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ABSTRACT 1 
 2 
Traffic assignment methods distribute Origin-Destination (OD) flows throughout the links of a 3 
given network according to procedures related to specific deterministic or stochastic modeling 4 
assumptions. In this paper, we propose a methodology that enhances the information provided 5 
from traffic assignment models, in terms of delivering stochastic estimates for traffic flows on 6 
links. Stochastic variability is associated to the initial uncertainty related to the OD matrix used 7 
as input into a given assignment method, and therefore the proposed methodology is not 8 
constrained by the choice of the assignment model. The methodology is based on Bayesian 9 
estimation methods which provide a suitable working framework for generating multiple OD 10 
matrices from the corresponding predictive distribution of a given statistical model. Predictive 11 
inference for link flows is then straightforward to implement, either by assigning summarized 12 
OD information or by performing multiple assignments. Interesting applications arise in a 13 
natural way from the proposed methodology, as is the identification and evaluation of critical 14 
links by means of probability estimates. A real-world application is presented for the road 15 
network of the northern, Dutch-speaking region of Flanders in Belgium, under the assumption 16 
of a deterministic user equilibrium model. 17 
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1. INTRODUCTION 1 
 2 
Traffic assignment is one of the most crucial parts of transportation analysis. Traffic 3 
assignment models take into account the dependencies among OD demand, link flows and path 4 
costs, and simulate the interactions between transportation supply and travel-demand in order 5 
to deliver an output which describes the mean state of a transportation system and its 6 
corresponding overall variability (1). Traffic assignment methods flourish in the relative 7 
literature; ranging from simple deterministic/stochastic uncongested network models and 8 
deterministic/stochastic user equilibrium and system optimum models, for the cases of 9 
congested networks, to more advanced methods such as equilibrium assignment with variable 10 
demand, multiclass assignment and dynamic process models. Descriptions of models and 11 
algorithms can be found in numerous books, as in Thomas (2), Patriksson (3) and Cascetta (1), 12 
to name a few. Extensive information for deterministic and stochastic equilibrium assignment 13 
is also found in the articles of Florian and Hearn (4) and Cantarella and Cascetta (5), 14 
respectively. 15 
 The output of traffic assignment models is generally vital to decisions related to 16 
infrastructure expansion and transport policy measures, and simple point estimates – even if 17 
they refer to the most likely values – are not sufficient for a proper and safe assessment of the 18 
risks associated with such decisions. Therefore, despite the wide range of available assignment 19 
models, the need of quantifying more precisely the uncertainty which is related to traffic 20 
assignment estimates is strongly present. De Jong et al. (6) address the matter of evaluating 21 
uncertainty in transport models and note that very few studies include some quantification of 22 
uncertainty, in the form of confidence intervals or other related measures. In addition, the 23 
authors distinguish between input-uncertainty and model-uncertainty, and further note that 24 
from the limited number of studies which take into account quantification of uncertainty, only 25 
one third deals with both types. Although the research of de Jong et al. (6) concerns transport 26 
models in general, and despite recent developments in quantification of uncertainty in other 27 
related fields as in modeling of travel times ((7), (8)), infrastructure management ((9), (10)) and 28 
travel-demand modeling (11), one can safely state that the conclusions of de Jong et al. (6) 29 
also, and perhaps particularly, hold for applications of traffic assignment models. Deterministic 30 
assignment models deliver by definition point estimates of link flows without a corresponding 31 
measure of statistical dispersion. In the case of stochastic assignment, statistical variability is 32 
associated with path choice behavior which is modeled according to random utility functions 33 
instead of deterministic functions. Therefore, applications of stochastic assignment models may 34 
incorporate model-uncertainty but not necessarily input-uncertainty. In addition, the behavioral 35 
uncertainty component of stochastic equilibrium assignment associates to short-term variations 36 
of user-perception (12), which makes stochastic assignment suitable for short-term travel-37 
demand applications, when the OD flows refer, for instance, to hourly or daily intervals. For 38 
cases of long-term assignment of travel-demand, e.g. monthly or yearly intervals, deterministic 39 
user equilibrium assignment remains up to the present the common option.                40 
 Given these facts there exists a necessity for more robust traffic assignment estimates, 41 
which will incorporate long-term, travel-demand uncertainty. This necessity did not pass 42 
unnoticed, as in recent years a significant amount of studies is orientated towards that research 43 
direction. Waller et al. (13) showed that the expected performance of a network is, not only, 44 
