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Abstract— This paper presents a real-time stereo vision System-
on-Chip (SoC) architecture for a depth-field generation 
processor as required in 3D TV applications. This architecture is 
fully scalable and parameterizable to allow for custom SoC 
implementations, as well as rapid prototyping on FPGAs. An on-
chip memory block architecture is used that allows parallel 
access to all pixels located in a chosen window of the image. A 
real-time stereo matching calculation at a frame rate of 56 Hz 
with a resolution of 800x600, a disparity of 80 and a window size 
of 11x11 has been realized using this architecture without the 
need for external memories. 
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I.  INTRODUCTION  
Stereo matching has long been an important research topic 

in computational video. Many stereo matching algorithms have 
been investigated and published. An extensive comparison 
between different algorithms can be found in [1,2]. Dense 
stereo matching algorithms can be divided in local (area-based) 
and global (energy-based) algorithms.  

Local and window based methods calculate the differences 
between the left and right images from a small part of the 
images. They produce a decent depth image result and are 
suitable for real-time applications. Selection of the ideal 
window size is a delicate trade-off. It should be large enough to 
contain distinguished features, but small enough to keep depth 
discontinuities. Global methods produce an accurate depth 
image, but are more time consuming. An example is the 
segmentation based technique [3] which segments the image 
first and afterwards labels each region with a disparity.  

Implementations on hardware are mainly based on a local 
window based stereo matching architecture. The matching cost 
computation often used is the sum of absolute differences 
(SAD) or the census transform [14]. The support window can 
be square, rectangular or adaptable. [4] proposed a low cost 
stereo vision system on a FPGA based on the census transform 
algorithm. A window-parallel pixel-serial architecture-based 
VLSI processor to maximize the utilization percentage of 
processing elements with an adaptable window is presented in 
[5]. [6] proposed a FPGA based stereo matching architecture 
that uses SAD and a tree based minima calculation. The 

architecture is highly pipelined which allows to achieve a 
frame rate of 600 fps using 450x375 input images with a 
disparity of 150 pixels. [7] compares the resource requirements 
and performance on a FPGA of a SAD based stereo matching 
implementation. Different shapes of windows are evaluated to 
check their influence on the generated depth image. A 
reduction of the amount of adders used is achieved by 
decomposing the block SAD calculation in a column and a row 
SAD calculation. A real-time FPGA-based stereo vision system 
is presented in [8] that makes use of the census transform. 
Their system includes all the pre- and post-processing 
functions as rectification, LR-check and uniqueness test in a 
single FPGA. 

Recently more advanced local based methods make use of 
color information to select the optimal support window. A 
good overview of these methods can be found in [9].  

The adaptive-weight algorithm proposed in [10] adjusts the 
support weight of each pixel in a fixed sized window. The 
support weights are depending on the color and spatial 
difference between each pixel in the window and the center 
pixel. Dissimilarities are computed based on the support 
weights and the plain similarity scores. Their experiment 
indicates that a local based stereo matching algorithm can 
produce depth maps similar to global algorithms. A hardware 
implementation can is published in [11]. 

[12] extends the adaptive-weight algorithm of [10] by using 
information from segmentation. It allows inclusion of 
connectiveness of pixels and segment shapes, instead of relying 
only on color and spatial distance. 

This paper presents a real-time stereo matching System-on-
Chip (SoC) architecture for a depth-field generation processor 
as required in 3D TV applications. While choosing the 
architecture, particular attention has been given to pipelining, 
possible exploitation of parallelism and limiting the number of 
external components. The architecture consists of a multiple 
parallel on-chip memory architecture, a segmentation based 
SAD matching cost computation and a tree based minima 
calculation with registers to store intermediate results. This 
architecture is fully scalable and parameterizable to allow for 
custom SoC implementations, as well as rapid prototyping on 
FPGAs. The current implementation of this architecture allows 
for a real-time stereo matching calculation at a frame rate of 56 



Hz with a resolution of 800x600, a disparity of 80 and a 
window size of 11x11. 

The remainder of the paper is organized as follows: Section 
two describes the real-time stereo matching architecture 
including several sub-blocks. Section three shows and 
discusses the hardware and the different configuration 
possibilities. Section four draws the conclusions. 

