) r, r1, . . . , rk over an alphabet Σ,

(1) what is the complexity of constructing a regular expression r¬ defining Σ∗\L(r),
that is, the complement of r?

(2) what is the complexity of constructing a regular expression r∩ defining L(r1)∩
· · · ∩ L(rk)?
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2 · Wouter Gelade and Frank Neven

In both cases, the naive algorithm takes time double exponential in the size of
the input. Indeed, for the complement, transform r to an NFA and determinize it
(first exponential step), complement it and translate back to a regular expression
(second exponential step). For the intersection there is a similar algorithm through
a translation to NFAs, taking the crossproduct and a retranslation to a regular
expression. Note that, in the worst case, both algorithms do not only take dou-
ble exponential time but also result in a regular expression of double exponential
size. In this paper, we exhibit classes of regular expressions for which this dou-
ble exponential size increase cannot be avoided. Furthermore, when the number k
of regular expressions is fixed, r∩ can be constructed in exponential time and we
prove a matching lower bound for the size increase. In addition, we consider the
fragments of one-unambiguous and single-occurrence regular expressions relevant
to XML schema languages [Bex et al. 2010; Bex et al. 2007; Ghelli et al. 2007;
Martens et al. 2006]. Our main results are summarized in Table I.

The main technical part of the paper is centered around the generalization of a
result in [Ehrenfeucht and Zeiger 1976]. They exhibit a class of languages (Zn)n∈N
each of which can be accepted by a DFA of size O(n2) but cannot be defined by
a regular expression of size smaller than 2n−1. The most direct way to define
Zn is by the DFA that accepts it: the DFA is a graph consisting of n states,
labeled 0 to n − 1, which is fully connected and the edge between state i and j
carries the label ai,j . It now accepts all paths in the graph, that is, all strings of
the form ai0,i1ai1,i2 · · · aik,ik+1

. Note that the alphabet over which Zn is defined
grows quadratically with n. We generalize their result to a fixed alphabet. In
particular, we define Kn as the binary encoding of Zn using a suitable encoding
for ai,j and prove that every regular expression defining Kn should be at least
of size 2n. As integers are encoded in binary the complement and intersection of
regular expressions can now be used to separately encode K2n (and slight variations
thereof) leading to the desired results. It should be noted that [Waizenegger 2000]
already claimed a similar generalization using the straightforward binary encoding
of Zn. Unfortunately, we believe that a more sophisticated encoding as presented
here is necessary, and hence the proof in [Waizenegger 2000] to be incorrect, as we
discuss at the end of Section 3.

Although the succinctness of various automata models have been investigated in
depth [Globerman and Harel 1996] and more recently those of logics over (unary
alphabet) strings [Grohe and Schweikardt 2005], the succinctness of regular expres-
sions had, up to recently, hardly been addressed. For the complement of a regular
expression an exponential lower bound is given in [Ellul et al. 2005]. For the inter-
section of an arbitrary number of regular expressions Petersen gave an exponential
lower bound [Petersen 2002], while [Ellul et al. 2005] mentions a quadratic lower
bound for the intersection of two regular expressions. In fact, in [Ellul et al. 2005],
it is explicitly asked what the maximum achievable blow-up is for the complement
of one and the intersection of two regular expressions (Open Problems 4 and 5),
and whether an exponential blow-up in the translation from DFA to RE is also
unavoidable when the alphabet is fixed (Open Problem 3).

More recently, there have been a number of papers concerning succinctness of
regular expressions and related matters [Gruber and Johannsen 2008; Gruber and
Holzer 2008b; 2008a; Gelade 2010]. Most related is [Gruber and Holzer 2008a],
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Succinctness of the Complement and Intersection of Regular Expressions · 3

where, independently, a number of problems similar to the problems in this paper
are studied. They also show that in constructing a RE for the intersection of two
expressions, an exponential blow-up can not be avoided. However, we only give a
2Ω(
√
n) lower bound whereas they obtain 2Ω(n), which in [Gruber and Holzer 2008b]

is shown to be almost optimal. For the complementation of an RE we both obtain

a double exponential lower bound. Here, however, they obtain 22Ω(
√

n log n)

whereas

we prove a (tight) 22Ω(n)

lower bound. Finally, as a corollary of our results we
obtain that in a translation from a DFA to an RE an exponential size increase
can not be avoided, also when the alphabet is fixed. This yields a lower bound of

2Ω(
√

n/ log n) which in [Gruber and Holzer 2008a] is improved to the (tight) bound
of 2Ω(n). Together, these results settle open problems 3, 4, and 5 of [Ellul et al.
2005].

Succinctness of complement and intersection relate to the succinctness of semi-
extended (RE(∩)) and extended regular expressions (RE(∩,¬)). These are regular
expressions augmented with intersection and both complement and intersection
operators, respectively. Their membership problem has been extensively studied
[Jiang and Ravikumar 1991; Kupferman and Zuhovitzky 2002; Myers 1992; Pe-
tersen 2002; Rosu and Viswanathan 2003; Rosu 2007]. Furthermore, non-emptiness
and equivalence of RE(∩,¬) is non-elementary [Stockmeyer and Meyer 1973]. For
RE(∩), inequivalence is expspace-complete [Fürer 1980; Hunt III 1973; Robson
1979], and non-emptiness is pspace-complete [Fürer 1980; Hunt III 1973] even
when restricted to the intersection of a (non-constant) number of regular expressions
[Kozen 1977]. Several of these papers hint upon the succinctness of the intersection
operator and provide dedicated techniques in dealing with the new operator directly
rather than through a translation to ordinary regular expressions [Kupferman and
Zuhovitzky 2002; Petersen 2002]. Our results present a double exponential lower
bound in translating RE(∩) to RE and therefore justify even more the development
for specialized techniques.

A final motivation for this research stems from its application in the emerg-
ing area of XML-theory [Libkin 2005; Neven 2002; Schwentick 2007; Vianu 2003].
From a formal language viewpoint, XML documents can be seen as labeled un-
ranked trees and collections of these documents are defined by schemas. A schema
can take various forms, but the most common ones are Document Type Definitions
(DTDs) [Bray et al. 2004] and XML Schema Definitions (XSDs) [Sperberg-McQueen
and Thompson 2005] which are grammar based formalisms with regular expres-
sions at right-hand sides of rules [Martens et al. 2006; Murata et al. 2005]. Many
questions concerning schemas reduce to corresponding questions on the classes of
regular expressions used as right-hand sides of rules as is exemplified for the basic
decision problems studied in [Gelade et al. 2009] and [Martens et al. 2009]. Fur-
thermore, the lower bounds presented here are utilized in [Gelade and Neven 2007]
to prove, among other things, lower bounds on the succinctness of existential and
universal pattern-based schemas on the one hand, and single-type EDTDs (a for-
malization of XSDs) and DTDs, on the other hand. As the DTD and XML Schema
specification require regular expressions occurring in rules to be deterministic, for-
malized by Brüggemann-Klein and Wood in terms of one-unambiguous regular ex-
pressions [Brüggemann-Klein and Wood 1998], we also investigate the complement
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complement intersection (fixed) intersection (arbitrary)

regular expression 2-exp exp 2-exp

one-unambiguous poly exp 2-exp

single-occurrence poly exp exp

Table I. Overview of the size increase for the various operators and subclasses. All non-polynomial

complexities are tight.

and intersection of those. In particular, we show that a one-unambiguous regular
expressions can be complemented in polynomial time, whereas the lower bounds
concerning intersection carry over from unrestricted regular expressions. A study
in [Bex et al. 2010] reveals that most of the one-unambiguous regular expression
used in practice take a very simple form: every alphabet symbol occurs at most
once. We refer to those as single-occurrence regular expressions (SOREs) and show
a tight exponential lower bound for intersection.

