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We consider front propagation in a family of scalar reaction–diffusion equations in the
asymptotic limit where the polynomial degree of the potential function tends to infinity.
We investigate the Gevrey properties of the corresponding critical propagation speed,
proving that the formal series expansion for that speed is Gevrey-1 with respect to the
inverse of the degree. Moreover, we discuss the question of optimal truncation. Finally, we
present a reliable numerical algorithm for evaluating the coefficients in the expansion with
arbitrary precision and to any desired order, and we illustrate that algorithm by calculating
explicitly the first ten coefficients. Our analysis builds on results obtained previously in
[F. Dumortier, N. Popović, T.J. Kaper, The asymptotic critical wave speed in a family of scalar
reaction–diffusion equations, J. Math. Anal. Appl. 326 (2) (2007) 1007–1023], and makes
use of the blow-up technique in combination with geometric singular perturbation theory
and complex analysis, while the numerical evaluation of the coefficients in the expansion
for the critical speed is based on rigorous interval arithmetic.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The general family of scalar reaction–diffusion equations

∂u

∂t
= ∂2u

∂x2
+ fm(u), (1)

with fm(u) = 2um(1 − u) and m � 1 real, has been studied extensively as a ‘bridge’ [26] between the classical Fisher–
Kolmogorov–Petrowskii–Piscounov (FKPP) equation [10,15], which is obtained for m = 1 in (1), and the family of non-
degenerate bistable cubic equations with potential f (u) = u(1 − u)(u − a) [3,14,21], where a ∈ (0, 1

2 ) is a real parameter.
Moreover, it has found numerous applications in the biological [21] and physical [3] sciences, especially when m = 1 or
m = 2. (In the latter case, Eq. (1) is also known as the Zeldovich equation.)

Of particular interest to us here are traveling front solutions that connect the two rest states at u = 0 and u = 1 in (1).
Reverting to a co-moving frame by introducing the traveling wave variable ξ = x − ct , where c is the front propagation
speed, we denote the corresponding front by U (ξ) = u(x, t); thus, we find

U ′′ + cU ′ + 2Um(1 − U ) = 0 (2)
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P. De Maesschalck, N. Popović / J. Math. Anal. Appl. 386 (2012) 542–558 543
for the traveling wave equation corresponding to (1), with

lim
ξ→∞ U (ξ) = 0 and lim

ξ→−∞ U (ξ) = 1. (3)

(Here, the prime denotes differentiation with respect to ξ .) As is well known [2,3], for each m � 1, there exists a so-called
‘critical’ wave speed ccrit(m) such that Eq. (2) supports front solutions which satisfy the condition in (3) when c � ccrit.
The speed ccrit is critical in the sense that it separates fronts of different decay rates at the zero rest state: for m = 1, the
front solution corresponding to ccrit = 2

√
2 decays at an algebro-exponential rate as ξ → ∞, whereas the decay is strictly

exponential for c > ccrit. By contrast, when m > 1, the front that propagates with speed ccrit decays exponentially, while the
decay is merely algebraic in ξ for c > ccrit.

The family of equations in (1) has been studied in detail in the regimes where m is close to 1 and 2, using geometric
singular perturbation theory [24] and matched asymptotics [20,27]. Finally, the large-m limit in (1), first introduced as
a model for a δ-distribution potential centered about u = 1, which was considered in [23,27] as well as in [22] via the
method of matched asymptotic expansions, was analyzed in full rigor in [7]. In particular, it was proven there that the
critical wave speed ccrit(m) for (2) is C∞-smooth in m−1, as well as that

ccrit(m) = c1

m
+ c2

m2
+ O

(
m−3) as m → ∞, (4)

where c1 = 2 and c2 is defined as

c2 = lim
w0→∞

w0∫
0

[
ω2e−ω√

1 − (1 + ω)e−ω
− ω3

2
e−ω

]
dω ≈ −0.31191;

see [7, Theorem 1.1]. At the same time, the approach developed in [7] – which relied on a combination of geometric
singular perturbation theory [9,13] and the blow-up technique (geometric desingularization) [6,16] – yielded an alternative
(constructive) proof for the existence and uniqueness of the corresponding traveling front solutions; in particular, it allowed
for the regularization of the neutrally stable zero rest state in the singular limit as m → ∞ in (1).

The motivation in [7] for studying (2) in the large-m limit was twofold: first, it was confirmed that ccrit(m) is monotoni-
cally decreasing in m, as predicted on formal and numerical grounds in [22,27]. Second, and perhaps more importantly, the
approximation for ccrit(m) provided by (4) was shown to agree well with the numerically obtained front speed over a wide
range of m-values, down to m = 2; cf. [27, Fig. 3(a)]. (To state it differently, the large-m asymptotics of ccrit seems to remain
accurate even for finite values of m.)

In this article, we investigate the structure of the series expansion for the critical wave speed ccrit(m) in (4) in more
detail. As indicated already in [7, Remark 10], that expansion can be expected to have Gevrey properties [1,4]. Here, we
confirm this expectation; more precisely, we prove that the asymptotics in (4) is, in fact, Gevrey-1 with respect to the
(small) parameter m−1, i.e., that the k-th order coefficient ck in the expansion for ccrit will grow at most like k!; a precise
definition can be found in Eq. (6) below. Moreover, we determine the optimal truncation point in that expansion, and we
obtain a bound on the error incurred by the resulting truncation; to the best of our knowledge, no comparable results
have been obtained before. Our study is based on the geometric framework that was established in [7], complemented
by techniques from complex analysis and Gevrey asymptotics. (We remark that the blow-up technique has been applied
previously in the derivation of Gevrey-type expansions; see, e.g., [18,19] for details.) Specifically, our main result can be
expressed as follows:

Theorem 1. For m � m0 , with m0 > 0 sufficiently large, the function ccrit(m) has a formal power series expansion of the form

ccrit(m) ∼
∞∑

k=1

ck

mk
, (5)

with c1 = 2. Moreover, the expansion in (5) is Gevrey-1 with respect to m−1 , i.e., there exists a constant A > 0 such that, for k =
1,2,3, . . . ,

|ck| � ABkk!, with B � (ln 2)−1 ≈ 1.44270. (6)

Finally, the function ccrit(m) is well approximated by this Gevrey-1 series, in the sense that∣∣∣∣∣ccrit(m) −
[ m

B ]∑
k=1

ck

mk

∣∣∣∣∣ � A
√

2π

(
m

B

) 3
2

e− m
B
(
1 + O

(
Bm−1)). (7)

(Here, [m
B ] denotes the integer that is nearest to m

B .)

Our second result in this article concerns the accurate numerical evaluation of the coefficients ck in the formal series
expansion for ccrit in (5). In other words, we explicitly extend the leading-order expansion in (4), as found in [7,23]: while
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Table 1
The coefficients ck in (5) for k = 1, . . . ,10.

c1 2.0 c6 −0.2691796252
c2 −0.3119086360 c7 0.3478753430
c3 0.6762845522 c8 −0.2473705415
c4 −0.2941414626 c9 0.2959031591
c5 0.4425500680 c10 −0.2309020840

only the coefficient c2 was calculated there, we present an algorithm to evaluate ck numerically with arbitrary precision and
for any k � 1, thus obtaining a uniform approximation for ccrit(m) to any desired degree of accuracy. Thus, for k = 1, . . . ,10,
the coefficients ck in (5) are as given in Table 1, up to 10 digits’ precision. The evaluation of these coefficients is computer-
assisted, and will be outlined in Section 4; in particular, we remark that it makes substantial use of the Gevrey character of
the expansion for ccrit and, specifically, of the asymptotic bound on the growth of ck given in (6).