not equivalent to the performance of the system under the expected value of travel-demand but 45 
that the latter case is also suboptimal. Ukkusuri and Waller (14) extended previous work and 46 
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investigated the performance of seven point estimates of OD demand under the user 1 
equilibrium assumption. In the studies of Gardner et al. ((15), (16)), the impact of demand 2 
uncertainty on the pricing of transportation networks is explored by evaluating network 3 
performance resulting from single point demand-approximations, multiple points of 4 
inflated/deflated demand and meta-heuristic approaches. Sampling approaches are 5 
demonstrated in Duthie et al. (17), where correlated OD demand realizations are sampled from 6 
multivariate truncated-at-zero normal and multivariate lognormal distributions, and iteratively 7 
used as input into the user equilibrium model. Other approaches aim to incorporate long-term 8 
demand stochasticity directly in the assignment problem, resulting to modifications of the 9 
deterministic user equilibrium formulation as a bi-level, non-linear, non-convex mathematical 10 
optimization problem. Ukkusuri et al. (18) proposed a robust network design problem and 11 
utilized a genetic algorithm for the solution, while Ukkusuri and Patil (19) formulated a 12 
flexible network design problem which can be solved under complementarity constraints.                  13 
 In this paper we present a methodology for incorporating and quantifying input-14 
uncertainty in traffic assignment which adds to the growing body of recent literature on this 15 
subject. The approach is sampling-based and results as an extension of previous work 16 
presented in Perrakis et al. (20), where a Bayesian covariate-modeling approach for OD 17 
matrices derived from census studies is presented. As illustrated in that study, one desired 18 
property of Bayesian methods, is the existence of a predictive distribution from which multiple 19 
predictive OD datasets can be randomly generated, resulting in distributional estimates for all 20 
OD pairs. With this research, we demonstrate how the Bayesian OD predictions can be used as 21 
input into an assignment model by introducing two distinct inputting methods. In method 1, a 22 
specific summary of the predictive OD datasets is calculated first and then assigned to the 23 
network, while with method 2 repeated assignments are executed individually for all predictive 24 
datasets. The first technique is faster and suitable for obtaining point and interval estimates, 25 
whereas the second technique is computationally more intense but also delivers full 26 
information over the variability of link flows, in the form of Bayesian predictive distributions 27 
conditional on the assignment model. These distributions allow for flexibility and innovation in 28 
various applications related to infrastructure management and transport policy-making. For 29 
instance, as presented in this study, uncertainty concerning identification and evaluation of 30 
critical links can be reduced by investigating this matter under purely probabilistic terms. 31 
 The proposed methodology, in general, can be viewed as a 2-stage modeling procedure. 32 
The first-stage model lies on firm statistical ground and involves the common sequence of 33 
model formulation, estimation, comparison – in case of more than one competing models – and 34 
finally prediction and validation with respect to the initial OD data. The second-stage model is 35 
a traffic assignment model which takes as input the predictions of the first-stage statistical 36 
model by utilizing one of the proposed methods presented in this study. The approach is 37 
generally applicable, in the sense that first-stage statistical modeling can be applied on short-38 
term as well as long-term OD matrices, while the selection of the traffic assignment model in 39 
the second-stage is independent from the statistical model, allowing for deterministic as well as 40 
stochastic assignment procedures.           41 
 The proposed methods are applied on a realistic context, namely the road network of 42 
Flanders, under the assumption of a Deterministic User Equilibrium (DUE) assignment model. 43 
Flanders is the northern, Dutch speaking region of Belgium accounting for approximately 60% 44 
of the country’s population. The corresponding road network contains 308 zones, 97,450 links 45 
and runs a total length of 65,296.72 kilometers. 46 
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 The paper is organized as follows. A brief description of statistical covariate-based OD 1 
modeling is presented in section 2. In section 3, we demonstrate how Bayesian OD predictions 2 
can be used as input into an assignment model. Results for the road network of Flanders are 3 
presented in section 4. Finally, conclusions are summarized in section 5.  4 
 5 
2. STATISTICAL COVARIATE-BASED OD MODELING  6 
 7 
Statistical OD modeling with covariates is investigated in Perrakis et al. (20), where it is 8 
demonstrated that the OD estimation problem may be expressed as a purely statistical problem 9 
when reliable historical OD information exists, e.g. from census studies. The goal then is to 10 
find an appropriate set of covariates, adopt sound distributional assumptions, estimate the 11 
parameters of scientific interest and finally evaluate the predictions of the model.  12 