Outline. In Section 2, we introduce the necessary definitions concerning (one-
unambiguous) regular expressions and automata. In Section 3, we extend the re-
sult by Ehrenfeucht and Zeiger to a fixed alphabet using the family of languages
(Kn)n∈N. In Section 4, we consider the succinctness of complement. In Section 5,
we consider the succinctness of intersection of several classes of regular expressions.
We conclude in Section 6.

2. PRELIMINARIES

2.1 Regular expressions

By N we denote the natural numbers without zero. For the rest of the paper, Σ
always denotes a finite alphabet. A Σ-string (or simply string) is a finite sequence
w = a1 · · · an of Σ-symbols. We define the length of w, denoted by |w|, to be n. We
denote the empty string by ε. By w1 ·w2 we denote the concatenation of two strings
w1 and w2. As usual, for readability, we denote the concatenation of w1 and w2 by
w1w2. The set of all strings is denoted by Σ∗ and the set of all non-empty strings
by Σ+. A string language is a subset of Σ∗. For two string languages L,L′ ⊆ Σ∗,
we define their concatenation L · L′ to be the set {w · w′ | w ∈ L,w′ ∈ L′}. We
abbreviate L · L · · ·L (i times) by Li.

The set of regular expressions over Σ, denoted by RE, is defined in the usual way:
∅, ε, and every Σ-symbol is a regular expression; and when r1 and r2 are regular
expressions, then (r1 · r2), (r1 + r2), and (r∗1) are also regular expressions.

By RE(∩,¬) we denote the class of extended regular expressions, that is, RE ex-
tended with intersection and complementation operators. So, when r1 and r2 are
RE(∩,¬)-expressions then so are (r1 ∩ r2) and (¬r1). By RE(∩) and RE(¬) we
denote RE extended solely with the intersection and complement operator, respec-
tively.

The language defined by an extended regular expression r, denoted by L(r),
is inductively defined as follows: L(∅) = ∅; L(ε) = {ε}; L(a) = {a}; L((r1r2)) =
L(r1)·L(r2); L((r1 +r2)) = L(r1)∪L(r2); L((r∗)) = {ε}∪

⋃∞
i=1 L(r)i; L((r1∩r2)) =

L(r1) ∩ L(r2); and L((¬r1)) = Σ∗ \ L(r1).

By
⋃k

i=1 ri, and rk, with k ∈ N, we abbreviate the expression r1 + · · ·+ rk, and
rr · · · r (k-times), respectively. For a set S = {a1, . . . , an} ⊆ Σ, we abbreviate by S

ACM Transactions on Computational Logic, Vol. TBD, No. TDB, Month Year.
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the regular expression a1 + · · ·+ an.
We define the size of an extended regular expression r over Σ, denoted by |r|,

as the number of Σ-symbols and operators occurring in r disregarding parentheses.
This is equivalent to the length of its (parenthesis-free) reverse Polish form [Ziadi
1996]. Formally, |∅| = |ε| = |a| = 1, for a ∈ Σ, |(r1r2)| = |(r1 ∩ r2)| = |(r1 + r2)| =
|r1|+ |r2|+ 1, and |(¬r)| = |(r∗)| = |r|+ 1.

Other possibilities considered in the literature for defining the size of a regular
expression are: (1) counting all symbols, operators, and parentheses [Aho et al.
1974; Ilie and Yu 2002]; or, (2) counting only the Σ-symbols [Gruber and Holzer
2008a]. However, it is known (see, for instance [Ellul et al. 2005]) that for regular
expressions (so, without ¬ and ∩), provided they are preprocessed by syntactically
eliminating superfluous ∅- and ε-symbols, and nested stars, the three length mea-
sures are identical up to a constant multiplicative factor. For extended regular
expressions, counting only the Σ-symbols is not sufficient, since for instance the
expression (¬ε)(¬ε)(¬ε) does not contain any Σ-symbols. Therefore, we define the
size of an expression as the length of its reverse Polish form.

2.2 One-unambiguous regular expressions and SOREs

As mentioned in the introduction, several XML schema languages restrict regu-
lar expressions occurring in rules to be deterministic, formalized in terms of one-
unambiguity [Brüggemann-Klein and Wood 1998]. We introduce this notion next.

To indicate different occurrences of the same symbol in a regular expression,
we mark symbols with subscripts. For instance, the marking of (a + b)∗a + bc
is (a1 + b2)∗a3 + b4c5. We denote by r[ the marking of r and by Sym(r[) the
subscripted symbols occurring in r[. When r is a marked expression, then r\ over
Σ is obtained from r by dropping all subscripts. This notion is extended to words
and languages in the usual way.

Definition 1. A regular expression r is one-unambiguous if for all strings w, u, v ∈
Sym(r[)∗, and all symbols x, y ∈ Sym(r[), the conditions uxv, uyw ∈ L(r[) and
x 6= y imply x\ 6= y\.

For instance, the regular expression r = a∗a, with marking r[ = a∗1a2, is not
one-unambiguous. Indeed, the marked strings a1a2 and a1a1a2 both in L(r[) do
not satisfy the conditions in the previous definition. The equivalent expression
aa∗, however, is one-unambiguous. The intuition behind the definition is that
positions in the input string can be matched in a deterministic way against a one-
unambiguous regular expression without looking ahead. For instance, for the ex-
pression aa∗, the first a of an input string is always matched against the leading
a in the expression, while every subsequent a is matched against the last a. Un-
fortunately, one-unambiguous regular languages do not form a very robust class as
they are not even closed under complement or union [Brüggemann-Klein and Wood
1998].

The following subclass captures the class of regular expressions occurring in XML
schemas on the Web [Bex et al. 2010]:

Definition 2. A single-occurrence regular expression (SORE) is a regular ex-
pression where every alphabet symbol occurs at most once.

