
Real-Time Stereo Vision Hardware Architecture
Suitable for Multiple Platforms

Andy Motten, Luc Claesen
Expertise Centre for Digital Media
Hasselt University – tUL – IBBT

Wetenschapspark 2, 3590 Diepenbeek, Belgium
{firstname.lastname}@uhasselt.be

Abstract— This paper presents a real-time stereo vision System-
on-Chip (SoC) architecture for a depth-field generation
processor as required in 3D TV applications. This architecture is
fully scalable and parameterizable to allow for custom SoC
implementations, as well as rapid prototyping on FPGAs. An on-
chip memory block architecture is used that allows parallel
access to all pixels located in a chosen window of the image. A
real-time stereo matching calculation at a frame rate of 56 Hz
with a resolution of 800x600, a disparity of 80 and a window size
of 11x11 has been realized using this architecture without the
need for external memories.

Keywords: real-time stereo matching; adaptable window;
computer vision; Parallel memory architecture; system-on-chip;
FPGA

I. INTRODUCTION
Stereo matching has long been an important research topic

in computational video. Many stereo matching algorithms have
been investigated and published. An extensive comparison
between different algorithms can be found in [1,2]. Dense
stereo matching algorithms can be divided in local (area-based)
and global (energy-based) algorithms.

Local and window based methods calculate the differences
between the left and right images from a small part of the
images. They produce a decent depth image result and are
suitable for real-time applications. Selection of the ideal
window size is a delicate trade-off. It should be large enough to
contain distinguished features, but small enough to keep depth
discontinuities. Global methods produce an accurate depth
image, but are more time consuming. An example is the
segmentation based technique [3] which segments the image
first and afterwards labels each region with a disparity.

Implementations on hardware are mainly based on a local
window based stereo matching architecture. The matching cost
computation often used is the sum of absolute differences
(SAD) or the census transform [14]. The support window can
be square, rectangular or adaptable. [4] proposed a low cost
stereo vision system on a FPGA based on the census transform
algorithm. A window-parallel pixel-serial architecture-based
VLSI processor to maximize the utilization percentage of
processing elements with an adaptable window is presented in
[5]. [6] proposed a FPGA based stereo matching architecture
that uses SAD and a tree based minima calculation. The

architecture is highly pipelined which allows to achieve a
frame rate of 600 fps using 450x375 input images with a
disparity of 150 pixels. [7] compares the resource requirements
and performance on a FPGA of a SAD based stereo matching
implementation. Different shapes of windows are evaluated to
check their influence on the generated depth image. A
reduction of the amount of adders used is achieved by
decomposing the block SAD calculation in a column and a row
SAD calculation. A real-time FPGA-based stereo vision system
is presented in [8] that makes use of the census transform.
Their system includes all the pre- and post-processing
functions as rectification, LR-check and uniqueness test in a
single FPGA.

Recently more advanced local based methods make use of
color information to select the optimal support window. A
good overview of these methods can be found in [9].

The adaptive-weight algorithm proposed in [10] adjusts the
support weight of each pixel in a fixed sized window. The
support weights are depending on the color and spatial
difference between each pixel in the window and the center
pixel. Dissimilarities are computed based on the support
weights and the plain similarity scores. Their experiment
indicates that a local based stereo matching algorithm can
produce depth maps similar to global algorithms. A hardware
implementation can is published in [11].

[12] extends the adaptive-weight algorithm of [10] by using
information from segmentation. It allows inclusion of
connectiveness of pixels and segment shapes, instead of relying
only on color and spatial distance.

This paper presents a real-time stereo matching System-on-
Chip (SoC) architecture for a depth-field generation processor
as required in 3D TV applications. While choosing the
architecture, particular attention has been given to pipelining,
possible exploitation of parallelism and limiting the number of
external components. The architecture consists of a multiple
parallel on-chip memory architecture, a segmentation based
SAD matching cost computation and a tree based minima
calculation with registers to store intermediate results. This
architecture is fully scalable and parameterizable to allow for
custom SoC implementations, as well as rapid prototyping on
FPGAs. The current implementation of this architecture allows
for a real-time stereo matching calculation at a frame rate of 56

Hz with a resolution of 800x600, a disparity of 80 and a
window size of 11x11.

The remainder of the paper is organized as follows: Section
two describes the real-time stereo matching architecture
including several sub-blocks. Section three shows and
discusses the hardware and the different configuration
possibilities. Section four draws the conclusions.