 

II. STEREO MATCHING ARCHITECTURE 

A. Basics and Requirements 
The stereo matching algorithm takes two undistorted and 

rectified images that have been taken by two cameras that have 
a vertical alignment and a horizontal offset (Fig. 1). Objects 
will appear on both images on the same horizontal line (the 
epipolar line). The horizontal distance between the same 
objects on the left and right images is called the disparity. 
Objects that are close to the cameras will have a larger 
horizontal disparity than objects that are far away. The goal of 
the stereo matching algorithm is to measure the disparity 
between all pixels in the image. 

The main advantage of dedicated VLSI or SoC 
architectures in comparison to general purpose CPUs or GPUs 
is its inherent parallelism and freedom of architecture. The 
major focus of the architecture presented in this paper is on the 
maximization of the parallel calculations needed for stereo 
vision processing. Memory usage will be of a particular 
importance since it is not feasible to calculate data in parallel if 
there is no timely access to parallel data to be processed. A 
good balance is needed. In this context, a parallel memory 
architecture is used that makes use of multiple on-chip memory 
blocks [13]. 

The architecture that is presented has been developed in a 
scalable and parameterized way. In this way a custom depth 
field processor SoC module can be generated and tuned to the 
available resources, the implementation technology and 
application at hand. The main parameters are the window size 
and the disparity depth. They directly influence the amount of 
hardware generated in an ASIC or FPGA. 

 

Figure 1.  Stereo Vision Setup 

B. General Structure 
One of the goals of this architecture is to limit the number 

of external components. Instead of the commonly used frame 
buffer to capture the pixels coming from the camera, this 
architecture processes the pixel data without using a large 
buffer. One line buffer for each camera is needed to resolve the 
difference in clock speed between the camera and the memory 
write module. To reduce noise, a median filter is placed just 
before the pixels entering the memory. Since the bit width of 
the data bus of the memory is commonly wider than the bit 
width of the pixel data, a multiplexer is used to combine 
successive pixel data’s in one memory write. 

 
Figure 2.  Input Processing Module 

Fig. 2 shows an example of an input processing module. 
The Pixel clock of the camera is configured to run at 90 MHz. 
Only the first 1024 pixels of each line are written to the FIFO. 
In this way the FIFO can be read out at 36 MHz without 
creating an underflow or overflow of the FIFO. The part of the 
blanking period that is written to the FIFO is the same size as 
the horizontal blanking period of the VGA specifications for a 
resolution of 800x600 with a frame rate of 56 Hz. In this way, 
the output of the FIFO can directly be connected to a VGA 
screen. The last step of this module stores four successive 
pixels in the parallel memory at a clock rate of 9MHz. 

The two input streams of the cameras are compared with 
each other using a Sum of Absolute Differences (SAD) 
calculation (see Fig. 3). Every clock cycle a window of the 
right camera is compared with four windows of the left camera. 
Since four successive pixels are stored in one memory location, 
one memory read accesses four pixels. Which means that four 
comparison modules need to be implemented in parallel. 

 
Figure 3.  Comparison Module 

The frequency of the comparison module controls directly 
the possible depth range of the stereo matching architecture and 
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can be adapted to the available resources. In the example on 
Fig. 3 a frequency of 180 MHz is chosen so that depth module 
runs twenty times faster than a memory write. This leads to a 
depth range of eighty when the comparison module has a depth 
of four.  

The depth range of a single comparison module is limited 
to a small depth range. It can be increased to accommodate a 
larger depth range if the maximum operating frequency is 
reached. 

On each clock cycle (CC), the comparison module 
compares the reference window with four other windows (Fig. 
4). The lowest SAD score and index are saved in a register and 
reused on the comparison of the next four windows.  

 

  
Figure 4.  Comparison Module Operating at a  Higher Frequency 

C. Memory Architecture 
Due to the sequential way in which digital video data are 

presented, video signal processing architectures are 
traditionally built around line buffers. In the line buffers a 
number of the most recent scan lines are kept on-chip. Line 
buffers could be implemented as shift registers, but are 
currently efficiently implemented as on-chip memory blocks 
with dedicated addressing logic, such that they are used as 
FIFOs, typically one FIFO per scan line. At the outputs of the 
FIFOs, corresponding column pixels for the recent scan lines 
are accessed. These can then be stored in a shift register array 
with the size of the area of interest for window based video 
operations such as filtering, edge detection, sharpening, 
resampling etc.  

However, the traditional scan line based FIFO architecture 
does not allow for a complete window refresh on each clock 
cycle. It also does not fully exploit the parallelism that is 
available with multiple on-chip memory blocks. It. 