ACM Transactions on Computational Logic, Vol. TBD, No. TDB, Month Year.
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For instance, (a+ b)+c is a SORE while a∗(a+ b)+ is not. Clearly, every SORE is
one-unambiguous. Note that SOREs define local languages and that over a fixed
alphabet there are only finitely many of them.

2.3 Finite automata

A non-deterministic finite automaton (NFA) A is a 4-tuple (Q, q0, δ, F ) where Q is
the set of states, q0 is the initial state, F is the set of final states and δ ⊆ Q×Σ×Q
is the transition relation. We write q ⇒A,w q′ when w takes A from state q to q′.
So, w is accepted by A if q0 ⇒A,w q′ for some q′ ∈ F . The set of strings accepted
by A is denoted by L(A). The size of an NFA is |δ|. An NFA is deterministic (or
a DFA) if for all a ∈ Σ, q ∈ Q, |{(q, a, q′) ∈ δ | q′ ∈ Q}| ≤ 1.

We make use of the following known results.

Theorem 3. Let A be an NFA over Σ with m states, and let |A| = n and
|Σ| = k.

(1 ) A regular expression r, with L(r) = L(A), can be constructed in time O(m2k4m)
[McNaughton and Yamada 1960; Ellul et al. 2005].

(2 ) A DFA B with 2m states, such that L(B) = L(A), can be constructed in time
O(2n) [Yu 1997].

(3 ) A DFA B with 2m states, such that L(B) = Σ∗ \ L(A), can be constructed in
time O(2n) [Yu 1997].

(4 ) Let r ∈ RE. An NFA B with |r| + 1 states, such that L(B) = L(r), can be
constructed in time O(|r|2) [Brüggemann-Klein 1993].

(5 ) Let r ∈ RE(∩). An NFA B with 2|r| states, such that L(B) = L(r), can be
constructed in time O(2`·|r|), for some constant ` [Fürer 1980].

3. A GENERALIZATION OF A THEOREM BY EHRENFEUCHT AND ZEIGER TO
A FIXED ALPHABET

We first introduce the family (Zn)n∈N of string languages defined by Ehrenfeucht
and Zeiger over an alphabet whose size grows quadratically with the parameter
n [Ehrenfeucht and Zeiger 1976]:

Definition 4. Let n ∈ N and Σn = {ai,j | 0 ≤ i, j ≤ n− 1}. Then, Zn contains
exactly all strings of the form ai0,i1ai1,i2 · · · aik−1,ik where k ∈ N.

A way to interpret Zn is to consider the DFA with states {0, . . . , n − 1} which is
fully connected and where the edge between state i and j is labeled with ai,j . The
language Zn then consists of all paths in the DFA. 1

Ehrenfeucht and Zeiger obtained the succinctness of DFAs with respect to regular
expressions through the following theorem:

Theorem [Ehrenfeucht and Zeiger 1976]. For n ∈ N, any regular expres-
sion defining Zn must be of size at least 2n−1. Furthermore, there is a DFA of size
O(n2) accepting Zn.

1Actually, in [Ehrenfeucht and Zeiger 1976], only paths from state 0 to state n−1 are considered.
We use our slightly modified definition as it will be easier to generalize to a fixed arity alphabet
suited for our purpose in the sequel.

ACM Transactions on Computational Logic, Vol. TBD, No. TDB, Month Year.
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We will now define the language Kn as a binary encoding of Zn over a four-letter
alphabet, and generalize Theorem 5 to Kn.

The language Kn will be defined as the straightforward binary encoding of Zn

that additionally swaps the pair of indices in every symbol ai,j . Thereto, for ai,j ∈
Σn, define the function ρn as

ρn(ai,j) = enc(j)$enc(i)#,

where enc(i) and enc(j) denote the dlog(n)e-bit binary encodings of i and j, respec-
tively. Note that since i, j < n, i and j can be encoded using only dlog(n)e-bits.
We extend the definition of ρn to strings in the usual way: ρn(ai0,i1 · · · aik−1,ik) =
ρn(ai0,i1) · · · ρn(aik−1,ik).

We are now ready to define Kn.

Definition 6. Let ΣK = {0, 1, $,#}. For n ∈ N, let Kn = {ρn(w) | w ∈ Zn}.

For instance, for n = 5, w = a3,2a2,1a1,4a4,2 ∈ Z5 and thus

ρn(w) = 010$011#001$010#100$001#010$100# ∈ K5.

Remark 7. Although it might seem a bit artificial to swap the indices in the
binary encoding of Zn, it is definitely necessary. Indeed, consider the language K ′n
obtained from Zn like Kn but without swapping the indices of the symbols in Zn.
This language can be defined by a regular expressions of size O(n log(n)):⋃

i<n

enc(i)$
( ⋃
i<n

enc(i)#enc(i)$
)∗ ⋃

i<n

enc(i)#.

Therefore, K ′n is not suited to show exponential or double-exponential lower bounds
on the size of regular expressions.

We now show that, by using the encoding that swaps the indices, it is possible
to generalize Theorem 5 to a four-letter alphabet as follows:

Theorem 8. For any n ∈ N, with n ≥ 2,

(1 ) there is a DFA A of size O(n2 log n) defining Kn; and

(2 ) any regular expression defining Kn is of size at least 2n.

We first show (1). Let n ∈ N and n ≥ 2. We compose A from a number of
subautomata which each will be able to read one block of a string. That is, strings
defined by the regular expression (0 + 1)dlog ne$(0 + 1)dlog ne. These DFAs are:

—B = (QB , qB , δB , {f0, . . . , fn−1}), with L(B) = {w$w′ | w,w′ ∈ (0+1)dlog ne∧0 ≤
enc(w′) < n}, such that for any j < n, qB ⇒B,w$w′ fj iff enc(w) = j. That is, B
reads strings of the form w$w′, checks whether w′ encodes a number between 0
and n− 1, and remembers the value of w in its accepting state.

—For any i < n, Bi = (Qi, qi, δi, {fi,0, . . . , fi,n−1}), with L(Bi) = {w$w′ | w,w′ ∈
(0+1)dlog ne∧enc(w′) = i}, such that for any j < n, q ⇒Bi,w$w′ fi,j iff enc(w) = j.
That is, Bi reads strings of the form w$w′, checks whether w′ encodes i and
remembers the value of w in its accepting state.

The construction of B and each of the Bi is very similar. We illustrate the con-
struction of B2, for n = 4, in Figure 1.

ACM Transactions on Computational Logic, Vol. TBD, No. TDB, Month Year.
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q2

f2,0

f2,1

f2,2

f2,3

0

1

0

1

0

1

1 0

1 0

1 0

1 0

$

$

$

$

Fig. 1. The automaton B2, for n = 4.