This article is organized as follows. In Section 2, we review the geometric framework established in [7]; in Section 3, we
prove our main result, Theorem 1; in Section 4, we outline the derivation of Table 1; finally, in Section 5, we discuss and
interpret our findings.

2. Geometric framework

In this section, we retrace some of the analysis from [7], as required for our purposes. First, we note that it is useful to
recast (2) into Liénard form, which yields

U ′ = V − cU , V ′ = −2Um(1 − U ); (8)

then, front solutions connecting the rest states at U = 1 and U = 0 in (2) correspond to heteroclinic connections between
the two equilibrium points Q − = (1, c) and Q + = (0,0) of (8). In particular, the point Q + is a saddle-node for c > 0 (with
eigenvalues −c and 0) and fully degenerate (with a double zero eigenvalue) when c = 0; cf. [7, Lemma 2.1]. Hence, for any
m > 1, the critical speed ccrit(m) > 0 is determined by the condition that the unstable manifold W u(Q −) of the hyperbolic
saddle equilibrium at Q − coincides with the strong stable manifold W s(Q +) of Q +; by contrast, for c > ccrit(m), W u(Q −)

approaches Q + on a center manifold. We refer the reader to [7,24] for a more complete discussion of critical wave speed
phenomena from a geometric point of view.

Following [7], we define ε = m−1 for m large, and we consider the limit as ε → 0. After a preliminary rescaling via

V = ε Ṽ , c = εc̃, and ξ = ξ̃
ε , see [7, Section 2.1], the equations in (8) read

U̇ = Ṽ − c̃U , ˙̃V = − 2

ε2
U

1
ε (1 − U ), (9)

where the overdot denotes differentiation with respect to ξ̃ .
The analysis of (2) in [7] then proceeds by decomposing the phase space of the equivalent, rescaled first-order system (9)

into two distinct regions, the ‘outer region’ (with 0 � U < 1) and the ‘inner region’ (where U ≈ 1). The large-m asymptotics
of ccrit(m) in (4) is hence obtained by constructing a solution for (9) that is uniformly valid on [0,1]. In particular, when
ε = 0, a singular orbit Γ can be defined as the unique heteroclinic connection between the equilibrium points Q̃ − = (1, c̃)
and Q̃ + = (0,0) of (9). The construction of Γ is outlined below; details can be found in [7, Section 2].

2.1. The ‘outer problem’

Since U
1
ε = e

1
ε ln U , the right-hand side in (9) is exponentially small in ε for U ∈ [0, U0], with U0 < 1 constant. Corre-

spondingly, the dynamics in this outer region is governed by

U̇ = Ṽ − c̃U , ˙̃V = 0, (10)

where c̃ = c̃(ε) now. The line S0 := {(U , Ṽ ) | Ṽ = c̃(0)U , U ∈ [0, U0]} is invariant for (10) and normally attracting, as c̃ > 0;
hence, S0 will persist, by standard theory [8,9], as the line Sε := {(U , Ṽ ) | Ṽ = c̃(ε)U , U ∈ [0, U0]}, for ε > 0 sufficiently
small. (Here, we note that Q̃ + lies on Sε for any value of ε.) Similarly, the fast foliation F0, which consists of axis-parallel
fibers {Ṽ = Ṽ 0} for Ṽ 0 constant, will persist as a foliation Fε whose fibers are exponentially close (in ε) to those of F0. In
particular, the fiber Γ +: {Ṽ = 0} gives the leading-order strong stable manifold W s(Q̃ +) of the origin Q̃ +; see Fig. 1(a) for
an illustration.
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(a) The ‘outer problem’ (10). (b) The ‘inner problem’ (11).

Fig. 1. The geometry for ε = 0.

2.2. The ‘inner problem’

For U ≈ 1, i.e., close to the point Q̃ − , the contribution from the right-hand side in (9) remains significant even as ε → 0.
(In fact, the rapid variation of fm(U ) signals the existence of a boundary layer in this inner region.) Translating Q̃ − to the
origin by introducing the new variables W = 1 − U and Z = −(Ṽ − c̃) in (9), we find

Ẇ = Z − c̃W , Ż = 2

ε2
(1 − W )

1
ε W . (11)

Even though the right-hand side in (11) is undefined in the (non-uniform) limit as (W , ε) → (0,0), it was shown in [7] that
the corresponding singular dynamics can still be obtained using geometric desingularization, or blow-up [6,16]. Heuristically,
that dynamics is described by the singular orbit Γ − := {(0, Z) | Z ∈ [0, c̃]} ∪ {(W , c̃) | W ∈ [0, W0]}, with W0 = 1 − U0.
Geometrically speaking, Γ − consists of a portion of the Z -axis which represents the boundary layer at W = 0 (to lowest
order), as well as of a segment of {Z = c̃} that corresponds to the fiber Γ +; cf. Fig. 1(b).

2.3. The blow-up transformation for (11)

As in [7, Section 3], the dynamics of the inner problem in a neighborhood of (W , ε) = (0,0) is desingularized via the
cylindrical blow-up transformation

W = r̄ w̄, Z = z̄, and ε = r̄ε̄, (12)

which maps the Z -axis to the quarter-cylinder S
1+ × [0, z0]. (Here, (w̄, ε̄) ∈ S

1+ = {(w̄, ε̄) | w̄2 + ε̄2 = 1, w̄, ε̄ � 0}, z̄ ∈ [0, z0],
and r̄ ∈ [0, r0], with z0 > 2 fixed and r0 positive and sufficiently small.) For details on the blow-up technique, the reader is
again referred to [7] and the references therein.

The blown-up vector field corresponding to the equations in (11) is best studied in two coordinate charts: the dynamics
in the inner region is covered by a ‘rescaling chart’ K2, which is defined by ε̄ = 1; the transition between the inner and
outer regions, which will be termed the ‘intermediate region,’ is naturally described in a ‘phase-directional chart’ K1, with
w̄ = 1 in (12). For future reference, we note that the coordinate change κ21 : K2 → K1 on the domain of overlap between
these charts is given by

r1 = r2 w2, z1 = z2, and ε1 = w−1
2 . (13)

The geometry in blown-up coordinates is illustrated in Fig. 2.

Remark 1. Given any object �, we will denote the corresponding blown-up object by �; in chart K j ( j = 1,2), the same
object will appear as � j .

2.3.1. Dynamics in chart K2
In K2, the blow-up transformation in (12) is given by

W = r2 w2, Z = z2, and ε = r2,
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Fig. 2. The geometry of (11) after blow-up.

which we substitute into (11) to obtain the dynamics in this chart. The resulting equations – after desingularization, i.e.,
after multiplication of the right-hand sides by a factor of r2 – read

w ′
2 = z2 − r2c̃w2, z′

2 = f (w2, r2), r′
2 = 0, (14)

where the function f is defined as

f (w2, r2) = 2w2(1 − r2 w2)
1

r2 = 2w2 exp

[
1

r2
ln(1 − r2 w2)

]
. (15)

The only finite equilibrium for the (c̃, r2)-family of vector fields in (14) is the origin Q̃ −
2 , which is a hyperbolic saddle point

for c̃ > 0 and r2 ∈ [0, r0] sufficiently small; see [7, Lemma 3.2]. We note that Q̃ −
2 corresponds to the origin in (W , Z)-space

or, alternatively, to the saddle equilibrium at Q̃ − = (1, c̃) in the original (U , Ṽ )-coordinates.
The singular limit of r2 = 0 in (14) is described by the integrable system

w ′
2 = z2, z′

2 = 2w2e−w2

or, equivalently, by the equation z2
dz2
dw2

= 2w2e−w2 ; the unique solution satisfying z2(0) = 0 and z2 → 2 as w2 → ∞ is
given by

z2(w2) = 2
√

1 − (1 + w2)e−w2 . (16)

The corresponding orbit, which we denote by Γ −
2 , approximates the unstable manifold W u

2 (Q̃ −
2 ) of Q̃ −

2 to lowest order.
Hence, Γ −

2 represents the portion of the singular orbit Γ − (before blow-up) that is located in chart K2; see Fig. 3(a) for an
illustration.

