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ABSTRACT1

Electric power demand for household generated traffic is estimated as a function of time and space2

for the region of Flanders. An activity-based model is used to predict traffic demand. Electric3

vehicle (EV) type and charger characteristics are determined on the basis of car ownership and by4

assuming that EV categories market shares will be similar to the current ones for internal combus-5

tion engine vehicles (ICEV) published in government statistics. Charging opportunities at home6

and work locations are derived from the predicted schedules and by estimating the possibility to7

charge at work. Simulations are run for several EV market penetration levels and for specific8

BEV/PHEV (battery-only/pluggable hybrid) ratios. A single car is used to drive all trips in a daily9

schedule. Most of the Flemish schedules can be driven entirely by a BEV even after reducing10

published range values to account for range anxiety and for the over-estimated ranges resulting11

from tests according to standards. The current low tariff electricity period overnight is found to be12

sufficiently long to allow for individual cost optimizing while peak shaving overall power demand.13
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INTRODUCTION14

Electric vehicles use15

The economy’s dependency on fossil combustibles is attempted to be decreased for both environ-16

mental and strategic reasons. Resulting effects are an expected increase of electric vehicle (EV) use17

and use of alternative sources for electric energy production. Sustainable electric energy sources18

(wind, solar) deliver power at variable rates that cannot easily be predicted. Furthermore, storing19

electric energy is a major problem.20

The use of EV generates challenging questions but also opportunities: when EV are used21

in a vehicle to grid (V2G) configuration, they can serve as electric energy storage devices. Design-22

ing and operating an electricity grid having lots of small unpredictable producers combined with23

relocatable storage capacity that is time dependent, is a complex problem.24

The problem receives more than pure technical attention. White-House-NSTC (1) states:25

President Obama has set a national goal of generating 80% of [the] electricity from clean energy26

sources by 2035 and has reiterated his goal of putting one million electric vehicles on the road by27

2015.28

29

Activity-based models to predict energy demand by electric vehicles30

Activity-based modeling (ActBM) predicts daily schedules for people based on the behavioral31

characteristics for each individual. As a result, each individual actor can be designed to adapt32

in its own specific way to changes applied in scenarios when using feedback mechanisms during33

simulation. Activity-based models therefore allow for policy evaluation. The schedules generated34

by ActBM contain information about the transport modes used and about the activity kind, duration35

and location. As a result they provide the tools to investigate the feasibility of goals like the one36

stated in (1) both by modeling in a closed loop, individual behavior change (adaptation) and the37

effect thereof on the public infrastructure.38

This paper explores the case for Flanders. The region counts 6 million inhabitants on39

13000 square kilometers and is part of Belgium (Europe) (11 million inhabitants on 30000 square40

kilometers). The area is subdivided in 2368 zones. A synthetic population of actors has been built41

to mimic each inhabitant of the area to be studied. Actor behavior is determined by characteristics42

of the surroundings like road transportation network, distance between locations suited for specific43

types of activities, public transport availability, delays induced by congestion. The Feathers44

ActBM described in (2) has been used. Within Feathers, actor behavior is modeled by 2645

decision trees, each one of which takes as input attributes of both the individual actor and the46

environment as well as the outcome of decisions already made. The decision trees have been47

trained by means of the CHAID method using data from regional time specific travel behavior48

OVG surveys. A single survey covers up to 8800 respondents. The decision trees are used to49

predict (in the order specified) attributes for work episodes, work locations, work-travel mode,50

fixed non-work activities, flexible non-work activities, non-work locations, non-work-travel mode.51

At this moment Feathers does not adapt actor behavior to car type (ICEV, EV). Car type is52

determined after schedule prediction. Resulting schedules ar used to predict time and location for53

travel related electric energy consumption.54

First we explain what hypotheses about EV drivers behavior have been made and how55