Now, let A = (Q, qB , δ, {q0, . . . , qn−1}) where Q = QB ∪
⋃

i<nQi and δ contains
δB ∪

⋃
i<n δi plus for every i, j < n, (fj ,#, qj), (fi,j ,#, qj) ∈ δ. So, A works as

follows: first B reads the first block of the string and remembers the first integer
therein, say j. Then it passes control to Bj which reads the next block in which it
remembers the first integer, say k, and checks whether the second integer is j. If
so, it passes control to Bk, and so on. Whenever A reaches an initial state of one
of the Bi, a valid string has been read and A can accept.

Finally, for the size of A, consider the subautomata Bi as illustrated in Figure 1.
The first, tree-like, part consists of at most n + n/2 + n/4 + · · · + 1 nodes and
transitions, which is bounded by 2n. Further, the linear automata following this
part are each of size dlog ne and there are n of these. So, the total size of any Bi is
O(n log n). Further, B can be constructed similarly as the Bi. It has the same tree-
like structure, of size O(n), as initial part. However, whereas the subsequent linear
automata in the Bi each only have to read one encoded number, the subsequent
automata in B have to check whether the number after the $ is smaller then n.
This, however, can again be done by such a tree-like automaton of size O(n). As
B consists of n such parts, its size is O(n2). Since A consists of one copy of B and
a linear number of Bi subautomata, A is of size O(n2 log n). This concludes the
proof of Theorem 8(1).

We now prove Theorem 8(2). It follows the structure of the proof of Ehrenfeucht
and Zeiger but is technically more involved as it deals with binary encodings of
integers.

We start by introducing some terminology. Fix n ∈ N. We say that a language
L covers a string w if there exist strings u, u′ ∈ Σ∗ such that uwu′ ∈ L. A regular
expression r covers w when L(r) covers w. Let w = ai0,i1ai1,i2 · · · aik−1,ik ∈ Zn. We
say that i0 is the start-point of w and ik is its end-point. Furthermore, we say that
w contains i or i occurs in w if i occurs as an index of some symbol in w. That is,
ai,j or aj,i occurs in w for some j. For instance, a0,2a2,2a2,1 ∈ Z5, has start-point
0, end-point 1, and contains 0, 1 and 2.

The notions of contains, occurs, start- and end-point of a string w are also ex-
tended to Kn. For w ∈ Zn, the start- and end-points of ρn(w) are the start and
end-points of w. Hence, the start-point of ρn(w) is the integer occurring between

ACM Transactions on Computational Logic, Vol. TBD, No. TDB, Month Year.
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the first $ and # signs, and the notions of start- and end-points is only extended to
strings of Kn. The notion of containing an integer, on the other hand, is extended
to every string v which is covered by Kn. That is, v contains any integer encoded
by dlog ne consecutive bits in v. Clearly, for any w ∈ Zn, ρn(w) contains exactly the
integers contained in w, but the notion is more general. For instance, for n = 4, the
string 0$01#11$10 contains 1, 2, and 3 but its start- and end-point are undefined
as it is not in Kn.

For a regular expression r, we say that i is a sidekick of r when it occurs in every
non-empty string defined by r. A regular expression s is a starred subexpression
of a regular expression r when s is a subexpression of r and is of the form t∗. We
say that a regular expression r is proper if every starred subexpression of r has a
sidekick.

Lemma 9. Any regular expression defining Kn is proper.

Proof. Let r be a regular expression defining Kn and s be a starred subex-
pression of r. We prove this lemma by a detailed examination of the structure of
strings defined by s. We start by making the following observation. For any string
w ∈ L(s), there exist strings u, u′ such that uwu′ ∈ L(r). Furthermore, w can be
pumped in uwu′ and still form a string defined by r. That is, for every j ∈ N,
uwju′ ∈ L(r). In addition, for every other w′ ∈ L(s), uw′u′ ∈ L(r).

Let w be a non-empty string in L(s) and let u, u′ be such that uwu′ ∈ L(r).
Then w must contain at least one $-symbol. Towards a contradiction, suppose it
does not. If w contains a # then uwwu′ ∈ L(r) but uwwu′ 6∈ Kn which leads to
the desired contradiction. If w contains no # and therefore only consists of 0’s and
1’s, then uwnu′ ∈ L(r) but uwnu′ 6∈ Kn which again is a contradiction. In a similar
way, one can show that (i) w contains at least one #-symbol; (ii) w contains an
equal number of $ and #-symbols; (iii) the $ and #-symbols must alternate; and
(iv) between any consecutive $ and #-symbol there is a string of length dlog(n)e
containing only 0’s and 1’s.

From the above it follows that w matches one of the following expressions:

(1) α1 = (0 + 1)∗$(0 + 1)dlog ne#Σ∗K
(2) α2 = Σ∗K#(0 + 1)dlog ne$(0 + 1)∗.

We refer to the strings defined by α1 and α2 as strings of type-1 and type-2,
respectively. We next show that all strings defined by s are either all of type-1
or all of type-2. Towards a contradiction assume there is a type-1 string w1 and a
type-2 string w2 in L(s). Then, w2w1 ∈ L(s) and thus there exist u, u′ ∈ Σ∗K such
that uw2w1u

′ ∈ L(r). However, because of the concatenation of w2 and w1, there
are two $-symbols without an intermediate #-symbol and therefore uw2w1u

′ 6∈ Kn.
Assume that all strings defined by s are of type-1. We next argue that the

substring of length dlog ne, that is, the integer i, between the first $ and #-symbol
is the same for every w ∈ L(s) which gives us our sidekick. For a type-1 string, we
refer to this integer as the start block. Towards a contradiction, suppose that w,
w1 and w2 are non-empty strings in L(s) such that w1 and w2 have different start
blocks. Let u, u′ be such that uww1u

′ ∈ L(r) and therefore uww1u
′ ∈ Kn. Now,

uw contains at least one $ and #-symbol. Therefore, by definition of Kn, the value
of the start block of w1 is uniquely determined by uw. That is, it must be equal
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to the integer preceding the last $-symbol in uw. Now also uww2u
′ ∈ L(r) as s is

a starred subexpression, but uww2u
′ 6∈ Kn as w2 has a different start block, which

yields the desired contradiction.
The same kind of reasoning can be used to show that s has a sidekick when all

defined strings are of type-2.

If there is a greatest integer m for which r covers wm, we call m the index of w
in r and denote it by Iw(r). In this case we say that r is w-finite. Otherwise, we
say that r is w-infinite. The index of a regular expression can be used to give a
lower bound on its size according to the following lemma.

Lemma [Ehrenfeucht and Zeiger 1976]. 2 For any regular expression r and
string w, if r is w-finite, then Iw(r) < 2|r|.

Now, we can state the most important property of Kn.

Lemma 11. Let n ≥ 2. For any C ⊆ {0, . . . , n − 1} of cardinality k and i ∈ C,
there exists a string w ∈ Kn with start- and end-point i only containing integers in
C, such that any proper regular expression r which covers w is of size at least 2k.