The long tradition of transportation models provides sufficient indications regarding the 13 
choice of covariates or explanatory variables. Variables which are used within travel-demand 14 
and supply modeling, such as population densities, employment ratios, income levels, car-15 
ownership ratios, measurements related to road networks, traffic and distances, are all suitable 16 
candidates for statistical OD modeling. Regarding the distributional assumptions, the OD flows 17 
are modeled by appropriate discrete distributions, namely either by the Poisson or by the 18 
negative-binomial distributions. The choice between a Poisson and a negative-binomial 19 
likelihood depends on the degree of overdispersion present in the data, i.e. the ratio of the 20 
variance over the mean. For OD flows which are balanced and exhibit no overdispersion, the 21 
Poisson likelihood will be most probably sufficient. On the other hand, when the variance of 22 
the OD flows exceeds the mean significantly, then a negative-binomial likelihood is more 23 
suitable. In this section, we provide a brief description of the Poisson and negative-binomial 24 
models within the Bayesian framework and demonstrate how to generate predictions of OD 25 
flows from the corresponding predictive distribution of each model.  26 

Let n denote the number of OD pairs and p the number of explanatory variables 27 
included in a model. In addition, let  1 2, ,..., T

ny y yy  denote the vector of OD flows, 28 

 0 1 2, , ,...,
T

p   β  the vector of regression parameters and X  the design matrix of 29 
dimensionality ( 1)n p  , containing the intercept and the p explanatory variables, with 30 

 0 1 2, , ,...,
T

i i i i ipx x x xx  being the i-th row of X related to OD flow iy  and 1, 2,...i n . The 31 
formulation for the Poisson model is  32 
 33 

 | ~ ( ),  with  exp            (likelihood of OD flows)

~ ( , )                                             (prior of regression parameter vector )

T
i i i iy Pois   

p+1 β β

β x β

β N μ Σ β
                        34 

 35 
and the resulting posterior distribution is 36 
 37 

       1

1

1( | ) exp exp exp exp .
2

i
n y TT T

i i
i

p 



                  
 β β ββ y x β x β β μ Σ β μ  (1) 38 

 39 
For the case of the negative-binomial model we have that 40 
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 | , ~ ( , ),  with  exp       (likelihood of OD flows)

~ ( , )                                             (prior of regression parameter vector )

~ ( , )                           

T
i i i iy NB

Gamma a b

   





p+1 β β

β x β

β N μ Σ β

                 (prior of dispersion parameter )

 1 

 2 
with corresponding posterior distribution 3 
 4 

 
 

 
 

   

 

1

1

1

exp 1( , | ) exp
2exp

                    exp .

i

i

yTn Tii
yTi

i

a

y
p

b








 

 








                  
  

 β β β

x β
β y β μ Σ β μ

x β  (2) 5 

 6 
Hyperparameters βµ , βΣ , a and b may be set accordingly, if prior knowledge is available. 7 

Otherwise, βµ 0  and   1 310Tn


  βΣ X X  would result to a non-informative prior for the 8 
regression parameter vector, namely to one of the “benchmark” priors discussed in Fernández 9 
et al. (21), and 310a b    would result to a non-informative prior for the dispersion parameter 10 
with mean equal to 1 and variance equal to 1,000, as in Ntzoufras (22).    11 

The two un-normalized posterior distributions in expressions (1) and (2) do not result in 12 
known distributional forms and therefore direct inference on the parameters is not feasible. 13 
Nevertheless, efficient Markov Chain Monte Carlo (MCMC) methods (23), such as the 14 
Metropolis-Hastings algorithm (24), can be applied in order to simulate from these non-15 
standard posterior distributions. Statistical inference is then straightforward, since the posterior 16 
sample generated by MCMC may be utilized to calculate directly any summary of interest.  17 

An interesting feature of Bayesian methods is the possibility of simulating predictions 18 
or replications of data by implicitly averaging over the parameters of each model. Let us 19 
assume that the final MCMC samples for both models are of size K, that is, draws of 20 
parameters ( )kβ  – common in both models – and ( )k , for 1,2,....,k K , are available, and let 21 

 1 2, ,...,
Tpred pred pred

ny y ypredy  denote one predictive vector containing n OD flows. Then, for 22 

the case of the Poisson model the elements of predy  are simulated from 23 

  ~ exppred T
i iy Pois x β , for 1, 2,...i n . Repetition over ( )kβ , for 1, 2,....,k K , results to K 24 

such predictive vectors; in vector notation we generate 25 
 26 

  ( ) ( )~ expk kPoispredy Xβ . (3) 27 
 28 
Similarly, the corresponding predictions from the negative-binomial model will be simulated 29 
from 30 
 31 

  ( ) ( ) ( )~ exp ,k k kNB predy Xβ ,  (4) 32 

 33 
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for 1,2,....,k K . Note that the negative-binomial model may be viewed as a marginal model 1 
derived from an hierarchical Poisson-gamma mixture model (25). This property is particularly 2 
useful within the Bayesian framework, since the gamma distribution assigned to the mixing 3 
parameters or random effects is conjugate to the Poisson, and therefore the posterior 4 
distribution of the random effects is also a known gamma distribution. That implies that 5 
prediction from the hierarchical Poisson-gamma structure is straightforward to implement with 6 
some additional simulation. Let  1 2, ,..., T

nu u uu  denote the vector of random effects, where 7 
each element iu  corresponds to a random effect for OD flow iy , for 1,2,...,i n . The posterior 8 

distribution for each iu  is   ,exp T
i iGamma y   x β , and therefore – in a vector notation – 9 

generating over k results to K vectors u, that is 10 

  ( ) ( ) ( ) ( ) ( ) ( )| , ~ , expk k k k T k k
i, Gamma   u y β y x β  for 1,2,....,k K . Prediction from the 11 

hierarchical Poisson-gamma model is then straightforward; for 1,2,....,k K  we generate 12 
 13 

