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Abstract

We introduce the notion of a robust parameterized arithmetic circuit for
the evaluation of algebraic families of multivariate polynomials. Based on
this notion, we present a computation model, adapted to Scientific Comput-
ing, which captures all known branching parsimonious symbolic algorithms in
effective Algebraic Geometry. We justify this model by arguments from Soft-
ware Engineering. Finally we exhibit a class of simple elimination problems
of effective Algebraic Geometry which require exponential time to be solved
by branching parsimonious algorithms of our computation model.
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1 Introduction

We introduce and motivate a practically feasible software architecture based model
of branching parsimonious computation using the circuit representation of rational
functions as fundamental data type. In this computation model, a routine will accept
a circuit as input and produce another circuit as output. Since the basic routines of
our computations with circuits will be branching–free and circuits themselves may
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be interpreted as computations, the circuits used as data types in our model should
be branching–free too. This leads us to introduce and discuss in Section 3.1 the
concept of a parameterized arithmetic circuit. However, branchings are sometimes
unavoidable. But, frequently they may be replaced by limit processes. In order
to capture this situation, we shall introduce and discuss the notion of a robust
parameterized arithmetic circuit.

An important issue will be the concept of well behavedness of routines, under
certain modifications of the input circuits. This concept will allow us in Section
3.3 to establish our software architecture based model of computation with robust
parameterized arithmetic circuits. In this context we shall introduce for our routines
the technical notions of well behavedness under restrictions and reductions, and of
isopametricity and coalescence.

In order to capture the whole spectrum of really existing elimination algorithms
in Algebraic Geometry we extend our computational model in Section 3.3.3 ad-
mitting some limited branchings. The resulting algorithms are called branching
parsimonious. Moreover we introduce the concept of a procedure as a branching
parsimonious algorithm with a particular architecture. Procedures are well suited
to discuss computational issues in effective elimination theory. In Section 4, we
apply our computation model to this task.

It turns out that already very elementary elimination problems require exponen-
tial time to be solved by procedures of our model (see Theorem 10, Proposition 11
and Theorem 12 below). In particular, we exhibit in Section 4.3 a parameterized
Boolean circuit whose (standard) arithmetization represents a flat family of zero–
dimensional elimination problems which require exponential time to be solved in
our model. Moreover, well–known methods based on arithmetization, to count the
number of satisfying variable instances of a given Boolean circuit, are of intrinsically
exponential complexity character (see Theorem 13 below).

In Section 4.4 we arrive at the conclusion that our method to show lower com-
plexity bounds consists of counting how many steps are necessary to decompose a
given rational map into a sequence of “simple” blow ups and a polynomial map.

Finally in Section 4.5 we establish a link between our computation model and our
lower bound results with other complexity views in geometric elimination theory.
In this context we discuss the BSS–model of [BSS89] and the view of interactive
protocols.

Our computation model and complexity results are based on the concept of a
geometrically robust constructible map. This concept was introduced in [GHMS11]
and we develop it further in Section 2, which is devoted to the algebraic geometric
underpinning of the present paper.

The relevance of the lower complexity bounds of this paper for elimination prob-
lems depends on the “naturalness” of the computation model. Therefore we empha-
size throughout this article the arguments which justify our computation model. Of
course, these arguments cannot be entirely of mathematical nature. In this paper
they are borrowed from Software Engineering which constitutes a discipline which
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analyzes and qualifies practical programming issues. In these terms we show that a
circuit based algorithm which solves most elementary parametric elimination prob-
lems and which is programmed under the application of the most common rules of
Software Engineering, can never be efficient.

2 Concepts and tools from Algebraic Geometry

In this section, we use freely standard notions and notations from Commutative Al-
gebra and Algebraic Geometry. These can be found for example in [Lan93], [ZS60],
[Kun85] and [Sha94]. In Sections 2.2 and 2.3, we introduce the notions and defini-
tions which constitute our fundamental tool for the modelling of elimination prob-
lems and algorithms. Most of these notions and their definitions are taken from
[GHMS11].

2.1 Basic notions and notations

For any n ∈ N, we denote by An := An(C) the n–dimensional affine space Cn

equipped with its respective Zariski and Euclidean topologies over C. In algebraic
geometry, the Euclidean topology of An is also called the strong topology. We shall
use this terminology only exceptionally.

Let X1, . . . , Xn be indeterminates over C and let X := (X1, . . . , Xn). We denote
by C[X] the ring of polynomials in the variables X with complex coefficients.

Let V be a closed affine subvariety of An, that is, the set of common zeros in
An of a finite set of polynomials belonging to C[X]. As usual, we write dimV for
the dimension of the variety V . Let C1, . . . , Cs be the irreducible components of V .
For 1 ≤ j ≤ s we define the degree of Cj as the number of points which arise when
we intersect Cj with dimCj many generic affine hyperplanes of An. Observe that
this number is a well–determined positive integer which we denote by degCj. The
(geometric) degree deg V of V is defined by deg V :=

∑
1≤j≤s degCj. This notion

of degree satisfies the so called Bezout Inequality. Namely, for another closed affine
subvariety W of An we have deg V ∩W ≤ deg V · degW.

For details we refer to [Hei83], where the notion of geometric degree was intro-
duced and the Bezout Inequality was proved for the first time (other references are
[Ful84] and [Vog84]).

For f1, . . . , fs, g ∈ C[X] we shall use the notation {f1 = 0, . . . , fs = 0} in order
to denote the closed affine subvariety V of An defined by f1, . . . , fs and the notation
{f1 = 0, . . . , fs = 0, g 6= 0} in order to denote the Zariski open subset Vg of V
defined by the intersection of V with the complement of {g = 0}. Observe that Vg
is a locally closed affine subvariety of An whose coordinate ring is the localization
C[V ]g of C[V ].

We denote by I(V ) := {f ∈ C[X] : f(x) = 0 for any x ∈ V } the ideal of definition
of V in C[X] and by C[V ] := {ϕ : V → Ce; there exists f ∈ C[X] with ϕ(x) =
f(x) for any x ∈ V } its coordinate ring. Observe that C[V ] is isomorphic to the
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quotient C–algebra C[V ] := C[X]/I(V ). If V is irreducible, then C[V ] is zero–
divisor free and we denote by C(V ) the field formed by the rational functions of V
with maximal domain (C(V ) is called the rational function field of V ). Observe that
C(V ) is isomorphic to the fraction field of the integral domain C[V ].

In the general situation where V is an arbitrary closed affine subvariety of An,
the notion of a rational function of V has also a precise meaning. The only point to
underline is that the domain, say U , of a rational function of V has to be a maximal
Zariski open and dense subset of V to which the given rational function can be
extended. In particular, U has a nonempty intersection with any of the irreducible
components of V .

We denote by C(V ) the C–algebra formed by the rational functions of V . In
algebraic terms, C(V ) is the total quotient ring of C[V ] and is isomorphic to the
direct product of the rational function fields of the irreducible components of V .

Let be given a partial map φ : V 99K W , where V and W are closed subvarieties
of some affine spaces An and Am, and let φ1, . . . , φm be the components of φ. With
these notations we have the following definitions which can be found in [GHMS11]:

Definition 1 (Polynomial map) The map φ is called a morphism of affine va-
rieties or just polynomial map if the complex valued functions φ1, . . . , φm belong to
C[V ]. Thus, in particular, φ is a total map.

Definition 2 (Rational map) We call φ a rational map of V to W , if the domain
U of φ is a Zariski open and dense subset of V and φ1, . . . , φm are the restrictions
of suitable rational functions of V to U .

Observe that our definition of a rational map differs from the usual one in Al-
gebraic Geometry, since we do not require that the domain U of φ is maximal.
Hence, in the case m := 1, our concepts of rational function and rational map do
not coincide.

2.1.1 Constructible sets and constructible maps

Let M be a subset of some affine space An and, for a given nonnegative integer m,
let φ :M 99K Am be a partial map.

Definition 3 (Constructible set) We call the set M constructible if M is de-
finable by a Boolean combination of polynomial equations.

A basic fact we shall use in the sequel is that if M is constructible, then its
Zariski closure is equal to its Euclidean closure (see, e.g., [Mum88], Chapter I, §10,
Corollary 1). In the same vein we have the following definition.

Definition 4 (Constructible map) We call the partial map φ constructible if the
graph of φ is constructible as a subset of the affine space An × Am.
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We say that φ is polynomial if φ is the restriction of a morphism of affine varieties
An → Am to a constructible subsetM of An and hence a total map fromM to Am.
Furthermore, we call φ a rational map of M if the domain U of φ is contained in
M and φ is the restriction to M of a rational map of the Zariski closure M of M.
In this case U is a Zariski open and dense subset of M.

Since the elementary, i.e., first–order theory of algebraically closed fields with
constants in C admits quantifier elimination, constructibility means just elementary
definability. In particular, φ is constructible implies that the domain and the image
of φ are constructible subsets of An and Am, respectively.

Remark 1 A partial map φ :M 99K Am is constructible if and only if it is piecewise
rational. If φ is constructible there exists a Zariski open and dense subset U of M
such that the restriction φ|U of φ to U is a rational map.

For details we refer to [GHMS11], Lemma 1.

2.2 Weakly continuous, strongly continuous, topologically
robust and hereditary maps

We are now going to present the notions of a weakly continuous, a strongly con-
tinuous, a topologically robust, a geometrically robust and a hereditary map of a
constructible setM. These five notions will constitute our fundamental tool for the
modelling of elimination problems and algorithms.

Definition 5 Let M be a constructible subset of An and let φ : M → Am be a
(total) constructible map. We consider the following four conditions:

(i) there exists a Zariski open and dense subset U of M such that the restriction
φ|U of φ to U is a rational map of M and the graph of φ is contained in the
Zariski closure of the graph of φ|U in M× Am;

(ii) φ is continuous with respect to the Euclidean, i.e., strong, topologies ofM and
Am;

(iii) for any sequence (xk)k∈N of points of M which converges in the Euclidean
topology to a point of M, the sequence (φ(xk))k∈N is bounded;

(iv) for any constructible subset N of M the restriction φ|N : N → Am is an
extension of a rational map of N and the graph of φ|N is contained in the
Zariski closure of this rational map in N × Am.

We call the map φ

• weakly continuous if φ satisfies condition (i),

• strongly continuous if φ satisfies condition (ii),
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• topologically robust if φ satisfies conditions (i) and (iii),

• hereditary if φ satisfies condition (iv).

In all these cases we shall refer toM as the domain of definition of φ or we shall
say that φ is defined on M.

Remark 2 A strongly continuous constructible map is always weakly continuous,
topologically robust and hereditary.

For details we refer to [GHMS11], Lemma 4.
The concept of hereditarity sounds rather abstract and axiomatic. We shall

need it in Section 3 for a mathematically correct and complete formulation of our
computation model. In Section 2.3, we shall establish an algebraic condition, namely
geometric robustness, which implies hereditarity.

2.3 The concept of robustness for constructible maps

In this Section we introduce the algebraic–geometric tools we shall use in Section
3 and 4 for the mathematical modelling of algorithms which solve parameterized
computational problems. The main issue of this section will be the notion of a
geometrically robust constructible map which captures simultaneously the concepts
of topological robustness and hereditarity introduced in Section 2.2

We first characterize in algebraic terms the concept of topological robustness
(Theorem 3 below). In Section 3 we shall interpret topological robustness as coa-
lescence, an informal concept whose exact definition depends on the context. For
example in Interpolation theory coalescence refers to certain types of “convergence”
of problems and algorithms (see [BC97], [dBR92], [Olv06] and [GHMS11] for de-
tails). In this paper coalescence will be the algorithmic counterpart of topological
robustness.

Finally, we introduce the notion of a geometrically robust constructible map and
show that such maps are always hereditary. In particular they are topologically
robust and give rise to coalescent algorithms.

2.3.1 An algebraic characterization of the notion of topological
robustness

In this subsection, we present an algebraic–geometric result of [GHMS11] which will
be relevant in Sections 2.3.2, 3 and 4.

For the moment let us fix a constructible subsetM of the affine space An and a
(total) constructible map φ : M → Am with components φ1, . . . , φm. Suppose the
map φ is weakly continuous in the sense of Definition 5 in Section 2.2.

We consider now the Zariski closure M of the constructible subset M of An.
Observe thatM is a closed affine subvariety of An and that we may interpret C(M)
as a C[M]–module (or C[M]–algebra).
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Fix now an arbitrary point x of M.
By Mx we denote the maximal ideal of coordinate functions of C[M] which

vanish at the point x.
By C[M]Mx we denote the local C–algebra of the varietyM at the point x, i.e.,

the localization of C[M] at the maximal ideal Mx.
By C(M)Mx we denote the localization of the C[M]–module C(M) at Mx.
The constructible map φ is by assumption weakly continuous. Hence we may

interpret φ1, . . . , φm as rational functions of the affine variety M and therefore as
elements of the total fraction ring C(M) of C[M].

Thus C[M][φ1, . . . , φm] and C[M]Mx [φ1, . . . , φm] are C–subalgebras of C(M) and
C(M)Mx which contain C[M] and C[M]Mx , respectively.

With these notations we are able to formulate the following statement which
establishes the bridge to an algebraic understanding of the notion of topological
robustness.

Theorem 3 ([GHMS11], Corollary 11) Let notations and assumptions be as be-
fore and suppose that the constructible map φ : M → Am is weakly continuous.
Then φ is topologically robust if and only if for any point x of M the C–algebra
C[M]Mx [φ1, . . . , φm] is a finite C[M]Mx–module.

The only if part of Theorem 3 is an almost immediate consequence of [CGH+03],
Lemma 3, which in its turn is based on a non–elementary and deep result from Alge-
braic Geometry, namely Zariski’s Main Theorem (see, e.g., [Ive73], §IV.2). Theorem
3 and Theorem 5 below will be omnipresent in Sections 3 and 4. They contribute to
establish a well–founded link between Computer Science and Algebraic Geometry.

Let φ : M → Am be a topologically robust constructible map and let u be an
arbitrary point of M. From Theorem 3 one deduces easily that for all sequences
(uk)k∈N of points uk ∈ M which converge to u, the sequences (φ(uk))k∈N have only
finitely many distinct accumulation points.

2.3.2 The notion of geometrical robustness

The main mathematical tool of Section 3 of this paper is the notion of geometrical
robustness we are going to introduce now. We shall use the same notations as in
Section 2.3.1.

Definition 6 Let M be a constructible subset of a suitable affine space and let
φ :M→ Am be a (total) constructible map with components φ1, . . . , φm. According
to Remark 1 we may interpret φ1, . . . , φm as rational maps of M. We call φ geo-
metrically robust if for any point x ∈M the following two conditions are satisfied:

(i) C[M]Mx [φ1, . . . , φm] is a finite C[M]Mx–module.

(ii) C[M]Mx [φ1, . . . , φm] is a local C[M]Mx–algebra whose maximal ideal is gener-
ated by Mx and φ1 − φ1(x), . . . , φm − φm(x).
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Observe that the notion of a geometrically robust map makes also sense when C
is replaced by an arbitrary algebraically closed field (of any characteristic). In view
of Theorem 3 the same is true for the notion of a topologically robust map. In this
sense we have the following fundamental result.

Proposition 4 Geometrically robust constructible maps are weakly continuous, hered-
itary and in particular topologically robust. If we restrict a geometrically robust con-
structible map to a constructible subset of its domain of definition we obtain again
a geometrically robust map. Moreover the composition and the cartesian product of
two geometrically robust constructible maps are geometrically robust. The geomet-
rically robust constructible functions form a commutative C–algebra which contains
the polynomial functions.

We are not going to prove Proposition 4 here. Weak continuity and hereditarity
of geometrically robust constructible maps with irreducible domains of definition
is the content of [GHMS11], Proposition 16, Theorem 17 and Corollary 18. These
results imply also that restrictions of such maps to irreducible constructible subsets
of their domains of definition are again geometrically robust. From this one deduces
immediately the same statements for the case of arbitrary domains of definition.
Topological robustness follows from Theorem 3 above. Closedness under compo-
sition is a consequence of the transitivity law for integral dependence. One infers
from Definition 6 closedness under cartesian products and that the geometrically
robust constructible functions form a commutative C–algebra which contains the
polynomial functions. The alluded proofs work over arbitrary algebraically closed
fields.

In this paper we shall restrict our attention to the algebraically closed field C. In
this particular case we have the following characterization of geometrically robust
constructible maps.

Theorem 5 Let assumptions and notations be as before. Then the constructible
map φ :M→ Am is geometrically robust if and only if φ is strongly continuous.

Proof. Suppose that the constructible map φ is geometrically robust. We are
first going to show that φ is weakly continuous.

By Remark 1 there exists a Zariski open and dense subset U of M such that
the restriction map φ|U is rational. Let Y1, . . . , Ym be new indeterminates, Y :=
(Y1, . . . , Ym) and suppose that the affine ambient space of M has dimension n.
Observe that any (n+m)–variate polynomial over C which vanishes on the graph of
the rational map φ|U gives rise to a polynomial A ∈ C[M][Y ] with A[φ1, . . . , φm] = 0.

Let x be an arbitrary point of M and consider A as an element of C[M]Mx [Y ].
Denote by A(x, φ(x)) the value of A at (x, φ(x)). Then condition (ii) of Defi-
nition 6 implies that A[φ1, . . . , φm] − A(x, φ(x)) belongs to the maximal ideal of
C[M]Mx [φ1, . . . , φm]. From A[φ1, . . . , φm] = 0 we deduce now A(x, φ(x)) = 0.
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Since the choice of x ∈ M was arbitrary, we conclude that A vanishes on the
graph of φ. This implies that the graph of φ is contained in the Zariski closure of
the graph of φ|U . Hence φ is weakly continuous.

Let be given an arbitrary point x ∈ M and a sequence (xk)k∈N, xk ∈ M, which
converges to x in the strong topology of M. We are now going to show that the
sequence (φ(xk))k∈N converges to φ(x).

Since φ is weakly continuous, we deduce from condition (i) of Definition 6 and
Theorem 3 that the sequence (φ(xn))k∈N contains at least one accumulation point,
say a = (a1, . . . , am), which belongs to Am. Let a be the ideal of all polynomials
A ∈ C[M]Mx [Y ] that vanish at the point (x, a) ∈ An×Am. Without loss of generality
we may assume that the sequence (φ(xk))k∈N converges to a. Let ã := {A(φ);A ∈ a}
be the image of the ideal a under the surjective C[M]Mx–algebra homomorphism
C[M]Mx [Y ] → C[M]Mx [φ1, . . . , φm] which maps Y1, . . . , Ym onto φ1, . . . , φm. Ob-
serve that ã is an ideal of C[M]Mx [φ1, . . . , φm].

We are now going to show the following statement.

Claim 6 The ideal ã is proper.

Proof of the claim. Suppose that the ideal ã is not proper. Then there exists
a polynomial A =

∑
j1,...,jm

aj1...jmY
j1

1 . . . Y jm
m of a, with aj1...jm ∈ C[M]Mx , which

satisfies the condition
∑

j1,...,jm
aj1...jmφ

j1
1 . . . φ

jm
m = A(φ) = 1. Since for any m–

tuple of indices j1, . . . , jm the rational function aj1...jm of M is defined at x and
the sequence (xk)k∈N converges to x, we may assume without loss of generality that
aj1...jm is defined at xk for any k ∈ N and that (aj1...jm(xk))k∈N converges to aj1...jm(x).
We may therefore write A(x′) :=

∑
aj1...jm(x′)Y j1

1 . . . Y jm
m ∈ C[Y ] for x′ := x or

x′ := xk, k ∈ N. From A ∈ a we deduce A(x)(a) = 0. By assumption (φ(xk))k∈N
converges to a. Hence the sequence of complex numbers (A(xk)(φ(xk)))k∈N converges
to A(x)(a) = 0. On the other hand A(φ) = 1 and the weak continuity of φ imply
A(xk)(φ(xk)) = 1 for any k ∈ N. This contradiction proves our claim.