EV characteristics have been determined from literature and from available statistical data. Next,56

calculation details are described. Finally, results for the Flemish region are presented: area specific57
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energy and power requirements as a function of time identify critical parts in the electric grid. The58

fraction of the household transportation market that can be served by EV without range extenders,59

is calculated.60

Related work61

Many research projects are driven by the goals to reduce greenhouse emissions. Recently european62

research focuses on the problem of matching the supply and demand of electric energy from sus-63

tainable sources (solar, wind). Cui et al. (3) use a car selection model, a budget prediction model64

and an agent based simulator (stigmergy) to predict pluggable hybrid electric vehicle (PHEV)65

market penetration for Knox County (190k households). Davies and Kurani (4) predict the electric66

power demand for the PHEV used by 25 households from data recorded in an experiment and from67

a PHEV car design game conducted by the households: the effect of work location charging is sim-68

ulated. Kang and Recker (5) and Recker and Kang (6) use an activity based model for California69

based on statewide travel diaries and several charging scenarios to predict the power demand for70

the whole area as a function of time. Bliek et al. (7) describe how PowerMatcher predicts electric71

energy in a smartgrid containing small unpredictable solar and wind energy sources and tries to72

match supply and demand using an agent based auction for electric energy. Clement-Nyns et al.73

(8) evaluate coordinated charging strategies for a belgian case. In such systems customers need to74

specify time limits for charging (which can be produced by ActBM). Waraich et al. (9) evaluate75

energy tariff effects on charging behavior for the city of Berlin by coupling MATSim-T (travel76

demand simulator framework) to PMPSS (PHEV Management and Power Systems Simulation).77

Binding and Sundstroem (10) describe an agent based simulator for an auction based energy pric-78

ing system aimed at matching sustainable power supply and demand: they plan to integrate the79

V2G (Vehicle to Grid) concept to temporary store energy in car batteries. Hadley and Tsvetkova80

(11) predefine a charging profile and analyse the effect on power demand when applying it to 1381

US regions at different times of the day.82

CONTEXT83

Smart grids and transport engineering84

Smart grids are required when trying to meet electric energy demand in networks containing many85

small production units exposing difficult to predict behavior (solar, wind energy). Several tech-86

niques are used to try smoothing power requirement over time and to adapting it to uncontrol-87

lable time dependent production. With central coordination based schemes, the energy provider88

is allowed to turn on/off electric loads remotely. Other schemes rely on intelligence local to the89

consumer to determine electric demand at any moment in time: auction based configurations try to90

adapt demand to production by negotiating location specific prices every 15 minutes. Each one of91

those schemes requires intelligent components but also a lot of information about the environment92

and efficient adequate short time forecasting techniques. ActBM in transport engineering can con-93

tribute to the problem solution by creating adequate tools to forecast the energy and power demand94

as a function of time and location in order to decide when and where energy can be delivered95

proactively or stored in batteries for later retrieval. Several papers mentioned under Related Work96

predict energy demand: they do so either for a small population or as an aggregated value for a97

wide region. Related work on smartgrid design, shows that the auction based pricing system sim-98

ulators need predictions about when and where electric power is demanded. Therefor, this paper99

estimates the electric energy and power requirements for Flanders using activity based modeling.100
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Electric energy demand evolution - Power demand101

Energy demand102

According to several sources ((12),(13)) the total amount of energy drawn from the grid by electric103

vehicles is relatively small: a 30% market share EV would represent 3% of the total annual electric104

energy consumption for the region of Milan, Italy.105

For a flemish household, the estimated yearly amount of electric energy required by the106

car (0.2 kWh/km, 15000 km) is of the same order of magnitude as the amount of electric energy107

consumed by the household for other purposes (current electric energy consumption value). Ac-108

cording to figures published in Oxford University Environmental Change Institute website statistics109

pages (14) the average yearly consumption for a belgian household amounts to 3899 [kWh/year].110

A similar figure (3500 [kWh/year]) for Belgium is mentioned by (15). As a consequence, the rel-111

ative contribution of transport in the overall demand, will grow significantly with increasing EV112

market penetration.113

The evolution of electric energy demand per sector for Belgium is given in (16). Total114

consumption in 2005 was 80.2 TWh. The transport sector contribution increases but amounted to115

only 2.12% in 2005. According to several sources ((17), (12)) the energy demand by EV is not116

expected to cause problems on the electricity grid provided it is distributed over time.117