In [13] the authors present a parallel System-on-Chip (SoC) 
memory architecture for a stereo vision system. It allows for a 
parallel access to all pixels located in a chosen window of the 
image. Using this architecture a complete window refresh on 
each clock cycle is possible, which can be used to increase the 
depth range of a stereo matching algorithm. The proposed 
architecture allows random memory access, which is used in 
this paper to substantially increase the disparity range. 

D. Cost aggregation  
The Sum of Absolute Differences (SAD) calculates the 

differences between two selected windows. It is a measurement 
of similarity between two parts of an image. Fig. 5 shows the 
calculation of the main building block of the calculation; the 
absolute difference (AD).  

 
Figure 5.  Absolute Difference Calculation 

The summation part of the SAD uses a window and depth 
parallel approach to calculate the sum of absolute differences 
for all depths and all windows in one clock cycle. Two main 
methods are integrated in this architecture. The first method 
uses a fixed window SAD block calculation (1). When using a 
fixed window shape, implicitly depth continuity across this 
window is assumed. This assumption is not correct at depth 
edges, where the center pixel depth is different from some (or 
the majority) of the surrounding pixels depths.  

 !"# =    !"#$%&'(  !"##$%$&'$ !!"#$%!  !"#$
!!!  (1) 

A more conservative assumption is to assume depth 
continuity across pixels with similar color [11]. The second 
method uses a fully adaptable window. For each window a 
binary mask window is generated which selects the supporting 
pixels in the cost aggregation phase of the SAD algorithm. This 
selection is performed using color similarity and spatial 
distance metrics (2).  
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Since the weights (w) in this architecture are ‘0’or ‘1’, the 
multiplication in (3) can be replaced by an AND operator. This 
will accommodate for an efficient hardware implementation.  

 

E. Minima Selection 
The minima selection is based on an iterative minima tree 

calculation (Fig. 6). The SAD results are pair wise compared, 
while each time the lowest value is stored in a register. 
Afterwards, these registers are pair wise compared and stored 
in registers. These steps are repeated until one value remains. 
Storing of the intermediate results in registers makes this 
method interesting for pipelining. 

 
Figure 6.  Minima Selection Tree  
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III. IMPLEMENTATION AND RESULTS 
Matlab has been used to generate, out of the chosen 

parameters and the high level architecture, a complete stereo 
matching architecture for both simulation and hardware 
generation from a high level description. This allows an initial 
check of the stereo matching architecture in Matlab before 
implementation on the actual hardware. Using this framework, 
comparison between different stereo matching parameters and 
architectures can be rapidly performed. 

The architecture and methods presented in this paper have 
been implemented on an FPGA system, based on an Altera 
Cyclone II with 68.416 logic elements and 250 memory blocks. 
The sources of the input streams are two cameras with a 
resolution of 800x600 and a frame rate of 56 Hz. Both fixed 
window as well as binary adaptive window SAD has been 
implemented in hardware.  

The stereo matching architecture has three main tunable 
parameters. First the window width and height can be adapted 
to the application needs. The number of memory blocks used 
will depend on the size of this window. The second parameter 
is the operating frequency of the comparison module, the larger 
the operating frequency, the greater the disparity range can be.  

Preliminary results indicate that a real-time stereo matching 
architecture with a depth range of 80, a resolution of 800x600, 
a frame rate of 56 Hz and a window size of 11x11 can easily be 
achieved on a low-cost Cyclone II FPGA device without the 
need to use external memories. 

Fig. 7 shows the depth maps of the Tsukuba stereo pair [2] 
with a binary adaptive subwindow compared with a squared 
fixed window [11]. The results indicate that the quality of the 
resulting depth map increases when using a binary adaptive 
subwindow. Even with smaller window sizes, small details 
around the edges are noticeable improved. With larger window 
sizes the smoothing effect stays while preserving small details 
around the edges. 

    
a. 3x3 (left: fixed window, right: binary adaptive window)  

     
b. 11x11 (left: fixed window, rigth: binary adaptive window)               

Figure 7.  Depth map quality of the Tsukuba stereo pair [2] in function of 
window size and aggregation window type 

IV. CONCLUSIONS 
This paper presents a real-time stereo matching System-on-

Chip (SoC) architecture for a depth-field generation processor. 
The architecture consists of a multi parallel on-chip memory 
architecture, a segmentation based SAD matching cost 
computation and a tree based minima calculation. By 
increasing the operational frequency of the matching module, a 
twenty-fold increase of disparity range is achieved. It is shown 
that this architecture can be implemented efficiently into a SoC 
design without the need for external memories.  
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