II. STEREO MATCHING ARCHITECTURE

A. Basics and Requirements
The stereo matching algorithm takes two undistorted and

rectified images that have been taken by two cameras that have
a vertical alignment and a horizontal offset (Fig. 1). Objects
will appear on both images on the same horizontal line (the
epipolar line). The horizontal distance between the same
objects on the left and right images is called the disparity.
Objects that are close to the cameras will have a larger
horizontal disparity than objects that are far away. The goal of
the stereo matching algorithm is to measure the disparity
between all pixels in the image.

The main advantage of dedicated VLSI or SoC
architectures in comparison to general purpose CPUs or GPUs
is its inherent parallelism and freedom of architecture. The
major focus of the architecture presented in this paper is on the
maximization of the parallel calculations needed for stereo
vision processing. Memory usage will be of a particular
importance since it is not feasible to calculate data in parallel if
there is no timely access to parallel data to be processed. A
good balance is needed. In this context, a parallel memory
architecture is used that makes use of multiple on-chip memory
blocks [13].

The architecture that is presented has been developed in a
scalable and parameterized way. In this way a custom depth
field processor SoC module can be generated and tuned to the
available resources, the implementation technology and
application at hand. The main parameters are the window size
and the disparity depth. They directly influence the amount of
hardware generated in an ASIC or FPGA.

Figure 1. Stereo Vision Setup

B. General Structure
One of the goals of this architecture is to limit the number

of external components. Instead of the commonly used frame
buffer to capture the pixels coming from the camera, this
architecture processes the pixel data without using a large
buffer. One line buffer for each camera is needed to resolve the
difference in clock speed between the camera and the memory
write module. To reduce noise, a median filter is placed just
before the pixels entering the memory. Since the bit width of
the data bus of the memory is commonly wider than the bit
width of the pixel data, a multiplexer is used to combine
successive pixel data’s in one memory write.

Figure 2. Input Processing Module

Fig. 2 shows an example of an input processing module.
The Pixel clock of the camera is configured to run at 90 MHz.
Only the first 1024 pixels of each line are written to the FIFO.
In this way the FIFO can be read out at 36 MHz without
creating an underflow or overflow of the FIFO. The part of the
blanking period that is written to the FIFO is the same size as
the horizontal blanking period of the VGA specifications for a
resolution of 800x600 with a frame rate of 56 Hz. In this way,
the output of the FIFO can directly be connected to a VGA
screen. The last step of this module stores four successive
pixels in the parallel memory at a clock rate of 9MHz.

The two input streams of the cameras are compared with
each other using a Sum of Absolute Differences (SAD)
calculation (see Fig. 3). Every clock cycle a window of the
right camera is compared with four windows of the left camera.
Since four successive pixels are stored in one memory location,
one memory read accesses four pixels. Which means that four
comparison modules need to be implemented in parallel.

Figure 3. Comparison Module

The frequency of the comparison module controls directly
the possible depth range of the stereo matching architecture and

Camera FIFO Filter Parallel
Memory

12b 12b 4x9b

36 MHz

Mux
9b

90 MHz 9 MHz

Horizontal Total : 1024
Field : 800 Blanking: 224

Horizontal Total : 2560
Field : 800 Blanking: 1760

Camera Configuration VGA Configuration (800x600 @ 56Hz)

0 25601024

Write FIFO Do Nothing

0 1024

Read FIFO

Parallel
Memory

4x9b

9 MHz 180 MHz

Parallel
Memory

4x9b

SAD

Minimum tree

Left
Camera

Rigth
Camera

Comparison module (4x)

can be adapted to the available resources. In the example on
Fig. 3 a frequency of 180 MHz is chosen so that depth module
runs twenty times faster than a memory write. This leads to a
depth range of eighty when the comparison module has a depth
of four.

The depth range of a single comparison module is limited
to a small depth range. It can be increased to accommodate a
larger depth range if the maximum operating frequency is
reached.

On each clock cycle (CC), the comparison module
compares the reference window with four other windows (Fig.
4). The lowest SAD score and index are saved in a register and
reused on the comparison of the next four windows.

Figure 4. Comparison Module Operating at a Higher Frequency

C. Memory Architecture
Due to the sequential way in which digital video data are

presented, video signal processing architectures are
traditionally built around line buffers. In the line buffers a
number of the most recent scan lines are kept on-chip. Line
buffers could be implemented as shift registers, but are
currently efficiently implemented as on-chip memory blocks
with dedicated addressing logic, such that they are used as
FIFOs, typically one FIFO per scan line. At the outputs of the
FIFOs, corresponding column pixels for the recent scan lines
are accessed. These can then be stored in a shift register array
with the size of the area of interest for window based video
operations such as filtering, edge detection, sharpening,
resampling etc.