Power demand118

Activity-based models help to assess where and when peak power demand would exceed limits119

imposed by the grid. Perujo and Ciuffo (13) studied power demand for the Milan region using120

the assumptions that people will not charge their car batteries everyday but only when needed and121

that charging starts between 16:00h and 19:00h in the evening obeying a uniform distribution over122

time. Parque and Ciuffo (12) recognize the need for statistical values (estimated distributions) on123

daily commuter trips for a particular region. Our study uses ActBM to calculate charging time and124

location resulting in a prediction of EV power demand.125

The use of activity based models126

Electric energy demand estimates require detailed data about location and timing as well as trip127

purpose and activity information for each simulated individual. This paper investigates following128

scenarios for charging of both battery-only EV (BEV) and pluggable hybrid EV (PHEV) in order to129

calculate peak power demand as a function of time and location starting from Feathers predicted130

schedules:131

• Scenario EarlyLowTariff: people start charging as soon as possible during the low tariff132

period (night-time, reduced-rate electricity).133

• Scenario UniformLowCost: people start charging at a uniformly distributed moment in134

time but so that their cost is minimal (maximum use of low tariff period).135

• Scenario LastHome: people start charging batteries as soon as the car gets parked at the136

last home arrival of the day irrespective of any low-tariff period.137

• Scenario AlwaysAtHome: people charge batteries immediately after each home arrival.138

In all cases, charging period is assumed to be contiguous (uninterrupted) which means that no auc-139

tion based dynamic pricing for fifteen minute charging blocks has been considered. Furthermore140

we hypothesize141
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• that everyone recharges batteries everyday due to range anxiety142

• that all cars are charged at home with additional charging at the work location in well143

defined cases only144

ELECTRIC VEHICLE FLEET ATTRIBUTES145

Since the EV market is only emerging, predictions cannot be based on extensive statistics. As-146

sumptions made in the paper have been explained and argued below.147

Vehicle categories148

Electric cars are subdivided into the categories small, medium, large similar to what is149

done in (13). In order to estimate the energy requirement, one needs to know the contribution of150

each category to the complete vehicle fleet. Belgian government statistics provide the distribution151

of registered cars along a classification based on the ICEV cylinder volume. We state the one-to-152

one mapping of categories given in table 1 that shows market share and technical characteristics153

for each category. Vehicle characteristics in the table have been derived from data in (13) and (18),154

the market share figures have been taken from the belgian federal government 2009 PARC010155

Transport Indicator statistics (19)

Vehicle categories

Equivalent engine cylinder volume [cc] (ICEV

category)

V < 1400 1400 ≤ V ≤ 2000 2000 < V

Market share (from belgian government statis-

tics)

0.496 0.364 0.140

EV category small medium large

Battery capacity (kWh) 10 20 35

Range (km) 100 130 180

Energy consumption (kWh/km) : lower limit 0.090 0.138 0.175

Energy consumption (kWh/km) : upper limit 0.110 0.169 0.214

Charger type at home : prob(3.3[kW]) 0.8 0.4 0.1

Charger type at home : prob(7.2[kW]) 0.2 0.6 0.9

Charger type at work : prob(3.3[kW]) 0.1 0.1 0.1

Charger type at work : prob(7.2[kW]) 0.9 0.9 0.9

TABLE 1 : Correspondence between EV and ICEV for categories specified in Belgian Gov-

ernment statistics
156

Available Chargers157

Locally available 3.3 [kVA] and 7.2 [kVA] chargers are considered. Our model distinguishes be-158

tween home and work location chargers. Charger type occurrence probability is given in table 1.159

The power value for home chargers is assumed to depend on the car category: smaller cars are160

equipped with a less powerful charger. On the other hand, companies offering car charging facili-161

ties are assumed to provide powerful chargers in order to save time and to extend the distance that162

can be bridged during one day. The company investment in a powerful charger is assumed to be a163

profitable one.164
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Company cars in Belgium - Vehicle ownership165

Employers are believed to allow company car (CC) drivers to charge at the work location because166

that is less expensive than providing fuel cards to employees. However, for technical reasons,167

not all companies can provide the required infrastructure. The fraction of actors who can charge168

batteries at the work location has been determined as a fraction of company car drivers. It has been169

assumed that 50% of the CC drivers can charge at the work location.170

The Feathers ActBM predicts trips and provides information about car availability but171

not about car ownership (private vs. company owned). In order to estimate the number of people172

able to charge batteries at the work location, we need to estimate the fraction of work trips traveled173

by company car. The COCA (Company Car analysis) report (20) states that depending on the174

context, multiple definitions of a company car (voiture de société) are in use because both fiscal175

and operational aspects are concerned. The COCA definition (A company car is made available176

by a company to an employee for both professional and private use) is used in our study. The177

same COCA report states that, based on two belgian reports (OVG for Flanders and ERMMW for178

Wallonia), it can be concluded from data up to 2005, that 6% . . . 7% of the car fleet in use by belgian179

households, is company owned (source (20) page 31/80). The OVG42 report (21) estimates the180

fraction of company cars available to households in 2009 to 10%.181

Our model assumes that 10% of the actors driving to work, make use of a company car.182