  ( ) ( ) ( )~ expk k kPoispredy Xβ u . (5) 14 

 15 
For cases of large scale and extremely overdispersed OD datasets, predictions from the 16 
hierarchical Poisson predictive distribution in expression (5) are preferred to predictions from 17 
the negative-binomial distribution in expression (4), since the random effect for each OD pair 18 
is explicitly taken into account. 19 
 In general, the predictive OD vectors/matrices may be used for model validation 20 
purposes through various posterior predictive checks and also for evaluation of predictive 21 
scenarios. However, this aspect of research is not pursued further in this study. More detailed 22 
information on model formulation and also predictive validation can be found in Perrakis et al. 23 
(20). In the following section, we demonstrate how the OD predictions can be used as input in 24 
an assignment model, as a mean of quantifying input-uncertainty. 25 
 26 
3. OD PREDICTIONS AS INPUT IN TRAFFIC ASSIGNMENT 27 
 28 
Some additional notation must be introduced for this section; let us denote by m the total 29 
number of links in the network and let  1 2, ,..., T

mz z zz  be the corresponding vector of link 30 

flows, in addition let  ,A D S  represent the type of assignment procedure, deterministic or 31 
stochastic, respectively. Finally, in order to simplify notation, the OD predictions are now 32 
denoted by ( )ky , for 1,2,...,k K . 33 
   34 
3.1. Method 1 – Assigning OD Summaries 35 
 36 
In the first method the predictive OD vectors ( )ky , for 1,2,...,k K , are used to calculate a 37 
summary statistic of the OD matrix, denoted by  S y . In general, the OD summary vector is a 38 



Perrakis, Cools, Karlis, Janssens, Kochan, Bellemans and Wets                                                        8 

function of the K predictions, that is   (1) (2) ( )( , , ..., )KS fy y y y . By assigning  S y  to a 1 

network, a corresponding estimate for link flows, denoted by  S z , is obtained. 2 

The most common point estimate is the mean,  S y y , which can be calculated as 3 
follows 4 

  5 
(1) (2) ( ) (1) (2) ( )
1 1 1 1 1 11
(1) (2) ( ) (1) (2) ( )

2 2 2 2 2 2 2

(1) (2) ( ) (1)

...

...1 1

            

K K

K K

K
n n n n n n

y y y y y yy
y y y y y y y

K K

y y y y y y

          
                             
       

                 

y     
(2) ( )... K

ny

 
 
 
 
 
   

. 6 

            7 
The 1n  mean vector y  can then be used as the OD-input in an assignment model and yield a 8 

1m  vector z , which will correspond to the mean estimate of link flow vector z  9 
   10 

1 1

2 2
  

n m

A

y z
y z

y z

   
   
        
   
   
   

y z  . 11 

 12 
Specifically, z  is an estimate of  | ,E Az y , the expected vector of link flows conditional on 13 
the predictive expectations of OD flows but also conditional on the assignment model, and 14 
therefore  | ,E Dz y  under deterministic assignment  will not be necessarily the same with 15 

 | ,E Sz y  under stochastic assignment. 16 
 For interval estimates the appropriate summary statistics are percentile vectors, i.e. 17 

( ) pS y y  for the p-th percentile. Estimation of a percentile vector is not as straightforward as 18 
the calculation of the mean vector. Calculating individually the corresponding percentile of 19 
each OD pair would result in a percentile vector which will be highly unlikely to occur, 20 
especially for percentiles near 0 or 100 and for a large number of OD pairs, i.e. for a large n. 21 
Therefore, it is preferable to derive percentile vectors based on a function of vectors ( )ky  which 22 
will operate as a criterion and constrain the estimates within realistic limits.  23 

A natural selection for the criterion is the sum of each vector ( )ky , i.e. ( ) ( )

1

n
k k

i
i

s y


 , for 24 

1,2,...,k K . Under this approach, percentile vector py  is derived by calculating first the 25 
corresponding percentile ps  from the values  (1) (2) ( ), ,...,. Ks s s . Then, the vector which has the 26 

closest sum to ps  is chosen as py . In case there are two or more sums which satisfy that 27 
condition, then py  is set as the average of the corresponding vectors. In general, 28 

   29 
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  1
( )