2.3.2. Dynamics in chart K1
In chart K1, the transformation in (12) reduces to

W = r1, Z = z1, and ε = r1ε1,

which implies

r′
1 = r1(z1 − r1c̃), z′

1 = 2

ε2
1

exp

[
1

r1ε1
ln(1 − r1)

]
, ε′

1 = −ε1(z1 − r1c̃) (17)

after desingularization (multiplication by r1); in particular, (17) extends to a C∞-smooth vector field as ε1 → 0 [7]. For
r1 small, all equilibria of (17) are located on the line 
1 = {(0, z1,0) | z1 ∈ [0, z0]}. Given κ21, as defined in (13), and the

expression for Γ −
2 in (16), we find z1(ε1) = 2

√
1 − (1 + 1

ε )e
− 1

ε1 for the portion Γ −
1 of the singular orbit Γ that lies on
1
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(a) The ‘rescaling chart’ K2. (b) The ‘phase-directional chart’ K1.

Fig. 3. The dynamics of the blown-up vector field.

the (invariant) blow-up locus {r1 = 0} in K1. Since z1 → 2 as ε1 → 0, it follows that Γ −
1 → P1 = (0,2,0) ∈ 
1 in that limit,

which also shows c̃ ∼ 2, to lowest order in ε; cf. [7, Lemma 4.1]. The geometry in chart K1 is illustrated in Fig. 3(b).

2.3.3. Regularity of the transition in K1
Following [7, Section 3.3], we define two sections Σ in

1 and Σout
1 in chart K1 via

Σ in
1 = {(

rin
1 , zin

1 , δ
) ∣∣ rin

1 ∈ [0,ρ], ∣∣zin
1 − 2

∣∣ � α
}

and

Σout
1 = {(

ρ, zout
1 , εout

1

) ∣∣ ∣∣zout
1 − 2

∣∣ � α, εout
1 ∈ [0, δ]}, (18)

where δ, ρ , and α are small and positive constants; see again Fig. 3(b). (Here, we note that Σ in
1 corresponds, under the

change of coordinates κ21 defined in (13), to a section Σout
2 for the flow of (14); recall Fig. 3(a).) Let Π1 : Σ in

1 → Σout
1

denote the corresponding transition map that is induced by the flow of (17); the following result on the regularity of Π1
can be found in [7]:

Proposition 1. (See [7, Proposition 3.4].) The map

Π1 :
{

Σ in
1 → Σout

1 ,

(εδ−1, zin
1 , δ) �→ (ρ, zout

1 , ερ−1)

is C∞-smooth in zin
1 , as well as in the parameters ε and c̃.

Remark 2. It was conjectured in [7, Remark 7] that the transition map Π1 is ‘infinitely close’ to the identity, as the right-
hand side in (17) goes to zero as ε → 0, along with its derivatives. This conjecture appears to be true only in the following,
more restrictive formulation: Π1 tends towards the identity exponentially fast (in ε1) as δ → 0 in the definition of Σ in

1 ,
recall (18); however, that convergence is not uniform in r1 ∈ [0,ρ], i.e., for r1 → 0 and ε1 fixed.

3. Proof of Theorem 1

As in the proof of [7, Theorem 1.1], the critical wave speed ccrit defined in Theorem 1 is obtained in the intersection of
two invariant manifolds in an appropriately defined section in phase space: specifically, the unstable manifold W u(Q̃ −) of
the hyperbolic saddle equilibrium at Q̃ − is tracked in forward ‘time,’ and is matched, for ε positive and small, to the strong
stable manifold W s(Q̃ +) of the origin Q̃ + . (Here, we recall that the heteroclinic connection between Q̃ − and Q̃ + that is
realized in the intersection of these manifolds reduces to the singular orbit Γ in the limit as ε → 0.) Since both W u(Q̃ −)

and W s(Q̃ +) correspond, in fact, to families of manifolds that are parametrized by c̃, and extended to the complex domain,
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the matching is accomplished using a Gevrey-1 version of the Implicit Function Theorem along a curve c̃ = c̃(ε), which
uniquely determines ccrit(m) = m−1c̃(m−1); see also [7, Proposition 4.2].

The required analysis is performed in the framework of the blown-up vector field induced by (11), i.e., of the two coor-
dinate charts K2 and K1 introduced in Section 2, and draws heavily on methods from complex analysis. In the process, we
substantially refine the asymptotic estimates (in c̃ and ε) for W u(Q̃ −) and W s(Q̃ +) that were derived in [7, Section 4]: in
Section 3.1, we show that the manifold W u(Q̃ −) is analytic when restricted to the inner region, but that it loses analyticity
in its transition through the intermediate region; correspondingly, the manifold W s(Q̃ +) is merely C∞-smooth, as discussed
in Section 3.2. In particular, these refined estimates then translate into the Gevrey-1 asymptotics of ccrit postulated in (6),
for m sufficiently large. Finally, the bound in (7) is obtained by performing a ‘truncation to the least term,’ as explained in
Section 3.3.

3.1. Asymptotics of W u(Q̃ −)

In this subsection, we discuss the asymptotics of the unstable manifold W u(Q̃ −) of Q̃ −: we first consider the corre-
sponding manifold W u

2 (Q̃ −
2 ) in the rescaling chart K2, i.e., in the inner region; then, we describe the transition through the

intermediate region, which is studied in the phase-directional chart K1. Finally, reverting to the original (U , Ṽ , ε)-variables,
we extend the resulting asymptotics to the outer region (away from the blow-up locus).

3.1.1. The inner region (chart K2)
We recall that W u(Q̃ −) corresponds to the unstable manifold W u

2 (Q̃ −
2 ) of the hyperbolic saddle point Q̃ −

2 , after trans-
formation to (w2, z2, r2)-coordinates; cf. Section 2.3. Since that manifold is analytic for w2 in any compact subset of [0,∞),
it can be represented as a regular perturbation of the singular orbit Γ −

2 or, equivalently, as the graph of some function ζ

that is analytic in w , as well as in the parameters c̃ and r:

z = ζ(w, c̃, r) =
∞∑

n=0

zn(w, c̃)rn, with ζ(0, c̃, r) = 0. (19)

(Here and in the remainder of this section, we omit the subscript 2 for convenience of notation.)
For r = 0 in (19), we have ζ(w, c̃,0) = z0(w, c̃) ≡ z0(w), where we recall the expression for z0 from (16). It is evident

that |z0(w)| � 2. To obtain corresponding bounds on the higher-order coefficient functions zn(w, c̃), for n = 1,2,3, . . . , we
first rewrite (14) with w as the independent variable:

∂z

∂ w
(w, c̃, r) = f (w, r)

z − rc̃w
, (20)

where the function f (w, r) is defined as in (15).

Lemma 1. The function f can be written as f (w, r) = 2w exp[−wψ(rw)], where

ψ(x) = − ln(1 − x)

x

is analytic at x = 0, with ψ(0) = 1 and radius of convergence 1. Furthermore, ψ satisfies |ψ(x)| � ln 2, as well as 
ψ(x) � ln 2 and
�ψ(x) � π

2 , for all x with |x| < 1.