Proof. The proof is by induction on k. For k = 1, C = {i}. Then, define
w = enc(i)$enc(i)#, which satisfies all conditions and any expression covering w
must definitely have size at least 2.

For the inductive step, let C = {j1, . . . , jk} and i ∈ C. Define C` = C \
{j(` mod k)+1} and let w` be the string given by the induction hypothesis with

respect to C` (of size k − 1) and j`. Note that j` ∈ C`. Further, define m = 2k+1

and let w be

enc(j1)$enc(i)#wm
1 enc(j2)$enc(j1)#wm

2 enc(j3)$enc(j2)# · · ·wm
k enc(i)$enc(jk)#.

Then, w ∈ Kn, has i as start and end-point and only contains integers in C. It
only remains to show that any expression r which is proper and covers w is of size
at least 2k.

Fix such a regular expression r. If r is w`-finite, for some ` ≤ k, then Iw`
(rk) ≥

m = 2k+1, by construction of w. By Lemma 10, |r| ≥ 2k and we are done.
Therefore, assume that r is w`-infinite for every ` ≤ k. For every ` ≤ k, consider

all subexpressions of r which are w`-infinite. We will see that all minimal elements
in this set of subexpressions must be starred subexpressions. We say that an ex-
pression is minimal with respect to a set simply when no other expression in the
set is a subexpression. Indeed, a subexpression of the form a or ε can never be
w`-infinite and a subexpression of the form r1r2 or r1 + r2 can only be w`-infinite
if r1 and/or r2 are w`-infinite and is thus not minimal with respect to w`-infinity.
Hence, all minimal w`-infinite subexpressions are starred. Among these minimal
starred subexpressions for w`, choose one and denote it by s`. Let E = {s1, . . . , sk}.
Note that since r is proper, all its subexpressions are also proper. As in addition
each s` covers w`, by the induction hypothesis the size of each s` is at least 2k−1.

2In fact, in [Ehrenfeucht and Zeiger 1976] the length of an expression is defined as the number of
Σ-symbols occurring in it. However, since our length measure also contains these Σ-symbols, this
lemma still holds in our setting.
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Now, choose from E some expression s` such that s` is minimal with respect to the
other elements in E.

As r is proper and s` is a starred subexpression of r, there is an integer j such
that every non-empty string in L(s`) contains j. As, by the induction hypothesis,
w` only contains integers in C, s` is w`-infinite, and s` is chosen to be minimal with
respect to w` infinity, it follows that j ∈ C = {j1, . . . , jk} must hold. Let k′ be such
that j = jk′ . By definition of the inductively obtained strings w1, . . . , wk, we have
that for p = k′−1 (if k′ ≥ 2, and p = k, otherwise), wp does not contain j, because
j /∈ Cp. Denote by sp the starred subexpression from E which is wp-infinite. In
particular, as j is a sidekick of s`, and sp defines strings not containing j (recall
that it is wp-infinite, and minimal in this respect), s` and sp cannot be the same
subexpression of r.

Now, there are three possibilities:

—s` and sp are completely disjoint subexpressions of r. That is, they are both not
a subexpression of one another. By induction they must both be of size 2k−1 and
thus |r| ≥ 2k−1 + 2k−1 = 2k.

—sp is a strict subexpression of s`. This is not possible since s` is chosen to be a
minimal element from E.

—s` is a strict subexpression of sp. We show that if we replace s` by ε in sp, then
sp is still wp-infinite. It then follows that sp still covers wp, and thus sp without
s` is of size at least 2k−1. As |s`| ≥ 2k−1 as well it follows that |r| ≥ 2k.
To see that sp without s` is still wp-infinite, recall that any non-empty string
defined by s` contains j and j does not occur in wp. Therefore, a full iteration
of s` can never contribute to the matching of any number of repetitions of wp.
Or, more specifically, no non-empty word w ∈ L(s`) can ever be a substring of a
word wi

p, for any i. So, sp can only lose its wp-infinity by this replacement if s`
contains a subexpression which is itself wp-infinite. However, this then also is a
subexpression of sp and sp is chosen to be minimal with respect to wp-infinity, a
contradiction. We can only conclude that sp without s` is still wp-infinite.

Since by Lemma 9 any expression defining Kn is proper, Theorem 8(2) directly
follows from Lemma 11 by choosing i = 0, k = n. This concludes the proof of
Theorem 8(2).

It remains to discuss Waizenegger’s proof of Theorem 8. He takes an approach
similar to ours and defines a binary encoding of Zn as follows. For n ∈ N, Σn

consists of n2 symbols. If we list these, in some unspecified order, and associate a
natural number from 0 to n2 − 1 to each of them, we can encode Zn using log(n2)
bits. For instance, if n = 2, then Σn = {a0,0, a0,1, a1,0, a1,1} and we can encode
these by the numbers 0, 1, 2, 3, respectively. Now, a string in Zn is encoded by
replacing every symbol by its binary encoding and additionally adding an a and
b to the start and end of each symbol. For instance, a0,0a0,1 becomes a00ba01b,
which gives a language, say Wn, over the four letter alphabet {0, 1, a, b}.

Then, Waizenegger shows that Wn can be described by an NFA of size O(k2 ·
log k2), but every regular expression defining it must be of size at least exponential
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in n. The latter is done by using the same proof techniques as in [Ehrenfeucht
and Zeiger 1976]. However, in this proof it is claimed that if rn is an expression
defining Wn, then every string defined by a starred subexpression of rn must start
with an a. This statement is incorrect. For instance, if r2 is an expression defining
W2, and we still use the same encoding as above, then ((a0(0ba0)∗0b) + ε)r2 still
defines W2 but does not have this property.3 Albeit small, the mistake has serious
consequences. It follows from this claim that every starred subexpression has a
sidekick (using our terminology), and the rest of the proof builds upon this fact.
To see the importance, consider the language K ′n obtained from Zn like Kn but
without swapping the indices of the symbols in Zn. As illustrated in Remark 7, K ′n
can be defined by a regular expression of size O(n log(n)). However, if we assume
that every string defined by a starred subexpression starts with a #, we can reuse
our proof for Kn and show that any regular expression defining K ′n must be of at
least exponential size which is clearly false.

To summarize, Waizenegger’s claim that the specific encoding of the n2 symbols
in Σ does not matter in the proof for Theorem 8 is false. Our encoding used in
defining Kn allows to prove the sidekick lemma (Lemma 9) in a correct way.

4. COMPLEMENTING REGULAR EXPRESSIONS

It is known that extended regular expressions are non-elementary more succinct
than classical ones [Dang 1973; Stockmeyer and Meyer 1973]. Intuitively, each
exponent in the tower requires nesting of an additional complement. In this sec-
tion, we show that in defining the complement of a single regular expression, a
double exponential size increase cannot be avoided in general. In contrast, when
the expression is one-unambiguous its complement can be computed in polynomial
time.