1

pL
p l

p
l

L




 y y ,  1 

 2 

where   ( ) ( ) ( ):  min ,  1,...,l l p k p
p k

L s s s s k K    y  and pL  is the cardinality of set pL . 3 

A common percentile pair is  2.5 97.5,y y  which corresponds to a 95% interval estimate. Note 4 

that 50y , the vector corresponding to the median, can also be calculated through this procedure 5 
and be used as an additional point estimate to the mean.   6 

For the special cases of the minimum and maximum vectors, we simply have to find 7 
mins  and maxs , respectively, and then calculate vectors miny  and maxy  as follows 8 

 9 

  min1
min ( )

min
1

L
l

l
L





 y y , 10 

  max1
max ( )

max
1

L
l

l
L





 y y , 11 

 12 
where  13 
 14 

  ( ) ( ) ( )
min :  min ,  1,...,l l k

k
L s s k K  y ,  15 

  ( ) ( ) ( )
max :  max ,  1,...,l l k

k
L s s k K  y  , 16 

 17 
with minL  and maxL  being the corresponding cardinalities of sets minL  and maxL . 18 
 After calculating a specific percentile vector py  that is of interest, the corresponding 19 
estimate for link flows pz  is obtained by assigning py  to the network. The results will once 20 
again depend on the choice of the assignment model.    21 

In general, method 1 provides a suitable framework for obtaining point and interval 22 
estimates of link flows, in a fast and computationally easy way. For instance, the mean and the 23 
2.5th and 97.5th percentiles, which are often adequate for basic inferential purposes, can be 24 
obtained with three individual assignments. Subsequent inference can either focus on specific 25 
links of the network that might be of particular interest or expand on the entire network by 26 
visualizing the results of the assignment. 27 
 28 
3.2. Method 2 – Assigning Multiple OD’s 29 
 30 
Method 2 involves assigning all K OD predictions individually in order to obtain K 31 
corresponding vectors of link flows. This method is computationally more intense than method 32 
1, but also delivers full information for link flows in the form of distributional estimates. 33 

In this case, K individual assignments must be implemented for each ( )ky , with 34 
1,2,...,k K . In vector notation, we have that 35 
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  1 
(1) (1)
1 1
(1) (1)
2 2(1) (1)

(1) (1)

(2) (2)
1 1
(2) (2)
2 2(2) (2)

(2) (2)

( )
1

( )

  ,

 ,

  

  

                              

n m

n m

K

K

A

A

y z
y z

y z

y z
y z

y z

y
y

   
   
   

     
   
   
   

   
   
   

     
   
   
   



y z

y z

y

 

 
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 3 
Overall summary statistics can be calculated, only this time directly from the vectors ( )kz . For 4 
instance, the mean is calculated as follows 5 
        6 
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 
 
 
   
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 8 
Note that this an estimate of the expectation of vector z  conditional on all OD predictions and 9 
on the assignment model, that is  (1) (2) ( )| , ,..., ,KE Az y y y . Once again, the estimate depends 10 

on the assignment model and therefore the estimate  (1) (2) ( )| , ,..., ,KE Dz y y y  under 11 

deterministic assignment  will not be the same with the estimate  (1) (2) ( )| , ,..., ,KE Sz y y y  12 
under stochastic assignment.  13 
 With this method, estimates of percentile vectors are straightforward to calculate. Any 14 
percentile vector  1 1, ,...,

Tp p p p
mz z zz  is calculated directly from the K  vectors ( )kz , i.e. p

jz , 15 
for 1, 2,...,j m , is estimated individually as the p-th percentile obtained from the 16 
corresponding sample values  (1) (2) ( ), ,..., K

j j jz z z . In general, the vectors ( )kz , for 1,2,...,k K , 17 
contain all necessary information for the links of the network; in case we wish to infer on a 18 
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specific link jz , then point, interval and dispersion estimates, such as the variance and the 1 
standard deviation, or even the distribution of jz  can be estimated directly from the sample 2 

values  (1) (2) ( ), ,..., K
j j jz z z .  3 

Despite the fact that this method is computationally demanding, it delivers full 4 
information over the links of a specific network. This information does not only involve 5 
measures related to location and dispersion but also distributional estimates which can be used 6 
to calculate specific probabilities related to link flows and the capacity of a given network, e.g. 7 
probabilities of exceeding threshold values of volume (link flow) over capacity ratio.    8 
 9 
4. AN APPLICATION FOR FLANDERS UNDER DUE ASSIGNMENT 10 
 11 
Flanders is the northern, Dutch-speaking region of Belgium with a population of 6,058,368 12 
residents, accounting for approximately 60% of the country’s population. The initial OD matrix 13 
is derived from the 2001 Belgian census study and contains information about work and school 14 
trips for a normal weekday and for all travel modes. The OD matrix consists of 308 zones, 15 
which correspond to the municipalities of Flanders, and has 94,864 OD pairs.  16 