Proof. All statements are immediately obvious, except for the bounds on |ψ(x)|, 
ψ(x), and �ψ(x); the latter can be
obtained by observing that the function 1

ψ
is well defined and continuous on the closed unit ball B(0,1), with ( 1

ψ
)(1) := 0.

Applying the maximum principle to 1
ψ

, we find that minB(0,1) |ψ(x)| = min{|x|=1, x�=1} |ψ(x)|. For |x| = 1, we write x = eiφ ,
and we consider the function

g(φ) = ∣∣ln(1 − cosφ − i sinφ)
∣∣2

=
∣∣∣∣ln√

2 − 2 cosφ − i arctan
sinφ

1 − cosφ

∣∣∣∣2

= (ln
√

2 − 2 cosφ )2 +
(

arctan
sinφ

1 − cosφ

)2

.

Next, we prove that g(φ) assumes its minimum at φ = π , which will imply that |ψ(x)| is minimal at x = −1. Defining

y = sinφ
1−cosφ

, we observe that cos φ = y2−1
y2+1

then, as well as that φ = π yields y = 0. Substituting into g , we obtain a

simplified function g̃ , as follows:

g̃(y) =
(

ln

√
4

y2 + 1

)2

+ (arctan y)2, with y ∈ (−∞,∞).
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Correspondingly, we now show that g̃ is minimal at y = 0. By symmetry, we may restrict to studying g̃ for y ∈ [0,∞):
since the right-hand side in g̃′(y)(y2 + 1) = −2 ln 2y + y ln(y2 + 1) + 2 arctan y vanishes at y = 0, and since its derivative
2 − 2 ln 2 + ln(y2 + 1) is strictly positive, it follows that g̃′(y) > 0 for all y > 0, which proves the bound on |ψ(x)|. The
bounds on 
ψ(x) and �ψ(x) can be obtained in a similar fashion. �
Remark 3. Lemma 1 implies, in particular, that |arg ψ(x)| is uniformly bounded away from π

2 .

By Lemma 1, the function f is analytic at r = 0, for w in any compact subset of [0,∞); hence, the series in (19) is
uniformly convergent on any such subset. However, as w → ∞, the convergence becomes weaker; specifically, we claim
that the series only satisfies Gevrey-1 growth properties at w = ∞, i.e., that there exist positive constants A and B such
that ∣∣zn(w, c̃)

∣∣ � ABn+1(n + 1)! for all w ∈ [0,∞) and n = 0,1,2, . . . , (21)

where c̃ is close to its singular value c̃0 = 2 [7, Lemma 4.1]. To prove the bound on |zn| in (21), we first estimate the
corresponding remainder terms in the series expansion in (19): we write

ζ [n](w, c̃, r) :=
(

ζ(w, c̃, r) −
n−1∑
k=0

zk(w, c̃)rk

)
r−n, (22)

where we note that zn(w, c̃) = ζ [n](w, c̃,0). (Here and in the following, we will consider the sum from 0 to n − 1 to be
empty when n = 0.) Applying the Residue Theorem, we find

ζ [n](w, c̃, r) = 1

2π i

∮
ζ(w, c̃, s)

sn(s − r)
ds, (23)

where the integration is performed along a complex contour encircling both s = 0 and s = r, with a counterclockwise
orientation. Next, we show that the function ζ is bounded on a sufficiently large complex domain.

Proposition 2. For θ > 0 sufficiently small and η ∈ (0,1), there exist constants M > 0, C0 > 0, and R > 0 such that z = ζ(w, c̃, r)
extends analytically to the domain defined by

|w| � M, |c̃ − 2| � C0, |r| � R, |rw| � η, and arg w ∈ [−θ, θ].
Furthermore, there exist constants K0 > 0 and β > 0 such that, on that domain,∣∣ζ(w, c̃, r)

∣∣ � K0 and

∣∣∣∣ ∂ζ

∂ w
(w, c̃, r)

∣∣∣∣ � K0|w|e−β|w|.

The constants M, R, and β can be chosen independently of η; finally, the constant β satisfies β = ln 2 + O(θ), where θ can be taken
as small as required.

Proof. Choosing M > 0 sufficiently large, we may assume that z0(M) is as close to its asymptotic limit 2 as desired. Since
ζ(w, c̃, r) ∼ z0(w), to lowest order, we find∣∣ζ (

Meiφ, c̃, r
) − 2

∣∣ � 2 − |c̃|η
4

(24)

for φ ∈ [−θ, θ] and |r| � R , with R sufficiently small. By bounding | ∂z
∂ w |, we now prove that the restriction of Eq. (20) to the

domain that is defined by |z − 2| � 2−|c̃|η
2 has a solution on that restricted domain. To that end, we observe that, under the

above condition on z,

|z − c̃rw| � 2 − |z − 2| − |c̃rw| � 2 − |c̃|η
2

. (25)

In order to bound the function f (w, r), we estimate the argument wψ(rw) of the exponential in the definition of f ;
see Lemma 1:


(
wψ(rw)

) = |w|∣∣ψ(rw)
∣∣ cos arg

(
wψ(rw)

) = |w|cos arg(wψ(rw))

cos arg ψ(rw)

ψ(rw).

Recalling that |arg ψ(rw)| is bounded away from π
2 , cf. Remark 3, as well as that |arg w| = O(θ), we may apply the

identity cos(x+y)
cos y = cos x − sin x tan y = 1 + O(x) to obtain cos arg(wψ(rw))

cos arg ψ(rw)
= 1 + O(θ). Since, moreover, 
ψ(rw) � ln 2, we

have 
(wψ(rw)) � βθ |w|, where βθ is some constant that tends towards ln 2 as θ → 0. Hence, it follows that | f (w, r)| =
|2we−wψ(rw)| � 2|w|e−β|w| , with β = ln 2 + O(θ), as claimed.
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Next, fixing w in the restricted domain defined above, and letting φ be its complex argument, we write

ζ(w, c̃, r) = ζ
(
Meiφ, c̃, r

) +
w∫

Meiφ

f (ω, r)

ζ(ω, c̃, r) − c̃r
dω,

where the integration is performed along a complex line segment (with fixed argument). Making use of (24) and (25), we
obtain

∣∣ζ(w, c̃, r) − 2
∣∣ �

∣∣ζ(M, c̃, r) − 2
∣∣ +

|w|∫
M

∣∣ f (ω, r)
∣∣ 2

2 − |c̃|η |dω|

� 2 − |c̃|η
4

+ 4

2 − |c̃|η

|w|∫
M

ωe−βω dω <
2 − |c̃|η

2
,

which is satisfied as long as

∞∫
M

ωe−βω dω <
(2 − |c̃|η)2

16
. (26)

As M → ∞, the left-hand side in (26) tends to 0, which implies that we can integrate the solution of (20) inside the region
{|z − 2| � 2−|c̃|η

2 } as far as we like (in w). Clearly, we have |ζ(w, c̃, r)| � 2 + 2−|c̃|η
2 inside that region; given (20) and the

above estimate for f , we also find∣∣∣∣ ∂ζ

∂ w
(w, c̃, r)

∣∣∣∣ � | f (w, r)|
|ζ(w, c̃, r) − c̃rw| � 2|w|e−β|w| 2

2 − |c̃|η .

Finally, taking K0 to be the maximum of 2 + 2−|c̃|η
2 and 4

2−|c̃|η , we obtain the desired result. �
Remark 4. The requirement that β � ln 2 in the statement of Proposition 2 is a consequence of the bound on 
ψ obtained
in Lemma 1; in particular, that restriction will imply that the coefficient functions zn(w, c̃) are Gevrey-1 of type (ln 2)−1

and not of type 1, as one may have expected intuitively.