From condition (ii) of Definition 6 we deduce that the C[M]Mx–algebra
C[M]Mx [φ1, . . . , φm] contains a single maximal ideal, say M, and that M is generated
by Mx and φ1 − φ1(x), . . . , φm − φm(x).

Since by Claim 6 the ideal ã is proper, ã must be contained in M. Observe
that the polynomials Y1 − a1, . . . , Ym − am belong to a. Hence φ1 − a1, . . . , φm − am
belong to ã and therefore also to M. Since M is proper, this is only possible if
a1 = φ1(x), . . . , am = φm(x) holds.

Thus the sequence (φ(xk))k∈N converges to φ(x).
e

Suppose now that the constructible map φ is strongly continuous. From Remark 2
we deduce that φ is topologically robust. Theorem 3 implies now that φ satisfies
condition (i) of Definition 6 at any point of M.
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Let x be an arbitrary point ofM. We have to show that φ satisfies at x condition
(ii) of Definition 6.

Since the graph of φ is constructible, its strong and Zariski closures inM×Am

coincide. Moreover, since φ is by assumption strongly continuous, its graph is closed
with respect to the strong topology of M× Am and therefore also with respect to
the Zariski topology. Let a be an arbitrary maximal ideal of the C[M]Mx–algebra
C[M]Mx [φ1, . . . , φm]. Then there exists a point a = (a1, . . . , am) of Am such that
a is generated by Mx and φ1 − a1, . . . , φm − am. Thus (x, a) ∈ M × Am belongs
to the Zariski closure of the graph of φ in M × Am and therefore to the graph
of φ itself. This implies a = φ(x). With other words, a is generated by Mx and
φ1−φ1(x), . . . , φm−φm(x). There is exactly one ideal of C[M]Mx [ϕ1, . . . , ϕm] which
satisfies this condition. Therefore the C[M]Mx–algebra C[M]Mx [ϕ1, . . . , ϕm] is local
and condition (ii) and Definition 6 is satisfied at the point x ∈M.

e
Theorem 5 is new. It gives a topological motivation for the rather abstract, algebraic
notion of geometrical robustness. The reader not acquainted with commutative
algebra may just identify the concept of geometrical robustness with that of strong
continuity of constructible maps.

Observe that Proposition 4 follows immediately from Theorem 5 in the case of
the algebraically closed field C.

The origin of the concept of a geometrically robust map can be found, implicitly,
in [GH01]. It was introduced explicitly for constructible maps with irreducible do-
mains of definition in [GHMS11], where it is used to analyze the complexity charac-
ter of multivariate Hermite–Lagrange interpolation. The concept of a geometrically
robust map is therefore well motivated from the point of view of Computer Science.

3 A software architecture based model for computations
with parameterized arithmetic circuits

3.1 Parameterized arithmetic circuits and their semantics

The routines of our computation model, which will be introduced in Section 3.3,
operate with circuits representing parameter dependent rational functions. They will
behave well under restrictions. In this spirit, the objects of our abstract data types
will be parameter dependent multivariate rational functions over C, the concrete
objects of our classes will be parameterized arithmetic circuits and our abstraction
function will associate circuits with rational functions. In what follows, C may
always be replaced, mutatis mutandis, by an arbitrary algebraically closed field (of
any characteristic).

Let us fix natural numbers n and r, indeterminates X1, . . . , Xn and a non–empty
constructible subsetM of Ar. By π1, . . . , πr we denote the restrictions toM of the
canonical projections Ar → A1.
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A (by M) parameterized arithmetic circuit β (with basic parameters π1, . . . , πr
and inputs X1, . . . , Xn) is a labelled directed acyclic graph (labelled DAG) satisfying
the following conditions:
each node of indegree zero is labelled by a scalar from C, a basic parameter π1, . . . , πr
or a input variable X1, . . . , Xn. Following the case, we shall refer to the scalar, basic
parameter and (standard) input nodes of β. All other nodes of β have indegree two
and are called internal. They are labelled by arithmetic operations (addition, sub-
traction, multiplication, division). A parameter node of β depends only on scalar
and basic parameter nodes, but not on any input node of β. An addition or multi-
plication node whose two ingoing edges depend on an input is called essential. The
same terminology is applied to division nodes whose second argument depends on
an input. Moreover, at least one circuit node becomes labelled as output. Without
loss of generality we may suppose that all nodes of outdegree zero are outputs of β.

We consider β as a syntactical object which we wish to equip with a certain
semantics. In principle there exists a canonical evaluation procedure of β assigning
to each node a rational function ofM×An which, in case of a parameter node, may
also be interpreted as a rational function ofM. We call such a rational function an
intermediate result of β.

The evaluation procedure may fail if we divide at some node an intermediate
result by another one which vanishes on a Zariski dense subset of a whole irreducible
component of M× An. If this occurs, we call the labelled DAG β inconsistent,
otherwise consistent. From [CGH+03], Corollary 2 (compare also [HS80], Theorem
4.4 and [GH01], Lemma 3) one deduces easily that testing whether an intermediate
result of β vanishes on a Zariski dense subset of a whole irreducible component of
M×An can efficiently be reduced to the same task for circuit represented rational
functions of M (the procedure is of non–uniform deterministic or alternatively of
uniform–probabilistic nature).

Mutatis mutandis the same is true for identity checking between intermediate
results of β. If M is irreducible, both tasks boil down to an identity–to–zero test
on M. In case that M is not Zariski dense in Ar, this issue presents a major
open problem in modern Theoretical Computer Science (see [Sax09] and [Shp10] for
details).

If nothing else is said, we shall from now on assume that β is a consistent
parameterized arithmetic circuit. The intermediate results associated with output
nodes will be called final results of β.

We call an intermediate result associated with a parameter node a parameter of
β and interpret it generally as a rational function of M. A parameter associated
with a node which has an outgoing edge into a node which depends on some input
of β is called essential. In the sequel we shall refer to the constructible set M as
the parameter domain of β.

We consider β as a syntactic object which represents the final results of β, i.e.,
the rational functions ofM×An assigned to its output nodes. In this way becomes
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introduced an abstraction function which associates β with these rational functions.
This abstraction function assigns therefore to β a rational map M× An 99K Aq,
where q is the number of output nodes of β. On its turn, this rational map may also
be understood as a (by M) parameterized family of rational maps An 99K Aq.

Now we suppose that the parameterized arithmetic circuit β has been equipped
with an additional structure, linked to the semantics of β. We assume that for
each node ρ of β there is given a total constructible map M× An → A1 which
extends the intermediate result associated with ρ. In this way, if β has K nodes, we
obtain a total constructible map Ω :M×An → AK which extends the rational map
M×An 99K AK given by the labels at the indegree zero nodes and the intermediate
results of β.

Definition 7 (Robust circuit) Let notations and assumptions be as before. The
pair (β,Ω) is called a robust parameterized arithmetic circuit if the constructible map
Ω is geometrically robust.

We shall make the following two observations to this definition.
We state our first observation. Suppose that (β,Ω) is robust. Then the con-

structible map Ω : M× An → AK is geometrically and hence also topologically
robust and hereditary. Moreover, there exists at most one geometrically robust con-
structible map Ω :M×An → AK which extends the rational mapM×An 99K AK

introduced before. Therefore we shall apply from now on the term “robust” also to
the circuit β.

Let us now state our second observation. We may consider the parameterized
circuit β as a program which solves the problem to evaluate, for any sufficiently
generic parameter instance u ∈M, the rational map An 99K Aq which we obtain by
specializing to the point u the first argument of the rational map M× An 99K Aq

defined by the final results of β. In this sense, the “computational problem” solved
by β is given by the final results of β.

Being robust becomes now an architectural requirement for the circuit β and for
its output. Robustness implies well behavedness under restrictions in the following
sense:

Let N be a constructible subset of M and suppose that (β,Ω) is robust. Then
Proposition 4 implies that the restriction Ω|N×An of the constructible map Ω to
N × An is still a geometrically robust constructible map.

This implies that (β,Ω) induces a by N parameterized arithmetical circuit βN .
Observe that βN may become inconsistent. If βN is consistent then (βN ,Ω|N×An)
is robust. The nodes where the evaluation of βN fails correspond to divisions of
zero by zero which may be replaced by so called approximative algorithms having
unique limits (see Section 3.3.2). These limits are given by the map Ω|N×An . We
call (βN ,Ω|N×An), or simply βN , the restriction of (β,Ω) or β to N .

We say that the parameterized arithmetic circuit β is totally division–free if any
division node of β corresponds to a division by a non–zero complex scalar.
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We call β essentially division–free if only parameter nodes are labelled by divi-
sions. Thus the property of β being totally division–free implies that β is essentially
division–free, but not vice versa. Moreover, if β is totally division-free, the rational
map given by the intermediate results of β is polynomial and therefore a geometri-
cally robust constructible map. Thus, any byM parameterized, totally division–free
circuit is in a natural way robust.

In the sequel, we shall need the following elementary fact.

Lemma 7 Let notations and assumptions be as before and suppose that the pa-
rameterized arithmetic circuit β is robust. Then all intermediate results of β are
polynomials in X1, . . . , Xn over the C–algebra of geometrically robust constructible
functions defined on M.

Proof. Without loss of generality we may assume thatM is irreducible. Let ρ be a
node of β which computes the intermediate result Gρ :M×An → A1. Definition 6
(i) and the irreducibility ofM imply that Gρ is a polynomial of C(M)[X1, . . . , Xn].
Observe that any x ∈ An induces a geometrically robust constructible mapM→ A1

whose value at the point u ∈ M is Gρ(u, x). Using interpolation at suitable points
of An, we see that the coefficients of the polynomial Gρ are geometrically robust
constructible functions with domain of definition M.

The statement of this lemma should not lead to confusions with the notion of
an essentially division–free parameterized circuit. We say just that the intermediate
results of β are polynomials in X1, . . . , Xn and do not restrict the type of arithmetic
operations contained in β.

Whether a division of a polynomial by one of its factors may always be substi-
tuted efficiently by additions and multiplications is an important issue in Theoretical
Computer Science (compare [Str73]).

To our parameterized arithmetic circuit β we may associate different complexity
measures and models. In this paper we shall mainly be concerned with sequential
computing time, measured by the size of β. Here we refer with “size” to the number
of internal nodes of β which count for the given complexity measure. Our basic
complexity measure is the non–scalar one (also called Ostrowski measure) over the
ground field C. This means that we count, at unit costs, only essential multiplica-
tions and divisions (involving basic parameters or input variables in both arguments
in the case of a multiplication and in the second argument in the case of a division),
whereas C–linear operations are free (see [BCS97] for details).

Let γ1 and γ2 be two robust parameterized arithmetic circuits with parameter
domain M and suppose that there is given a one–to–one correspondence λ which
identifies the output nodes of γ1 with the input nodes of γ2 (thus they must have
the same number). Using this identification we may now join the circuit γ1 with the
circuit γ2 in order to obtain a new parameterized arithmetic circuit γ2 ∗λ γ1 with
parameter domain M. The circuit γ2 ∗λ γ1 has the same input nodes as γ1 and the
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same output nodes as γ2 and one deduces easily from Lemma 7 and Proposition 4
that the circuit γ2 ∗λ γ1 is robust and represents a composition of the rational maps
defined by γ1 and γ2, if γ2 ∗λ γ1 is consistent. The (consistent) circuit γ2 ∗λ γ1 is
called the (consistent) join of γ1 with γ2.

Observe that the final results of a given robust parameterized arithmetic circuit
may constitute a vector of parameters. The join of such a circuit with another robust
parameterized arithmetic circuit, say β, is again a robust parameterized arithmetic
circuit which is called an evaluation of β. Hence, mutatis mutandis, the notion of
join of two routines includes also the case of circuit evaluation.

We describe now how, based on its semantics, a given parameterized arithmetic
circuit β with parameter domain M may be rewritten as a new circuit over M
which computes the same final results as β.

The resulting two rewriting procedures, called reduction and broadcasting, will
neither be unique, nor generally confluent. To help understanding, the reader may
suppose that there is given an (efficient) algorithm which allows identity checking
between intermediate results of β. However, we shall not make explicit reference to
this assumption. We are now going to explain the first rewriting procedure.

Suppose that the parameterized arithmetic circuit β computes at two different
nodes, say ρ and ρ′, the same intermediate result. Assume first that ρ neither
depends on ρ′, nor ρ′ on ρ. Then we may erase ρ′ and its two ingoing edges (if ρ′ is
an internal node) and draw an outgoing edge from ρ to any other node of β which is
reached by an outgoing edge of ρ′. If ρ′ is an output node, we label ρ also as output
node. Observe that in this manner a possible indexing of the output nodes of β may
become changed but not the final results of β themselves.

Suppose now that ρ′ depends on ρ. Since the DAG β is acyclic, ρ does not
depend on ρ′. We may now proceed in the same way as before, erasing the node ρ′.

Let β′ be the parameterized arithmetic circuit obtained, as described before, by
erasing the node ρ′. Then we call β′ a reduction of β and call the way we obtained β′

from β a reduction step. A reduction procedure is a sequence of successive reduction
steps.

One sees now easily that a reduction procedure applied to β produces a new
parameterized arithmetic circuit β∗ (also called a reduction of β) with the same basic
parameter and input nodes, which computes the same final results as β (although
their possible indexing may be changed). Moreover, if β is a robust parameterized
circuit, then β∗ is robust too. Observe also that in the case of robust parameterized
circuits our reduction commutes with restriction.

Now we introduce the second rewriting procedure.
Let assumptions and notations be as before and let be given a set P of nodes

of β and a robust parameterized arithmetic circuit γ with parameter domain M
and #P input nodes, namely for each ρ ∈ P one which becomes labelled by a new
input variable Yρ. We obtain a new parameterized arithmetic circuit, denoted by
γ ∗P β, when we join γ with β, replacing for each ρ ∈ P the input node of γ, which
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is labelled by the variable Yρ, by the node ρ of β. The output nodes of β constitute
also the output nodes of γ ∗P β. Thus β and γ ∗P β compute the same final results.
Observe that γ ∗P β is robust if it is consistent. We call the circuit γ ∗P β and all its
reductions broadcastings of β. Thus broadcasting a robust parameterized arithmetic
circuit means rewriting it using only valid polynomial identities.

If we consider arithmetic circuits as computer programs, then reduction and
broadcasting represent a kind of program transformations.

3.1.1 A specification language for circuits

Computer programs (or “programmable algorithms”) written in high level languages
are not the same thing as just “algorithms” in Complexity Theory. Whereas in the
uniform view algorithms become implemented by suitable machine models and in
the non–uniform view by devices like circuits; specifications and correctness proofs
are not treated by the general theory, but only, if necessary, outside of it in a case–
by–case ad–hoc manner. The meaning of “algorithm” in Complexity Theory is
therefore of syntactic nature.

On the other hand, computer programs, as well as their subroutines (modules)
include specifications and correctness proofs, typically written in languages orga-
nized by a hierarchy of different abstraction levels. In this sense programmable
algorithms become equipped with semantics. This is probably the main difference
between Complexity Theory and Software Engineering.

In this paper, we are only interested in algorithms which in some sense are pro-
grammable. The routines of our computation model will operate on parameterized
arithmetic circuits (see Section 3.3). Therefore we are now going to fix a (many–
sorted) first–order specification language L for these circuits.

The language L will include the following non–logical symbols:

- 0, 1,+,−,×, and a constant for each complex number,

- variables
n1, . . . , ns . . .

α(1), . . . , α(t) . . .

β1, . . . , βk . . .

ρ1, . . . , ρl . . .

M1, . . . ,Mk . . .

U (1), . . . , U (m) . . .

X(1), . . . , X(h) . . .

Y (1), . . . , Y (q) . . .
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to denote non–negative integers and vectors of them, robust parameterized
arithmetic circuits, their nodes, their parameter domains, their parameter in-
stances, their input variable vectors and instances of input variable vectors in
suitable affine spaces,

- suitable binary predicate symbols to express relations like “ρ is a node of the
circuit β”, “multiplication is the label of the node ρ of the circuit β”, “M
is the parameter domain of the circuit β”, “U is a parameter instance of the
circuit β”, “r is a non–negative integer and the vector length of U is r”, “X
is the input variable vector of the circuit β” and “n is a non–negative integer
and the vector length of X is n”,

- a ternary predicate symbol to express “ρ1 and ρ2 are nodes of the circuit β
and there is an edge of β from ρ1 to ρ2”,

- binary function symbols to express “U is a parameter instance, k is a natural
number and Uk is the k–th entry of U” and “X is an input variable vector,
n is a natural number and Xn is the n–th entry of X” and “Y is a variable
vector instance, n is a natural number and Yn is the n–th entry of Y ”,

- a unary function and a binary predicate symbol to express “the set of output
nodes of the circuit β” and “ρ is an output node of the circuit β”

- a quaternary function symbol Gρ(β;U ;X) to express “ρ is a node of the circuit
β, U is a parameter instance and X is the input variable vector of β and
Gρ(β;U ;X) is the intermediate result of β at the node ρ and the parameter
instance U”,

- a predicate symbol for equality for any of the sorts just introduced.

For the treatment of non–negative integers we add the Presburger arithmetic to
our first–order specification language L.

At our convenience we may add new function and predicate symbols and variable
sorts to L. Typical examples are for β a circuit, U a parameter instance, X the
input variable vector and ρ, ρ1, . . . , ρm nodes of β:
“degree of Gρ(β;U ;X)” and “the vector lengths of X and Y are equal (say n) and
Y is a point of the closed subvariety of An defined by the polynomials Gρ1(β;U ;X),
. . . , Gρm(β;U ;X)”.

In the same spirit, we may increase the expressive power of L in order to be
able to express for a robust parameterized circuit β with irreducible parameter
domain, U a parameter instance, X the input variable vector, ρ a node of β and α
a vector of non–negative integers of the same length as X (say n), “the coefficient
of the monomial Xα occurring in the polynomial Gρ(β;U ;X)” (recall Lemma 7).
Here we denote for X := (X1, . . . , Xn) and α := (α1, . . . , αn) by Xα the monomial
Xα := Xα1

1 , . . . , Xαn
n .
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The semantics of the specification language L is determined by the universe of all
robust parameterized arithmetic circuits, where we interpret all variables, function
symbols and predicates as explained before. We call this universe the standard
model of L. The set of all closed formulas of L which are true in this model form
the elementary theory of L.

3.2 Generic computations

In the sequel, we shall use ordinary arithmetic circuits over C as generic compu-
tations [BCS97] (also called computation schemes in [Hei89]). The indegree zero
nodes of these arithmetic circuits are labelled by scalars and parameter and input
variables.

The aim is to represent different parameterized arithmetic circuits of similar size
and appearance by different specializations (i.e., instantiations) of the parameter
variables in one and the same generic computation. For a suitable specialization
of the parameter variables, the original parameterized arithmetic circuit may then
be recovered by an appropriate reduction process applied to the specialized generic
computation.