In Perrakis et al. (20) we fitted a Poisson and a negative-binomial model to the census 17 
OD matrix. Both models included the same set of 24 regression parameters and a Metropolis-18 
Hastings algorithm was utilized in order to sample from the posterior distributions presented in 19 
expressions (1) and (2) of section 2. Due to the extreme overdispersion of the OD flows the 20 
negative-binomial model was found to provide a substantially better fit to the data. Predictions 21 
of OD flows were generated from the hierarchical Poisson predictive distribution presented in 22 
expression (5) of section 2. 23 

In this section we present results from the 2 inputting methods by utilizing 200 24 
predictive OD datasets under a DUE model. As link performance function, the commonly-used 25 
Bureau of Public Roads (26) formulation is adopted, with calibration parameters alpha and beta 26 
set equal to their historical values 0.15 and 4, respectively. The corresponding road network of 27 
Flanders has a total length of 65,296.72 kilometers and contains 97,450 links, 8.58% of which 28 
correspond to highways, including entrances and exits to highways, 15.49% to main regional 29 
roads, 21.1% to small regional roads, 52.91% to local municipal roads, while the remaining 30 
1.98% of the links correspond to walk and bicycle paths. The road network of Flanders with 31 
the corresponding boundaries of the 5 Flemish provinces and the capitals – and major 32 
municipal centers – of each province, is presented in Figure 1. 33 

The analysis that follows is focused on the morning peak hour between 7 am and 8 am 34 
for traffic flows concerning going-to-work/school trips. Links within the metropolitan area of 35 
Brussels are not included in the analysis; nevertheless the highway ring around Brussels area is 36 
included. In addition, inference is restricted necessarily on trips made by Flemish residents and 37 
therefore potential trips, within the Flemish region, made by residents of Brussels area or by 38 
residents of the southern Walloon region of Belgium are not taken under consideration. 39 

Global visualization is a first illustrative step which provides a general idea for the 40 
overall state of the network. The mean link flow vectors resulting from both methods were 41 
used in order to visualize the expected state of the network. These graphs are not presented 42 
here due to the extremely large scale of the network and also due to the difficulty in marking 43 
small differences between the two methods on a global scale. Nevertheless, the key findings 44 
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from global visualization are the following. The link flows and the corresponding volume over 1 
capacity (V/C) ratios are larger near the important municipal centers, especially near Antwerp, 2 
the capital and largest city of Flanders, as well as Ghent and Leuven. Flows are also dense on 3 
the three major highways connecting Antwerp with Ghent to the west (highway E17), with 4 
Brussels to the south (highway E19) and with Hasselt to the east (highway E313). In addition, 5 
dense traffic flows are observed on the northern part of the highway ring of Brussels 6 
metropolitan area (highway ring R0) and on the highways which connect Brussels with Ghent 7 
and Bruges (highway E40 west), and Brussels with Leuven (highway E40 east). 8 

 9 

 10 
FIGURE 1 The road network of Flanders and the 5 Flemish provinces of Antwerp, Limburg, East 11 
Flanders, Flemish Brabant and West Flanders with corresponding capitals; Antwerp, Hasselt, 12 
Ghent, Leuven and Bruges. 13 
  14 

In order to summarize the results, the link flows were aggregated according to the type 15 
of road they correspond, the link flow estimates are presented in Table 1. According to the 16 
rounded estimates of Table 1, centrality measures, i.e. the means and the medians, derived 17 
from the two methods are relatively close, since the differences can be measured in terms of 18 
hundreds relative to the large magnitudes of the estimates. This is not the case, for the 95% 19 
interval and range estimates, where the estimates of method 2 are much wider than the 20 
corresponding estimates of method 1. This is to be expected; as described in section 3.1, 21 
percentile estimates from method 1 are approximate since they are derived conditional on the 22 
sum of each OD vector, and therefore result to smaller intervals which underestimate the 23 
overall input-uncertainty. Method 2, additionally delivers standard deviation estimates which 24 
are also included in Table 1. 25 

The link flow distributions can be estimated directly from the 200 link flow vectors 26 
obtained from method 2; kernel estimates for flows in highways, main regional roads, small 27 
regional roads and local roads are presented in Figure 2. Gaussian kernels were used as 28 
smoothing kernels, with bandwidths set equal to the corresponding standard deviations of the 29 
smoothing kernels. 30 
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TABLE 1 Mean, Median, 95% Interval (2.5%-97.5%), Range and Standard Deviation Estimates 1 
from the 2 Methods for the 4 Types of Link Traffic Flows 2 

Method 1 
Links Mean Median 95% interval Range St.dev. 
Highways 1,565,723 1,565,536 (1,564,267-1,566,497) (1,561,068-1,570,341) - 
Main 
regional 
roads  