Next, we make use of the estimates obtained in Proposition 2 to bound ζ [n] – or, equivalently, the coefficient functions zn

– in the limit as w → ∞ in chart K2; since, by (13), that limit corresponds to taking ε1 = 0 in the phase-directional
chart K1, the resulting large-w asymptotics of W u(Q̃ −) will allow us to define a corresponding manifold there.

Proposition 3. For θ > 0 sufficiently small and η ∈ (0,1), there exist constants M > 0, C0 > 0, and R > 0 such that the function
z = ζ(w, c̃, r) is analytic on the domain defined by

|w| � M, |c̃ − 2| � C0, |r| � R, |rw| � η, and arg w ∈ [−θ, θ].
Moreover, on that domain, the coefficient functions {zn}∞n=0 in (19) satisfy∣∣zn(w, c̃)

∣∣ �
∣∣ζ [n](w, c̃, r)

∣∣ � ABn+1(n + 1)!, (27)

for some (positive) constants A and B. Finally, there exists a sequence of functions {z∞
n (c̃)}∞n=0 with

∣∣zn(w, c̃) − z∞
n (c̃)

∣∣ � A

∞∫
|w|

ωn+1e−βω dω � ABn+1(n + 1)!, (28)

for all w with |w| � M and arg w ∈ [−θ, θ]. At the expense of decreasing θ and R and increasing A, the constant B can be chosen as
close to (ln 2)−1 as desired.

Proof. Let μ ∈ (η,1) be chosen arbitrarily; then, we may assume that the estimates derived in Proposition 2 are valid for
|rw| � μ. Writing ϕ := ∂ζ

∂ w for the derivative of ζ with respect to w , we have

ϕ[n](w, c̃, r) = 1
∮

ϕ(w, c̃, s)
n

ds,

2π i s (s − r)
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where the integration is performed along a contour with |s| = μ
|w| . Considering values of r inside the disc that is defined by

|r| � η
|w| , we find

∣∣ϕ[n](w, c̃, r)
∣∣ � 1

2π
K0|w|e−β|w|

( |w|
μ

)n( |w|
μ − η

)
2π

μ

|w| = K0
μ1−n

μ − η
|w|n+1e−β|w|.

For w in the domain specified in the formulation of the proposition, we write φ = arg w and ζ [n](w, c̃, r) = ζ [n](Meiφ, c̃, r)+∫ w
Meiφ ϕ[n](s, c̃, r)ds. Making the substitution x = β|w|, we obtain

∣∣ζ [n](w, c̃, r)
∣∣ �

∣∣ζ [n](Meiφ, c̃, r
)∣∣ + K0μ

1−n

μ − η
β−n−2

β|w|∫
βM

xn+1e−x dx

�
∣∣ζ [n](M, c̃, r)

∣∣ + K0μ
1−n

μ − η
β−n−2

∞∫
0

xn+1e−x dx = ∣∣ζ [n](M, c̃, r)
∣∣ + K0μ

1−n

μ − η
β−n−2(n + 1)!.

Since the function ζ(M, c̃, r) is analytic, ζ [n](M, c̃, r) can be bounded by a (convergent) geometric series in terms of n; hence,
there certainly exists A > 0 such that |ζ [n](w, c̃, r)| � ABn+1(n + 1)!, with B = (βμ)−1, which proves (27). Since, moreover,
μ can be chosen arbitrarily close to 1, we can take B as close to (ln 2)−1 as desired.

Finally, we define ϕn(w, c̃) = ϕ[n](w, c̃,0) to be the n-th order Taylor coefficient of ϕ at r = 0; then, ∂zn
∂ w = ϕn . As ϕn is

exponentially decreasing at w = ∞, by the above, it follows that the limit

z∞
n (c̃) := lim

w→∞,arg w∈[−θ,θ ] zn(w, c̃)

is well defined and that it satisfies |z∞
n | � ABn+1(n + 1)!; furthermore, we have

∣∣zn(w, c̃) − z∞
n (c̃)

∣∣ =
∣∣∣∣∣

∞∫
w

ϕn(ω, c̃)dω

∣∣∣∣∣ �
∞∫

|w|

K0μ
1−n

μ − η
ωn+1e−βω dω.

Simplifying this estimate further by replacing the lower limit of integration by 0, we obtain (28), which completes the
proof. �

We remark that the bound on the error incurred when approximating zn by z∞
n in (28) is too pessimistic in the large-w

regime, as
∫ ∞
|w| ω

n+1e−βω dω = O(|w|n+1e−β|w|) for |w| → ∞; however, (28) will turn out to be optimal for |w| small, cf.
the proof of Proposition 4 below.

Remark 5. Here and in the following, A will denote a generic constant whose value will remain unspecified, whereas
B = (βμ)−1 will always be defined as in the statement of Proposition 3.

3.1.2. The intermediate region (chart K1)
Given the asymptotics of the unstable manifold W u

2 (Q̃ −
2 ) of Q̃ −

2 in the inner region, we now translate the corresponding
estimates into the intermediate region, which is studied in the phase-directional chart K1. Recalling that W u

2 (Q̃ −
2 ) can be

represented as the graph of a function ζ2, with z2 = ζ2(w2, c̃, r2), and applying the coordinate change κ21 : K2 → K1 defined
in (13), we find

z1 = ζ1
(
ε−1

1 , c̃, r1ε1
) =: ζ̃1(r1, c̃, ε1) (29)

for the corresponding manifold W u
1 (Q̃ −

1 ) := κ21(W u
2 (Q̃ −

2 )) in K1. (Here, ζ̃1 is some new, appropriately defined function
of r1, c̃, and ε1.) The following result is an immediate consequence of Proposition 3, in combination with (13):

Corollary 1. For |ε| � 0 sufficiently small, the manifold W u
1 (Q̃ −

1 ) is described by a function

z1 = ζ̃1(r1, c̃, ε1)

that is analytic on the domain defined by

|ε1| � M−1, |c̃ − 2| � C0, |r1ε1| � R, |r1| � η, and argε1 ∈ [−θ, θ].

Corollary 1 implies, in particular, that the manifold W u
2 (Q̃ −

2 ) extends to a neighborhood of the equilibrium point P1 =
(0,2,0) ∈ 
1 in chart K1; recall Section 2.3.
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Remark 6. When applying the blow-up technique in the framework of geometric singular perturbation theory, one typically
constructs invariant manifolds in compact regions of the rescaling chart K2; see, e.g., [7,18] and the references therein.
Subsequently, the domain of definition of these manifolds has to be extended by transformation to a phase-directional
chart, such as is given by K1. In our case, however, Proposition 3 already shows the existence of an invariant manifold in a
domain that is ‘larger than compact’ in the w2-direction, since we allow for |w2| � η

r2
; recall Proposition 2. Consequently,

the extension of that manifold to chart K1 is a straightforward corollary, i.e., we do not need to invoke Proposition 1.

Our next result bounds the error incurred when approximating the manifold W u
1 (Q̃ −

1 ) – or, rather, the function ζ̃1
defined in (29) – by its formal power series expansion with coefficients {z∞

n }:

Proposition 4. For |ε1| � M−1 and argε1 ∈ [−θ, θ], there holds∣∣∣∣∣ζ̃1(η, c̃, ε1) −
n−1∑
k=0

z∞
k (c̃)(ηε1)

k

∣∣∣∣∣ � ABn+1(n + 1)!|ηε1|n, (30)

where n = 1,2,3, . . . , A is some (positive) constant, and M, θ , and B are defined as in Proposition 3.