This alternative view of parameterized arithmetic circuits will be fundamental
for the design of routines of the branching–free computation model we are going to
describe in Section 3.3.2. The routines of our computation model will operate on
robust parameterized arithmetic circuits and their basic ingredients will be subrou-
tines which calculate parameter instances of suitable, by the model previously fixed,
generic computations. These generic computations will be organized in finitely many
families which will only depend on a constant number of discrete parameters. These
discrete families constitute the basic building block of our model for branching–free
computation.

We shall now exemplify these abstract considerations in the concrete situation
of the given parameterized arithmetic circuit β. Mutatis mutandis we shall follow
the exposition of [KP96], Section 2. Let l, L0, . . . , Ll+1 with L0 ≥ r + n + 1 and
Ll+1 ≥ q be given natural numbers. Without loss of generality we may suppose that
the non–scalar depth of β is positive and at most l, and that β has an oblivious
levelled structure of l + 2 levels of width at most L0, . . . , Ll+1. Let U1, . . . , Ur be
new indeterminates (they will play the role of a set of “special” parameter variables
which will only be instantiated by π1, . . . , πr).

We shall need the following indexed families of “scalar” parameter variables
(which will only be instantiated by complex numbers):

- for n+ r < j ≤ L0 the indeterminate Vj;

- for 1 ≤ i ≤ l, 1 ≤ j ≤ Li, 0 ≤ h ≤ i, 1 ≤ k ≤ Lh, the indeterminates A
(h,k)
i,j ,

B
(h,k)
i,j and Si,j, Ti,j;
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- for 1 ≤ j ≤ Ll+1, 1 ≤ k ≤ Ll the indeterminate Ck
j .

We consider now the following function Q which assigns to every pair (i, j),
1 ≤ i ≤ l, 1 ≤ j ≤ Li and (l + 1, j), 1 ≤ j ≤ Ll+1 the rational expressions defined
below:

Q0,1 := U1, . . . , Q0,r := Ur,

Q0,r+1 := X1, . . . , Q0,r+n := Xn,

Q0,r+n+1 := Vr+n+1, . . . , Q0,L0 := VL0 .

For 1 ≤ i ≤ l and 1 ≤ j ≤ Li the value Qi,j of the function Q is recursively
defined by

Qi,j := Si,j(
∑

0≤h<i
1≤k≤Lh

A
(h,k)
i,j Qh,ke.

∑
0≤k′<i

1≤k′≤Lh′

B
(h′,k′)
i,j Qh′,k′)e+

Qi,j =Ti,j(
∑

0≤h<i
1≤k≤Lh

A
(h,k)
i,j Qh,ke/

∑
0≤h′<i

1≤k′≤Lh′

B
(h′,k′)
i,j Qh′,k′).

Finally, for (l + 1, j), 1 ≤ j ≤ Ll+1 we define Q(l+1,j) :=
∑

1≤k≤Ll C
k
jQl,k.

We interpret the function Q as a (consistent) ordinary arithmetic circuit, say Γ,
over Z (and hence over C) whose indegree zero nodes are labelled by the “standard”
input variables X1, . . . , Xn, the special parameter variables U1, . . . , Ur and the scalar
parameter variables just introduced.

We consider first the result of instantiating the scalar parameter variables con-
tained in Γ by complex numbers. We call such an instantiation a specialization
of Γ. It is determined by a point in a suitable affine space. Not all possible spe-
cializations are consistent, giving rise to an assignment of a rational function of
C(U1, . . . , Ur, X1, . . . , Xn) to each node of Γ as intermediate result.

We call the specializations which produce a failing assignment inconsistent. If
in the context of a given specialization of the scalar parameter variables of Γ we
instantiate for each index pair (i, j), 1 ≤ i ≤ l, 1 ≤ j ≤ Li the variables Si,j and Ti,j
by two different values from {0, 1}, the labelled directed acyclic graph Γ becomes
an ordinary arithmetic circuit over C of non–scalar depth at most l and non–scalar
size at most L1 + · · ·+ Ll with the inputs U1, . . . , Ur, X1, . . . , Xn.

We may now find a suitable specialization of the circuit Γ into a new circuit Γ′

over C such that the following condition is satisfied:
the (byM) parameterized circuit obtained from Γ′ by replacing the special parame-
ter variables U1, . . . , Ur by π1, . . . , πr, is consistent and can be reduced to the circuit
β.

We may consider the circuit Γ as a generic computation which allows to recover
β by means of a suitable specialization of its scalar and special parameter vari-
ables into complex numbers and basic parameters π1, . . . , πr and by means of circuit
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reductions. Moreover, any by M parameterized, consistent arithmetic circuit of
non–scalar depth at most l, with inputs X1, . . . , Xn and q outputs, which has an
oblivious level structure with l + 2 levels of width at most L0, . . . , Ll+1, may be
recovered from Γ by suitable specializations and reductions (see [BCS97], Chapter
9 for more details on generic computations).

3.3 A model for branching–free computation.

3.3.1 Requirements to be satisfied by our branching–free computation
model. Informal discussion.

We are now going to introduce a model of branching–free computation with param-
eterized arithmetic circuits. We shall first require that the routines of this compu-
tation model should be well behaved under restrictions of the inputs. We discuss
this issue first informally.

Suppose for the moment that our branching–free computation model is already
established. Then its routines transform a given parameterized arithmetic (input)
circuit into another parameterized (output) circuit such that both circuits have the
same parameter domain. Applied to a given parameterized input circuit, a routine
of our computation model generates by means of its intermediate steps a DAG of
parameterized arithmetic circuits, one contained in the other, which have all the
same parameter domain.

Let A be a routine of our branching–free computation model and consider the
previously introduced parameterized circuit β. Let N be a constructible subset of
M and suppose that β is an admissible input for the routine A. Then A produces
on input β a parameterized arithmetic output circuit with parameter domain M
which we denote by A(β). In order to formulate for the routine A the requirement
of well behavedness under restriction of the inputs, we must be able to restrict β
and A(β) to N . Thus β and A(β) should be robust, βN should be a consistent
admissible input circuit for A and A(βN ) should be consistent too.

Our first architectural requirement on the routine A may now be formulated as
follows:

The parameterized arithmetic circuit A(βN ) can be recovered from A(β)
by restriction to N and circuit reduction.

We call this requirement well behavedness under restrictions.

The routine A performs with the parameterized arithmetic circuit β a trans-
formation whose crucial feature is that only nodes which depend on the inputs
X1, . . . , Xn of β become modified, whereas parameter nodes remain substantially
preserved. This needs an explicitation.

Suppose that β has t essential parameter nodes. Then the essential parameters
(intermediate results) of β associated with these nodes define a geometrically robust
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constructible map θ : M → At. The image T of θ is a constructible subset of At.
We require now that, as far as A performs arithmetic operations with parameters
of β, A does it only with essential ones, and that all essential parameters of A(β)
are obtained in this way. Further we require that there exists a geometrically robust
constructible map ν defined on T (e.g., a polynomial map) such that the results of
these arithmetic operations occur as entries of the composition map ν ◦ θ. From
Proposition 4 we deduce that ν ◦ θ is a geometrically robust constructible map.

Our basic construction method of routines will be recursion. A routine of our
computation model which can be obtained in this way is called recursive.

Suppose now that A is a recursive routine of our computation model. Then A
should be organized in such a way that for each internal node ρ of β, which depends
on at least one input, there exists a set of nodes of A(β), also denoted by ρ, with
the following property:
the elements of the set ρ of nodes of A(β) represent the outcome of the action of A
at the node ρ of β.

We fix now a node ρ of β which depends on at least one input. Let Gρ be the
intermediate result associated with the node ρ of β and let Fρ be a vector whose
entries are the intermediate results of A(β) at the nodes contained in the set ρ
of nodes of A(β). Thus Fρ is a vector of rational functions in a suitable tuple of
(standard) variables, say X ′.

Recall that by assumption β and A(β) are robust parameterized arithmetic cir-
cuits with parameter domain M. Therefore we deduce from Lemma 7 that Gρ and
the entries of Fρ are in fact polynomials in X1, . . . , Xn and X ′, respectively, and
that their coefficients are geometrically robust functions defined on M.

As part of our second and main requirement of our computation model we de-
mand now thatA satisfies at the node ρ of β the following isoparametricity condition:

(i) for any two parameter instances u1 and u2 of M the assumption

Gρ(u1, X1, . . . , Xn) = Gρ(u2, X1, . . . , Xn)

implies
Fρ(u1, X

′) = Fρ(u2, X
′).

Let θρ be the coefficient vector of Gρ and observe that θρ is a geometrically robust
constructible map defined onM, whose image, say Tρ, is an irreducible constructible
subset of a suitable affine space.

Since the first–order theory of the algebraically closed field C admits quantifier
elimination, one concludes easily that condition (i) is satisfied if and only if there
exists a constructible map σρ defined on Tρ such that the composition map σρ ◦ θρ
(which is also constructible) represents the coefficient vector of (all entries of) Fρ.

In the sequel we shall need that the dependence σρ of the coefficient vector of
Fρ on the coefficient vector of Gρ is in some stronger sense uniform (and not just
constructible). Therefore we include the following condition in our requirement:
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(ii) the constructible map σρ is geometrically robust.

The map σρ is uniquely determined by condition (i). Moreover, the map σρ
depends on the (combinatorial) labelled DAG structure of β below the node ρ,
but not directly on the basic parameters π1, . . . , πr. This is the essence of the
isoparametric nature of conditions (i) and (ii). We shall therefore require that our
recursive routine is isoparametric in this sense, i.e., that A satisfies conditions (i)
and (ii) at any internal node ρ of β which depends at least on one input.

Observe that the geometrically robust constructible map σρ (which depends on
β as well as on ρ) is not an artifact, but emerges naturally from the recursive con-
struction of a circuit semantic within the paradigm of object–oriented programming.
To explain this, let notations and assumptions be as before and suppose that A is a
isoparametric recursive routine of our model and that we apply A to the robust pa-
rameterized arithmetic circuit β. Let ρ again be a node of β which depends at least
on one input. Let u be a parameter instance ofM and denote by β(u), G

(u)
ρ , A(β)(u)

and F
(u)
ρ the instantiations of β, Gρ, A(β) and Fρ at u (observe that the interme-

diate results of β(u) and A(β)(u) are well defined although we do not require that
these circuits are consistent). Then the intermediate results of A(β)(u) contained in

F
(u)
ρ depend only on the intermediate result G

(u)
ρ of β(u) and not on the parameter

instance u itself. In this spirit we may consider the sets Γρ := {G(u)
ρ e; eu ∈M} and

Φρ := {F (u)
ρ e; eu ∈M} as abstract data types and β and A(β) as syntactic descrip-

tions of two abstraction functions which associate to any concrete object u ∈ M
the abstract objects G

(u)
ρ and F

(u)
ρ , respectively. The identity map idM :M→M

induces now an abstract function [Mey00] from Γρ to Φρ, namely σρ : Γρ → Φρ. In
this terminology, idM is just an implementation of σρ. If we now consider that each
recursive step of the routine A on input β has to be realized by some routine of
the object–oriented programming paradigm, we arrive to a situation which requires
the existence of a geometrically robust constructible map σρ : Γρ → Φρ as above. If
we require additionally that this routine is branching–free, the constructible map σρ
must be geometrically robust. By the way, this last requirement is also numerically
meaningful.

We may interpret the map σρ : Γρ → Φρ also as an ingredient of a specification of
the recursive routine A. The map σρ may be thought as an operational specification
which determines Fρ in function of Gρ. A weaker specification would be a descriptive
one which relates Gρ and Fρ without determining Fρ from Gρ completely.

In order to motivate the requirement that the recursive routine A should be
isoparametric, we shall consider the following condition for recursive routines which
we call well behavedness under reductions.

We only outline here this condition and leave the details until Section 3.3.2.
Suppose now that we apply a reduction procedure to the robust parameterized

input circuit β producing thus another robust, byM parameterized circuit β∗ which
computes the same final results as β. Then the reduced circuit β∗ should also be
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an admissible input for the routine A. We call the recursive routine A well behaved
under reductions if on input β it is possible to extend the given reduction procedure
to the output circuit A(β) in such a way, that the extended reduction procedure,
applied to A(β), reproduces the circuit A(β∗).

Obviously well behavedness under reductions limits the structure of A(β). Later,
in Section 3.3.2, we shall see that, cum grano salis, any recursive routine, which is
well behaved under restrictions and reductions, is necessarily isoparametric. Since
well behavedness under restrictions and reductions are very natural quality at-
tributes for routines which transform robust parameterized arithmetic circuits, the
weaker requirement, namely that recursive routines should be isoparametric, turns
out to be well motivated.

In Section 3.3.2, we shall formally introduce our branching–free computation
model. We postpone for then the precise definition of the notion of well behavedness
under reductions.

There exists a second reason to restrict the recursive routines of our branching–
free computation model to isoparametric ones. Isoparametric recursive routines
have considerable advantages for program specification and verification by means of
Hoare Logics (see [Apt81]). We shall come back to this issue in Section 3.3.2.

3.3.2 The branching–free computation model

The computation model we are going to introduce in this and the next subsection
will be comprehensive enough to capture the essence of all known circuit based elim-
ination algorithms in effective algebraic geometry and, mutatis mutandis, also of all
other (linear algebra and truncated rewriting) elimination procedures (see Sections
3.3.3, 4, [Mor03], [Mor05], and the references cited therein, and for truncated rewrit-
ing methods especially [DFGS91]). The only algorithm from symbolic arithmetic
circuit manipulation which will escape from our model is the Baur–Strassen gradient
computation [BCS97], Chapter 7.2.

In the sequel we shall distinguish sharply between the notions of input variable
and parameter and the corresponding categories of circuit nodes.

Input variables, called “standard”, will occur in parameterized arithmetic circuits
and generic computations. The input variables of generic computations will appear
subdivided in three sorts, namely as “parameter”, “argument” and “standard” input
variables.

The branching–free computation model we are going to introduce in this subsec-
tion will assume different shapes, each shape being determined by a finite number
of a priori given discrete (i.e., by tuples of natural numbers indexed) families of
generic computations. The labels of the inputs of the ordinary arithmetic circuits
which represent these generic computations will become subdivided into parameter,
argument and standard input variables. We shall use the letters like U,U ′, U ′′, . . .
and W,W ′,W ′′ to denote vectors of parameters, Y, Y ′, Y ′′, . . . and Z,Z ′, Z ′′ to de-
note vectors of argument and X,X ′, X ′′, . . . to denote vectors of standard input
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variables (see Section 3.2).
We shall not write down explicitly the indexations of our generic computations

by tuples of natural numbers. Generic computations will simply be distinguished
by subscripts and superscripts, if necessary.

Ordinary arithmetic circuits of the form

RX1(W1;X(1)), RX2(W2;X(2)), . . .
R′X1

(W1′ ;X
(1′)), R′X2

(W2′ ;X
(2′)), . . .

. . . . . . . . .

represent a first type of a discrete family of generic computations (for each variable
X1, X2, . . . , Xn we suppose to have at least one generic computation). Other types
of families of generic computations are of the form

R+(W ;U, Y ;X), R′+(W ′;U ′, Y ′;X ′), R′′+(W ′′;U ′′, Y ′′;X ′′) . . .
R./(W ;U, Y ;X), R′./(W

′;U ′, Y ′;X ′), R′′./(W
′′;U ′′, Y ′′;X ′′) . . .

Radd(W ;Y, Z;X), R′add(W
′;Y ′, Z ′;X ′), R′′add(W

′′;Y ′′, Z ′′;X ′′) . . .
Rmult(W ;Y, Z;X), R′mult(W

′;Y ′, Z ′;X ′), R′′mult(W
′′;Y ′′, Z ′′;X ′′) . . .

and

Rdiv(W ;Y, Z;X), R′div(W
′;Y ′, Z ′;X ′), R′′div(W

′′;Y ′′, Z ′′;X ′′) . . . .

Here the subscripts refer to addition of, and multiplication or division by a parameter
(or scalar) and to essential addition, multiplication and division. A final type of
families of generic computations is of the form

R(W ;Y ;X), eR′(W ′;Y ′;X ′), eR′′(W ′′;Y ′′;X ′′), . . .

We recall from Section 3.3.1 that the objects handled by the routines of any shape
of our computation model will always be robust parameterized arithmetic circuits.
The inputs of these circuits will only consist of standard variables.

From now on we have in mind a previously fixed shape when we refer to the
branching–free computation model we are going to introduce. We start with a given
finite set of discrete families of generic computations which constitute a shape as
described before.

A fundamental issue is how we recursively transform a given input circuit into
another one with the same parameter domain. During such a transformation we
make an iterative use of previously fixed generic computations. On their turn these
determine the corresponding recursive routine of our branching–free computation
model.

We consider again our input circuit β. We suppose that we have already chosen
for each node ρ, which depends at least on one of the input variables X1, . . . , Xn, a
generic computation

R
(ρ)
Xi

(Wρ;X
(ρ)),
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R
(ρ)
+ (Wρ;Uρ, Yρ;X

(ρ)),

R(ρ)
./

(Wρ;Uρ, Yρ;X
(ρ)),

R
(ρ)
add(Wρ;Yρ, Zρ;X

(ρ)),

R
(ρ)
mult(Wρ;Yρ, Zρ;X

(ρ)),

R
(ρ)
div(Wρ;Yρ, Zρ;X

(ρ)),

and that this choice was made according to the label of ρ, namely Xi, 1 ≤ i ≤ n,
or addition of, or multiplication or division by an essential parameter, or essential
addition, multiplication or division. Here we suppose that Uρ is a single variable,
whereas Wρ, Yρ, Zρ and X(ρ) may be arbitrary vectors of variables.

Furthermore, we suppose that we have already precomputed for each node ρ
of β, which depends at least on one input, a vector wρ of geometrically robust
constructible functions defined on M. If ρ is an input node we assume that wρ is a
vector of complex numbers. Moreover, we assume that the length of wρ equals the
length of the variable vector Wρ. We call the entries of wρ the parameters at the
node ρ of the routine A applied to the input circuit β.

We are now going to develop the routine A step by step. The routine A takes
over all computations of β which involve only parameter nodes, without modifying
them.

Consider an arbitrary internal node ρ of β which depends at least on one input.
The node ρ has two ingoing edges which come from two other nodes of β, say ρ1

and ρ2. Suppose that the routine A, on input β, has already computed two results,
namely Fρ1 and Fρ2 , corresponding to the nodes ρ1 and ρ2. Suppose inductively that
these results are vectors of polynomials depending on those standard input variables
that occur in the vectors of the form X(ρ′), where ρ′ is any predecessor node of ρ.
Furthermore, we assume that the coefficients of these polynomials constitute the
entries of a geometrically robust, constructible map defined on M. Finally we
suppose that the lengths of the vectors Fρ1 and Yρ (or Uρ) and Fρ2 and Zρ coincide.