1,292,689 1,293,363 (1,291,685-1,294,257) (1,288,723-1,295,259) - 

Small 
regional 
roads 

796,803 797,499 (796,357-800,656) (793,479-797,115) - 

Local roads 450,905 450,263 (449,754-450,293) (449,653-451,522) - 
Method 2 

Links Mean Median 95% interval Range St.dev. 
Highways 1,565,694 1,565,480 (1,559,776-1,571,443) (1,556,818-1,573,290) 3,177 
Main 
regional 
roads  

1,292,411 1,292,261 (1,288,687-1,297,411) (1,287,121-1,298,399) 2,113 

Small 
regional 
roads 

797,400 797,102 (794,400-803,345) (793,451-805,032) 1,987 

Local roads 450,656 450,599   (449,397-452,041) (448,485-452,546) 728 
 3 

A useful application from method 2 is the identification of critical links. Critical link 4 
identification is commonly a subject of vulnerability analysis, where state-of-the-art 5 
approaches are based on full network scan algorithms ((27), (28)). Nevertheless, the associated 6 
computational burden constitutes the implementation of such approaches prohibitive, as yet, 7 
for applications on large-scale, congested networks where execution of traffic assignment 8 
within the full scan algorithm is additionally required. From this point of view, method 2 9 
provides a workable alternative for identifying critical links explicitly in terms of probability. 10 

As critical links we define those links in which the V/C ratio exceeds a specific 11 
threshold value c  with a certain probability, i.e. (V/ C )P c . Evaluation of critical links in 12 
terms of probability estimates is safer in comparison to point estimates and also reduces the 13 
margin of uncertainty. For instance, the expected value of V/C may be smaller than c , 14 
nevertheless the probability of exceeding c  may be significantly greater than zero. This point 15 
is illustrated further in the proceeding analysis. In general, the value 1c   is the common 16 
option, since values greater than 1 imply that the traffic flow exceeds the theoretical capacity of 17 
a link, thus resulting in congestion. In our case though, inference is limited in traffic flows for 18 
work and school trips made only by Flemish residents, which means that we would expect the 19 
V/C ratios to be higher if the proportion of traffic related to other trip-purposes and to non-20 
Flemish residents was included in the analysis. From this perspective threshold values smaller 21 
than 1 may also be regarded as critical, but since the exact proportion of trips which is 22 
unaccounted for is not known exactly, c  can only be selected on a heuristic basis. As a 23 
conservative choice and in order not to overestimate the number of critical links the value of 24 
0.95 is adopted. Eleven links are identified as critical for 0.95c  , the V/C distributions of 25 
these links with the corresponding expected values of V/C ratio and the probabilities of 26 
exceeding 0.95 are presented in Figure 3. Note that if the analysis was based on the expected 27 



Perrakis, Cools, Karlis, Janssens, Kochan, Bellemans and Wets                                                        14 

V/C ratio instead of the probability of exceeding a V/C ratio of 0.95, then four out of the eleven 1 
links would not have been identified as critical. 2 

     3 
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 4 
FIGURE 2 Kernel distributions from method 2 for traffic flows on highways, main regional 5 
roads, small regional roads and local roads. The solid, dotted and dashed vertical lines 6 
correspond to the mean, median and 95% interval of each distribution, respectively.  7 
 8 

It is interesting to note that the V/C distributions of Figure 3 and consequently the 9 
corresponding link flow distributions resulting from DUE assignment are not necessarily close 10 
to normal distributions – for instance, bimodality is observed – in contrast to the distributions 11 
presented in Figure 2 which are aggregated link flows and in accordance to the central limit 12 
theorem closer to normal distributions. 13 

Bimodality may be attributed to the iterative user equilibrium procedure itself. For 14 
instance, when the flows on a specific link and at a given iteration exceed a certain threshold – 15 
consequently leading to a high V/C ratio – and there exists an alternative link which has a cost 16 
which is close but lower, then in the following iteration a switch of flows will occur from the 17 
high-cost link to the low-cost link. This “switching” effect will eventually result to bimodal 18 
V/C distributions, as the ones presented in Figure 3.              19 
 20 
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 1 
FIGURE 3 V/C kernel distribution estimates from method 2 for the 11 critical links which include 2 
or exceed the value of 0.95, highlighted by a vertical line in the distributions which include this 3 
value. 4 
 5 
The results in Figure 3 show that seven out of the eleven critical links have a V/C value greater 6 
than 0.95 with probability 1. Visual examination of the distributions in Figure 3 additionally 7 
reveals that these seven links also exceed the value 1c   with probability 1, except perhaps of 8 
link 106252 which has its minimum located near 1 and may therefore include smaller values 9 
than 1 with a low probability. Conclusively, even without taking into consideration the 10 
proportion of traffic related to non-Flemish residents and to other trip-purposes than work or 11 
school trips, congestion on these 7 links is almost certain. The highest V/C ratio is observed in 12 
highway link 28980 with an expectation of 2.11, while regional road link 16841 and highway 13 
link 83928 follow with expected V/C ratios equal to 1.38 and 1.26, respectively. For the 14 
remaining 4 links, the probability of exceeding a V/C ratio of 0.95 is lower, equal to 25% for 15 
links 83662, 92846 and equal to 3.5% for links 22149 and 29060. Not surprisingly, the 11 16 
critical links are situated near the major municipal centers of Antwerp, Ghent and Bruges; the 17 
exact locations are presented in Figure 4. 18 

