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ABSTRACT
The space-time path and prism demarcate the estimated
and potential locations (respectively) of a moving object
with respect to time. The path is typically formed through
linear interpolation between sampled locations of a moving
object, while the prism is the envelope of all possible paths
between two locations given the maximum speed of travel.
The classic path and prism, however, are not physically re-
alistic since they imply the ability of the object to make
instantaneous changes in direction and speed without accel-
eration and deceleration. This is not acceptable in applica-
tions where kinetics is vital for scientific understanding such
as animal ecology, vehicles moving through media such as
ships through water and planes through air, human-powered
movement such as bicycling and walking and environmental
applications of transportation such as energy consumption
and emissions modeling. In this paper we demonstrate how
imposing an upper bound on acceleration, as well as infor-
mation such as the initial speed and heading, affects the
geometry of the space-time prism. We discuss how to cal-
culate kinetic paths and prisms in one-dimensional and two
dimensional space, and provide examples comparing the ki-
netic prisms and classical prisms.

1. INTRODUCTION
The space-time path and prism are central concepts in a
wide range of fields concerned with mobile objects such as
vehicles, people and animals. The space-time path repre-
sents actual mobility; this is typically a polyline in two-
dimensional space and time constructed though linear in-
terpolation between locations sampled by devices such as
a global position system (GPS) receiver. The space-time
prism represents potential mobility: this is a region in two-
dimensional space and time where a mobile object could be
during a specific time interval, given known locations at the
beginning and end of that interval (the prism anchors) and a
speed limit on the object’s movement. We can interpret this
region as a measure of the object’s accessibility to an envi-

ronment [7]. The prism, however, can also represent non-
sampled locations between locational fixes in the space-time
path, particularly when the path is undersampled and we
wish to represent the resulting error regions explicitly [18].

Although the space-time path and prism represent actual
and potential movement, they are not physically realistic.
The space-time path implies the ability to make instanta-
neous changes in direction and speed (at the sampled loca-
tions) without acceleration and deceleration. Similarly, the
space-time prism implies the ability to instantly accelerate
and decelerate when leaving and arriving (respectively) at
anchors, as well as make directional changes instantly at its
boundaries. These unrealistic geometries manifest since the
path and prism consider only the object’s speed limit and
not limits on acceleration and deceleration that are inherent
in physical movement.

Ignoring the kinetics of the space-time path and prism may
be acceptable in applications such as transportation and mi-
gration where the emphasis on estimating meso and macro-
scale patterns from micro-level mobility data; although even
here the traditional prism will overstate the region accessi-
ble to the object. There are applications, however, where
physically realistic representation of an object’s movement
can be critical; these include animal movement [5, 6, 19, 21],
vehicles moving through media such as ships through water
and planes through air [9], and human-powered movement
such as bicycling and walking [8, 17]. The kinetics of pow-
ered vehicles can also be important for some transportation
applications such as traffic flow, resource use, emissions and
safety [2, 1].

One way to deal with the problem of unrealistic mobility in
the space-time prism is by further constraining the possible
trajectories. Since a space-time prism is already defined as
the envelope of all trajectories between two anchors given
an upper bound on their speed, the next logical step is to
constrain the possible acceleration and deceleration exhib-
ited by these trajectories. This will ensure that a trajectory
contains no instantaneous changes in direction and speed.
In this paper, we will cover how imposing an upper bound
on acceleration affects the geometry of the space-time prism.
It turns out that this is a much richer set of shapes and that
we can add or leave out additional parameters such as initial
speed, initial heading or a combination of both.

In Section 2, we start with laying out the basic notions of



trajectories and the classical space-time prism. In Section 3,
we introduce the notion of kinetic paths and kinetic prisms,
which are trajectories and sets of trajectories which have
upper bounds on their speed and acceleration. In Section 4,
we give a comprehensive list of shapes of kinetic prisms and
list the effects the different parameters have on the shape.
We do this both for movement in one and two dimensions.

2. BASIC CONCEPTS
We start with some basic definitions. All the definitions in
this section are for movement in two-dimensional space, the
same definitions for movement on a one-dimensional line can
easily be obtained by dropping one spatial component.

Definition 1. Let I ⊆ R be an interval. A trajectory T is
the graph of a piece-wise smooth1 (with respect to t) map-
ping

α : I ⊆ R → R2 : t #→ α(t) = (αx(t),αy(t)),

i.e., T =
{

(αx(t),αy(t), t) ∈ R2 ×R | t ∈ I
}

. The set I is
called the time domain of T .