The parameter vector wρ of the routine A forms a geometrically robust, con-
structible map defined on M, whose image we denote by Kρ. Observe that Kρ is a
constructible subset of the affine space of the same dimension as the length of the
vectors wρ and Wρ. Denote by κρ the vector of the restrictions to Kρ of the canon-
ical projections of this affine space. We consider Kρ as a new parameter domain
with basic parameters κρ. For the sake of simplicity we suppose that the node ρ is
labelled by a multiplication. Thus the corresponding generic computation has the
form

R(ρ)
./

(Wρ;Uρ, Yρ;X
(ρ)) (1)

or
R

(ρ)
mult(Wρ;Yρ, Zρ;X

(ρ)). (2)

Let the specialized generic computations

R(ρ)
./

(κρ, Uρ, Yρ, X
(ρ))eand eR

(ρ)
mult(κρ, Yρ, Zρ, X

(ρ))
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be the by Kρ parameterized arithmetic circuits obtained by substituting in the
generic computations (1) and (2) for the vector of parameter variables Wρ the basic
parameters κρ. At the node ρ we shall now make the following requirement on the
routine A applied to the input circuit β:

(A) The by Kρ parameterized arithmetic circuit which corresponds to the current
case, namely

R(ρ)
./

(κρ;Uρ, Yρ;X
(ρ))

or
R

(ρ)
mult(κρ;Yρ, Zρ;X

(ρ)),

should be consistent and robust.

Observe that the requirement (A) is automatically satisfied if all the generic
computations of our shape are realized by totally division–free ordinary arithmetic
circuits.

Assume now that the routine A applied to the circuit β satisfies the requirement
(A) at the node ρ of β.

Let us first suppose that the node ρ is labelled by a multiplication involving
an essential parameter. Recall that in this case we assumed earlier that the length
of the vector Fρ1 is one, that Fρ1 is an essential parameter of β and that the vec-
tors Fρ2 and Yρ have the same length. Joining now with the generic computation
R(ρ)
./

(Wρ;Uρ, Yρ;X
(ρ)) at Wρ, Uρ and Yρ the previous computations of wρ, Fρ1 and Fρ2 ,

we obtain a parameterized arithmetic circuit with parameter domainM, whose final
results are the entries of a vector which we denote by Fρ.

Suppose now that the node ρ is labelled by an essential multiplication. Recall
again that in this second case we assumed earlier the vectors Fρ1 and Yρ and Fρ2

and Zρ have the same length. Joining with the generic computation

R
(ρ)
mult(Wρ;Yρ, Zρ;X

(ρ))

at Wρ, Yρ and Zρ the previous computations of wρ, Fρ1 and Fρ2 we obtain also a
parameterized arithmetic circuit with parameter domainM, whose final results are
the entries of a vector which we denote again by Fρ.

One deduces easily from our assumptions on wρ, Fρ1 and Fρ2 and from the re-
quirement (A) in combination with Lemma 7 and Proposition 4, that in both cases
the resulting parameterized arithmetic circuit is robust if it is consistent. The other
possible labellings of the node ρ by arithmetic operations are treated similarly. In
particular, in case that ρ is an input node labelled by the variable Xi, 1 ≤ i ≤ n,
the requirement (A) implies that the ordinary arithmetic circuit R

(ρ)
Xi

(wρ;X
(ρ)) is

consistent and robust and that all its intermediate results are polynomials in X(ρ)

over C (although R
(ρ)
Xi

(wρ;X
(ρ)) may contain divisions).

In view of our comments in Section 3.3.1, we call the recursive routineA (on input
β) well behaved under restrictions if the requirement (A) is satisfied at any node ρ
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of β which depends at least on one input and if joining the corresponding generic
computation with wρ, Fρ1 and Fρ2 produces a consistent circuit (observe that this
last condition is automatically satisfied when the specialized generic computation of
(A) is essentially division–free). If the routine A is well behaved under restrictions,
then A transforms step by step the input circuit β into another consistent robust
arithmetic circuit, namely A(β), with parameter domain M.

As a consequence of the recursive structure of A(β), each node ρ of β generates
a subcircuit of A(β) which we call the component of A(β) generated by ρ. The
output nodes of each component of A(β) form the hypernodes of a hypergraphHA(β)

whose hyperedges are given by the pathes connecting the nodes of A(β) contained
in distinct hypernodes of HA(β). The hypergraph HA(β) may be shrunk to the DAG
structure of β and therefore we denote the hypernodes of HA(β) in the same way as
the nodes of β. Notice that well behavedness under restrictions is in fact a property
which concerns the hypergraph HA(β).

We call A a (recursive) parameter routine if A does not introduce new standard
variables. In the previous recursive construction of the routine A, the parameters
at the nodes of β, used for the realization of the circuit A(β), are supposed to be
generated by recursive parameter routines.

We are now going to consider another requirement of our recursive routine A,
which will lead us to the notion of isoparametricity of A.

Let us turn back to the previous situation at the node ρ of the input circuit
β. Notations and assumptions will be the same as before. From Lemma 7 we
deduce that the intermediate result of β associated with the node ρ, say Gρ, is
a polynomial in X1, . . . , Xn whose coefficients form the entries of a geometrically
robust, constructible map defined onM, say θρ. Let Tρ be the image of this map and
observe that Tρ is a constructible subset of a suitable affine space. The intermediate
results of the circuit A(β) at the elements of the hypernode ρ of HA(β) constitute a
polynomial vector which we denote by Fρ.

We shall now make another requirement at the node ρ on the routine A applied
to the input circuit β:

(B) There exists a geometrically robust, constructible map σρ defined on Tρ such
that σρ ◦ θρ constitutes the coefficient vector of Fρ.

In view of the comments made in Section 3.3.1 we call the recursive routine A
isoparametric (on input β) if requirements (A) and (B) are satisfied at any node ρ
of β which depends at least on one input.

Let assumptions and notations be as before and consider again the node ρ of the
circuit β. Assume that the recursive routine A is well behaved under restrictions and
denote by τρ the coefficient vector of Fρ. Observe that τρ is a geometrically robust
constructible map defined on M. Assume, furthermore, that A, applied to the
circuit β, fulfills the requirement (B) at ρ. Then the topological robustness (which
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is a consequence of the geometrical robustness) of σρ implies that the following
condition is satisfied:

(B′) Let (uk)k∈N be a (not necessarily convergent) sequence of parameter instances
uk ∈ M and let u ∈ M such that (θρ(uk))k∈N converges to θρ(u). Then the
sequence (τρ(uk))k∈N is bounded.

Suppose now that the recursive routine A is well behaved under restrictions and
satisfies instead of (B) only condition (B′) at the node ρ of β. Let u ∈ M be an
arbitrary parameter instance. Then Theorem 3 implies that τρ takes on the set
{u′ ∈M; θρ(u

′) = θρ(u)} only finitely many values. In particular, for Mu being the
vanishing ideal of the C–algebra C[θρ] at θρ(u), the entries of τρ are integral over the
local C–algebra C[θρ]Mu (the argument for that relies on Zariski’s Main Theorem
and is exhibited in [CGH+03], Sections 3.2 and 5.1). This algebraic characterization
implies that for given u ∈ M all the sequences (τρ(uk))k∈N of condition (B′) have
only finitely many distinct accumulation points. This shows that requirement (B)
and condition (B′) are closely related.

Adopting the terminology of [GHMS11] we call A coalescent (on input β), if A
is well behaved under restrictions and satisfies condition (B′) for any node ρ of β.
Thus isoparametricity implies coalescence forA, but not vice versa. Nevertheless the
notions of isoparametricity and coalescence become quite close for recursive routines
which are well behaved under restrictions.

Suppose again that the recursive routine A is well behaved under restrictions.
We call A well behaved under reductions (on input β) if A(β) satisfies the following
requirement:

Let ρ and ρ′ be distinct nodes of β which compute the same intermediate
results. Then the intermediate results at the hypernodes ρ and ρ′ of HA(β)

are identical. Mutatis mutandis the same is true for the computation of
the parameters of A at any node of β.

Assume that the routine A is recursive and well behaved under reductions. One
verifies then easily that, taking into account the hypergraph structureHA(β) ofA(β),
any reduction procedure on β may canonically be extended to a reduction procedure
of A(β).

In Section 3.3.1 we claimed that, cum grano salis, the requirement of well be-
havedness under reductions implies the requirement of isoparametricity for recursive
routines. We are going now to prove this.

Let notations and assumptions be as before and let us analyze what happens
to the recursive routine A at the node ρ of β. For this purpose we shall use the
following broadcasting argument.

Recall that Gρ and the entries of Fρ are the intermediate results of β and A(β)
associated with ρ, where ρ is interpreted as a node of the input circuit β in the
first case and as a hypernode of HA(β) in the second one. Moreover recall that
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Gρ is a polynomial in X1, . . . , Xn, that the geometrically robust, constructible map
θρ, defined on M, represents the coefficient vector of Gρ and that the irreducible
constructible set Tρ is the image of θρ. Observe that the entries of θρ may be
computed from π1, . . . , πr by a robust arithmetic circuit (e.g., by interpolation of
Gρ in sufficiently generic points of An). We consider now the robust parameterized
arithmetic circuit γρ which realizes the following trivial evaluation of the polynomial
Gρ:

- compute simultaneously from π1, . . . , πr all entries of θρ and from X1, . . . , Xn

all monomials occurring in Gρ

- computeGρ as a linear combination of the monomials ofGρ using as coefficients
the entries of θρ.

The circuit γρ has a single output node, say ρ′, which computes the polynomial
Gρ.

Now we paste, as disjointly as possible, the circuit γρ to the circuit β obtaining
thus a new robust, parameterized arithmetic circuit βρ with parameter domain M.
Observe that βρ contains β and γρ as subcircuits and that ρ and ρ′ are distinct nodes
of βρ which compute the same intermediate result, namely Gρ. The entries of θρ are
essential parameters of γρ and hence also of βρ. We suppose now that βρ is, like β,
an admissible input for the recursive routine A. Let Fρ′ be a vector whose entries
are the intermediate results at the nodes of A(βρ) contained in the hypernode ρ′

of HA(βρ). Analyzing now how A operates on the structure of the subcircuit γρ of
βρ, we see immediately that there exists a geometrically robust constructible map
σρ defined on Tρ such that the composition map σρ ◦ θρ constitutes the coefficient
vector of Fρ′ . Since by assumption the recursive routine A is well behaved under
reductions and the intermediate results of βρ at the nodes ρ and ρ′ consist of the
same polynomial Gρ, we conclude that the intermediate results at the hypernodes
ρ and ρ′ of HA(βρ) are also the same. Therefore we may assume without loss of
generality Fρ = Fρ′ . Hence the geometrically robust, constructible map σρ ◦ θρ
constitutes the coefficient vector of Fρ.

This proves that the recursive routine A satisfies, on input β and at the node
ρ, the requirement (B). Since β was an arbitrary admissible input circuit for the
recursive routine A and ρ was an arbitrary node of β which depends on at least one
input, we may conclude that A is isoparametric. The only assumption we made to
draw this conclusion was that the extended circuit βρ is an admissible input for the
routine A. This conclusion is however not very restrictive because β and βρ compute
the same final results.

In Section 3.3.1, we mentioned that isoparametric routines are advantageous for
program specification and verification. We are now going to explain this.

Let notations and assumptions be as before and let in particular A be a recursive
routine of our computation model which behaves well under restrictions. Assume
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that β is an admissible input for A and consider the specification language L intro-
duced in Section 3.1.1. Suppose that the routine A is given by an asserted program
Π formulated in the elementary Hoare Logics of L ([Apt81]). The standard model
of the elementary theory of L provides us with the states which define the semantics
of Π. The asserted program Π represents the routine A as a loop which transforms
node by node the labelled DAG structure of β into the labelled DAG structure of
A(β).

At each step of the loop a purely syntactic action, namely a graph manipulation,
takes place. This action consists of the join of two or more labelled directed acyclic
graphs. Simultaneously, in order to guarantee the correctness of the program Π, a
loop invariant, formulated in our specification language L, has to be satisfied.

This involves the semantics of L consisting of the universe of all robust pa-
rameterized arithmetic circuits. A loop invariant as above is given by a formula∧

(β1, β2,M1, ρ1) of L containing the free variables β1, β2 for circuits over the same
parameter domain M1 and ρ1 for a node of β1 and a linked hypernode of β2, such
that these free variables become instantiated by β, A(β),M and the node ρ of β or
the hypernode ρ of A(β). The variables U (1), . . . , U (m), . . . and the standard input
variable vectors X(1), . . . , X(h), . . . occur only bounded in

∧
(β1, β2,M1, ρ1) and the

variables ρ1, . . . , ρl, . . . occur all bounded except one, namely ρ1.
For π := (π1, . . . , πr) and given variables X,X ′ and ρ expressing a parameter

instantiation, the input variable vectors of β and A(β) and a node of β, we denote
by Gρ(β; π;X) and Fρ(A(β);π;X ′) the function symbols (or vectors of them) which
express the intermediate results of β or A(β) corresponding to ρ.

We require now that any formula of L built up by Gρ1 , . . . , Gρl and Fρ′1 , . . . , Fρ′l′ ,
and containing only β, M and ρ1 as free variables is equivalent to a formula built
up only by Gρ1 , . . . , Gρl and Gρ′1

, . . . , Gρ′
l′
. This implies that in L the intermediate

result Fρ of A(β) is definable in terms of the intermediate result Gρ of β. Applied
to the node ρ of the concrete circuit β with parameter domain M, this means that
for θρ and τρ being the coefficient vectors of Gρ(β, π,X) and Fρ(A(β), π,X ′) and Tρ
being the image of θρ, there exists a constructible map σρ with domain of definition
Tρ such that τρ = σρ ◦ θρ holds. In particular, for u′, u′′ ∈ M the assumption
θρ(u

′) = θρ(u
′′) implies τρ(u

′) = τρ(u
′′).

For the modelling of elimination algorithms this is a reasonable requirement
(see Section 4). If we require additionally that the transformation of Gρ(β, π,X)
into Fρ(A(β), π,X ′) is branching–free, then the constructible map σρ has to be
geometrically robust (see Section 3.3.1).

In terms of the specification language L, this reasoning may be formulated as
follows.

Let β1, β2,M1 and ρ1 be variables for robust parameterized arithmetic circuits,
their parameter domains and their (hyper)nodes. We assume that there exist a
formula

Ω(β1, β2,M1, ρ1)

in the free variables β1, β2,M1, ρ1 such that for any concrete, forA admissible circuit
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β with parameter domainM and basic parameter vector π and for any node ρ of β
the following condition is satisfied:

(∗) Ω(β,A(β),M, ρ) determines the polynomial Fρ(A(β), π,X ′)
in terms of Gρ(β, π,X).

If L and A satisfy this assumption we say in the spirit of Hoare Logics that L is
expressive for the routine A.

Observe that condition (∗) guarantees that a postcondition for the circuit A(β)
can always be translated into an equivalent precondition for the circuit β.

Let A and B be recursive routines as before and suppose that they are well
behaved under restrictions and isoparametric or even well behaved under reductions.
Assume that A(β) is an admissible input for B. We define the composed routine
B ◦ A in such a way that (B ◦ A)(β) becomes the parameterized arithmetic circuit
B(A(β)). Since the routines A and B are well behaved under restrictions, we see
easily that (B ◦ A)(β) is a consistent, robust parameterized arithmetic circuit with
parameter domainM. From Lemma 7 and Proposition 4 we deduce that B ◦A is a
isoparametric recursive routine if A and B are isoparametric. In case that A and B
are well behaved under reductions, one verifies immediately that B ◦ A is also well
behaved under reductions. Therefore, under these assumptions, we shall consider
B ◦ A also as a routine of our computation model.

Unfortunately, the composition of two arbitrary coalescent recursive routines
need not to be coalescent. Therefore we shall focus in the sequel our attention
on isoparametric recursive routines as basic building blocks of the branching–free
computation model we are going to introduce.

The identity routine is trivially well behaved under restrictions and reductions
and in particular isoparametric.

Let A and B be two routines of our computation model and suppose for the sake
of simplicity that they are recursive and well behaved under restrictions. Assume
that the robust parameterized arithmetic circuit β is an admissible input for A and
B and that there is given a one–to–one correspondence λ which identifies the output
nodes of A(β) with the input nodes of B(β). Often, for a given input circuit β, the
correspondence λ is clear by the context. If we limit ourselves to input circuits β
where this occurs, we obtain from A and B a new routine, called their join, which
transforms the input circuit β into the output circuit B(β)∗λA(β) (here we suppose
that B(β) ∗λ A(β) is consistent). Analyzing now B(β) ∗λ A(β), we see that the join
of A with B is well behaved under restrictions in the most obvious sense. Since by
assumption the routines A and B are recursive, the circuits A(β) and B(β) inherit
from β a superstructure given by the hypergraphs HA(β) and HB(β). Analyzing
again this situation, we see that any reduction procedure on β can be extended in a
canonical way to the circuit B(β) ∗λ A(β). This means that the join of A with B is
also well behaved under reductions if the same is true for A and B. More caution is
at order with the notions of isoparametricity and coalescence. In a strict sense, the
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join of two isoparametric or coalescent recursive routines A and B is not necessarily
isoparametric or coalescent. However the conditions (B) or (B′) are still satisfied
between the output nodes of β and B(β) ∗λ A(β). A routine with one of these two
properties is called output isoparametric or output coalescent, respectively.

The union of the routinesA and B assigns to the input circuit β the juxtaposition
of A(β) and B(β). Thus, on input β, the final results of the union of A and B are the
final results of A(β) and B(β) (taken separately in case of ambiguity). The union
of A and B behaves well under restrictions and reductions and is isoparametric if
the same is true for A and B.

Observe also that for a recursive routine A which behaves well under restrictions
and reductions the following holds: let β be a robust parameterized arithmetic circuit
that broadcasts to a circuit β∗ and assume that β and β∗ are admissible circuits for
A. Then A(β) broadcasts to A(β∗).

From these considerations we conclude that routines, constructed as before by
iterated applications of the operations isoparametric recursion, composition, join
and union, are still, in a suitable sense, well behaved under restrictions and output
isoparametric. If only recursive routines become involved that behave well under
reductions, we may also allow broadcastings at the interface of two such operations.

This remains true when we introduce, as we shall do now, in our computational
model the following additional type of routine construction.

Let β be the robust, parameterized circuit considered before, and let R(W ;Y ;X)
be a generic computation belonging to our shape list. Let wβ be a precomputed
vector of geometrically robust constructible functions with domain of definition M
and suppose that wβ and W have the same vector length and that the entries of
wβ are the final results of an output isoparametric parameter routine applied to the
circuit β. Moreover suppose that the final results of β form a vector of the same
length as Y .

Let K be the image of wβ. Observe that K is a constructible subset of the affine
space which has the same dimension as the vector length of W . Denote by κ the
vector of the restrictions to K of the canonical projections of this affine space. We
denote by R(κ;Y ;X) the ordinary arithmetic circuit over C obtained by substituting
in the generic computation R(W ;Y ;X) the vector of parameter variables W by κ.
We shall now make the following requirement:

(C) The ordinary arithmetic circuit R(κ;Y ;X) should be consistent and robust.

Observe that requirement (C) is obsolete when R(W ;Y ;X) is a totally division–
free ordinary arithmetic circuit.

Suppose now that requirement (C) is satisfied. A new routine, say B, is obtained
in the following way: on input β the routine B joins with the generic computation
R(W ;Y ;X) at W and Y the previous computation of wβ and the circuit β.

From Lemma 7 and Proposition 4 we deduce that the resulting parameterized
arithmetic circuit B(β) has parameter domainM and is robust if it is consistent. We
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shall therefore require that B(β) is consistent (this condition is automatically satis-
fied if R(κ;Y ;X) is essentially division–free). One sees immediately that the routine
B is well behaved under restrictions and reductions and is output isoparametric.

