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Abstract: We propose a statistical modeling approach as a viable alternative
to traditional transportation models concerning inference on origin-destination
(OD) matrices. To this end we utilize Poisson mixtures in order to model a large
over-dispersed OD matrix derived from the 2001 Belgian travel census. Bayesian
methods are using a novel Poisson-inverse Gaussian model. As shown the model
has desirable attributes both in its marginal and in its hierarchical form.
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1 Introduction

Consider an area which can be divided into m zones, and let Tod denote
the number of trips from zone of origin o to zone of destination d, where
o, d = 1, 2, ...,m. The OD matrix T, is then

T =




T11 T12 . . . T1m

T21 T22 . . . T2m

...
...

. . .
...

Tm1 Tm2 . . . Tmm


 .

In an alternative vector notation, the matrix T can be represented by a
n-dimensional vector y with elements yi for i = 1, 2, ..., n and n = m2,
namely y = (y1, y2, y3, ..., yn)T = (T11, T12, T13, ..., Tmm)T . Within the tra-
ditional transportation modeling framework, OD modeling is incorporated
in the four-step model, a sequential procedure which involves the inde-
pendent modeling phases of (a) trip-generation, (b) trip-distribution, (c)
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modal-split and (d) traffic-assignment. OD estimation depends on step (a)
and is handled in step (b). Modeling procedures within step (b) include
growth-factor, gravity, intervening-opportunities and direct-demand mod-
eling approaches (see e.g. Ortúzar and Willumsen, 2001). The development
of these models, historically, depended to a large degree on the availabil-
ity of OD data which for most cases usually originated from travel surveys.
Collecting travel survey data has clear financial advantages – in comparison
to travel census studies for instance – but it also has its cost in terms of de-
livering OD matrices which are subjected to considerable error-producing
problems (see e.g. Stopher and Greaves, 2007) and perhaps it is the main
reason for the relative absence of purely statistical approaches within the
field. The purpose of our research is to investigate the OD modeling problem
for cases where reliable historical travel-demand information is available
from travel census studies with main aim to demonstrate how traditional
travel-demand modeling can be potentially replaced by statistical model-
ing approaches. Some of the merits of this approach have been presented
in Perrakis et al. (2012).

2 Data

The OD matrix handled in this paper was derived from the 2001 Belgian
travel census study and contains information about the departure and ar-
rival locations for work and school related trips of the approximately 10
million Belgian residents. The application area is not the entire country
of Belgium, but the northern, Dutch-speaking region of Flanders which
roughly accounts for 60% of the total population and 44% of the country’s
surface area. The analysis is for the 308 Flemish municipalities and the re-
sulting OD matrix contains 94864 cells. The explanatory variables are six
dummy variables and twelve covariates. The set of covariates includes vari-
ables such as employment ratio, population density, relative length of road
networks, distance etc. Due to the particularity of the OD problem some of
the covariates are used in pairs, i.e. twice, one time for origin-zones and one
time for the destination-zones. This results to a total set of 25 explanatory
variables.

3 Poisson mixture models

With Poisson mixture models we assume that the OD flows yi are i.i.d.
Poisson realizations and that the rate of the Poisson distribution is λi =
µiui for i = 1, 2, ..., n, where µi is the part which is related to the vector of
p + 1 unknown parameters β = (β0, β1, ..., βp)T and the set of explanatory
variables xi = (xi0, xi1, ..., xip)T through the log-link function log µi =
βT xi, and ui is a random component – interpreted as a multiplicative
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random effect – which is attributed with a density g1(ui). The Poisson
mixture modeling formulation is summarized as follows

yi ∼ Pois(λi), with λi = µiui and
µi = eβT xi ,
ui ∼ g1(ui) and E(ui) = 1.

The density g1 is known as the mixing density. Alternatively, from a gen-
eralized linear mixed model (GLMM) perspective the above model can be
expressed as

yi ∼ Pois(λi) with logλi = βT xi + εi,
εi ∼ g2(εi) and E(εi) = 0,

where εi is an additive random error term, namely an observation random
effect or random intercept as it is most commonly known. The Poisson
likelihood is the conditional likelihood given the unobserved random effect
vector u = (u1, u2, ..., un)T . Integration over u results to the marginal
sampling likelihood, i.e. p(y) =