From this definition, we can derive what velocity and accel-
eration vectors look like in space-time. The velocity vector
to a trajectory (αx(t),αy(t), t) is (α

′

x(t0),α
′

y(t0), 1) at a time
t0, where α′ denotes the derivative of α wrt t. The acceler-
ation vector to a trajectory (αx(t),αy(t), t) at a time t0 is
(α′′

x(t0),α
′′

y (t0), 0), where α′′ denotes the second derivative
of α wrt t. Note that the temporal component of the velocity
vector is always 1 and that the temporal component of the
acceleration vector is always 0, i.e., it is always parallel to
the spatial plane. This means that the length of the accel-
eration vector at a moment in time equals the acceleration
of the trajectory at that moment, this is not the case for the
velocity vector.

In practice, however, we will hardly ever have a trajectory
at our disposal, but rather discrete time-stamped locations
of a moving object, also called a trajectory sample.

Definition 2. A trajectory sample is a finite set of time-
space points {(x0, y0, t0), (x1, y1, t1), ..., (xN , yN , tN)}, where
the order on time, t0 < t1 < · · · < tN , induces a natural or-
der.
A path is an interpolated space-time curve between the sam-
ple points, parametrized in time such that the curve’s loca-
tion at time ti is (xi, yi).
Let p = (xp, yp, tp), q = (xq, yq, tq) ∈ R2 ×R be two spatio-
temporal points, where tp < tq. The minimal (average)
speed to get from p to q is denoted by vmin and equals

vmin =

√

(xq − xp)2 + (yq − yp)2

tq − tp
.

1Smooth is here used in the terminology of differential ge-
ometry [15], meaning differentiable or C1.

What happens between these time-stamped locations is any-
one’s guess. Usual approaches include (linear) interpolation
to connect the dots, however, these present crisp trajectories
and they are merely guesses. Admittedly, linear interpola-
tion uses the least assumptions, but the sudden changes in
speed and direction at the sample points make it an unreal-
istic guess.

We can do something different if we have background in-
formation. If we know, for example, the speed limit of
the moving object between recorded locations, we can cap-
ture all their possible trajectories (locations) in space-time
prisms [7, 12, 13, 11, 14].

Definition 3. Let vmax ∈ R+ and (xp, yp, tp), (xq, yq, tq) ∈
R2 ×R, with tp < tq be given. The space-time prism with
anchors (xp, yp, tp) and (xq, yq, tq) and maximal speed vmax,
denoted by P(xp, yp, tp, xq, yq, tq, vmax), is the set of points
(x, y, t) ∈ R2 ×R that satisfy the following constraints:







tp ≤ t ≤ tq
(x− xp)

2 + (y − yp)
2 ≤ (t− tp)

2v2max

(x− xq)
2 + (y − yq)

2 ≤ (tq − t)2v2max.

The inequalities in Definition 3 express that a point inside
the prism cannot be farther away from the first anchor than
the speed limit times the elapsed time, and that it has to
be closer to the second anchor than the speed limit times
the remaining time. This means there exists a path through
that point connecting the anchors that is less than the speed
limit times the time interval between the two anchors.

Figure 1 visualizes Definition 3. On the left we have a cone
pointing downward, which is expressed by the second in-
equality in Definition 3, and a cone pointing upward, which
is expressed by the third inequality in Definition 3. This is
a system of inequalities, so the point has to be in the inter-
section of those two cones, and this is depicted in Figure 1
on the right.

(xq, yq, tq)

(xp, yp, tp) (xp, yp, tp)

t

(xq, yq, tq)

yx

Figure 1: A space-time prism

Note that when the spatial distance between the anchors
equals the speed limit times the time difference between the
anchors, the space-time prism degenerates to a line connect-
ing the anchors. Otherwise, the space-time prism captures
all trajectories between two anchors which obey the speed
limit.

We omitted the inclusion of stationary activity time [14] in
Definition 3, and intend to include this in a more extended
version of this paper.



3. KINETIC PATHS & PRISMS
Trajectories on the boundary of a space-time prism move at
the speed limit and change direction instantaneously on the
rim of the space-time prism, where the two cones meet. This
instantaneous change in direction is unrealistic, and trajec-
tories that approximate this behavior have an acceleration
that tends to infinity as the object approaches this point of
direction change.