Proof. Recalling the definition of ζ̃1, we estimate the left-hand side in (30) as∣∣∣∣∣ζ̃1(η, c̃, ε1) −
n−1∑
k=0

z∞
k (c̃)(ηε1)

k

∣∣∣∣∣ =
∣∣∣∣∣ζ1

(
ε−1

1 , c̃, ηε1
) −

n−1∑
k=0

z∞
k (c̃)(ηε1)

k

∣∣∣∣∣
�

∣∣∣∣∣ζ1
(
ε−1

1 , c̃, ηε1
) −

n−1∑
k=0

zk
(
ε−1

1 , c̃
)
(ηε1)

k

∣∣∣∣∣ +
n−1∑
k=0

∣∣zk
(
ε−1

1 , c̃
) − z∞

k (c̃)
∣∣|ηε1|k. (31)

By (22), the first term on the right-hand side in (31) corresponds to

ζ2(w2, c̃, r2) −
n−1∑
k=0

zk(w2, c̃)rk
2 = ζ

[n]
2 (w2, c̃, r2)r

n
2

evaluated at (w2, r2) = (ε−1
1 , ηε1), which is bounded by ABn+1(n + 1)!|ηε1|n; recall (27).

Next, considering the second term in (31), we find

n−1∑
k=0

∣∣zk
(
ε−1

1 , c̃
) − z∞

k (c̃)
∣∣|ηε1|k �

n−1∑
k=0

AB(k + 1)!|Bηε1|k = AB(n + 1)!
n−1∑
k=0

(k + 1)!
(n + 1)! |Bηε1|k

� AB(n + 1)!
(

1

n(n + 1)

n−2∑
k=0

|Bηε1|k + 1

n + 1
|Bηε1|n−1

)
,

where we have additionally made use of (28). Keeping |Bηε1| � 1, we conclude that the terms inside the brackets are
bounded by 2

n+1 , which proves (30). �
3.1.3. The outer region

Having described the transition of W u(Q̃ −) through the intermediate region, it remains to determine the resulting
asymptotics in the outer region: ‘blowing down’ the graph z1 = ζ̃1(r1, c̃, ε1), i.e., reverting to (W , Z , ε)-variables, we find
that W u(Q̃ −) can be represented as Z = ζ̃ (W , c̃, εW −1). Evaluating that function at W = (r1 =)η, for η ∈ (0,1), we obtain
the intersection of the blown-down manifold W u(Q̃ −) with the hyperplane defined by {W = η}. The following result is an
immediate consequence of Proposition 4:

Proposition 5. For any η ∈ (0,1), the intersection of W u(Q̃ −) with {W = η} is described by a function

Z = γ (c̃, ε) := ζ̃
(
η, c̃, εη−1)

that satisfies∣∣∣∣∣γ (c̃, ε) −
n−1∑

z∞
k (c̃)εk

∣∣∣∣∣ � ABn+1(n + 1)!|ε|n

k=0
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for n = 1,2,3, . . . . In other words, γ is analytic in a sector of the complex plane, with argε ∈ [−θ, θ], and is Gevrey-1 asymptotic to
the formal power series

Z ∼
∞∑

n=0

z∞
n (c̃)εn,

where the coefficients {z∞
n }∞n=0 are defined as in the proof of Proposition 3.

Setting η = ρ , with ρ as in the definition of Σout
1 in (18), we have Z out := Z |{W =ρ} = ζ̃ (ρ, c̃, ερ−1) for the inter-

section of W u(Q̃ −) with the section Σout that is obtained from Σout
1 after blow-down. In particular, it follows that

Ṽ out = Ṽ |{U=1−ρ} = −Z out + c̃ =: γ out− (c̃, ε) in the original (U , Ṽ , ε)-variables.

3.2. Asymptotics of W s(Q̃ +)

Finally, we derive the asymptotics of the strong stable manifold W s(Q̃ +) of the origin Q̃ + , which is defined in the outer
region, i.e., in (U , Ṽ )-space, with c̃ and ε as parameters. Clearly, that manifold can be written as the graph of a function υ ,
with Ṽ = υ(U , c̃, ε), whose series expansion about ε = 0 is identically zero (to all orders in ε). While υ is certainly not
analytic at ε = 0, as its Taylor series expansion does not converge to the nonzero function Ṽ , we can nevertheless show
that Ṽ is C∞-smooth (in ε) in a complex sector containing the positive real axis, with the origin as its vertex:

Proposition 6. For |ε| � 0 sufficiently small, the manifold W s(Q̃ +) is described by a function

Ṽ = υ(U , c̃, ε)

that is analytic (and, in fact, exponentially small) in ε, with argε ∈ [−θ, θ]. Moreover, υ is C∞-smooth at ε = 0.

Proof. The proof is based on a standard fixed point argument: we consider the set of continuous functions v(U , c̃, ε) that
are defined on V := [0, U0] × B(2, C0) × Ω , where B(2, C0) is the closed complex ball around c̃0 = 2 with radius C0 and
where Ω denotes the topological closure of Ω = {ε ∈ C | 0 < |ε| < ε0,argε ∈ [−θ, θ]}. (Here, the positive constants C0,
U0, θ , and ε0 will be taken as small as required.) We denote by E the subset of the set of these functions that are
furthermore analytic with respect to (c̃, ε) on (0, U0) × B(2, C0) × Ω , uniformly in U . Finally, we define the norm ‖v‖ :=
sup(U ,c̃,ε)∈V |U−1 v(U , c̃, ε)| on E , and we let E R be the subset of E with ‖v‖ � R . Then, it is easy to see that (E R ,‖ · ‖) is a
Banach space.

Given the equations in (9), it follows that the manifold Ṽ = Ṽ (U , c̃, ε) can be interpreted as a fixed point of the func-
tional τ : E R → E R , with

v �→ τ (v) :=
U∫

0

− 2
ε2 u

1
ε (1 − u)

v(u) − c̃u
du.

Since τ is a contraction mapping with Lipschitz constant less than 1, for R sufficiently small, there exists a fixed point υ
for τ in E R . Hence, the corresponding manifold W s(Q̃ +) is analytic with respect to ε in a complex sector with vertex at
the origin.

It remains to show that the function υ is exponentially small (in ε) in that sector: we have

|υ| = ∣∣τ (υ)
∣∣ � 2

|ε|2(c̃ − R)

U∫
0

∣∣u 1
ε −1

∣∣du,

where the integrand is bounded from above by |U 1
ε −1|. Thus, we find that |υ| � C

|ε|2 |U
1
ε
0 | for some constant C > 0, which is

exponentially small with respect to ε (uniformly in U and c̃). Since the derivatives of exponentially small functions which
are defined on a complex sector are also exponentially small, it is evident that υ has a C∞-smooth extension down to
ε = 0, which completes the proof. �
Remark 7. We note that the smoothness of Ṽ does not follow from the standard Stable Manifold Theorem: since the vector
field in (9) is only finitely smooth for (U , Ṽ , ε) in any a priori given neighborhood of the origin, that theorem merely implies
that W s(Q̃ +) is Ck-smooth, non-uniformly in ε.

Finally, the intersection of W s(Q̃ +) with the section Σout, which we denote by γ out+ , is found by evaluating the func-
tion υ at U = 1 − ρ: Ṽ out = Ṽ |{U=1−ρ} = υ(1 − ρ, c̃, ε) =: γ out+ (c̃, ε). In particular, by Proposition 6, γ out+ is exponentially
small in ε ∈ [0, ε0], uniformly in c̃.
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Remark 8. The loss of analyticity of W s(Q̃ +) can also be understood in terms of the asymptotics of W u(Q̃ −), as discussed
in Section 3.2: while the corresponding expansions are uniformly convergent in compact subsets in the inner region, that
uniformity is lost as one approaches infinity in chart K2.