From now on we shall always suppose that all our recursive routines are isopara-
metric and well behaved under restrictions and that requirement (C) is satisfied
when we apply this last type of routine construction.

An elementary routine of our simplified branching–free computation model is
finally obtained by the iterated application of all these construction patterns, in
particular the last one, isoparametric recursion, composition, join and union. As far
as only recursion becomes involved that is well behaved under reductions, we allow
also broadcastings at the interface of two constructions. Of course, the identity
routine belongs also to our model. The set of all these routines is therefore closed
under these constructions and operations.

We call an elementary routine essentially division–free if it admits as input only
essentially division–free, robust parameterized arithmetic circuits and all specialized
generic computations used to compose it are essentially division–free. The outputs
of essentially division–free elementary routines are always essentially division–free
circuits. The set of all essentially division–free elementary routines is also closed
under the mentioned constructions and operations.

We have seen that elementary routines are, in a suitable sense, well behaved
under restrictions. In the following statement we formulate explicitly the property
of an elementary routine to be output isoparametric. This will be fundamental in
our subsequent complexity considerations.

Proposition 8 Let A be an elementary routine of our branching–free computation
model. Then A is output isoparametric. More explicitly, let β be a robust, parame-
terized arithmetic circuit with parameter domainM. Suppose that β is an admissible
input for A. Let θ be a geometrically robust, constructible map defined on M such
that θ represents the coefficient vector of the final results of β and let T be the image
of θ. Then T is a constructible subset of a suitable affine space and there exists a
geometrically robust, constructible map σ defined on T such that the composition
map σ ◦ θ represents the coefficient vector of the final results of A(β).

A complete proof of this proposition is just tedious and will be omitted here. In
case that A is a recursive routine, Proposition 8 expresses nothing but the require-
ment (B) applied to the output nodes of β.

Let assumptions and notations be as in Proposition 8 and suppose that there is
given a (not necessarily convergent) sequence (uk)k∈N of parameter instances uk ∈M
and that there exists a (possibly unknown) parameter instance u ∈ M such that
the sequence (θ(uk))k∈N converges to θ(u). In the spirit of [Ald84], [Lic90], §A and
[BCS97] the sequence of (not necessarily consistent) ordinary arithmetic circuits
(β(uk))k∈N represents an approximative algorithm for the instantiation of the final
results of β at u. From Theorem 5 we conclude that the constructible map σ
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is strongly continuous and therefore the sequence (A(β)(uk))k∈N represents also an
approximative algorithm for the instantiation of the final results of A(β) at u.

One sees easily that this property characterizes output parametricity of routines
which are well behaved under restrictions.

Let us observe that Proposition 8 implies the following result.

Corollary 9 Let assumptions and notations be as in Proposition 8. Then the rou-
tine A is output coalescent and satisfies the following condition:

(∗) Let u be an arbitrary parameter instance of M and let Mu be the vanishing
ideal of the C–algebra C[θ] at the point θ(u). Then the entries of the coefficient
vector of the final results of A(β) are integral over the local C–algebra C[θ]Mu.

The output coalescence of A and condition (∗) are straight–forward consequences
of the output isoparametricity of A. We remark here that condition (∗) follows al-
ready directly from the output coalescence of A. This highlights again the close con-
nection between isoparametricity and coalescence. The argument requires Zariski’s
Main Theorem. For details we refer to [CGH+03], Sections 3.2 and 5.1.

3.3.3 The extended computation model

We are now going to extend our simplified branching–free computation model of
elementary routines by a new model consisting of algorithms and procedures which
may contain some limited branchings. Our description of this model will be rather
informal. An algorithm will be a dynamic DAG of elementary routines which will
be interpreted as pipes. At the end point of the pipes, decisions may be taken which
depend on testing the validity of suitable universally quantified Boolean combina-
tions of equalities between robust constructible functions defined on the parameter
domain under consideration. The output of such an equality test is a bit vector
which determines the next elementary routine (i.e., pipe) to be applied to the out-
put circuit produced by the preceding elementary routine (pipe). This gives rise to a
extended computation model which contains branchings. These branchings depend
on a limited type of decisions at the level of the underlying abstract data type,
namely the mentioned equality tests. We need to include this type of branchings in
our extended computation model in order to capture the whole spectrum of known
elimination procedures in effective algebraic geometry. Because of this limitation
of branchings, we shall call the algorithms of our model branching parsimonious
(compare [GH01] and [CGH+03]). A branching parsimonious algorithm A which
accepts a robust parameterized arithmetic circuit β with parameter domain M as
input produces a new robust circuit A(β) with parameter domainM. In particular
A(β) does not contain any branchings.

Recall that our two main constructions of elementary routines depend on a pre-
vious selection of generic computations from a given shape list. This selection may
be handled by calculations with the indexing of the shape list. We shall think that
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these calculations become realized by deterministic Turing machines. At the begin-
ning, for a given robust parametric input circuit β with parameter domain M, a
tuple of fixed (i.e., of β independent) length of natural numbers is determined. This
tuple constitutes an initial configuration of a Turing machine computation which de-
termines the generic computations of our shape list that intervene in the elementary
routine under construction. The entries of this tuple of natural numbers are called
invariants of the circuit β. These invariants, whose values may also be Boolean (i.e.,
realized by the natural numbers 0 or 1), depend mainly on algebraic or geometric
properties of the final results of β. However, they may also depend on structural
properties of the labelled DAG β.

For example, the invariants of β may express that β has r parameters, n inputs
and outputs, (over C) non–scalar size and depth at most L and l, that β is totally
division–free, that the final results of β have degree at most d ≤ 2l and that for
any parameter instance their specializations form a reduced regular sequence in
C[X1, . . . , Xn], where X1, . . . , Xn are the inputs of β.

Some of these invariants (e.g., the syntactical ones like number of parameters,
inputs and outputs and non–scalar size and depth) may simply be read–off from the
labelled DAG structure of β. Others, like the truth value of the statement that the
specializations of final results of β in any parameter instance form a reduced regular
sequence, have to be precomputed by an elimination algorithm from a previously
given software library in effective commutative algebra or algebraic geometry or
their value has to be fixed in advance as a precondition for the elementary routine
which becomes applied to β.

In the same vein we may equip any elementary routine A with a Turing com-
putable function which from the values of the invariants of a given input circuit β
decides whether β is admissible for A, and, if this is the case, determines the generic
computations of our shape list which intervene in the application of A to β.

We shall now go a step further letting depend the internal structure of the com-
putation on the circuit β. In the simplest case this means that we admit that the
vector of invariants of β, denoted by inv(β), determines the architecture of a first
elementary routine, say Ainv(β), which admits β as input. Observe that the archi-
tectures of the elementary routines of our computation model may be characterized
by tuples of fixed length of natural numbers. We consider this characterization as
an indexing of the elementary routines of our computation model. We may now use
this indexing in order to combine dynamically elementary routines by composition,
join and union. Let us restrict our attention to the case of composition. In this
case the output circuit of one elementary routine is the input for the next routine.
The elementary routines which compose this display become implemented as pipes
which start with a robust input circuit and end with a robust output circuit. Given
such a pipe and an input circuit γ for the elementary routine B representing the
pipe, we may apply suitable equality tests to the final results of B(γ) in order to
determine a bit vector which we use to compute the index of the next elementary
routine (seen as a new pipe) which will be applied to B(γ) as input.
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A low level program of our extended computation model is now a text, namely
the transition table of a deterministic Turing machine, which computes a function
ψ realizing the following tasks.

Let as before β be a robust parameterized arithmetic circuit. Then ψ returns
first on input inv(β) a Boolean value, zero or one, where one is interpreted as the
informal statement “β is an admissible input”. If this is the case, then ψ returns
on inv(β) the index of an elementary routine, say Ainv(β), which admits β as input.
Then ψ determines the equality tests which have to be realized with the final results
of Ainv(β)(β). Depending on the outcome of these equality tests ψ determines an
index value corresponding to a new elementary routine which admits Ainv(β)(β) as
input. Continuing in this way one obtains as end result an elementary routine
A(β), which applied to β, produces a final output circuit A(β)(β). The function ψ
represents all these index computations. We denote by ψ(β) the dynamic vector of
all data computed by ψ on input β.

The algorithm represented by ψ is the partial map between robust parametric
arithmetic circuits that assigns to each admissible input β the circuit A(β)(β) as
output. Observe that elementary routines are particular algorithms. This kind
of algorithms constitute our extended computation model. We remark that any
algorithm of this model is output isoparametric. If the pipes of an algorithm are all
represented by essentially division–free elementary routines, we call the algorithm
itself essentially division–free.

One sees easily that the “Kronecker algorithm” [GLS01] (compare also [GHM+98],
[GHH+97] and [GHMP97]) for solving non–degenerate polynomial equation systems
over the complex numbers may be programmed in our extended computation model.
Observe that the Kronecker algorithm requires more than a single elementary rou-
tine for its design. In order to understand this, recall that the Kronecker algorithm
accepts as input an ordinary division–free arithmetic circuit which represents by
its output nodes a reduced regular sequence of polynomials G1, . . . , Gn belonging to
C[X1, . . . , Xn]. In their turn, the polynomials G1, . . . , Gn determine a degree pattern,
say ∆ := (δ1, . . . , δn), with δi := deg{G1 = 0, . . . , Gi = 0} for 1 ≤ i ≤ n.

After putting the variables X1, . . . , Xn in generic position with respect to G1, . . . ,
Gn, the algorithm performs n recursive steps to eliminate them, one after the other.
Finally the Kronecker algorithm produces an ordinary arithmetic circuit which com-
putes the coefficients of n + 1 univariate polynomials P, V1, . . . , Vn over C. These
polynomials constitute a “geometric solution” (see [GLS01]) of the equation system
G1 = 0, . . . , Gn = 0 because they represent the zero dimensional algebraic variety
V := {G1 = 0, . . . , Gn = 0} in the following “parameterized” form:

V := {(V1(t), . . . , Vn(t)); t ∈ C, P (t) = 0} .

Let β be any robust, parameterized arithmetic circuit with the same number of
inputs and outputs, say X1, . . . , Xn and G1(U,X1, . . . , Xn), . . . , Gn(U,X1, . . . , Xn),
respectively. Suppose that the parameter domain of β, say M, is irreducible and
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that inv(β) expresses that for each parameter instance u ∈ M the polynomi-
als G1(u,X1, . . . , Xn), . . . , Gn(u,X1, . . . , Xn) form a reduced regular sequence in
C[X1, . . . , Xn] with fixed (i.e., from u ∈ M independent) degree pattern. Suppose,
furthermore, that the degrees of the individual polynomials G1(u,X1, . . . , Xn), . . . ,
Gn(u,X1, . . . , Xn) are also fixed. Then, on input β, the Kronecker algorithm runs
a certain number (which depends on ∆) of elementary routines of our computation
model which finally become combined by consistent iterative joins until the desired
output is produced.

Another non–trivial example for an algorithm of our extended computation
model, which involves only limited branchings, is the Gaussian elimination pro-
cedure of [Edm67] (or [Bar68]) applied to matrices whose entries are polynomials
represented by ordinary arithmetic circuits in combination with a identity–to–zero
test for such polynomials. The variables of these polynomials are considered as ba-
sic parameters and any admissible input circuit has to satisfy a certain precondition
formulated as the non–vanishing of suitable minors of the given polynomial matrix.
Details and applications of this type of Gaussian elimination for polynomial matrices
can be found in [Hei83].

We say that a given algorithm A of our extended model computes (only) param-
eters if A satisfies the following condition:

for any admissible input β the final results of A(β) are all parameters.

Suppose that A is such an algorithm and β is the robust parametric arithmetic
circuit with parameter domain M which we have considered before. Observe that
A(β) contains the input variables X1, . . . , Xn and that possibly new variables, which
we call auxiliary, become introduced during the execution of the algorithm A on in-
put β. Since the algorithm A computes only parameters, the input and auxiliary
variables become finally eliminated by the application of recursive parameter rou-
tines and evaluations. We may therefore collect garbage in order to reduce A(β) to
a final output circuit Afinal(β) whose intermediate results are only parameters.

If we consider the algorithm A as a partial map which assigns to each admissible
input circuit β its final output circuit Afinal(β), we call A a procedure.

In this case, if ψ is a low level program defining A, we call ψ a low level procedure
program.

A particular feature of our extended computation model is the following:
there exists a non–negative integer f (depending on the recursion depth of A) and
non–decreasing real valued functions Cf ≥ 0 ,. . . , C0 ≥ 0 depending on one and the
same dynamic integer vector, such that with the previous notations and Lβ, LA(β)

denoting the non–scalar sizes of the circuits β and A(β) the condition

LA(β) ≤ Cf (ψ(β))Lfβ + · · ·+ C0(ψ(β))

is satisfied.
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In the case of the Kronecker algorithm (and most other elimination algorithms
of effective Algebraic Geometry) we have f := 1, because the recursion depth of the
basic routines which intervene is one.

In the sequel we shall need a particular variant of the notion of a procedure
which enables us to capture the following situation.

Suppose we have to find a computational solution for a formally specified gen-
eral algorithmic problem and that the formulation of the problem depends on cer-
tain parameter variables, say U1, . . . , Ur, input variables, say X1, . . . , Xn and output
variables, say Y1, . . . , Ys. Let such a problem formulation be given and suppose that
its input is implemented by the robust parameterized arithmetic circuit β consid-
ered before, interpreting the parameter variables U1, . . . , Ur as the basic parameters
π1, . . . , πn.

Then an algorithm A of our extended computation model which solves the given
algorithmic problem should satisfy the architectural requirement we are going to
describe now.

The algorithm A should be the composition of two subalgorithms A(1) and A(2)

of our computation model which satisfy on input β the following conditions:

(i) The subalgorithm A(1) computes only parameters, β is admissible for A(1) and
none of the indeterminates Y1, . . . , Ys is introduced in A(1)(β) as auxiliary
variable.

(ii) The circuit A(1)
final(β) is an admissible input for the subalgorithm A(2), the in-

determinates Y1, . . . , Ys occur as auxiliary variables in A(2)(A(1)
final(β)) and the

final results of A(2)(A(1)
final(β)) depend only on π1, . . . , πr and Y1, . . . , Ys (all

other auxiliary variables become eliminated during the execution of the subal-
gorithm A(2) on the input circuit A(1)

final(β)).

To the circuit A(2)(A(1)
final(β)) we may, as in the case when we compute only pa-

rameters, apply garbage collection. In this manner A(2)(A(1)
final(β)) becomes reduced

to a final output circuit Afinal(β) with parameter domain M which contains only
the inputs Y1, . . . , Ys.

Observe that the subalgorithm A(1) is by Proposition 8 an output isoparamet-
ric procedure of our extended computation model (the same is also true for the
subalgorithm A(2), but this will not be relevant in the sequel).

We consider the algorithm A, as well as the subalgorithms A(1) and A(2), as
procedures of our extended computation model. In case that the subprocedures
A(1) and A(2) are essentially division–free, we call also the procedure A essentially
division–free. This will be of importance in Section 4.

The architectural requirement given by conditions (i) and (ii) may be interpreted
as follows:
the subprocedure A(1) is a pipeline which transmits only parameters to the subpro-
cedure A(2). In particular, no (true) rational function is transmitted from A(1) to
A(2).
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Nevertheless, let us observe that on input β the procedure A establishes by
means of the underlying low level program ψ an additional link between β and the
subprocedure A(2) applied to the input A(1)(β). The elementary routines which
constitute A(2) on input A(1)(β) become determined by index computations which
realizes ψ on inv(β) and certain equality tests between the intermediate results of
A(1)(β). In this sense the subprocedure A(1) transmits not only parameters to the
subprocedure but also a limited amount of digital information which stems from the
input circuit β.

The decomposition of the procedure A into two subprocedures A(1) and A(2) sat-
isfying conditions (i) and (ii) represents an architectural restriction which is justified
when it makes sense to require that on input β the number of essential additions
and multiplications contained in Afinal(β) is bounded by a function which depends
only on inv(β). In Section 4.1, we shall make a substantial use of this restriction
and give such a justification in the particular case of elimination algorithms.

Here, we shall only point out the following consequence of this restriction. Let
assumptions and notations be as before, let G, ν and F be vectors composed by
the final results of β, A(1)(β) and Afinal(β), respectively, and let θ and ϕ be the
coefficient vectors of G and F . Then the images of θ and ν are constructible subsets
T and T ′ of suitable affine spaces and there exist geometrically robust constructible
maps σ and σ′ defined on T and T ′ with ν = σ ◦ θ and ϕ = σ′ ◦ ν = σ′ ◦ σ ◦ θ.

Based on [HK04] and [GHKa], we shall develop in future work a high level speci-
fication language for algorithms and procedures of our computation model. The idea
is to use a generalized variant of the extended constraint data base model introduced
in [HK04] in order to specify algorithmic problems in symbolic Scientific Comput-
ing, especially in effective algebraic geometry (e.g., effective elimination problems;
see Section 4). In this sense the procedure A, which solves the algorithmic prob-
lem considered before, will turn out to be a query computation composed by two
subprocedures namely A(1) and A(2) which compute each a subquery of the query
which specifies the given algorithmic problem. All these queries are called geometric
because the procedures A(1), A(2) and A are output isoparametric (see [GHKa]).

4 Applications of the extended computation model to
complexity issues of effective elimination theory

In this section we shall always work with procedures of our extended, branching par-
simonious computation model. We shall study representative examples of elimina-
tion problems in effective algebraic geometry which certify, to a different extent, that
branching parsimonious elimination procedures based on our computation paradigm
cannot run in polynomial time.

38



4.1 Flat families of zero–dimensional elimination problems

We first introduce, in terms of abstract data types, the notion of a flat family of
zero–dimensional elimination problems (see also [GH01] and [CGH+03]). Then we
fix the classes of (concrete) objects, namely robust parameterized arithmetic circuits
with suitable parameter domains, which represent (“implement”) these problems by
means of a suitable abstraction function.

Throughout this section, we suppose that there are given indeterminates U1, . . . ,
Ur, X1, . . . , Xn and Y over C.

As concrete objects we shall consider robust parameterized arithmetic input and
output circuits with parameter domain Ar. The indeterminates U1, . . . , Ur will play
the role of the basic parameters. The input nodes of the input circuits will be
labelled by X1, . . . , Xn, whereas the output circuits will have a single input node,
labelled by Y .

Let us now define the meaning of the term “flat family of zero–dimensional elim-
ination problems” (in the basic parameters U1, . . . , Ur and the inputs X1, . . . , Xn).
Let U := (U1, . . . , Ur) and X := (X1, . . . , Xn) and let G1, . . . , Gn and H be poly-
nomials belonging to the C–algebra C[U,X] := C[U1, . . . , Ur, X1, . . . , Xn]. Suppose
that the polynomials G1, . . . , Gn form a regular sequence in C[U,X], thus defining an
equidimensional subvariety V := {G1 = 0, . . . , Gn = 0} of the (n + r)–dimensional
affine space Ar×An. The algebraic variety V has dimension r. Let δ be the (geomet-
ric) degree of V (observe that this degree does not take into account multiplicities or
components at infinity). Suppose, furthermore, that the morphism of affine varieties
π : V → Ar, induced by the canonical projection of Ar × An onto Ar, is finite and
generically unramified (this implies that π is flat and that the ideal generated by
G1, . . . , Gn in C[U,X] is radical). Let π̃ : V → Ar+1 be the morphism defined by
π̃(v) := (π(v), H(v)) for any point v of the variety V . The image of π̃ is a hypersur-
face of Ar+1 whose minimal equation is a polynomial of C[U, Y ] := C[U1, . . . , Ur, Y ]
which we denote by F . Let us write degF for the total degree of the polynomial F
and degY F for its partial degree in the variable Y . Observe that F is monic in Y
and that degF ≤ δ degH holds. Furthermore, for a Zariski dense set of points u of
Ar, we have that degY F is the cardinality of the image of the restriction of H to
the finite set π−1(u). The polynomial F (U,H) vanishes on the variety V .