We counter this by imposing an upper bound on the mov-
ing object’s acceleration, similar to, and in addition to, the
upper bound on its speed. In the case of space-time prisms,
this is relatively easy to translate into equations since spatio-
temporal points inside a space-time prism are characterized
by only one condition on their distance to the anchors. This
is not the (immediate) case when there is also an upper
bound in the moving object’s acceleration.

Definition 4. Let (xp, yp, tp), (xq, yq, tq) ∈ R2 ×R be two
anchors, where tp < tq. Let vmax, amax ∈ R+ be an upper
bound on speed and acceleration respectively. A kinetic path
is the graph of a C2 (with respect to t) mapping

α : [tp, tq] → R2 : t #→ α(t) = (αx(t),αy(t)),

such that for all moments t in the open interval between tp
and tq we have that

∥

∥

(

α′

x(t),α
′

y(t)
)
∥

∥ ≤ vmax and
∥

∥

(

α′′

x(t),α
′′

y (t)
)
∥

∥ ≤ amax,

where ‖ · ‖ is the Euclidean norm. In addition, each anchor
may be attributed with an initial speed vp ∈ R+ and ini-
tial heading, denoted by (vp cos(θp), vp sin(θp), 1) or just an
initial speed vp for the anchor (xp, yp, tp).

Moreover, if an initial speed vp ∈ R+ and initial head-
ing (vp cos(θp), vp sin(θp), 1) are defined, then α has to sat-
isfy α′

x(tp) = vp cos(θp) and α′

y(tp) = vp sin(θp). If only
an initial speed vp ∈ R+ is defined, then α has to satisfy
∥

∥

(

α′

x(tp),α
′

y(tp)
)
∥

∥ = vp. The same constraints hold when p
is replaced by q.

We have to take care when we extend this to a trajectory
sample of more than two points, and make sure that tran-
sitioning from one prism to another is always done in a C1

fashion. Moreover, the range of a heading vector is limited
by the previous sample point and its heading vector.

Next we define a kinetic prism, which, much like a space-
time prism, bounds a subset of space-time between two an-
chors of spatio-temporal points on kinetic paths from one
anchor to the other, given upper bounds on the speed and
acceleration of those paths, and with or without an initial
speed and initial heading or just initial speed at the anchors.

Definition 5. Let (xp, yp, tp), (xq, yq, tq) ∈ R2 ×R be two
anchors, where tp < tq . Let vmax, amax ∈ R+ be an up-
per bound on speed and acceleration respectively. A kinetic
prism is the set of all spatio-temporal points on a kinetic
path from the first anchor to the second.

When an anchor is attributed with an initial speed vp ∈ R+

and initial heading, denoted by (vp cos(θp), vp sin(θp), 1) or

just an initial speed vp for the anchor (xp, yp, tp), then the
aforementioned kinetic paths have to satisfy these additional
constraints as described in Definition 4.

This definition is unfortunately descriptive and quantifies
over kinetic paths. In the following sections we will lay out
the diversity that kinetic prisms offer, due to combining dif-
ferent initial conditions. We also provide Mathematica im-
plementations of the algorithms we present [16]. We will also
give a description of how to construct analytical characteri-
zations of the points that can be reached via a kinetic path,
however, the characterizations are too complex and includ-
ing these huge expressions here would not add insight.

4. COMPUTING KINETIC PRISMS
In the following we will provide algorithms for the computa-
tion of the boundary of the kinetic prisms with all possible
combinations of initial speeds and initial headings. Each
of these have distinct topological properties and will be ex-
plored separately.

4.1 No initial speed and initial heading
The lack of an initial speed and heading means that from the
first anchor, any heading and any speed between zero and
the maximal speed is allowed. We will show that trajectories
cannot achieve this upper bound on their speed if there is not
enough time to change direction towards the second anchor.

Next, we will separately examine the one-dimensional and
two-dimensional case. We will show how to solve the two-
dimensional case as an extension of the one-dimensional
case.

4.1.1 Movement on a one-dimensional line
We can easily obtain the definitions for the one-dimensional
case by ignoring the y-component in all the previous defi-
nitions. Figure 2 shows a standard space-time prism for a
moving object between two anchors.

xp xq
x

t

tq

tp

Figure 2: A one-dimensional space-time prism.