3.3. End of proof of Theorem 1

In this subsection, we conclude the proof of Theorem 1: matching the two manifolds W u(Q̃ −) and W s(Q̃ +) in the
section Σout, we obtain a curve c̃(ε) which determines the critical wave speed ccrit; then, we discuss the question of the
optimal truncation point in the corresponding series expansion.

3.3.1. Matching W u(Q̃ −) and W s(Q̃ +)

It was already established in [7, Proposition 4.2] that the manifolds W u(Q̃ −) and W s(Q̃ +) agree for (c̃, ε) = (2,0)

– as they both reduce to the singular orbit Γ then – and that their intersection is transverse as c̃ is varied: defining
D(c̃, ε) := γ out− (c̃, ε) − γ out+ (c̃, ε), one has D(2,0) = 0 as well as ∂D

∂ c̃ (2,0) = −1 �= 0. Moreover, the manifolds found in that
intersection are Gevrey-1, in the sense that their series expansions with respect to ε exhibit factorial growth properties, as
specified for instance in (21). Finally, the difference between the values of the functions γ out− and γ out+ and their truncated
expansions satisfies those same growth properties; recall Propositions 5 and 6.

Hence, by the Implicit Function Theorem, the two manifolds must coincide along a curve c̃ = c̃(ε). From a Gevrey version
of that theorem, which can e.g. be found in [17], it then immediately follows that the function c̃(ε) has a Gevrey-1 series
expansion with respect to ε and that∣∣∣∣∣c̃(ε) −

n−1∑
k=0

c̃kε
k

∣∣∣∣∣ � ABn+1(n + 1)!εn, (32)

for some positive constants A and B . (Specifically, B can be chosen as close to (ln 2)−1 as desired, as stated in the proof of
Proposition 3.) The first part of the statement of Theorem 1 is then obtained by defining ccrit(m) = m−1c̃(m−1), as in [7],
and by noting that ccrit has an expansion in m−1 of the form in (5), with coefficients ck = c̃k−1 for k = 1,2,3, . . . .

Remark 9. While the analysis in Sections 3.1 and 3.2 allows for complex values of c̃ and ε, as w2 and r2 – or, equivalently,
ε1 – are assumed to vary in complex sectors containing the positive real axis (with vertex at the origin), it follows from
[7, Theorem 1.1] that the critical wave speed ccrit must be a real function of the real parameter m−1, in agreement with
physical intuition.

3.3.2. The optimal truncation point
Finally, the estimate in (32) leads to the truncation to the least term stated in the second part of Theorem 1: given any

fixed m, there exists an optimal truncation point to which the series expansion in (5) has to be summed so that it is closest
to the actual value of the function ccrit(m). That point is calculated by determining

min
n�1

Rn, where Rn := ABn+1 (n + 1)!
mn

denotes the error of the truncation of the expansion for c̃ after the n-th term. Comparing Rn with Rn−1, one finds Rn −
Rn−1 = ABn n!

mn (B(n + 1) − m), which implies that Rn is minimal when n + 1 ≈ m
B . Setting n + 1 = [m

B ], where the square
brackets again denote the integer nearest to m

B , we have m
B − 1

2 � n + 1 � m
B + 1

2 and, hence,

ABn+1 (n + 1)!
mn

� AB

(
m

B

) 3
2
(

B

m

)m
B

Γ

(
m

B
+ 3

2

)
.

(Here, Γ (·) denotes the Gamma function, and we have used the identity Γ (x + 1) = xΓ (x), which is certainly valid for
x ∈ R

+ .) Finally, making use of the fact that x−xΓ (x + 3
2 )ex = √

2πx(1 + O(x−1)) when x = m
B is large, we find

AB

(
m

B

) 3
2
(

B

m

)m
B

Γ

(
m

B
+ 3

2

)
� A

√
2πm

(
m

B

) 3
2

e− m
B
(
1 + O

(
Bm−1)) (33)

for m � m0, with m0 > 0 sufficiently large. Substituting (33) into (32) and recalling that c = m−1c̃, we obtain (7), which
completes the proof of Theorem 1.

Remark 10. As B � (ln 2)−1, the above discussion suggests that n ≈ ln 2m − 1 ≈ 0.69315m − 1 (or, rather, the corresponding
nearest integer [n]) would provide an appropriate truncation point for evaluating the critical wave speed ccrit(m).
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4. Derivation of Table 1

In this section, we outline our numerical algorithm for the evaluation of the coefficients ck in the series expansion for the
critical wave speed ccrit in (5) with fixed, but arbitrary, precision, for any k � 1. The first coefficient (c1 = 2) was determined
previously in [7,23,27], while the value of the second coefficient (c2 ≈ −0.31191) was calculated numerically in [23,27] and
verified analytically in [7]. However, due to the inherent singular character of the problem, higher-order coefficients in the
expansion are increasingly hard to obtain. Here, we calculate ck explicitly up to k = 10, as given in Table 1. Our approach
is based on rigorous interval arithmetic, which allows us to bound the numerical error that invariably accumulates in the
evaluation of these coefficients, even for relatively small k: as the required accuracy far exceeds what is provided by standard
double precision arithmetic, we used the GNU Arbitrary Precision Arithmetic library [12] for C, in conjunction with the MPFI
(Multiple Precision Floating-point Interval) library [25], to obtain reliable intervals which must contain the coefficients ck .
(In our case, the accuracy was chosen sufficiently high to guarantee that the diameters of these intervals – and, hence,
the resulting error maxima – will be less than 10−10.) Finally, usage of the GNU MPFR (Multiple Precision Floating-point
Rounding) library [11] ensured that all relevant intervals are correctly rounded outwards.

Conceptually, the argument is again based on the geometric framework introduced in Section 2, in that the phase space
of the vector field in (9) is decomposed into the inner, intermediate, and outer regions identified there. However, while the
asymptotics of W u(Q̃ −) was analyzed separately in the coordinate charts corresponding to these regions, recall Section 3.1,
it suffices to restrict to the rescaling chart K2 here: as observed already in [7, Remark 9], the regularity of the transition
through the intermediate region implies that the limit as w2 → ∞ in K2 is well defined; see also Remark 2.

To approximate the manifold W u(Q̃ −) in that transition, we need to determine the coefficient functions zn(w, c̃) in the
expansion for z = ζ(w, c̃, r), cf. (19), where we have again omitted the subscript 2 for convenience of notation. Making use
of the fact that this expansion represents a formal invariant manifold for the vector field in (20), substituting and collecting
like powers of r, and recalling the expression for z0 from (16), we obtain a recursive sequence of differential equations for
the functions zn when n = 1,2,3, . . . :

n∑
k=0

zkz′
n−k − c̃wz′

n−1 = fn(w). (34)

(Here, fn is the Taylor coefficient of order n of f (w, r) about r = 0, and the prime now denotes differentiation with re-
spect to w .) Elementary properties of zn(w, c̃), such as the fact that zn is a polynomial of degree n in c̃ (with smooth,
w-dependent coefficients), as well as that zn(0, c̃) = 0, are easily derived from the above recursion.