Cars used in schedules without any any work trips, are assumed to be privately owned cars (POC).183

Relation between EV ownership and EV type184

The portions of EV being PHEV are assumed to differ between privately owned and company cars.185

Currently no data about the respective expected market shares are available. PHEV rates 0.0, 0.5186

and 1.0 for both CC and POC have been combined to run simulations.187

PHEV do not have practical range limitations but long All-Electric-Range (AER) versions188

are more expensive than BEV. Temporal unavailability of a car induces high hourly costs for a189

company: the investment in a more expensive PHEV is assumed to be a profitable one. Private190

owners, on the other hand, are assumed to be more reluctant against large initial investments for191

private use.192

SIMULATIONS193

Method overview194

The Feathers ActBM (2) created by the Transportation Research Institute (IMOB) has been195

used to generate activity-travel schedules (daily agenda for each individual of the flemish popula-196

tion). Each schedule consists of trips and activities. For each trip, departure time, trip duration,197

origin and destination zones are predicted. For each activity, the purpose (work, shop, bring-get,198

. . . ) is predicted. In this study, only work and non-work activities are distinguished. Feathers199

results apply to a single 24-hour period. A working day simulation has been used.200

201

Energy and power demand are computed from Feathers results as follows:202

• In a first step, schedules having at least one car trip are extracted and data structures are203

set up.204

• In the second step, car ownership, possibility of work location charging, car characteris-205

tics (range, distance specific energy consumption, battery capacity) and the types of home206
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and work location charger used, are determined. Both a BEV and a PHEV belonging to207

a same category, are assigned to the schedule. A feasibility indicator is calculated which208

tells whether or not the schedule can be executed using the assigned BEV electric car209

(PHEV always is feasible since the internal combustion engine (ICE) always is available210

as a range extender). Each individual schedule is assumed to be executed using a single211

car and a predefined fraction of the company cars can get recharged at the work location.212

The set of schedules is partitioned as specified in figure 1. For each one of the leaf node213

parts, the market share has been specified: the results shown in this report hold for 10%214

no-work trip and 10% work trip electrification.

FIGURE 1 : Car users partitioning. (1) workTrip based partitioning follows from the AB-

Model-generated schedules. (2) ownership (POC, CC) and canChargeAtWork are specified

by parameters.

215

• In the third step, charging scenarios are evaluated. Schedules are sampled from the216

partitions set up in the second step and the start time for each charging operation is217

determined. Energy requirement and power demand are accumulated for every minute of218

the day for each one of the 2368 zones in Flanders.219

Vehicle characteristics determination220

Vehicle characteristics for each schedule are determined by random selection using the joint prob-221

abilities shown in the Bayesian network in figure 2 . Arrows designate dependencies between222

probability densities. For example, the EV type depends on the ownership and on the fact that the223

schedule can be executed using a BEV (block BEV-feasibility). The shaded rectangle Electrified224

represents the probability density from which EV are sampled. The shaded rectangle EnergyReq225

represents the probability density for the electric energy required to complete all trips in the sched-226

ule. The ovals represent change of variable functions. Function f(schedule,consumption) calculates227

whether or not the sequence of trips in a given schedule can be driven by a BEV given the stochas-228

tic value for the distance specific consumption of the vehicle and the charge opportunities in the229
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schedule. Function f(schedule,consumption) corresponds to the conditions detailed in equations 1230

and 2.231

The function g(schedule,consumption) calculates the stochastic value for the energy re-232

quired during each minute of the day for the given schedule.233

BEV-feasible
{Y,N}

Work
{Y,N}

Ownership
{POC,CC}

VehicleCategory
{sml,med,lrg}

VehRangeBEV
(continuous)

ChargeAtWork
{Y,N}

VehSpecConsum
(continuous)

ChargerType
{3.3kW,7.2kW}

EnergyReq
(continuous)

Electrified
{Y,N}

EV-Type
{BEV,PHEV,None}

VehBatteryCap
(continuous)

schedule

g(schedule,
  consumption)

f(schedule,
  consumption)

FIGURE 2 : Bayesian network showing conditional dependencies for stochastic variables.

Continuous line rectangles designate probability densities. The domain for the variable is

listed between curly braces. Each continuous line arrow designates a conditional dependency.

Ovals designate change of variable functions. Dashed lines represent regular functional de-

pendencies.