Since we do not constrain the object’s initial speed, the
prism’s shape at the anchors do not need special consid-
eration. The other corners of the prism, however, represent
instant direction changes on a trajectory of an object that
travels at the maximal allowed speed. It is precisely those



trajectories that are impossible to physically realize if we
impose an upper bound amax on the object’s acceleration.

The most general equation for an object moving with con-
stant acceleration a and a time-independent initial speed v0
at a time t0 and location x0 is

x = x0 ± v0t±
at2

2
,

so the change of direction for an object moving at maximal
speed and maximal acceleration is

x = x0 ± vmaxt∓
amaxt

2

2
,

which is a parabola in space-time. Moreover, the time that
is needed to complete this change in direction is equal to
2vmax/amax. This could be less time than we have at our
disposal, i.e., less than tq − tp, and in this case a moving
object cannot travel in that specific direction at maximal
speed in order to reach its destination xq at time tq.

0.5 1.0 1.5 2.0 x

!1.5

!1.0

!0.5

0.5

1.0

1.5

t

Figure 3: Changing direction on a line with constant
maximal acceleration.

Figure 3 shows the space-time path of an object moving at a
certain speed from right to left, this is the bottom solid line.
Then the moving object slows down to a stop and acceler-
ating again to that same speed with bounded acceleration,
this is the dashed parabola. Finally, after this acceleration,
the object moves from left to right again at that same cer-
tain speed, and this is the solid line at the top. Note that
this is a C1 curve.

The equation for this curve is a piecewise equation x(t) =






























v2
max

2amax
− vmax

(

t+ vmax
amax

)

, t < − vmax
amax

amaxt
2

2 , − vmax
amax

≤ t ≤ vmax
amax

v2
max

2amax
+ vmax

(

t− vmax
amax

)

, vmax
amax

< t .

(1)

This is the most general shape of the left side of the prism.
We will show next how to determine the part of this curve
that bounds the kinetic prism.

First we observe that the two anchors determine a straight
line of fixed slope, and that also the distance between them
is fixed. This straight line can intersect the curve in Equa-
tion (1) in three different ways. It can either intersect the
parabola part twice, intersect the parabola part and the
straight line once each, or only intersect both straight lines.
Note that we exclude the case were |xq−xp|/(tq−tp) = vmax,
as this is the case where the prism degenerates to a line and
will be dealt with separately.
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Figure 4: Delimiting the different intersection types.

Figure 4 shows how the line connecting the anchors can in-
tersect the boundary in different ways. A line parallel to
and between the dotted and the dashed line will only in-
tersect the parabola twice. A line parallel to and between
the dashed line and the solid line will intersect the parabola
and the straight line once each. Finally, a line parallel to
the solid line and to the right of it will intersect the straight
lines once each. When |xq − xp|/(tq − tp) = vmax, the line
connecting the anchors would be parallel with one of the
straight lines and only intersect the boundary curve once.
Also note that if xq = xp, then the dashed and the solid line
would coincide, reducing the distinct possible intersections
to two and removing the case where a straight line and the
parabola can be intersected.

All the lines, parallel to the line connecting the anchors, can
be parametrized by the equation

xl = l +
xq − xp

tq − tp
t (2)

and the parameter l. To simplify computations we can
compute the intersection points of the dashed line with the
curve and denote the distance between those points by d1,
similarly we compute the intersection points of the solid
line with the curve and denote the distance between those
points by d2. When we compare those distances with d =
√

(xq − xp)2 + (tq − tp)2 we can easily find expressions for
the intersection points of the curve with the line in Equa-
tion (2), and express the distance as a function of the pa-
rameter l. Then we equate that expression to d and solve
for l. Finally, we use this l to compute the two intersection
points.



Let (x0, t0) be the intersection point with the smallest tem-
poral (second) coordinate. All that remains is to translate
and re-parametrize the curve in Equation (1) so that (x0, t0)
coincides with (xp, tp). If (x(t), t) is the graph of the curve
in Equation (1), then

(xp − x0 + x(t− (tp − t0)), t) where tp ≤ t ≤ tq

is the graph of the lefthand boundary of the kinetic prism
between the anchors (xp, tp) and (xq, tq), with a speed limit
vmax and an upper bound on acceleration amax.