Next, we integrate (34) between 0 and w to find the recursive formula

z0zn + 1

2

n−1∑
k=1

zkzn−k − c̃wzn−1 + c̃

w∫
0

zn−1(ω, c̃)dω = Fn(w), (35)

where Fn(w) = ∫ w
0 fn(ω)dω denotes the antiderivative of fn . While the recursion in (35) theoretically allows us to evaluate

the coefficient functions zn , the resulting integrals are nested for n � 2, which implies that, in practice, these functions have
to be approximated.

That approximation can be accomplished as follows: for 0 < w0 < w1 < ∞, we divide the (positive) real w-axis into the
three intervals [0, w0], [w0, w1], and [w1,∞), which correspond to the inner, intermediate, and outer regions, respectively.
Since the dynamics in the inner region is highly regular, the functions zn(w, c̃) can be approximated by polynomials in
(w, c̃) when w ∈ [0, w0]. (Similarly, the polynomial approximations for z0, 1

z0
, and Fn(w) that are required for the recursion

in (35) are provided by the corresponding (univariate) Taylor series expansions, truncated at sufficiently high order.) For w ∈
[w1,∞), i.e., in the outer region, we approximate z0 by a bivariate polynomial in (w,e−w), as z0 = 2w

√
1 − x|x=(1+w)e−w ;

since the functions Fn that occur in (35) – as well as the corresponding integrals of these functions – are of that same
form, the resulting approximation for zn is a polynomial in (w,e−w , c̃). Finally, an approximation for zn in the intermediate
region is obtained by partitioning the interval [w0, w1] uniformly into subintervals on which the functions z0, 1

z0
, and Fn

can be replaced by their Chebyshev interpolants.
It then remains to evaluate the coefficients c̃k in the corresponding series expansion for c̃(r): the discussion in Section 3

implies that c̃ formally solves the relation

∞∑
n=0

z∞
n (c̃)rn ≡ c̃ or, equivalently,

∞∑
n=0

z∞
n

( ∞∑
k=0

c̃krk

)
rn ≡

∞∑
k=0

c̃krk, (36)

which is obtained from (19) for w → ∞. (Here, we have taken into account that Ṽ → 0 to all orders in ε and, hence, that
Z → c̃, by Section 2.2.) Since zn is approximated by a polynomial in (w,e−w , c̃) on [w1,∞), it is elementary to extract the
asymptotic coefficients z∞

n ; thus, for n = 0, . . . ,4, one finds

z∞(c̃) = 2.0,
0
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Fig. 4. The partial sums
∑n

k=1
ck
mk for n = 1, . . . ,5 and m ∈ [1,5].

z∞
1 (c̃) = −3.0 + 1.34405c̃,

z∞
2 (c̃) = 4.750 − 3.74689c̃ + 0.95982c̃2,

z∞
3 (c̃) = −7.8750 + 10.68013c̃ − 5.86670c̃2 + 1.10091c̃3,

z∞
4 (c̃) = 13.54688 − 30.87285c̃ + 30.21994c̃2 − 13.21187c̃3 + 2.11427c̃4.

(In particular, one confirms that the function Z ∼ ∑∞
n=0 z∞

n (c̃)rn has a divergent series expansion in r; cf. Proposition 5.)
Substituting into (36), solving implicitly for c̃k , and recalling that ck = c̃k−1, with k = 1,2,3, . . . , one obtains Table 1, as
claimed.

5. Discussion

Since the proof of Theorem 1 is based on singular perturbation techniques, with ε = m−1 as the (small) perturbation
parameter, our analysis of the Gevrey properties of the critical wave speed ccrit for (1) is merely valid in the asymptotic
limit where the polynomial degree m in fm(u) = 2um(1 − u) tends to infinity. Correspondingly, the expansion in (5) is only
guaranteed to approximate ccrit well for potentially very large m. Still, it follows that the smaller m is, the fewer terms
in the series expansion for ccrit need to be considered: unlike in the theory of convergent power series, one does not
automatically obtain a better approximation by including more terms in the truncation. In our case, the dependence of the
optimal truncation point on the value of m is a reflection of the fact that the expansion in (5) is divergent and, specifically,
Gevrey-1: the number of terms that need to be retained will (at least asymptotically) be linear in m.

The calculation of additional coefficients in (5) may seem irrelevant once it has been shown that the expansion is
divergent. However, as is well known [5], divergent Gevrey-type series can display seemingly convergent behavior to very
high order: while the observation that |ck+2| < |ck| for k = 1, . . . ,8, in combination with the alternating signs of these
coefficients, seems to indicate convergence, we fully expect the series expansion in (5) to diverge, and the coefficients ck
to exhibit factorial growth for k sufficiently large, as stated in (6). In that sense, our study confirms the widely known fact
that the evaluation of only a few terms in a series expansion (as was done here) is no reliable indicator of its convergence
properties.

Furthermore, this seeming convergence also explains why the first few truncations of (5) almost coincide – or, equiv-
alently, why the correction that is provided by higher-order terms in the series seems negligible – for small values of m,
in particular on the scale applied in [27, Fig. 3(a)]; see our Fig. 4 for comparison. Nevertheless, our analysis shows that a
truncation to the least term will, in fact, be optimal; recall Section 3.3. Correspondingly, low-order truncations of (5) will
approximate ccrit well even for relatively large m: on numerical grounds, one expects the one-term truncation ccrit(m) ∼ 2

m
to be optimal for m ∈ [2,m1), with m1 ≈ 4, in agreement with previous heuristic observations on the quality of that ap-
proximation [7,27]; similarly, it was conjectured in [7] that the two-term truncation will be optimal on some finite interval
[m1,m2), and so on. While we rigorously confirm this conjecture here, the determination of the interval endpoints mk would
require knowledge of the optimal Gevrey type – and, hence, of the (Borel) summability – of the formal series expansion
in (5).
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Fig. 5. The coefficient functions Zn(w) for n = 0, . . . ,4 and w ∈ [0,40].

The convergence properties of (5) are closely related to the large-w asymptotics of the coefficient functions zn(w, c̃) in
the expansion for W u(Q̃ −), i.e., for the function ζ(w, c̃, r): replacing c̃ with its formal series expansion in r and substituting
into the definition of ζ in (19), we denote the w-dependent coefficients in the resulting composite expansion by Zn(w).
(Here, we again suppress the subscript 2 for convenience of notation.) For illustration, we have plotted the first five of these
functions in Fig. 5. Throughout, one observes large-amplitude oscillatory behavior that plateaus for some finite value of w
before Zn levels off to its asymptotic (constant) limit z∞

n as w → ∞, in accordance with the estimates obtained in Section 3.
Since these oscillations grow approximately like (n + 1)!, cf. again Fig. 5, and since the corresponding peaks shift towards
infinity (in w) as n increases, it follows that there can exist no neighborhood about infinity where all coefficient functions zn

are bounded. (Similarly, the terms fn(w) in the recursion in (34) which defines these functions are not uniformly analytic
on [0,∞).) While it is surprising that the evaluation of the coefficients ck via the implicit relation in (36) then yields a
seemingly convergent series expansion for ccrit (to the order considered here), the underlying cause is unclear to us.

Finally, the discussion in Section 4 implies that the asymptotic coefficients z∞
n (c̃) which are obtained in the limit as

w → ∞ also grow approximately like (n + 1)!, as predicted in Section 3; in particular, both zn and z∞
n satisfy Gevrey-1

growth estimates, as specified in (27) and (28), respectively. Correspondingly, the expansion for ζ(w, c̃, r) in (19) is only
Gevrey-1 with respect to r, with coefficient functions zn(w, c̃) that are C∞-smooth in w and analytic in c̃; recall Proposi-
tion 3. The analysis of the transition of W u(Q̃ −) through the intermediate region thus represents the cornerstone of our
argument, as was also the case in [7].
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