Let us consider an arbitrary point u := (u1, . . . , ur) of Ar. For given poly-
nomials A ∈ C[U,X] and B ∈ C[U, Y ], we denote by A(u) and B(u) the poly-
nomials A(u1, . . . , ur, X1, . . . , Xn) and B(u1, . . . , ur, Y ) which belong to C[X] :=
C[X1, . . . , Xn] and C[Y ] respectively. Similarly we denote for an arbitrary polyno-
mial C ∈ C[U ] by C(u) the value C(u1, . . . , ur) which belongs to the field C. The

polynomials G
(u)
1 , . . . , G

(u)
n define the zero–dimensional subvariety

V (u) :=
{
G

(u)
1 = 0, . . . , G(u)

n = 0
}
∼= π−1(u)

of the affine space An. The degree (i.e., the cardinality) of V (u) is bounded by δ.
Denote by π̃(u) : V (u) → A1 the morphism induced by the polynomial H(u) on the
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variety V (u). Observe that the polynomial F (u) vanishes on the (finite) image of the
morphism π̃(u). Observe also that the polynomial F (u) is not necessarily the minimal
equation of the image of π̃(u).

We call the equation system G1 = 0, . . . , Gn = 0 and the polynomial H a flat
family of zero–dimensional elimination problems depending on the basic parameters
U1, . . . , Ur and the inputs X1, . . . , Xn and we call F the associated elimination poly-
nomial. A point u ∈ Ar is considered as a parameter instance which determines a
particular problem instance, consisting of the equations G

(u)
1 = 0, . . . , G

(u)
n = 0 and

the polynomial H(u). A power of the polynomial F (u) is called a solution of this
particular problem instance.

The equation system G1 = 0, . . . , Gn = 0 together with the polynomial H is also
called the general instance of the given flat family of elimination problems and any
power of the elimination polynomial F is also called a general solution of this flat
family.

We suppose now that the general instance of the given flat family of elimina-
tion problems is implemented by an essentially division–free, robust parameterized
arithmetic circuit β with parameter domain Ar and inputs X1, . . . , Xn, whose fi-
nal results are the polynomials G1, . . . , Gn and H. The task is to find another
essentially division–free, robust parameterized arithmetic circuit γ with parameter
domain Ar having a single output node, labelled by Y , which computes for a suit-
able integer q ∈ N the power F q of the polynomial F . We suppose, furthermore,
that this goal is achieved by the application of an essentially division–free procedure
A of our extended computation model to the input circuit β. Thus we may put
γ := Afinal(β) and γ may be interpreted as an essentially division–free circuit over
C[U ] with a single input Y (observe that the parameters computed by the robust
circuits β, A(β) and Afinal(β) are geometrically robust constructible functions with
domain of definition Ar which belong by [GHMS11], Corollary 12 to the C–algebra
C[U ]). Using the geometric properties of flat families of zero–dimensional problems,
we deduce from [GHM+98], [GHH+97],[GHMP97], [GLS01] or alternatively from
[CGH89], [DFGS91] that such essentially division–free procedures always exist and
that they compute even the elimination polynomial F (the reader may notice that
one needs for this argument the full power of our computation model which includes
divisions by parameters).

We say that the essentially division–free procedure A solves algorithmically the
general instance of the given flat family of zero–dimensional elimination problems.

From now on we suppose that there is given a procedure A of our extended
computation model, decomposed in two essentially division–free subprocedures A(1)

and A(2) as in Section 3.3.3, such that A solves algorithmically the general instance
of any given flat family of zero–dimensional elimination problems. Our circuit β is
therefore an admissible input for A and hence for A(1). The final results of A(1)(β)
constitute a geometrically robust constructible map ν defined on Ar which repre-
sents by means of A(1)

final(β) an admissible input for the procedure A(2). Moreover,
γ := Afinal(β) is an essentially division–free parameterized arithmetic circuit with

40



parameter domain Ar and input Y .
Let S be the image of the geometrically robust constructible map ν. Then S is an

irreducible constructible subset of a suitable affine space. Analyzing now the internal
structure of the essentially division–free, robust parameterized arithmetic circuit
A(2)(A(1)(β)), one sees easily that there exists a geometrically robust constructible
map ψ defined on S such that the entries of the geometrically robust composition
map ν∗ := ψ ◦ ν constitute the essential parameters of the circuit γ. Let m be the
number of components of the map ν∗. Since ν and ν∗ are composed by geometrically
robust constructible functions defined on Ar, we deduce from [GHMS11], Corollary
12 that ν and ν∗ may be interpreted as vectors of polynomials of C[U ].

The circuit γ is essentially division–free. Hence there exists a vector ω of m–
variate polynomials over C such that the polynomials of C[U ], which constitute
the entries of ω(ν∗), become the coefficients of the elimination polynomial F with
respect to the main indeterminate Y (see [KP96], Section 2.1). Observe that we
may write ω(ν∗) = ω ◦ ν∗ interpreting the entries of ν∗ as polynomials of C[U ].

We are now going to see what happens at a particular parameter instance u ∈
Ar. Since β, A(1)(β), A(β) and γ = Afinal(β) are essentially division–free, robust
parameterized arithmetic circuits with parameter domain Ar, we may specialize the
vector U of basic parameters to the parameter instance u ∈ Ar, obtaining thus
ordinary division–free arithmetic circuits over C with the same inputs. We denote
them by the superscript u, namely by β(u), (A(1)(β))(u), (A(β))(u) and γ(u). One

sees immediately that G
(u)
1 , . . . , G

(u)
n and H(u) are the final results of β(u), that the

entries of ν(u) are the final results of (A(1)(β))(u) and that (F (u))q is the final result
of A(β)(u) and γ(u). Observe that the division–free circuit γ(u) uses only the entries
of ν∗(u) and fixed rational numbers as scalars.

In the same spirit as before, we say that the procedure A solves algorithmically
the particular instance, which is determined by u, of the given flat family of zero–
dimensional elimination problems.

Let us here clarify how all this is linked to the rest of the terminology used
in [CGH+03]. In this terminology the polynomial map given by ω defines a “holo-
morphic encoding” of the set of solutions of all particular problem instances and
ν∗(u) is a “code” of the particular solution (F (u))q. In the same context the ro-
bust constructible map ν∗ is called an “elimination procedure” which is “robust”
since the procedure A(1) is output isoparametric and since ν∗ is geometrically robust
(compare [CGH+03], Definition 5, taking into account Lemma 7, Proposition 8 and
Corollary 9 above).

In this sense, we speak about families of zero–dimensional elimination problems
and their instances and not simply about a single (particular or general) zero–
dimensional elimination problem.

Let us now turn back to the discussion of the given essentially division–free
procedure A which solves algorithmically the general instance of any flat family of
zero–dimensional elimination problems.

We are now going to show the main result of this section, namely that the given

41



procedure A cannot run in polynomial time.

Theorem 10 Let notations and assumptions be as before. For any natural num-
ber n there exists an essentially division–free, robust parameterized arithmetic cir-
cuit βn with basic parameters T , U1, . . . , Un and inputs X1, . . . , Xn which for U :=
(U1, . . . , Un) and X := (X1, . . . , Xn) computes polynomials G

(n)
1 , . . . , G

(n)
n ∈ C[X]

and H(n) ∈ C[T, U,X] such that the following conditions are satisfied:

(i) The equation system G
(n)
1 = 0, . . . , G

(n)
n = 0 and the polynomial H(n) constitute

a flat family of zero–dimensional elimination problems, depending on the pa-
rameters T , U1, . . . , Un and the inputs X1, . . . , Xn, with associated elimination
polynomial F (n) ∈ C[T, U, Y ].

(ii) βn is an ordinary division–free arithmetic circuit of size O(n) over C with
inputs T , U1, . . . , Un, X1, . . . , Xn.

(iii) γn := Afinal(βn) is an essentially division–free robust parameterized arithmetic
circuit with basic parameters T, U1, . . . , Un and input Y such that γn computes
for a suitable integer qn ∈ N the polynomial (F (n))qn. The circuit γn performs
at least Ω(2

n
2 ) essential multiplications and at least Ω(2n) multiplications with

parameters. Therefore γn has, as ordinary arithmetic circuit over C with in-
puts T, U1, . . . , Un, X1, . . . , Xn, non–scalar size at least Ω(2n).

Proof. During our argumentation we shall tacitly adapt to the new context the
notations introduced before. We shall follow the main technical ideas behind the
papers [GH01], [CGH+03] and [GHMS11]. We fix now the natural number n and
consider the polynomials

G1 := G
(n)
1 := X2

1 −X1, . . . , Gn := G(n)
n := X2

1 −Xn

and
H := H(n) :=

∑
1≤i≤n

2i−1Xi + T
∏

1≤i≤n

(1 + (Ui − 1)Xi)

which belong to C[X] and to C[T, U,X], respectively.
Observe that G1, . . . , Gn and H may be evaluated by a division–free ordinary

arithmetic circuit β := βn over C which has non–scalar size O(n) and inputs T ,
U1, . . . , Un, X1, . . . , Xn. As parameterized arithmetic circuit β is therefore robust.
Hence β satisfies condition (ii) of the theorem.

One sees easily that G1 = 0, . . . , Gn = 0 and H constitute a flat family of zero–
dimensional elimination problems depending on the parameters T , U1, . . . , Un and
the inputs X1, . . . , Xn.

Let us write H as a polynomial in the main indeterminates X1, . . . , Xn with
coefficients θκ1,...,κn ∈ C[T, U ], κ1, . . . , κn ∈ {0, 1}, namely

H =
∑

κ1,...,κn∈{0,1}

θκ1,...,κnX
κ1
1 , . . . , Xκn

n .
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Observe that for κ1, . . . , κn ∈ {0, 1} the polynomial θκ1,...,κn(0, U) ∈ C[U ] is of degree
at most zero, i.e., a constant complex number, independent of U1, . . . , Un.

Let θ := (θκ1,...,κn)κ1,...,κn∈{0,1} and observe that the vector θ(0, U) is a fixed point
of the affine space A2n . We denote by M the vanishing ideal of the C–algebra C[θ]
at this point.

Consider now the polynomial

F := F (n) :=
∏

0≤j≤2n−1

(Y − (j + T
∏

1≤i≤n

U
[j]i
i ))

of C[T, U, Y ], where [j]i denotes the i–th digit of the binary representation of the
integer j, 0 ≤ j ≤ 2n−1 − 1, 1 ≤ i ≤ n. Let q := qn.

One sees easily that F is the elimination polynomial associated with the given
flat family of zero–dimensional elimination problems G1 = 0, . . . , Gn = 0 and H.

Let us write F q as a polynomial in the main indeterminate Y with coefficients
ϕκ ∈ C[T, U ], 1 ≤ κ ≤ 2nq, namely

F q = Y 2nq + ϕ1Y
2nq−1 + · · ·+ ϕ2nq.

Observe that for 1 ≤ κ ≤ 2nq the polynomial ϕκ(0, U) ∈ C[U ] is of degree at most
zero. Let λκ := ϕκ(0, U), λ := (λκ)1≤κ≤2nq and ϕ := (ϕκ)1≤κ≤2nq. Observe that λ is
a fixed point of the affine space A2nq.

Recall that β is an admissible input for the procedure A and hence for A(1), that
the final results of A(1)(β) constitute the entries of the robust constructible map ν
defined on An+1, that ν represents an admissible input for the procedure A(2) and
that γ = Afinal(β) is an essentially division–free, parameterized arithmetic circuit
with parameter domain An+1 and input Y .

Furthermore, recall that there exists a geometrically robust constructible map
ψ defined on the image S of ν such that the entries of ν∗ = ψ ◦ ν constitute the
essential parameters of the circuit γ, that the entries of ν and ν∗ may be interpreted
as polynomials of C[T, U ] and that for m being the number of components of the
map ν∗, there exists a vector ω of m–variate polynomials over C such that the
polynomials of C[T, U ] which constitute the entries of ω(ν∗) = ω ◦ ν∗ become the
coefficients of the polynomial F q with respect to the main indeterminate Y . Let T be
the image of the coefficient vector θ of H, and interpret θ as a geometrically robust
constructible map defined on An+1. Observe that T is a constructible subset of A2n .
Since H is the unique final result of the circuit β, we deduce from Proposition 8 that
there exists a geometrically robust constructible map σ defined on T satisfying the
condition ν = σ ◦ θ. This implies ν∗ = ψ ◦ σ ◦ θ and, following [GHMS11], Corollary
12 and Definition 6 (i), that the entries of ν∗ are polynomials of C[T, U ] which are
integral over the local C–subalgebra C[θ]M of C(T, U).

Let µ ∈ C[T, U ] be such an entry. Then there exists an integer s and polynomials
a0, a1, . . . , as ∈ C[θ] with a0 /∈M such that the algebraic dependence relation

a0µ
s + a1µ

s−1 + · · ·+ as = 0 (3)
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is satisfied in C[T, U ]. From (3) we deduce the algebraic dependence relation

a0(0, U)µ(0, U)s + a1(0, U)µ(0, U)s−1 + · · ·+ as(0, U) = 0 (4)

in C[U ].
Since the polynomials a0, a1, . . . , as belong to C[θ] and θ(0, U) is a fixed point of

A2n , we conclude that α0 := a0(0, U), α1 := a1(0, U), . . . , αs := as(0, U) are complex
numbers. Moreover, a0 /∈M implies α0 6= 0.

Thus (4) may be rewritten into the algebraic dependence relation

α0µ(0, U)s + α1µ(0, U)s−1 + · · ·+ αs = 0 (5)

in C[U ] with α0 6= 0.
This implies that the polynomial µ(0, U) of C[U ] is of degree at most zero.
Therefore w := ν∗(0, U) is a fixed point of the affine space Am. Since γ computes

the polynomial F q and F q has the form F q = Y 2nq + ϕ1Y
2nq−1 + · · · + ϕ2nq with

ϕκ ∈ C[T, U ], 1 ≤ κ ≤ 2nq, we see that ϕ = (ϕκ)1≤κ≤2nq may be decomposed as
follows:

ϕ = ω(ν∗) = ω ◦ ν∗.

Recall that λ = (λκ)1≤κ≤2nq with λκ := ϕκ(0, U), 1 ≤ κ ≤ 2nq, is a fixed point of
the affine space A2n .

For 1 ≤ κ ≤ 2nq we may write the polynomial ϕκ ∈ C[T, U ] as follows:

ϕκ = λκ + ∆κT + terms of higher degree in T (6)

with ∆κ ∈ C[U ]. From [CGH+03], Lemma 6 we deduce that the elimination poly-
nomial F has the form F = Y 2n + B1Y

2n−1 + · · · + B2n , where for 1 ≤ l ≤ 2n the
coefficient Bl is an element of C[T, U ] of the form

Bl = (−1)l
∑

l≤j1<···<jl<2n

j1 . . . jl + TLl + terms of higher degree in T,

where L1, . . . , L2n ∈ C[U ] are C–linearly independent.
Choose now different complex numbers η1, . . . , η2n from C−{j ∈ Z; 0 ≤ j < 2n}

and observe that for 1 ≤ κ′ ≤ 2n the identities

∂F q

∂T
(0, U, ηκ′) = qF q−1(0, U, ηκ′)

∂F

∂T
(0, U, ηκ′) = q

∏
0≤j<2n

(ηκ′ − j)q−1
∑

1≤l≤2n

Llη
2n−l
κ′

and
∂F q

∂T
(0, U, ηκ′) =

∑
1≤κ≤2nq

∆κη
2nq−κ
κ′

hold.
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Since L1, . . . , L2n are C–linearly independent, we deduce from the non–singularity
of the Vandermonde matrix (η2n−l

κ′ )0≤l,κ′≤2n that 2n many of the polynomials ∆1, . . . ,
∆2nq of C[U ] are C–linearly independent.

Consider now an arbitrary point u ∈ An and let εu : A1 → Am and δu : A1 → A2nq

be the polynomial maps defined for t ∈ A1 by εu(t) := ν∗(t, u) and δu(t) := ϕ(t, u).
Then we have εu(0) = ν∗(0, u) = w and δu(0) = ϕ(0, u) = λ, independently of u.
Moreover, from ϕ = ω ◦ ν∗ we deduce δu = ω ◦ εu.

Thus (6) implies

(∆1(u), . . . ,∆2nq(u)) =
∂ϕ

∂t
(0, u) = δ′u(0) = (Dω)w(ε′u(0)), (7)

where (Dω)w denotes the (first) derivative of the m–variate polynomial map ω at the
point w ∈ Am and δ′u(0) and ε′u(0) are the derivatives of the parameterized curves
δu and εu at the point 0 ∈ A1. We rewrite now (7) in matrix form, replacing (Dω)w
by the corresponding transposed Jacobi matrix M ∈ Am×2nq and δ′u(0) and ε′u(0) by
the corresponding points of A2nq and Am, respectively.

Then (7) takes the form

(∆1(u), . . . ,∆2nq(u)) = ε′u(0)M, (8)

where the complex (m× 2nq)–matrix M is independent of u.
Since 2n many of the polynomials ∆1, . . . ,∆2n ∈ C[U ] are C–linearly indepen-

dent, we may choose points u1, . . . , u2n ∈ An such that the complex (2n×2nq)–matrix

N := (∆κ(ul)) 1 ≤ l ≤ 2n

1 ≤ κ ≤ 2nq

has rank 2n.
Let K be the complex (2n ×m)–matrix whose rows are ε′u1

(0), . . . , ε′u2n
(0).

Then (8) implies the matrix identity

N = K ·M.

Since N has rank 2n, the rank of the complex (m × 2n)–matrix M is at least 2n.
This implies

m ≥ 2n. (9)

Therefore the circuit γ contains m ≥ 2n essential parameters.
Let L be the number of essential multiplications executed by the parameterized

arithmetic circuit γ and let L′ be the total number of multiplications of γ, excepting
those by scalars from C. Then, after a well–known standard rearrangement [PS73]
of γ, we may suppose without loss of generality, that there exists a constant c > 0
(independent of the input circuit γ and the procedure A) such that L ≥ cm

1
2 and

L′ ≥ cm holds.
From the estimation (9) we deduce now that the circuit γ performs at least

Ω(2
n
2 ) essential multiplications and at least Ω(2n) multiplications, including also

multiplications with parameters. This finishes the proof of the theorem.
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Observation Let assumptions and notations be as before. In the proof of The-
orem 10 we made a substantial use of the output isoparametricity of the procedure
A(1) when we applied Proposition 8 in order to guarantee the existence of a geo-
metrically robust constructible map σ defined on T which satisfies the condition
ν = σ ◦ θ. The conclusion was that the entries of ν∗ = ψ ◦ ν are polynomials of
C[T, U ] which are integral over C[θ]M. This implied finally that ν∗(0, U) is a fixed
point of the affine space Am. Taking into account the results of [CGH+03], Sections
3.2 and 5.1 it suffices to require that the procedure A(1) is output coalescent in order
to arrive to the same conclusion. This means that Theorem 10 remains valid if we
require only that the procedure A(1) is output coalescent.