We could use the same approach for the righthand side
of the prism, but this is not necessary since the prism is
point-symmetric with respect to the middle of the line seg-
ment connecting the anchors. So we merely need to ap-
ply a reflection of the lefthand boundary around this point,
(xp,tp)+(xq ,tq)

2 , to obtain the righthand boundary.
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Figure 5: Three types of one-dimensional kinetic
prisms.

Figure 5 shows the three distinct shapes of a one-dimensional
kinetic prism. The solid part represents the change in direc-
tion at maximal acceleration of the boundary, the dashed
part represents travel at maximal speed. On the top left,
there is not enough time between the anchors for the object
to travel at maximal speed. If it were traveling at maximal
speed, the object would overshoot the anchor too early, and
there would not be enough time to decelerate and change
direction to make it to the second anchor in time. On the
top right, the moving object could initially be traveling at
maximal speed, but only between the anchors, the object
cannot attain maximal speed left or right of the anchors. At
the bottom of Figure 5, the object can travel at maximal
speed in both directions.

Figure 6 shows a kinetic prism overlaid with a classical
space-time prism. Note that in this case the sample points
are relatively close together in time and that in this case,
the reduction of spatio-temporal uncertainty is significant
compared to the classical space-time prism. A kinetic prism
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Figure 6: An overlay of a kinetic prism with a clas-
sical prism.

will resemble a classical space-time prism more as the upper
bound on acceleration increases and as the temporal differ-
ence between the anchors increases.

4.1.2 Movement in two dimensions
For objects moving in two-dimensional space, the problem
is a bit more involved. we can, however, reconstruct the
boundary of the kinetic prism by reducing the problem to
one-dimensional movement. If we intersect the kinetic prism
with a plane that contains the line connecting the anchors,
we obtain, in a sense, a subset of the trajectories restricted
to this spatio-temporal plane.

Here also, we can exploit symmetry of the prism to reduce
the computational cost. Note that in addition to point sym-
metry, the kinetic prism is also symmetric wrt to the plane
which contains both anchors and is perpendicular to the
spatial plane, i.e., it contains a direction parallel to the tem-
poral axis. Taking these symmetries into account, we only
need to compute a quarter of the boundary of the kinetic
prism and then apply two reflections to obtain the complete
boundary.

The following theorem shows that if we intersect the kinetic
prism with a plane that contains both anchors, we obtain a
one-dimensional prism in a sense.

Theorem 1. Let (xp, yp, tp), (xq, yq, tq) ∈ R2 ×R be two
anchors, where tp < tq, let vmax, amax ∈ R+ be an up-
per bound on speed and acceleration respectively, and let
u = (cos(θ), sin(θ), 0) be any spatial direction. Let γ be the
plane spanned by the vector (xq−xp, yq −yp, tq− tp) and the
vector u and let β be the plane spanned by the vector u and
the vector (0, 0, 1), and let both planes contain the anchor
(xp, yp, tp).

Then the projection of the intersection of the kinetic prism
and γ onto β is a one-dimensional kinetic prism with an
upper bound on acceleration amax and an upper bound on
speed equal to

√

√

√

√

√

(

cos(θ0 + θ)
xq−xp

tq−tp
+ sin(θ0 + θ)

yq−yp
tq−tp

)2

−
(

xq−xp

tq−tp

)2
−

(

yq−yp
tq−tp

)2
+ v2max

where θ0 is the angle between the vectors (1, 0) and (xp −



xq, yp−yq), and equal to zero if both anchors share the same
location.

Proof. We omit the proof which is based on straightfor-
ward geometric computations.

Theorem 1 is key to the algorithm to compute the boundary
of the two-dimensional kinetic prism. The algorithm essen-
tially does the same as described in Section 4.1.1, but all the
computations are parametrized by the parameter θ, which
parametrizes a direction in the spatial plane and ranges from
0 to 2π. As shown before, we only need to let θ range from
0 to π/2 and apply three reflections to obtain the rest of the
boundary.

Geometrically, the algorithm intersects the kinetic prism
with a plane that rotates around the line that connects the
anchors, and computes the boundary in that plane.

The algorithm performs the following steps in which θ ap-
pears as a parameter:

1. Compute the general shape of the boundary of the ki-
netic prism in the plane γ.

2. Project this general shape perpendicular onto the plane
β, this is the reduction to the one-dimensional case.
Note that this projection does not alter the accelera-
tion boundary, but it does alter vmax, as described in
Theorem 1. This means that the general shape of this
boundary changes continuously with θ.