However, the traditional scan line based FIFO architecture
does not allow for a complete window refresh on each clock
cycle. It also does not fully exploit the parallelism that is
available with multiple on-chip memory blocks. It.

In [13] the authors present a parallel System-on-Chip (SoC)
memory architecture for a stereo vision system. It allows for a
parallel access to all pixels located in a chosen window of the
image. Using this architecture a complete window refresh on
each clock cycle is possible, which can be used to increase the
depth range of a stereo matching algorithm. The proposed
architecture allows random memory access, which is used in
this paper to substantially increase the disparity range.

D. Cost aggregation
The Sum of Absolute Differences (SAD) calculates the

differences between two selected windows. It is a measurement
of similarity between two parts of an image. Fig. 5 shows the
calculation of the main building block of the calculation; the
absolute difference (AD).

Figure 5. Absolute Difference Calculation

The summation part of the SAD uses a window and depth
parallel approach to calculate the sum of absolute differences
for all depths and all windows in one clock cycle. Two main
methods are integrated in this architecture. The first method
uses a fixed window SAD block calculation (1). When using a
fixed window shape, implicitly depth continuity across this
window is assumed. This assumption is not correct at depth
edges, where the center pixel depth is different from some (or
the majority) of the surrounding pixels depths.

 !"# = !"#$%&'(!"##$%$&'$!!"#$%! !"#$
!!! (1)

A more conservative assumption is to assume depth
continuity across pixels with similar color [11]. The second
method uses a fully adaptable window. For each window a
binary mask window is generated which selects the supporting
pixels in the cost aggregation phase of the SAD algorithm. This
selection is performed using color similarity and spatial
distance metrics (2).

! = 0 !" ∆!ℎ!"#$ ∗ ∆!"#$%&'(> !ℎ!"#ℎ!"#
1 !"ℎ!"#$%!

 (2)

!"# = ! ∗ !"#$%&'(!"##$%$&'$!!"#$%! !"#$
!!! (3)

Since the weights (w) in this architecture are ‘0’or ‘1’, the
multiplication in (3) can be replaced by an AND operator. This
will accommodate for an efficient hardware implementation.

E. Minima Selection
The minima selection is based on an iterative minima tree

calculation (Fig. 6). The SAD results are pair wise compared,
while each time the lowest value is stored in a register.
Afterwards, these registers are pair wise compared and stored
in registers. These steps are repeated until one value remains.
Storing of the intermediate results in registers makes this
method interesting for pipelining.

Figure 6. Minima Selection Tree

CC1 CC2 CC3 CC4 CC20

Depth = 0
SAD > 0

Depth = 0
SAD > 0

Depth = 11
SAD > 0

Depth = 11
SAD = 0

Depth = 11
SAD = 0

Left
Camera

Rigth
Camera

Number 1 (8 bit)

Number 2 (8 bit) +1 AD

9th bit of division (sign bit)

SAD (depth 0)

SAD (depth 1)

SAD (depth 2)

SAD (depth 3)

>

>

REG 1

REG 2

> Disparity

III. IMPLEMENTATION AND RESULTS
Matlab has been used to generate, out of the chosen

parameters and the high level architecture, a complete stereo
matching architecture for both simulation and hardware
generation from a high level description. This allows an initial
check of the stereo matching architecture in Matlab before
implementation on the actual hardware. Using this framework,
comparison between different stereo matching parameters and
architectures can be rapidly performed.

The architecture and methods presented in this paper have
been implemented on an FPGA system, based on an Altera
Cyclone II with 68.416 logic elements and 250 memory blocks.
The sources of the input streams are two cameras with a
resolution of 800x600 and a frame rate of 56 Hz. Both fixed
window as well as binary adaptive window SAD has been
implemented in hardware.

The stereo matching architecture has three main tunable
parameters. First the window width and height can be adapted
to the application needs. The number of memory blocks used
will depend on the size of this window. The second parameter
is the operating frequency of the comparison module, the larger
the operating frequency, the greater the disparity range can be.

Preliminary results indicate that a real-time stereo matching
architecture with a depth range of 80, a resolution of 800x600,
a frame rate of 56 Hz and a window size of 11x11 can easily be
achieved on a low-cost Cyclone II FPGA device without the
need to use external memories.