In the proof of Theorem 10 we have exhibited an infinite sequence of flat fami-
lies of zero–dimensional elimination problems represented by robust parameterized
arithmetic circuits of small size, such that any implementation of their associated
elimination polynomials, obtained by a procedure of our extended computation
model which solves the given elimination task for any instance, requires circuits
of exponential size.

The statement of Theorem 10 may also be interpreted in terms of a mathemati-
cally certified trade–off of quality attributes. Suppose for the moment that we had
built our model for branching parsimonious computation in the same way as in
Section 3.3, omitting the requirement (B) for recursive routines, however. Recall
that this requirement implies the output isoparametricity of any algorithm of our
extended computation model and recall from Section 3.3.2 that well behavedness
under reduction is a quality attribute which implies output isoparametricity and
therefore also the conclusion of Theorem 10.

A complexity class like “exponential time in worst case” represents also a quality
attribute. Thus we see that the quality attribute “well behavedness under reduction”
implies the quality attribute “exponential time in worst case” for any essentially
division–free procedure of our extended computation model which solves algorith-
mically the general instance of any given flat family of zero–dimensional problems.

The proof of Theorem 10 depends substantially on the decomposition of the
elimination procedure A into two subprocedures A(1) and A(2) satisfying conditions
(i) and (ii) of Section 3.3.3. We are now going to justify this architectural restriction
on the procedure A for the particular case of elimination algorithms.

As at the beginning of this section, let U := (U1, . . . , Ur), X := (X1, . . . , Xn),
G1, . . . , Gn, H ∈ C[U,X] and F ∈ C[U, Y ] such that G1 = 0, . . . , Gn = 0 and H con-
stitute a flat family of zero–dimensional elimination problems and F its associated
elimination polynomial. Suppose that G1, . . . , Gn and H are implemented by an
essentially division–free, robust parameterized arithmetic circuit β with parameter
domain Ar and inputs X1, . . . , Xn.

All known algorithms which solve the general instance of any flat family of zero–
dimensional elimination problems may be interpreted as belonging to our restricted
set of procedures. They compute directly the elimination polynomial F (and not
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an arbitrary power of it). Thus let A be such a known algorithm and let A(1) and
A(2) be the subalgorithms which compose A in the same way as before. Then A(1)

computes the coefficients of F , where F is considered as a polynomial over C[U ]
in the indeterminate Y . The subalgorithm A(2) may be interpreted as the Horner
scheme which evaluates F from its precomputed coefficients and Y .

Observe that F , and hence degY F , depends only on the polynomials G1, . . . , Gn

and H, but not on the particular circuit β. Therefore degY F is determined by ψ(β),
where ψ is the low level program of the algorithm A.
For any parameter instance u ∈ Ar we may think (A(1)(β))(u) as a constraint
database (in the sense of [HK04] and [GHKa]) which allows to evaluate the uni-
variate polynomial F (u) ∈ C[Y ] as often as desired for arbitrary inputs y ∈ A1,
using each time a number of arithmetic operations in C, namely degY F , which does
not depend on the non–scalar size of β.

Moreover A satisfies the following condition:

(D) There exist non–decreasing real valued functions C1 ≥ 0 and C2 ≥ 0 depending
on dynamic integer vectors, such that for Lβ and LA(β), being the non–scalar
sizes of the circuits β and A(β), the inequality

LA(β) ≤ C1(ψ(β))Lβ + C2(ψ(β))

holds.

Let now A be an arbitrary, essentially division–free algorithm of our extended
computation model which solves the general instance of any flat family of zero–
dimensional elimination problems and let β be an input circuit for A which rep-
resents a particular family of such problems. Let F be the associated elimination
polynomial.

Then the complexity of the algorithm A is only competitive with known elimi-
nation algorithms if we require that the number of essential additions and multipli-
cations of Afinal(β) is bounded by 2 · degY F . This leads us to the requirement that
A must be decomposable in two subalgorithms A(1) and A(2) as above.

Therefore any elimination algorithm of our extended computation model which is
claimed to improve upon known algorithms for all admissible input circuits β, must
have this architectural structure. In particular, such an algorithm cannot call the
input circuit β when the output variable Y became already involved. This justifies
the architectural restriction we made in the statement and proof of Theorem 10.

Moreover, the competitivity of A with known elimination algorithms requires
that A must satisfy condition (D).

From Theorem 10 and its proof we deduce now the lower bound

max{C1(ψ(βn)), C2(ψ(βn))} = Ω(
δn
Lβn

),

where δn is the geometric degree of the subvariety of Ar × An+1 defined by the
polynomials G

(n)
1 , . . . , G

(n)
n , Y − H(n) (observe δn = 2n). Adding to βn a suitable
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addition node we obtain a totally division–free new circuit β∗n which represents

G
(n)
1 , . . . , G

(n)
n and Y − H(n). Observe that for each (s, u) ∈ A1 × An the degree

pattern of the polynomials G
(n)
1 , . . . , G

(n)
n , Y −H(s, u,X) is constant and the system

degree is δn. The polynomial F (n) is the output of the Kronecker algorithm applied to
β∗n and the variable Y . Therefore the algorithm A produces on βn the same output
as the Kronecker algorithm applied to β∗n and the variable Y . We conclude now
from Lβ∗n = O(n) that the Kronecker algorithm is nearly optimal in our extended
computation model.

In our computation model, algorithms are transformations of parameterized
arithmetic circuits over one and the same parameter domain. This represents a
substantial ingredient for the proof of Theorem 10. If we allow branchings which
lead to subdivisions of the parameter domain of the input circuit, the conclusion of
Theorem 10 may become uncertain (see [GHKb]).

4.2 The elimination of a block of existential quantifiers

Let notations be the same as in the proof of Theorem 10 in Section 4.1. Let n ∈ N,
S1, . . . , Sn new indeterminates, S := (S1, . . . , Sn), Ĝ

(n)
1 := X2

1 −X1−S1, . . . , Ĝ
(n)
n :=

X2
n −Xn − Sn and again H(n) :=

∑
1≤i≤n 2i−1Xi + T

∏
1≤i≤n(1 + (Ui − 1)Xi).

Observe that the polynomials Ĝ
(n)
1 , . . . , Ĝ

(n)
n form a reduced regular sequence in

C[S, T, U,X] and that they define a subvariety V̂n of the affine space An×A1×An×
An which is isomorphic to An × A1 × An and hence irreducible and of dimension
2n+ 1. Moreover, the morphism V̂n → An ×A1 ×An which associates to any point
(s, t, u, x) ∈ V̂n the point (s, t, u), is finite and generically unramified. Therefore the
morphism π̂n : V̂n → An × A1 × An × A1 which associates to any (s, t, u, x) ∈ V̂n
the point (s, t, u,H(n)(t, u, x)) ∈ An × A1 × An × A1 is finite and its image π̂n(V̂n)
is a hypersurface of An × A1 × An × A1 with irreducible minimal equation F̂ (n) ∈
C[S, T, U, Y ].

Hence Ĝ
(n)
1 = 0, . . . , Ĝ

(n)
n = 0 and H(n) represent a flat family of zero–dimensional

elimination problems whose associated elimination polynomial is just F̂ (n).
Observe that deg F̂ (n) = degY F̂

(n) = 2n and that for 0 ∈ An the identity

F̂ (n)(0, T, U, Y ) = F (n)(T, U, Y )eholds,

where F (n) is the elimination polynomial associated with the flat family of zero
dimensional elimination problems given by X2

1 − X1 = 0, . . . , X2
n − Xn = 0 and

H(n). Since F̂ (n) is irreducible, any equation of C[S, T, U, Y ] which defines π̂n(V̂n) in
An × A1 × An × A1 is without loss of generality a power of F̂ (n).

We consider now S1, . . . , Sn, T, U1, . . . , Un as basic parameters, X1, . . . , Xn as
input and Y as output variables.

Let A′ be an essentially division–free procedure of our extended computation
model satisfying the following condition:
A′ accepts as input any robust parameterized arithmetic circuit β which represents
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the general instance of a flat family of zero–dimensional elimination problems with
associated elimination polynomial F and A′final(β) has a single input Y and a single
final result which defines the same hypersurface as F .

With this notions and notations we have the following result.

Proposition 11 There exist an ordinary division–free arithmetic circuit β̂n of size
O(n) over C with inputs S1, . . . , Sn, T , U1, . . . , Un, X1, . . . , Xn and final results

Ĝ
(n)
1 , . . . , Ĝ

(n)
n , H(n). The essentially division–free, robust parameterized arithmetic

circuit γ̂n := A′final(β̂n) depends on the basic parameters S1, . . . , Sn, T , U1, . . . , Un

and the input Y and its single final result is a power of F̂ (n). The circuit γ̂n performs
at least Ω(2

n
2 ) essential multiplications and at least Ω(2n) multiplications with param-

eters. As ordinary arithmetic circuit over C with inputs S1, . . . , Sn, T , U1, . . . , Un
and Y , the circuit γ̂n has non–scalar size at least Ω(2n).

Proof. The existence of an ordinary division–free arithmetic circuit as in the state-
ment of Proposition 11 is evident. The rest follows immediately from the proof of
Theorem 10 in Section 4.1 by restricting the parameter domain An×A1×An of β̂n
to A1 × An, i.e., by specializing S to 0 ∈ An.

Suppose now that there is given another essentially division–free procedure A′′
of our extended computation model satisfying the following condition:
A′′ accepts as input any robust arithmetic circuit β which represents the general
instance of a flat family of zero–dimensional elimination problems with associated
elimination polynomial F and there exists a Boolean circuit b in as many variables
as the number of final results of A′′final(β) such that the algebraic variety defined by
F coincides with the constructible set which can be described by plugging into b the
final results of A′′final(β) as polynomial equations.

Observe that this represents the most general architecture we can employ to
adapt in the spirit of Section 3.3.3 our extended computation model for functions
to parametric decision problems.

Let s ∈ N and A1, . . . , As new indeterminates with A := (A1, . . . , As). We sup-
pose that there is given an essentially division–free procedure B of our extended
computation model which accepts as input any essentially division–free, robust pa-
rameterized arithmetic circuit γ with the basic parameters A1, . . . , As and the input
variable Y , such that Bfinal(γ) represents, by its output nodes, in C[A, Y ] the mul-
tiplicative decomposition of the final results of γ by their greatest common divisor
and complementary factors.

In this sense, we call the procedure B a GCD algorithm.

Let ψA′′ and ψB be the given low level programs of the procedures A′′ and B. We
require that A′′ and B are competitive with known algorithms which solve the same
tasks. Following our argumentation in Section 4.1 we may therefore suppose that
there exist four non–decreasing real valued functions C1 ≥ 0, C2 ≥ 0 and D1 ≥ 0,
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D2 ≥ 0 which depend on dynamic integer vectors and which satisfy the estimates

LA′′(β) ≤ C1(ψA′′(β))Lβ + C2(ψA′′(β))

and
LB(γ) ≤ D1(ψB(γ))Lγ +D2(ψB(γ)).

We consider again the ordinary division–free arithmetic circuit β̂n of Proposition
8 which represents the polynomials Ĝ

(n)
1 , . . . , Ĝ

(n)
n and H(n).

With these notions and notations we may now formulate the following statement.

Theorem 12 Let assumptions and notations be as before. Then we have

max{Ci(ψA′′(β̂n)), Di(ψB(A′′final(β̂n))); i = 1, 2} = Ω(
2
n
2

n
)

Proof. If we plug into the Boolean circuit b the final results of A′′final(β̂n) as poly-
nomial equations, we obtain by assumption a description of the hypersurface π̂(V̂n)
of the affine space An × A1 × An × A1. This implies that between the final results
of A′′final(β̂n) there exists a selection, say the polynomials P1, . . . , Pm and R1, . . . , Rt

of C[S, T, U, Y ] such that the formula

P1 = 0 ∧ · · · ∧ Pm = 0 ∧R1 6= 0 ∧ · · · ∧Rt 6= 0

defines a nonempty Zariski open (and dense) subset of the irreducible surface π̂(V̂n)
of An × A1 × An × A1.

Let R := R1 . . . Rt and observe that the greatest common divisor of P1, . . . , Pm
has the form (F̂ (n))q ·Q, where q belongs to N and Q is the greatest common divisor
of P1, . . . , Pm, R. Therefore we may compute (F (n))q in the following way: erasing
suitable nodes from the circuit A′′final(β̂n) and adding t − 1 multiplication nodes

we obtain two robust parameterized arithmetic circuits γ
(n)
1 and γ

(n)
2 with basic

parameters S1, . . . , Sn, T , U1, . . . , Un and input Y whose final results are P1, . . . , Pm
and P1, . . . , Pm, R respectively.

Between the final results of Bfinal(γ
(n)
1 ) and Bfinal(γ

(n)
2 ) are the polynomials

(F̂ (n))q·Q andQ. Applying the procedure B to the union of Bfinal(γ
(n)
1 ) and Bfinal(γ

(n)
2 )

we obtain finally an essentially division–free, robust parameterized arithmetic circuit
with basic parameters S1, . . . , Sn, T , U1, . . . , Un and input Y whose single final result
is (F̂ n)q.

Joining the circuits A′′(β̂n), Bfinal(γ
(n)
1 ), Bfinal(γ

(n)
2 ) and the final division node

we obtain an ordinary arithmetic circuit of non–scalar size at most

1 + 3LB(A′′final(β̂n)) ≤

1 + 3(D1(ψB(A′′final(β̂n)))LA′′final(β̂n) +D2(ψB(A′′final(β̂n)))) ≤
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1 + 3C1(ψA(β̂n))D1(ψB(A′′final(β̂n)))Lβ̂n+

3C2(ψA(β̂n))D1(ψB(A′′final(β̂n))) +D2(ψB(A′′final(β̂n))).

On the other hand we deduce from Theorem 10

Lβ̂n = O(n) and 1 + 3LB(A′′final(β̂n)) = Ω(2n).

This implies the estimate of Theorem 12.

In a simple minded understanding, Theorem 12 says that in our extended com-
putation model either the elimination of a single existential quantifier block in a
prenex first–order formula of the elementary language of C or the computation of
a greatest common divisor of a finite set of circuit represented polynomials requires
exponential time. Complexity results in this spirit were already obtained in [GH01]
and [CGH+03] (compare also Proposition 11 and Observation in Section 4.1).

4.3 Arithmetization techniques for Boolean circuits

Let m ∈ N and let 0, 1 and Z1, . . . , Zm be given constants and variables. Let
Z := (Z1, . . . , Zm). Following the context we shall interpret 0, 1 as Boolean values
or the corresponding complex numbers and Z1, . . . , Zm as Boolean variables or inde-
terminates over C. With ∧,∨, ē we denote the Boolean operations “and”, “or” and
“not”. A Boolean circuit b with inputs Z1, . . . , Zm is a DAG whose indegree zero
nodes are labelled by 0, 1 and Z1, . . . , Zm and whose inner nodes have indegree two
or one. In the first case an inner node is labelled by ∧ or ∨ and in the second by ē.
Some inner nodes of b become labelled as outputs. We associate with b a semantics
as follows:

- indegree zero nodes which are labelled by 0, 1 become interpreted by the cor-
responding constant functions {0, 1}m → {0, 1},

- indegree zero nodes which are labelled by Z1, . . . , Zm become interpreted by
the corresponding projection function {0, 1}m → {0, 1},

- let ρ be an inner node of b of indegree two whose parent nodes ρ1 and ρ2 are
already interpreted by Boolean functions gρ1 , gρ2 : {0, 1}m → {0, 1}. If ρ is
labelled by ∧, we interpret ρ by the Boolean function gρ := gρ1 ∧ gρ2 and if ρ
is labelled by ∨, we interpret ρ by the Boolean function gρ := gρ1 ∨ gρ2 ,

- let ρ be an inner node of b of indegree one whose parent node ρ′ became already
interpreted by a Boolean function gρ′ : {0, 1}m → {0, 1}. Then we interpret ρ
by the Boolean function gρ := gρ′ .

For a node ρ of b we call gρ the intermediate result of b at ρ. If ρ is an output
node, we call gρ a final result of b.
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An arithmetization β of the Boolean circuit b consists of the same DAG as b
with a different labelling as follows.

Let U, V be new indeterminates over C. The constants 0, 1 become interpreted
by the correspondent complex numbers and Z1, . . . , Zm as indeterminates over C.
Let ρ be an inner node of β. If ρ has indegree two, then ρ becomes labelled by a
polynomial Rρ ∈ Z[U, V ] and if ρ has indegree one by a polynomial Rρ ∈ Z[U ]. The
output nodes of β and b are the same.

Representing for each inner node ρ of β the polynomial Gρ by a division–free
ordinary arithmetic circuit over Z in the inputs U, V or U , we obtain an ordinary
division–free arithmetic circuit over Z in the inputs Z1, . . . , Zm.

Just as we did in Section 3.3.2 we may associate with β a semantics which
determines for each node ρ of β a polynomial Gρ ∈ Z[Z]. We say that β is an
arithmetization of the Boolean circuit b if the following condition is satisfied:
for any node ρ of b and any argument z ∈ {0, 1}m the Boolean value gρ(z) coincides
with the arithmetic value Gρ(z) (in a somewhat imprecise notation: gρ(z) = Gρ(z)).

An example of an arithmetization procedure is given by the map which associates
to each node ρ of b a polynomial [gρ] of Z[Z] satisfying the following conditions:

- [0] = 0, [1] = 1, [Z1] = Z1, . . . , [Zm] = Zm

- for ρ an inner node of indegree two of b with parents ρ1 and ρ2:

[gρ] = [gρ1 ] · [gρ2 ] if the label of ρ is ∧

and
[gρ] = [gρ1 ] + [gρ2 ]− [gρ1 ] · [gρ2 ] if the label of ρ is ∨

- for ρ an inner node of indegree one of b with parent ρ′:

[gρ] = 1− [gρ′ ].

The resulting arithmetic circuit is called the standard arithmetization of b (see,
e.g., [Sha92] and [BF91]).

Let n, r ∈ N and U1, . . . , Ur, X1, . . . , Xn be new variables. For m := n + r we
replace now Z by U and X, where U := (U1, . . . , Ur) and X := (X1, . . . , Xn). We
shall interpret U1, . . . , Ur as parameters and X1, . . . , Xn as input variables.

Let b be a Boolean circuit with the inputs U1, . . . , Ur, X1, . . . , Xn and just one
final result h : {0, 1}r × {0, 1}n → {0, 1}.

We wish to describe the set of instances u ∈ {0, 1}r where h(u,X1, . . . , Xn) is a
satisfiable Boolean function.

For this purpose let us choose an arithmetization β of b. We interpret β as an
ordinary arithmetic circuit over Z with the parameters U1, . . . , Ur and the inputs
X1, . . . , Xn. The single final result of β is a polynomial H ∈ Z[U,X] which satisfies
for any u ∈ {0, 1}r, x ∈ {0, 1}n the following condition:

h(u, x) = H(u, x).
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Without loss of generality we may suppose that the polynomials X2
1 − X1, . . . ,

X2
n−Xn are intermediate results of β. We relabel now β such that these polynomials

and H become the final results of β. Observe that X2
1 −X1 = 0, . . . , X2

n −Xn = 0
and H represent a flat family of zero–dimensional elimination problems.