3. As θ changes, so does the direction of the line con-
necting the anchors, and thus the distance between
the anchors. We compute the two points on the pro-
jected boundary, such that the line segment connecting
them has the same direction as the projected line that
connects the anchors, and such that the the distance
between the two points equals the distance between
the projected anchors.

4. The point with the smallest time coordinate has suffi-
cient information to translate the general shape of the
intersected boundary accordingly. Note that the tem-
poral distance between the intersection points on the
projected boundary is the same on the actual bound-
ary.

5. The previous steps result in a quarter of the boundary
of the kinetic prism, we apply the following reflections
on this boundary to obtain the other three parts.

(a) Apply a point-reflection with respect to the mid-
dle of the line segment connecting the anchors,
i.e., ((x0, y0, t0) + (x1, y1, t1))/2.

(b) Apply a reflection with respect to the plane that
contains both anchors and the direction that cor-
responds to θ = 0.

(c) Finally apply the composition of both reflections
mentioned above.

Technically, it is possible to solve the equation in step 3 and
obtain at most three different expressions for this solution
so that we have solutions for all θ. The result is a function
that depends on the parameters θ and t, which is enough to
plot the surface that bounds the kinetic prism. The software
we used, Mathematica, however, will solve the equation in
a discrete number of points and interpolate the result to
obtain a plot. This is sufficient for our purpose.

Figure 7 shows the distinct possible shapes of the boundary
between two anchors p and q. The top left figure shows
only an acceleration boundary, the top right picture shows
an acceleration boundary and a maximal speed boundary
both touching the anchors, and the bottom picture shows
a kinetic prism where trajectories can start with maximal
speed in all directions.

Figure 7: Three types of kinetic prisms.

4.1.3 Analytical characterizations
Unlike a classical space-time prism, we have only presented
algorithms to compute the boundary, but not an analytical
characterization of the interior of a kinetic prism. This is
significantly harder for a kinetic prism and falls beyond the
scope of this paper. We will, however, describe how to get
to a characterization for the prisms in this section.

Note that the boundary, in general, can consist of three dis-
tinct parts, namely a boundary characterized by the max-
imal speed, and a boundary characterized by the maximal
acceleration. Moreover, notice that the temporal width of
the acceleration boundary is determined by the speed limit,
i.e., the lower the speed limit, the smaller the acceleration
boundary is. In fact, if the speed limit tends to vmin, then
the acceleration boundary disappears. This is the key to
construct an analytical characterization of the kinetic prism.

Note that, using quantifiers, the boundary can be described
in first-order logic over the reals, and, again using quan-
tifiers, we can express membership to the boundary of a
spatio-temporal point in that same logical language. Then,



if we quantify the speed limit and let it range from vmax

to vmin, we effectively squeeze the boundary of the kinetic
prism to a line connecting the anchors, i.e., to a degener-
ate prism. This characterizes the interior of the prism. The
quantifiers make this characterization descriptive and not
very useful. Fortunately, arithmetic over a real closed or-
dered field admits quantifier elimination [20, 3, 4], and there
exists an algorithm to do just that, which, would return a
quantifier free formula that would evaluate to true if the
query point is part of the kinetic prism, and false other-
wise.

Sometimes other ways to obtain a quantifier-free formula
can be found using manual methods [10]. This is, however,
food for future work.

4.2 Initial speed and initial heading
This case is an open problem, in the sense that we can only
present how to compute the bottom cone of the kinetic prism
with these constraints. We cannot apply the same approach
as detailed in Section 4.1.2 because if the plane that contains
both anchors does not contain the initial heading, then there
is no trajectory in that plane with the given initial speed
and heading. In fact, if we want to use the rotating plane
approach, all the initial headings would have to have the
same direction as the line connecting the anchors, and thus
all anchors would have to be on the same line. This is,
however, a much too unrealistic and restrictive constraint.

Figure 8: The acceleration and vmax boundary of the
bottom cone.

Figure 8 shows how an object could move away from its ini-
tial heading at maximal acceleration, the boundary repre-
sents the moment when the object has reached the maximal
speed and stops accelerating. The green part, the boundary
that was added in the figure on the right, then represents
movement at the maximal allowed speed.

We obtain a clearer view of the impact an initial heading
has on the symmetry when we take the border of Figure 8
on the left. This is shown in Figure 9 on the left, and its
projection on the right.