Theorem 12. (1 ) For every regular expression r over Σ, a regular expression s

with L(s) = Σ∗ \ L(r) can be constructed in time O(22|r|+2 · |Σ| · 42|r|+1

).

(2 ) Let Σ be a four-letter alphabet. For every n ∈ N, there is a regular expressions
rn of size O(n) such that any regular expression r defining Σ∗ \L(rn) is of size
at least 22n

.

Proof. (1) Let r ∈ RE. We first construct a DFA A, with L(A) = Σ∗ \L(r) and
then construct the regular expression s equivalent to A. According to Theorem 3(3)
and (4) A contains at most 2|r|+1 states and can be constructed in time exponential
in the size of r. Then, by Theorem 3(1), the total algorithm is in time O(22|r|+2 ·
|Σ| · 42|r|+1

).
(2) Take Σ as ΣK , that is, {0, 1, $,#}. Let n ∈ N. We define an expression r′n of size
O(n), such that Σ∗ \ L(r′n) = K2n . By Theorem 8, any regular expression defining
K2n is of size exponential in 2n, that is, of size 22n

. This hence already proves that
the theorem holds for languages over an alphabet of size four. Afterwards, we show
that it also holds for alphabets of size two.

By r[0,n−1] we abbreviate the expression (ε+r(ε+r(ε · · · (ε+r)))), with a nesting
depth of n−1. We then define r′n as the disjunction of the expressions below. Note

3For convenience, we assume here that all strings in Wn must have start point 0, an additional
constraint which is actually present in [Ehrenfeucht and Zeiger 1976; Waizenegger 2000]
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that, in these expressions, we only consider words which are not yet defined by
one of the foregoing expressions. For instance, the last expression is only properly
defined over words of the form ((0+1)n$(0+1)n#)∗, as all other strings are already
defined by the previous expressions.

—all strings that do not start with a prefix in (0 + 1)n$:

Σ[0,n] + (0 + 1)[0,n−1]($ + #)Σ∗ + (0 + 1)n(0 + 1 + #)Σ∗

—all strings where a $ is not followed by a string in (0 + 1)n#:

Σ∗$
(
Σ[0,n−1](# + $) + Σn(0 + 1 + $)

)
Σ∗

—all strings where a non-final # is not followed by a string in (0 + 1)n$:

Σ∗#
(
Σ[0,n−1](# + $) + Σn(0 + 1 + #)

)
Σ∗

—all strings that do not end in #:

Σ∗(0 + 1 + $)

—all strings where the corresponding bits of corresponding blocks are different:

((0 + 1)∗ + Σ∗#(0 + 1)∗)0Σ3n+21Σ∗ + ((0 + 1)∗ + Σ∗#(0 + 1)∗)1Σ3n+20Σ∗.

It should be clear that a string over {0, 1, $,#} is matched by none of the above
expressions if and only if it belongs to K2n . So, the complement of r′n defines
exactly K2n .

The previous theorem essentially shows that in complementing a regular ex-
pression, there is no better algorithm than translating to a DFA, computing the
complement and translating back to a regular expression which includes two expo-
nential steps. However, when the given regular expression is one-unambiguous, a
corresponding DFA can be computed in quadratic time through the Glushkov con-
struction [Brüggemann-Klein and Wood 1998] eliminating already one exponential
step. It should be noted that this construction, which we refer to as Glushkov
construction, was introduced by Book et al. [Book et al. 1971] based on [Glushkov
1961] and [McNaughton and Yamada 1960], and often goes by the name position
automata [Hromkovic et al. 2001]. As in the context of one-unambiguous expres-
sions the name Glushkov construction is the most common, we will consistently use
this naming.

The proof of the next theorem shows that the complement of the Glushkov au-
tomaton of a one-unambiguous expression can directly be defined by a regular
expression of polynomial size.

Theorem 13. For any one-unambiguous regular expression r over an alphabet
Σ, a regular expression s defining Σ∗\L(r) can be constructed in time O(n3), where
n is the size of r.

Proof. Let r be a one-unambiguous expression over Σ. We introduce some
notation.
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—The set Not-First(r) contains all Σ-symbols which are not the first symbol in any
word defined by r, that is, Not-First(r) = Σ \ {a | a ∈ Σ∧∃w ∈ Σ∗, aw ∈ L(r)} .

—For any symbol x ∈ Sym(r[), the set Not-Follow(r, x) contains all Σ-symbols
of which no marked version can follow x in any word defined by r[. That is,
Not-Follow(r, x) = Σ \ {y\ | y ∈ Sym(r[) ∧ ∃w,w′ ∈ Sym(r[)∗, wxyw′ ∈ L(r[)}.

—The set Last(r) contains all marked symbols which are the last symbol of some
word defined by r[. Formally, Last(r) = {x | x ∈ Sym(r[) ∧ ∃w ∈ Σ∗, wx ∈
L(r[)}.

We define the following regular expressions:

—init(r) =

{
Not-First(r)Σ∗ if ε ∈ L(r); and
ε+ Not-First(r)Σ∗ if ε /∈ L(r).

—For every x ∈ Sym(r[), r[x will denote an expression defining {wx | w ∈ Sym(r[)∗∧
∃u ∈ Sym(r[)∗, wxu ∈ L(r[)}. That is, all prefixes of strings in r[ ending in x.
Then, let rx define L(r[x)\.

We are now ready to define s:

init(r) +
⋃

x/∈Last(r)

rx(ε + Not-Follow(r, x)Σ∗) +
⋃

x∈Last(r)

rxNot-Follow(r, x)Σ∗.

We conclude by showing that s can be constructed in time cubic in the size of r and
that s defines the complement of r. We prove that L(s) = Σ∗ \L(r) by highlighting
the correspondence between s and the complement of the Glushkov automaton Gr

of r. The Glushkov automaton Gr is the DFA (Q, q0, δ, F ), where

—Q = {q0} ∪ Sym(r[);

—F = Last(r[) (plus q0 if ε ∈ L(r)); and

—for x, y ∈ Sym(r[), there is

—a transition (q0, x
\, x) ∈ δ if x is the first symbol in some word defined by r[;

and,

—a transition (x, y\, y) ∈ δ if y follows x in some word defined by r[.

It is known that L(r) = L(Gr) and that Gr is deterministic whenever r is one-
unambiguous [Brüggemann-Klein and Wood 1998].

The complement automaton Gr = (Q, q0, δ, F ) is obtained from Gr by making it
complete and interchanging final and non-final states. Formally, Q = Q∪{q } (with
q 6∈ Q) and δ contains δ plus the triples (q , a, q ), for every a ∈ Σ, and (q, a, q ) for
every state q ∈ Q and symbol a ∈ Σ for which there is no q′ ∈ Q with (q, a, q′) ∈ δ.
Finally, F = {q } ∪ (Q \ F ). Clearly, L(Gr) = Σ∗ \ L(Gr).