Fig. 7 shows the depth maps of the Tsukuba stereo pair [2]
with a binary adaptive subwindow compared with a squared
fixed window [11]. The results indicate that the quality of the
resulting depth map increases when using a binary adaptive
subwindow. Even with smaller window sizes, small details
around the edges are noticeable improved. With larger window
sizes the smoothing effect stays while preserving small details
around the edges.

a. 3x3 (left: fixed window, right: binary adaptive window)

b. 11x11 (left: fixed window, rigth: binary adaptive window)

Figure 7. Depth map quality of the Tsukuba stereo pair [2] in function of
window size and aggregation window type

IV. CONCLUSIONS
This paper presents a real-time stereo matching System-on-

Chip (SoC) architecture for a depth-field generation processor.
The architecture consists of a multi parallel on-chip memory
architecture, a segmentation based SAD matching cost
computation and a tree based minima calculation. By
increasing the operational frequency of the matching module, a
twenty-fold increase of disparity range is achieved. It is shown
that this architecture can be implemented efficiently into a SoC
design without the need for external memories.

REFERENCES
[1] N. Lazaros, G. C. Sirakoulis, and A. Gasteratos, “Review of stereo

vision algorithms: From software to hardware,” International Journal of
Optomechatronics, vol. 2 (4), 2008, pp. 435-462.

[2] D. Scharstein, and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International Journal of
Computer Vision, vol. 47 (1), 2002, pp. 7-42.

[3] R. Szeliski, Computer vision: algorithms and applications, unpublished
[4] C. Murphy, D. Lindquist, A. M. Rynning, T. Cecil, S. Leavitt, and M. L.

Chang, “Low-cost stereo vision on an FPGA,” International Symposium
on Field-Programmable Custom Computing Machines, 2007, pp. 333-
334.

[5] M. Hariyama, and M. Kameyama, “Pixel-serial and window-parallel
VLSI processor for stereo matching using a variable window size,”
Interdisciplinary Information Sciences, vol. 7 (2), 2001,pp. 289-297.

[6] K. Ambrosch, M. Humenberger, and W. Kubinger, “SAD-based stereo
matching using FPGAs,” in Embedded Computer Vision, Advances in
Pattern Recognition, K. Branislav, ed. London: Springer-Verlag, 2009,
pp. 121-138.

[7] J. Yi, J. Kim, L. Li, J. Morris, G. Lee, and P. Leclercq, “Real-time three
dimensional vision,” in Advances in Computer Systems Architecture,
Lecture Notes in Computer Science, Berlin: Springer-Verlag, vol. 3189
2004, pp. 309-320.

[8] S. Jin, J. Cho, X. D. Pham, K.M. Lee, S. –K. Park, and J. W. Jeon,
“FPGA Design and Implementation of a Real-Time Stereo Vision
System,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 20 (1), 2010, pp. 15-26

[9] L. Wang, M. Gong, M. Gong, and R. Yang, “How far can we go with
local optimization in real-time stereo matching,” Proc. Third Int. Symp.
On 3D Data Processing, Visualization, and Transmission, 2006, pp. 129-
136.

[10] K.J. Yoon, and I.S. Kweon, “Adaptive support-weight approach for
correspondence search,” IEEE Trans. PAMI, vol. 28 (4), 2006, pp. 650-
656.

[11] A. Motten, L. Claesen, “A Binary Adaptable Window SoC Architecture
for a Stereo Based Depth Field Processor,” in Proceedings IEEE VLSI-
SOC-2010, 18th IEEE/IFIP International Conference on VLSI and
System-on-Chip, Madrid, 27-29 September 2010, pp. 25 - 30.

[12] F. Tombari, S. Mattoccia, and L. Di Stefano, “Segmentation-based
adaptive support for accurate stereo correspondence,” in Advances in
Image and Video Technology, Lecture Notes in Computer Science,
Berlin: Springer-Verlag, vol. 4872, 2007, pp. 427-438.

[13] A. Motten, L. Claesen, “An On-Chip Parallel Memory Architecture for a
Stereo Vision System,” in Proceedings IEEE ECECS-2010, 17th IEEE
International Conference on Electronics, Circuits, and Systems, Athens,
12-15 December 2010, 4 pages (accepted for publication).

[14] R. Zabih, J. Woodfill, “Non-parametric Local Transforms for
Computing Visual Correspondence”, in Proc. European Conference on
Computer Vision, Stockholm, Sweden, May 1994, pp. 151-158.