Figure 9 on the right shows the delimitation of the area a
moving object can reach when moving at its constant max-
imal acceleration bound, given an initial speed and heading
(to the right), and an initial location in the origin of the
graph. This is only the bottom cone, and the only remain-
ing symmetry is with respect to a plane that contains the
initial heading and is perpendicular to the spatial plane.
If this plane does not contain the second anchor, then the
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Figure 9: The acceleration boundary of the bottom
cone and its projection.

symmetry we had, with respect to a plane containing both
anchors and which is perpendicular to the spatial plane, is
completely gone. This is partly where the difficulty lies to
devise an algorithm to compute the boundary of a kinetic
prism where the anchors have an initial speed and heading.

4.3 Initial speed but no initial heading
If there is no preferred initial heading, but only an initial
speed, we can apply the rotating plane approach. Because
every plane that contains both anchors will contain precisely
two initial headings per anchor, and a planar trajectory from
one anchor to the other that satisfies the given constraints,
if they are not too strict.

The shape of the bottom cone is basically the shape of the
cone described in Section 4.2, rotated around a line through
the bottom anchor, parallel to the temporal axis. This has
the interesting, but not surprising, effect of creating spatio-
temporal bubbles inside the kinetic prism. These bubbles
are volumes inside the prism that cannot be reached given
the constraints on speed and acceleration.

Figure 10: The acceleration and vmax boundary of
the bottom cone.

Figure 10 on the left shows the boundary of a moving object
moving with an initial speed from an anchor, given upper
bounds on its speed and acceleration. The blue, funnel-
shaped, part contains the part of the trajectory where the
object accelerates at its maximal acceleration away from the
anchor and from the initial speed. The red, closed-surface
within, part, similarly, contains the part of the trajectory
where the object accelerates at its maximal acceleration to-
wards the anchor and from the initial speed. This is the
spatio-temporal bubble and contains the spatio-temporal
points that cannot be reached. The green part, the added



boundary in Figure 10 on the right, contains the part of the
trajectories where the object has reached, and is traveling
at its maximal speed.

Figure 11: The full bottom cone and the the kinetic
prism.

Figure 11 on the left shows the bottom part of the kinetic
prism. The blue part, the extra boundary that was added to
Figure 10 on the right, is the region where the object changes
direction towards the second anchor at maximal acceleration
in order to reach it in time. Figure 11 on the right shows
the full kinetic prism.

This general structure of the kinetic prism allows for several
exotic spatio-temporal topologies. The bubbles we presented
behave quite nicely. They could, however, also touch, inter-
sect each other or even the outer boundary. These more
complex cases are material for future work.

4.3.1 An initial speed range but no initial heading
Note that there is a unique cone of directions that can be fit-
ted between the bubble and the outward acceleration bound-
ary, and this cone corresponds to a speed limit equal to the
initial speed. This is not always the case. As the title of this
section reveals, if we allow a range of initial speeds instead
of one initial speed, then the bubble still touches the accel-
eration part in the anchor, but a cone of directions between
those parts is no longer unique.

5. CONCLUSION
We extended the classical space-time prism by imposing an
upper bound on the moving object’s acceleration. In addi-
tion to this new bound on acceleration, we found that we
could impose initial conditions at the anchors which have a
significant impact on the kinetic prism’s topology.

These different cases open new avenues for research. The
open problems that appeared in this paper include the fol-
lowing.

• An analytical characterization of the interior of the
kinetic prism is still missing.

• The two-dimensional kinetic prism is very costly to
generate, this is partly due to the parametrized equa-
tion that requires solving for each parameter. A more
efficient method is desirable.

• A method for different initial headings still eludes us.

• A thorough study to extend this framework to move-
ment in higher dimensions is also desirable. Movement
in three dimensions is common in ecology, namely when
tracking birds. It seems, however, non-trivial to extend
this to three dimensions.

• The alibi query is a boolean query that asks whether
two moving objects could have met or not. This query
has immediate applications in ecology. It is not clear
however, how to tackle this problem.

• In addition to the alibi query, it is interesting to fig-
ure out how to quantify the sensitivity of these kinetic
prisms, and their intersections, to errors on their pa-
rameters.

This list is not exhaustive, but those are the immediate chal-
lenges that arose during the research for this paper. Of
these, the second item on the list needs to be tackled first
in order to apply this to real-life applications.
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