Now, we show that L(s) = L(Gr). First, by definition of s, ε ∈ L(s) iff ε /∈ L(r)
iff ε ∈ L(Gr). We prove that for any non-empty word w, w ∈ L(s) iff w ∈ L(Gr),
from which the lemma follows. Thereto, we show that the non-empty words defined
by the different disjuncts of s correspond exactly to subsets of the language Gr.

—init(r) defines exactly the non-empty words for which Gr immediately goes from
q0 to q and reads the rest of the word while in q .
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—For any x ∈ Last(r), rx(Not-Follow(r, x)Σ∗) defines exactly all strings w for
which Gr arrives in x after reading a part of w, goes to q and reads the rest of
w there.

—For any x /∈ Last(r), rx(ε+ Not-Follow(r, x)Σ∗) defines exactly all strings w for
which Gr either (1) arrives in x after reading w and accepts because x is an
accepting state; or (2) arrives in x after reading a part of w, goes to q and reads
the rest of w there.

Note that because there are no incoming transitions in q0, and q only has tran-
sitions to itself, we have described exactly all accepting runs of Gr. Therefore, any
non-empty string w ∈ L(s) iff w ∈ Gr.

We now show that s can be computed in time cubic in the size of r. By a
result of Brüggemann-Klein [Brüggemann-Klein 1993] the Glushkov automaton Gr

corresponding to r as defined above can be computed in time quadratic in the size
of r. Using Gr, the sets Not-First(r), Not-Follow(r, x) and Last(r) can be computed
in time linear in the size of r. So, all three sets can be computed in time quadratic
in the size of r. The expression init(r) can be constructed in linear time. We
next show that for any x ∈ Sym(r[), the expression r[x can be constructed in time
quadratic in the size of r. As rx = (r[x)\, it follows that s can be constructed in
cubic time. The expression r[x is inductively defined as follows:

—For r[ = ε or r[ = ∅, r[x = ∅.
—For r[ = y ∈ Sym(r[),

r[x =

{
x if y = x
∅ otherwise.

—For r[ = αβ,

r[x =

{
αx if x occurs in α
αβx otherwise.

—For r[ = α+ β,

r[x =

{
αx if x occurs in α
βx otherwise.

—For r[ = α∗, rx = α∗αx

The correctness is easily proved by induction on the structure of r[. Note that there
are no ambiguities in the inductive definition of concatenation and disjunction since
the expressions are marked and therefore every marked symbol occurs only once
in the expression. For the time complexity, notice that all steps in the above
inductive definition, except for the case r[ = α∗, are linear. Further, for r[ =
α∗, rx = α∗αx, and hence α is doubled. However, as the inductive construction
continues on only one of the two operands it follows that the complete construction
is at most quadratic.

We illustrate the construction in the previous proof by means of an example. Let
r = a(ab∗c)∗, and r[ = a1(a2b

∗
3c4)∗. Then,

—r[a1
= a1,
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—r[a2
= a1(a2b

∗
3c4)∗a2,

—r[b3
= a1(a2b

∗
3c4)∗a2b

∗
3b3,

—r[c4
= a1(a2b

∗
3c4)∗a2b

∗
3c4, and

—init(r) = ε+ (b+ c)Σ∗.

Then the complement of r is defined by

ε+ (b+ c)Σ∗

+ a(ab∗c)∗a(ε+ aΣ∗) + a(ab∗c)∗ab∗b(ε+ aΣ∗)

+ a((b+ c)Σ∗) + a(ab∗c)∗ab∗c((b+ c)Σ∗).

We conclude this section by remarking that one-unambiguous regular expres-
sions are not closed under complement and that the constructed s is therefore not
necessarily one-unambiguous.

5. INTERSECTING REGULAR EXPRESSIONS

In this section, we study the succinctness of intersection. In particular, we show that
the intersection of two (or any fixed number) and an arbitrary number of regular
expressions are exponentially and double exponentially more succinct than regular
expressions, respectively. Actually, the exponential bound for a fixed number of
expressions already holds for single-occurrence regular expressions, whereas the
double exponential bound for an arbitrary number of expressions only carries over
to one-unambiguous expressions. For single-occurrence expressions this can again
be done in exponential time.

In this respect, we introduce a slightly altered version of Kn.

Definition 14. Let ΣL = {0, 1, $,#,4}. For all n ∈ N, Ln = {ρn(w)4 | w ∈
Zn ∧ |w| is even}.

We also define a variant of Zn which only slightly alters the ai,j symbols in Zn.
Thereto, let Σ◦n = {ai◦,j , ai,j◦ | 0 ≤ i, j < n} and set ρ̂(ai,jaj,k) = �iai,j◦aj◦,k and
ρ̂(ai0,i1ai1,i2 · · · aik−2,ik−1

aik−1,ik) = ρ̂(ai0,i1ai1,i2) · · · ρ̂(aik−2,ik−1
aik−1,ik), where k is

even.

Definition 15. Let n ∈ N and Σn
M = Σ◦n ∪ {�0,40, . . . ,�n−1,4n−2}. Then,

Mn = {ρ̂(w)4i | w ∈ Zn ∧ |w| is even∧ i is the end-point of w}∪{4i | 0 ≤ i < n}.

Note that words in Mn are those in Zn where every odd position is promoted to a
circled one (◦), and triangles labeled with the non-circled positions are added. For
instance, the string a2,4a4,3a3,3a3,0 ∈ Z5 is mapped to the string �2a2,4◦a4◦,3 �3

a3,3◦a3◦,040 ∈M5.
We make use of the following property:

Lemma 16. Let n ∈ N.

(1 ) Any regular expression defining Ln is of size at least 2n.

(2 ) Any regular expression defining Mn is of size at least 2n−1.
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Proof. (1) Analogous to Lemma 9, any regular expression r defining Ln must
also be proper and must furthermore cover any string w ∈ Kn. By choosing i = 0
and k = n in Lemma 11, we see that r must be of size at least 2n.

(2) Let n ∈ N and rM be a regular expression defining Mn. Let r2
Z be the regular

expression obtained from rM by replacing �i and 4i, with i < n, by ε and any
ai◦,j or ai,j◦ , with 0 ≤ i, j < n, by ai,j . Then, |r2

Z | ≤ |rM | and r2
Z defines exactly all

strings of even length in Zn plus ε, and thus also covers every string in Zn. Since
the proof in [Ehrenfeucht and Zeiger 1976] also constructs a string w ∈ Zn such
that any proper expression covering w must be of size at least 2n−1, it immediately
follows that r2

Z and thus rM must be of size at least 2n−1.

The next theorem shows the succinctness of the intersection operator.

Theorem 17. (1 ) For any k ∈ N and regular expressions r1, . . . , rk, a regular
expression defining

⋂
i≤k L(rk) can be constructed in time O((m + 1)2k · |Σ| ·

4(m+1)k), where m = max {|ri| | 1 ≤ i ≤ k}.
(2 ) For every n ∈ N, there are SOREs r and s of size O(n2) such that any regular

expression defining L(r) ∩ L(s) is of size at least 2n−1.