As illustrated in Figure 4, five of the critical links belong to the wider municipal area of 19 
Antwerp, including link 28980 which is a segment of R1 highway ring in the north of Antwerp 20 
and has the highest expected V/C ratio. Links 22149 and 29060 are local outgoing road 21 
segments near highway ring R1, whereas link 16841, which has the second highest V/C ratio, 22 
is a segment of N1 regional road directing right to the center of Antwerp. Finally, link 17493 is 23 
a local road segment outside Antwerp, nevertheless very close to Antwerp airport situated 24 
south-east of the city. 25 

Five critical links also appear in the municipal area of Ghent. Link 84514 to the north-26 
east is a segment of N70 regional road very near the exit of the R4 highway ring with a 27 
direction to the center of Ghent, whereas links 83928, 83662, 92486 and 92849, near the 28 
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center, are all road segments clustered around the end of the part of highway E17 that has a 1 
direction to the center of Ghent. 2 

Finally, one critical link appears near the municipality of Bruges, that is link 106252. 3 
This link corresponds to a local road segment, very near N31 regional road, and with a 4 
direction towards the center of Bruges from the west. 5 

 6 

 7 
FIGURE 4 The critical links in Antwerp, Ghent and Bruges, the link type abbreviations H, MRR, 8 
SRR and LR correspond to Highways, Main Regional Roads, Small Regional Roads and Local 9 
Roads. 10 
 11 

The analysis of critical links is based on the relatively conservative choice 0.95c  . 12 
Naturally, for smaller values of c  the number of critical links increases, e.g. for the values 0.9, 13 
0.85, 0.8, 0.75, 0.7 the number of critical links rises to 16, 20, 25, 47 and 69, respectively. In 14 
general, for situations where the exact proportion of traffic is not known, as in the application 15 
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presented in this study, the choice of c  is under the control of the researcher or policy-planner. 1 
In such cases, inference may be based on more than one values of c . For cases in which there 2 
is certainty that all the potential traffic or – at least – most of the potential traffic of a network 3 
is included in the analysis, then the value 1c   may be safely adopted. 4 
 5 
5. CONCLUSIONS 6 
 7 
This study focuses on utilizing Bayesian OD predictions as input in traffic assignment models, 8 
as a mean of incorporating and quantifying input-uncertainty. Two methods of inputting OD 9 
predictions are proposed. In the first method, an OD summary is calculated from the multiple 10 
OD predictions and is assigned to the corresponding network. Whereas, in the second method 11 
all OD predictions are assigned to the network individually.   12 

In terms of computational expense, the first method is less demanding and suitable for 13 
delivering basic inferential tools, such as point and approximate interval estimates of link 14 
flows, with a limited number of assignments. On the other hand, method 2 results to more 15 
reliable interval estimates and also provides dispersion and distributional estimates which are 16 
not computable through method 1. 17 

 In general, method 2 provides greater inferential capabilities and gives rise to novel 18 
applications as is the identification of critical links explicitly in terms of probability estimates. 19 

The proposed methods can be applied on short-term as well as long-term OD matrices 20 
and furthermore their use in not constrained by the selection of the assignment model. 21 
Therefore, the methods may be utilized for different travel-demand perspectives under 22 
deterministic and stochastic assignment models.  23 

An application for the road network of Flanders was presented for the morning peak 24 
hour between 7 am and 8 am, under the assumption of a DUE model and by utilizing 200 25 
predictive OD matrices. Traffic flows in Flanders were found to be denser around the major 26 
municipal centers of Antwerp, Ghent, Leuven and Bruges and on the highways which connect 27 
these cities with each other and also with Brussels. Eleven critical links were identified for a 28 
threshold value of 0.95, the majority of which belonging to Antwerp and Ghent.  29 
 Future research will focus further on implementing both methods under system 30 
optimum and also deterministic/stochastic user equilibrium assignment assumptions for various 31 
travel-demand scenarios. That would allow for a comparison between theoretical expectations 32 
and the actual performance of those models, under different experimental settings. 33 
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