∫
p(y|µ,u)g1(u)du.The two formulations

are equivalent but the resulting intercept estimates and the interpretations
of marginal means are different due to the identifiability constraints (Lee
and Nelder, 2004). From a Bayesian perspective the models are also referred
to as hierarchical Poisson models since the mixing density is actually a first-
level prior distribution.
In particular we investigate the performance of the Poisson-gamma (PG),
Poisson-lognormal (PLN) and Poisson-inverse Gaussian (PIG) models in
their multiplicative random effect form. The PG model is the most fre-
quently used Poisson mixture model due to the property that the resulting
marginal likelihood is a negative binomial distribution (see e.g. Lawless,
1987). The PLN is the predominant alternative mainly due to its distinct
historical development as a GLMM based on the assumption that g2 is
a normal distribution. The density g1 is lognormal, consequently. In this
paper emphasis is placed on the PIG model which is the less known and
less used model among the three. Despite the fact that the theoretical
properties of this model have been thoroughly explored (e.g. Dean et al.,
1989), the PIG model has started only recently to be considered as a com-
peting alternative to the PG and PLN models in frequentist studies (e.g.
Nikoloulopoulos and Karlis 2008). To the knowledge of the authors this is
a first Bayesian application of the model.
As shown, in terms of marginal fitting the PIG model is much easier to
handle than the PLN model since the marginal PIG distribution has a
closed-form expression. As further shown, in terms of hierarchical fitting
the PIG model is actually the easiest to handle among all three models
since both full conditionals for the dispersion parameter and random effect
parameter-vector are of known form, namely gamma and generalized in-
verse Gaussian (GIG) distributions. In our case the size of the OD dataset
is almost prohibitive for any direct hierarchical fitting attempt. Therefore,
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the parameters of scientific interest are estimated through the marginal
forms of the three models. Predictive inference on the other hand is based
on the hierarchical structures. As illustrated, this is easily achievable with
the PG and PIG models, which have conjugate distributions for the random
effects, but it is not straightforward for the PLN model.
A Metropolis-Hastings (M-H) algorithm is employed on the marginal forms
of all three models for sampling the regression and dispersion parameters.
In particular, independence-chain M-H is used with a multivariate normal
proposal for the regression vector and a gamma proposal for the disper-
sion parameter of each model centered at the ML estimates. Runtime for
the PLN model was considerably longer due to numerical integration for
calculation of probabilities from the PLN distribution.

4 Results

Posterior estimates for the parameters of scientific interest (not presented
here) reveal that all regression parameters have statistically significant ef-
fects. Interestingly, the posterior means of the PLN and PIG models are
closer, especially for the intercept estimate. Model comparison is based on
Bayesian versions of AIC and BIC as well as marginal and hierarchical
(only for the PG and PIG models) DIC. Results are summarized in Table
1. Marginally, all three criteria give more support to both the PLN and PIG
models over the PG model which also explains why the posterior means for
the two models are more similar. This result is partially anticipated since
the PLN and PIG allow for longer tails and are in theory more appropriate
for cases of highly positive-skewed count data (Willmot, 1990). Further-
more, all three criteria favour the PIG marginal likelihood more than the
PLN marginal likelihood, indicating that the PIG distribution is the most
appropriate marginal sampling distribution.

Criterion PG PLN PIG
AIC 281519.2 279386.9 278469.1
BIC 281774.6 279642.3 278724.5

DIC (marginal) 281492.2 279362.4 278442.2
DIC (hierachical) 224141.4 - 224146.1

TABLE 1. The values of AIC, BIC, marginal and hierarchical DIC for the three
models.

Based on the hierarchical DIC values, distinguishing a “better” hierarchi-
cal model is not as clear as with the marginal models. The value of the
PG model is just slightly lower than the corresponding value of the PIG
model, therefore a solid conclusion cannot be drawn regarding which model
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is more appropriate for predictive purposes. Therefore, predictions are gen-
erated from the hierarchical structures of both models. Overall goodness-
of-fit predictive tests based on Bayesian p-values indicate satisfactory fit
for both models. Nevertheless, particular predictive distributions on aggre-
gated levels differ substantially.

5 Conclusions

Statistical OD modeling is advocated as a viable alternative to traditional
trip-generation and trip-distribution modeling. To this end, we propose
that Poisson mixtures and Bayesian methods provide a suitable framework
for modeling large, over-dispersed OD datasets when the focus of interest
is not only on parameter estimation but also on short-term prediction. In
particular, the performance of the PG, PLN and PIG models was evaluated
on a Flemish OD matrix from the 2001 Belgian travel census. The PIG
model was found not only to provide the best marginal fit, but that it also
has desired distributional properties very much alike the PG model and
unlike the rather cumbersome PLN model.
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