(3 ) For each r ∈ RE(∩) an equivalent regular expression can be constructed in time

O(22|r| · |Σ| · 42|r|).

(4 ) For every n ∈ N, there are one-unambiguous regular expressions r1, . . . , rm,
with m = 2n + 1, of size O(n) such that any regular expression defining⋂

i≤m L(ri) is of size at least 22n

.

(5 ) Let r1, . . . , rn be SOREs. A regular expression defining
⋂

i≤n L(rn) can be con-

structed in time O(m2 · |Σ| · 4m), where m =
∑

i≤n |ri|.

Proof. (1) First, construct NFAs A1, . . . , Ak such that L(Ai) = L(ri), for any
i ≤ k. If m = max {|ri| | 1 ≤ i ≤ k}, then by Theorem 3(4) any Ai has at most
m+1 states and can be constructed in time O(m2). Then, an NFA A with (m+1)k

states, such that L(A) =
⋂

i≤k L(Ai), can be constructed in time O((m + 1)k) by
means of a product construction. By Theorem 3(1), a regular expression defining

L(A) can then be constructed in time O((m+ 1)2k · |Σ| · 4(m+1)k).

(2) Let n ∈ N. By Lemma 16(2), any regular expression defining Mn is of size
at least 2n−1. We define SOREs r and s of size quadratic in n, such that L(r) ∩
L(s) = Mn. We start by partitioning Σn

M in two different ways. To this end,
for every i < n, define Outi = {ai,j◦ | 0 ≤ j < n}, Ini = {aj◦,i | 0 ≤ j < n},
Outi◦ = {ai◦,j | 0 ≤ j < n}, and Ini◦ = {aj,i◦ | 0 ≤ j < n}. Then,

Σn
M =

⋃
i

Ini ∪Outi ∪ {�i,4i} =
⋃
i◦

Ini◦ ∪Outi◦ ∪ {�i,4i}.

Further, define

r =
(

(�0 + · · ·+ �n−1)
⋃
i◦

Ini◦Outi◦
)∗

(40 + · · ·+4n−1)

and

s =
(⋃

i

(Ini + ε)(�i +4i)(Outi + ε)
)∗
.
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Now, r checks that every string consists of a sequence of blocks of the form
�iaj,k◦ak◦,`, for i, j, k, ` < n, ending with a 4i, for i < n. It thus sets the format
of the strings and checks whether the circled indices are equal. Further, s checks
whether the non-circled indices are equal and whether the triangles have the correct
indices. Since the alphabet of Mn is of size O(n2), also r and s are of size O(n2).

(3) For an expression r in RE(∩), an NFA A with 2|r| states defining L(r) can
be constructed in time O(2`·|r|) for some constant ` (Theorem 3(5)). Then, by
Theorem 3(1), a regular expression (so, without ¬ and ∩) defining L(A) can be

constructed in time O(22|r| · |Σ| · 42|r|).

(4) Let n ∈ N. We define m = 2n + 1 one-unambiguous regular expressions of
size O(n), such that their intersection defines L2n . By Lemma 16(1), any regular
expression defining L2n is of size at least 22n

and the theorem follows. For ease of
readability, we denote ΣL simply by Σ. The expressions are as follows.

—There should be an even length sequence of blocks:(
(0 + 1)n$(0 + 1)n#(0 + 1)n$(0 + 1)n#

)∗4.
—For all i ∈ {0, . . . , n − 1}, the (i + 1)th bit of the two numbers surrounding an

odd # should be equal:(
Σi(0Σ3n+20 + 1Σ3n+21)Σn−i−1#

)∗4.
—For all i ∈ {0, . . . , n − 1}, the (i + 1)th bit of the two numbers surrounding an

even # should be equal:

Σ2n+2
(

Σi(0Σ2n−i+1(4+ Σn+i+10Σn−i−1#) +

(1Σ2n−i+1(4+ Σn+i+11Σn−i−1#)))
)∗
.

Clearly, the intersection of the above expressions defines L2n . Furthermore, every
expression is of size O(n) and is one-unambiguous as the Glushkov construction
translates them into a DFA [Brüggemann-Klein and Wood 1998].

(5) We show that given SOREs r1, . . . , rn, we can construct an NFA A with |Σ|+ 1
states defining

⋂
i≤n L(ri) in time cubic in the sizes of r1, . . . , rn. It then follows

from Theorem 3(1) that an expression defining
⋂

i≤n L(ri) can be constructed in

time O((m+ 1)2 · |Σ| · 4(m+1)), where m =
∑

i≤n |ri| since m ≥ |Σ|.
We first construct NFAs A1, . . . , An such that L(Ai) = L(ri), for any i ≤ n,

by using the Glushkov construction [Brüggemann-Klein 1993]. This construction
creates an automaton which has an initial state, with only outgoing transitions, and
additionally one state for each symbol in the regular expressions. Furthermore, all
incoming transitions for that state are labeled with that symbol. So, we could also
say that each state is labeled with a symbol, and that all incoming transitions carry
the label of that state. Since r1, . . . , rn are SOREs, for every symbol there exists
at most one state labeled with that symbol in any Ai. Now, let Ai = (Qi, q

i
0, δi, Fi)

then we say that Qi = {qi0} ∪ {qia | a ∈ Σ}, where qia is the state labeled with a.
For ease of exposition, if a symbol a does not occur in an expression ri, we add a
state qia to Qi which does not have any incoming or outgoing transitions.
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Now, we are ready to construct the NFA A = (Q, q0, δ, F ) defining the intersection
of A1, . . . , An. First, Q has again an initial state and one state for each symbol:
Q = {q0} ∪ {qa | a ∈ Σ}. A state is accepting if all its corresponding states are
accepting: F = {qa | ∀i ≤ n, qia ∈ Fi}. Here, a can denote 0 or an alphabet symbol.
Finally, there is a transition between qa and qb if there is a transition between qia and
qib, in every Ai: δ = {(qa, b, qb) | ∀i ≤ n, (qia, b, qib) ∈ δi}. Now, L(A) =

⋂
i≤n L(Ai).

Since the Glushkov construction takes quadratic time [Brüggemann-Klein 1993],
and we have to construct n automata, the total construction can be done in cubic
time.

6. CONCLUSION

In this paper we showed that the complement and intersection of regular expressions
are double exponentially more succinct than ordinary regular expressions. For com-
plement, complexity can be reduced to polynomial for the class of one-unambiguous
regular expressions although the obtained expressions could fall outside that class.
For intersection, restriction to SOREs reduces complexity to exponential. It re-
mains open whether there are natural classes of regular expressions for which both
the complement and intersection can be computed in polynomial time.
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