Let Y be a new indeterminate and let F ∈ Z[U, Y ] the associated elimination
polynomial. One verifies easily the identity

F (U, Y ) =
∏

x∈{0,1}n
(Y −H(U, x)).

Let A be an essentially division–free procedure of our extended computation
model which solves algorithmically the general instance of any flat family of zero–
dimensional elimination problems. Then β is an admissible input for A and there
exists an integer q ∈ N such that F q is the final result of Afinal(β).

We consider now the task to count for any u ∈ {0, 1}r the number k of instances
x ∈ {0, 1}n with h(u, x) = 1.

The polynomial F q encodes two possible solutions of this task.
The first solution is the following: let l be the order of the univariate polynomial

F q(u, Y ) at zero. Then q divides l and we have k = 2n − l
q
.

The second and more interesting solution is the following: write F q = Y 2nq +
ϕ1Y

2nq−1 + · · · + ϕ2nq with ϕ1, . . . , ϕ2nq ∈ Z[U ]. Then ϕ1(u) is an integer which is

divisible by q and we have k = −ϕ1(u)
q

.
Observe also degϕ1 ≤ degU H.
These considerations show the relevance of an efficient evaluation of the poly-

nomial F q (e.g., by the circuit Afinal(β)).
We ask therefore whether Afinal(β) can be polynomial in the size of the Boolean

circuit b. The following example illustrates that the answer may become negative.

In the sequel we are going to exhibit for r := 2n + 1 a Boolean circuit b of size
O(n) which evaluates a function h : {0, 1}r × {0, 1}n −→ {0, 1} such that the stan-
dard arithmetization β of b represents a flat family of zero–dimensional elimination
problems with associated elimination polynomial F and such that any essentially
division–free procedure A of our extended computation model that accepts the in-
put β and computes by means of Afinal(β) a power of F , requires time Ω(2n) for this
task. This means that it is unlikely that algorithms designed following the paradigm
of object–oriented programming are able to evaluate the polynomial ϕ1 efficiently.

On the other hand, since the degree of ϕ1 is bounded by degU H and therefore
“small”, there exists a polynomial time interactive protocol which checks for any
u ∈ {0, 1}r and any c ∈ Z the equation ϕ1(u) = c. Thus this problem belongs to
the complexity class IP (see [LFKN92] for details).

We are now going to exhibit an example of a Boolean circuit which highlights
the unfeasibility of our computation task.

For this purpose let r := 2n + 1 and S1, . . . , Sn, T, U1, . . . , Un parameters and
X1, . . . , Xn input variables and let S := (S1, . . . , Sn) and U := (U1, . . . , Un).
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We consider the Boolean function h : {0, 1}2n+1 × {0, 1}n → {0, 1} defined by
the Boolean formula

φ :=
∧

1≤i≤n

(Xi ∨ (Si ∧Xi)) ∨ (T ∧
∧

1≤i≤n

(Xi ∨ (Ui ∧Xi))).

From the structure of the formula φ we infer that h can be evaluated by a Boolean
circuit b of size O(n) in the inputs S1, . . . , Sn, T, U1, . . . , Un.

Let β be the standard arithmetization of the Boolean circuit b and let H be the
final result of β. Observe that the total, and hence the non–scalar size of β is O(n).
Then we have

H =
∏

1≤i≤n

(1 + (Si − 1)Xi) + (1−
∏

1≤i≤n

(1 + (Si − 1)Xi))T
∏

1≤i≤n

(1 + (Ui − 1)Xi).

Observe that the equations X2
1 − X1 = 0, . . . , X2

n − Xn = 0 and the polynomial
H represent a flat family of zero–dimensional elimination problems. Let F be the
associated elimination polynomial. Then F can be written as

F = Y 2n+B1Y
2n−1+· · ·+B2n =

∏
0≤j<2n

(Y −(
∏

1≤i≤n

S[j]i+(1−
∏

1≤j≤n

S[j]i)T
∏

1≤i≤n

U
[j]i
i ))

with

Bk = (−1)k
∑

0≤j1<···<jk<2n

∏
1≤h≤k

(
∏

1≤i≤n

S
[jh]i
i + (1−

∏
1≤i≤n

S
[jh]i
i )T

∏
1≤i≤n

U
[jh]i
i )

for 1 ≤ k ≤ 2n.
Let

Lk := (−1)k
∑

0≤j1<···<jk<2n

∑
1≤h≤k

∏
1≤i≤n

S
[j1]i
i . . . (1−

∏
1≤i≤n

S
[jh]i
i ) · · ·

∏
1≤i≤n

S
[jk]i
i

∏
1≤i≤n

U
[jh]i
i ,

where 1 ≤ k ≤ 2n.
Then we have

Bk = (−1)k
∑

0≤j1<···<jk<2n

∏
1≤i≤n

S
[j1]i
i · · ·

∏
1≤i≤n

S
[jk]i
i +Lk.T+ terms of higher degree in T

Let ε : A2n → A2n be the morphism of affine spaces which assigns to each point
z ∈ A2n the values of the elementary symmetric functions in 2n variables at z.
Observe that the Jacobian of ε at (

∏
1≤i≤n S

[j]i)0≤j<2n is a non–singular (2n × 2n)–
matrix N(S). The polynomials Lk, 1 ≤ k ≤ 2n are obtained by applying N(S) to

((1−
∏

1≤i≤n S
[j]i)

∏
1≤i≤n U

[j]i
i )0≤j<2n . Since the monomials

∏
1≤i≤n U

[j]i
i , 0 ≤ j < 2n,

are linearly independent over C(S) we conclude that the polynomials Lk, 1 ≤ k ≤ 2n

have the same property.
With this preparation we are now able to repeat textually the arguments in the

proof of Theorem 10 of Section 4.1 in order to show the following statement.
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Theorem 13 Let assumptions and notations be as before and let A be an essen-
tially division free procedure of our extended computation model which accepts the
arithmetic circuit β as input. Suppose that Afinal(β) has a unique final result and
that it is a power of the elimination polynomial F . Then the non–scalar size of
Afinal(β) is at least Ω(2n).

4.4 Divisions and blow ups

We are now going to analyze the main argument of the proof of Theorem 10 from a
geometric point of view.

We recall first some notations and assumptions we made during this proof.
With respect to the indeterminates X1, . . . , Xn, we considered the vector θ of

coefficients of the expression

H =
∑

1≤i≤n

2i−1Xi + T
∏

1≤i≤n

(1 + (Ui − 1)Xi)

as a polynomial map An+1 → A2n with image T . Recall that T is an irreducible
constructible subset of A2n .

Further, with respect to the indeterminate Y , we considered the vector ϕ of
nontrivial coefficients of the monic polynomial

F =
∏

1≤j≤2n−1

(Y − (j + T
∏

1≤i≤n

U
[j]i
i ))

also as a polynomial map An+1 → A2n .
One sees immediately that there exists a unique polynomial map η : T → A2n

such that ϕ = η◦θ holds. Using particular properties of θ and ϕ we showed implicitly
in the proof of Theorem 10 that η satisfies the following condition:

Let m be a natural number, ζ : T → Am a geometrically robust con-
structible and π : Am → A2n a polynomial map such that η = π ◦ ζ holds.
Then the condition

m ≥ 2n

is satisfied.

This means that the following computational task cannot be solved efficiently:

Allowing certain restricted divisions, reduce the datum θ consisting of 2n entries
to a datum ζ consisting of only m ≤ 2n entries such that the vector η still may be
recovered from ζ without using any division, i.e., an ordinary division–free arithmetic
circuit over C.

Here the allowed divisions involve only quotients which are geometrically robust
functions defined on T .
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In order to simplify the following discussion we shall assume without loss of
generality that all our constructible maps have geometrically robust extensions to
T .

Let f and g be two elements of the coordinate ring C[T ] of the affine variety T
and suppose that g 6= 0 holds and that the element f

g
of the rational function field

C(T ) may be extended to a robust constructible function defined on T , which we
denote also by f

g
, since this extension is unique.

Then we have two cases: the coordinate function g divides f in C[T ] or not. In
the first case we may compute f

g
, by means of an ordinary division–free arithmetic

circuit over C, from the restrictions to T of the canonical projections A2n → A1.
Thus f

g
belongs to the coordinate ring C[T ]. In the second case this is not anymore

true and C[T ][f
g
] is a proper extension of C[T ] in C(T ). In both cases C[T ][f

g
] is

the coordinate ring of an affine chart of the blow up of C[T ] at the ideal generated
by f and g. We refer to this situation as a division blow up which we call essential
if f

g
does not belong to C[T ].

Therefore we have shown in the proof of Theorem 10 that essential division blow
ups do not help to solve efficiently the reduction task formulated before.

A similar situation arises in multivariate polynomial interpolation (see [GHMS11],
Theorem 23).

Following [Har92], Theorem 7.2.1 any rational map may be decomposed into a
finite sequence of successive blow ups followed by a regular morphism of algebraic
varieties. Our method indicates the interest to find lower bounds for the number of
blow ups (and their embedding dimensions) necessary for an effective variant of this
result.

Problem adapted methods for proving lower bounds for the number of blow
ups necessary to resolve singularities would also give indications which order of
complexity can be expected for efficient desingularization algorithms (see [EV00]).
At this moment only upper bound estimations are known [Bla09].

4.5 Comments on complexity models for geometric elimi-
nation

The question, whether P 6= NP or PC 6= NPC holds in the classical or the BSS
Turing Machine setting, concerns only computational decision problems. These, on
their turn, are closely related to the task to construct efficiently, for a given prenex
existential formula, an equivalent, quantifier free one (compare [BSS89], [HM93],
[SS95] and [BCSS98]). In the sequel we shall refer to this and to similar, geometri-
cally motivated computational tasks as “effective elimination”.

Theorem 10 in Section 4.1 does not establish a fact concerning decision problems
like the PC 6= NPC question. It deals with the evaluation of a function which assigns
to suitable prenex existential formulas over C canonical, equivalent and quantifier–
free formulas of the same elementary language.
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Theorem 10 says that in our computation model this function cannot be evalu-
ated efficiently. If we admit also non–canonical quantifier–free formulas as function
values (i.e., as outputs of our algorithms), then this conclusion remains true, pro-
vided that the calculation of parameterized greatest common divisors is feasible and
efficient in our model (see [CGH+03], Section 5).

It is not clear what this implies for the PC 6= NPC question.
Intuitively speaking, our exponential lower complexity bound for effective geo-

metric elimination is only meaningful and true for computer programs designed in
a professional way by software engineers. Hacker programs are excluded from our
considerations.

This constitutes an enormous difference between our approach and that of Turing
machine based complexity models, which always include the hacker aspect. There-
fore the proof of a striking lower bound for effective elimination becomes difficult in
these models.

Our argumentation is based on the requirement of output parametricity which
on its turn is the consequence of two other requirements, a functional and a non–
functional one, that we may employ alternatively. More explicitly, we require that
algorithms (and their specifications) are described by branching parsimonious as-
serted programs or, alternatively, that they behave well under reductions (see Sec-
tions 3.3.2 and 3.3.3).

Let us observe that the complexity statement of Theorem 10 refers to the rela-
tionship between input and output and not to a particular property of the output
alone. In particular, Theorem 10 does not imply that certain polynomials, discussed
below, like the permanent or the Pochhammer polynomials, are hard to evaluate.

Let notations and assumptions be as in Section 4.1. There we considered for
arbitrary n ∈ N the flat family of zero dimensional elimination problems

G
(n)
1 = 0, . . . , G(n)

n = 0, H(n)

given by
G

(n)
1 := X2

1 −X1, . . . , G
(n)
n := X2

n −Xn

and
H(n) :=

∑
1≤i≤n

2i−1Xie+ eT
∏

1≤i≤n

(1 + (Ui − 1)Xi).

Let Xn+1, . . . , X3n−1 be new indeterminates and let us consider the following poly-
nomials

G
(n)
n+1 := Xn+1−2X2−X1, . . . , G

(n)
j := Xj−Xj−1−2j−nXj−n+1, en+2 ≤ j ≤ 2n−1,

G
(n)
2n := X2n − U1X1 +X1 − 1,

G
(n)
k := Xk − Uk−2n+1Xk−1Xk−2n+1 +Xk−1Xk−2n+1 −Xk−1, e2n+ 1 ≤ k ≤ 3n− 1

and
L(n) := X2n−1 + TX3n−1.
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One verifies easily that G
(n)
1 = 0, . . . , G

(n)
3n−1 = 0, L(n) is another flat family of zero

dimensional elimination problems and that both families have the same associated
elimination polynomial, namely

F (n) :=
∏

(Y − (j + T
∏

1≤i≤n

U
[ρ]i
i ))

Suppose now that there is given an essential division–free procedure A of our ex-
tended computation model which solves algorithmically the general instance of any
given flat family of zero–dimensional elimination problems.

Let βn and β∗n be two essentially division–free, robust parameterized arithmetic
circuits which implement the first and the second flat family of zero dimensional
elimination problems we are considering.

Then βn and β∗n are necessarily distinct circuits. ThereforeAfinal(βn) andAfinal(β
∗
n)

represent two implementations of the elimination polynomial F (u) by essentially
division–free, robust parameterized arithmetic circuits.

From Theorem 10 and its proof we are only able to deduce that the circuit
Afinal(βn) has non–scalar size at least Ω(2n), but we know nothing about the non–
scalar size of Afinal(β

∗
n).

In the past, many attempts to show the non–polynomial character of the elimina-
tion of just one existential quantifier block in the arithmetic circuit based elementary
language over C, employed the reduction to the proof that a certain sequence of spe-
cific polynomials was hard to evaluate (this approach was introduced in [HM93] and
became adapted to the BSS model in [SS95]).

The Pochhammer polynomials and the generic permanents discussed below form
such sequences.

Let us finish this section with a word about hacking and interactive (zero–
knowledge) proofs.

Hackers work in an ad hoc manner and quality attributes are irrelevant for
them. We may simulate a hacker and his environment by an interactive proof system
where the prover, identified with the hacker, communicates with the verifier, i.e., the
user of the hacker’s program. Thus, in our view, a hacker disposes over unlimited
computational power, but his behaviour is deterministic. Only his communication
with the user underlies some quantitative restrictions: communication channels are
tight. Hacker and user become linked by a protocol of zero–knowledge type which
we are going to explain now.

Inputs are natural numbers in unary representation. Each natural number rep-
resents a mathematical object belonging to a previously fixed abstract data type of
polynomials. For example n ∈ N may represent the 2n–th Pochhammer polynomial

T 2n :=
∏

0≤j<2n

(T − j)
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or the n–th generic permanent

Permn :=
∑

τ∈Sym(n)

X1τ(1), . . . , Xnτ(n),

where T and X11, . . . , Xnn are new indeterminates and Sym(n) denotes the symmet-
ric group operating on n elements.

On input n ∈ N the hacker sends to the user a division–free labelled directed
acyclic graph Γn (i.e., a division–free ordinary arithmetic circuit over Z) of size nO(1)

and claims that Γn evaluates the polynomial represented by n.
The task of the user is now to check this claim in uniform, bounded probabilistic

or non–uniform polynomial time, namely in time nO(1).
In the case of the Pochhammer polynomial and the permanent a suitable protocol

exists. This can be formulated as follows.

Proposition 14 The languages

LPoch := {(n, (Γj)0≤j≤n); en ∈ N, eΓj is for 0 ≤ j ≤ n

eea division–free labelled directed acyclic graph evaluating T 2j}

and

LPerm := {(n,Γ); en ∈ Ne,Γ is a labelled directed acyclic graph evaluating Permn }

belong to the complexity class BPP and hence to P/poly (here n ∈ N is given in
unary representation).

Proof. We show only that LPoch belongs to the complexity class P/poly. The
proof that LPoch belongs to BPP follows the same kind of argumentation and will
be omitted here. The case of the language LPerm can be treated analogously and we
shall not do it here (compare [KI04], Section 3).

Let n ∈ N and let Γ be a division–free labelled directed acyclic graph with input
T and a single output node. Let Γ′ be the division–free labelled directed acyclic
graph which is given by the following construction:

- choose a labelled acyclic graph µn of size n + O(1) with input T and with
T − 22n−1

as single final result

- take the union Γ of the circuits Γ and Γ∗µn and connect the two output nodes
of Γ by a multiplication node which becomes then the single output node of
the resulting circuit Γ′.

From the polynomial identity T 2n = T 2n−1
(T )e ·eT 2n−1

(T −22n−1
) one deduces easily

that Γ′ computes the polynomial T 2n if and only if Γ computes the polynomial T 2n−1
.

For 0 ≤ j ≤ n let Γj be a division–free labelled directed acyclic graph with input
T and a single output node.

Suppose that in the previous construction the circuit Γ is realized by the labelled
directed acyclic graph Γn−1. Then one sees easily that (n, (Γj)0≤j≤n) belongs to LPoch

if and only if the following conditions are satisfied:
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(i) the circuit Γ0 computes the polynomial T ,

(ii) the circuits Γ′ and Γn compute the same polynomial,

(iii) (n− 1, (Γj)0≤j≤n−1) belongs to LPoch.

Therefore, if condition (ii) can be checked in non–uniform polynomial time, the
claimed statement follows.

For 0 ≤ j ≤ n let Lj and L be the sizes of the labelled directed acyclic graphs
Γj and Γ′ and observe that L = 2Ln−1 + n+O(1) holds.

Let Pn−1 and P be the final results of the circuits Γn−1 and Γ′. From [CGH+03],
Corollary 2 we deduce that there exist m := 4(L + 2)2 + 2 integers γ1, . . . , γm ∈ Z
of bit length at most 2(L + 1) such that the condition (ii) above is satisfied if and
only if

(iv) Pn−1(γ1) = P (γ1), . . . , Pn−1(γm) = P (γm)

holds.
From [HM] we infer that condition (iv) can be checked by a nondeterministic

Turing machine with advise in (non–uniform) time O(L3) = O((Ln−1 + n)3).
Applying this argument recursively, we conclude that membership of (n, (Γj)0≤j≤n)

to LPoch may be decided in non–uniform time O(
∑

0≤j≤n(Lj + j)3) and therefore in
polynomial time in the input size. Hence the language LPoch belongs to the complex-
ity class P/poly. The proof of the stronger result, namely LPoch ∈ BPP, is similar.

Finally we observe that for n ∈ N the Pochhammer polynomial T 2n is the asso-
ciated elimination polynomial of the particular problem instance, given by T := 0,
of the flat family of zero–dimensional elimination problems G

(n)
1 = 0, . . . , G

(n)
n =

0, H(n), which we considered in Section 4.1.
From the point of view of effective elimination, the sequence of Pochhammer

polynomials becomes discussed in [HM93] (see also [SS95]). From the point of view
of factoring integers, Pochhammer polynomials are treated in [Lip94].

Let us mention that our approach to effective elimination theory, which led to
Theorem 10 and preliminary forms of it, was introduced in [HMPW98] and extended
in [GH01] and [CGH+03].

The final outcome of our considerations in Sections 4.1 and 4.5 is the following:
neither mathematicians nor software engineers, nor a combination of them will ever
produce a practically satisfactory, generalistic software for elimination tasks in Alge-
braic Geometry. This is a job for hackers which may find for particular elimination
problems specific efficient solutions.
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de données dans les problemes d’élimination. Comptes Rendus Acad.
Sci., Serie 1 (325) 1223–1228, 1997.
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