234

Vehicle characteristics are determined as follows:235

• Vehicle category is randomly selected from the distribution specified in table 1236

• Vehicle range is selected from table 1.237

• Work location charging is allowed for 0.50 of the company car drivers. Privately owned238

cars cannot be recharged at work. The charger power is randomly selected for both home239

and work location chargers using the distribution specified in table 1.240

• Vehicle consumption is randomly selected using a uniform distribution in the interval241

specified for the vehicle category (from table 1). This is the consumption determined by242

official US and European standard (FTP, WP.29) test suites that do not account for cabin243

clima (heating, airco) nor for frequent acceleration and deceleration.244

• The specific energy consumption as determined by european (UNECE WP.29 R101) and245

US standard methods is argued to be an underestimation (Elgowainy et al. (22)). The246
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standardized test conditions differ from operating conditions: hence, a range reduction247

coefficient of 0.75 has been applied. The range reduction coefficient is used to adjust the248

specific consumption (which is used in schedule feasibility and energy demand calcula-249

tions). This is done for both BEV and PHEV in the same way.250

• The battery capacity is derived from range and distance specific consumption and has251

been verified with data found in literature ((18),(23),(24)).252

• PHEV categories PHEV48, PHEV64 and PHEV96 are considered and have been mapped253

to the categories small, medium and large respectively in order to determine the relative254

market shares (see table 1). The number in the category identifier designates the AER in255

kilometers.256

• Finally, the charger power is randomly selected for both home and work location chargers257

using the distribution specified in table 1.258

BEV-feasibility259

In order to be feasible for a BEV, each location in the schedule shall be reachable when starting with260

a fully charged battery in the morning: this is expressed by the condition (set of #L inequalities)261

∀i, j ∈ [1,#L] : Cb − dO,i ∗ cons+

j<i∑

j=1

tj ∗ pj ≥ Cb ∗DCD (1)

where i and j are location indexes, Cb is the battery capacity, L is the set of all locations used in the262

schedule, tj is the charge-period duration at the j-th location and pj is corresponding power, dO,i263

is the total distance from the first origin to the i-th destination, cons is the distance specific energy264

consumption and DCD = 0.1 is the maximal deep charge depletion coefficient. DCD has been265

applied to specify the minimal battery level that shall be available at all times; it is used to model266

range anxiety and is used in BEV-electrification feasibility calculation only. The condition that the267

battery cannot get over-charged is given by following set of inequalities using the same symbols268

∀i, j ∈ [1,#L] : Cb − dO,i ∗ cons +

j≤i∑

j=1

tj ∗ pj ≤ Cb (2)

Vehicle sampling269

The vehicle type (BEV, PHEV) is determined using the conditional probability values specified270

under Relation between EV ownership and EV type above. The probability for a vehicle to be a271

PHEV is given following expressions containing given probabilities in the right hand sides272

PEV = P (EV |CC)·PCC + P (EV |POC)·PPOC (3)

PPHEV = PCC ·P (EV |CC)·P (PHEV |EV ∧ CC) + (4)

PPOC·P (EV |POC)·P (PHEV |EV ∧ POC) (5)

where EV designates Electric Vehicle, CC designates Company Car, POC designates Privately273

Owned Car, PHEV designates Pluggable Hybrid Electric Vehicle. It follows that274

PBEV = PEV · (1− P (PHEV |EV )) = PEV · (1− PPHEV /PEV ) = PEV − PPHEV (6)
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where BEV designates Battery Electric Vehicle. Let Nv be the number of cars. A set of PBEV ·Nv275

elements is sampled from the set of schedules that can be executed by a BEV (the BEV-feasible276

schedules); then PPHEV ·Nv cars are sampled from all remaining schedules (BEV-feasible and277

BEV-infeasible ones).278

Charging parameters - Scenarios279

Assumptions valid for all scenarios concerned280

• Energy cost is assumed to conform to the current tariff scheme used in Belgium: it con-281

sists of one contiguous regular tariff period and one contiguous low tariff period during282

the night (from 22:00h to 07:00h).283

• The schedules apply to a working day and schedules are assumed to repeat on successive284

days. This assumption allows to determine the period of time available for recharging285

overnight. Everyone is assumed to recharge batteries everyday.286

• When plugged to the electric grid, charging occurs during a single uninterrupted period287

of time.288

For each schedule and each charging opportunity, the required charge duration for full recharge289

and the available charge period are calculated. The available charge period is determined from the290

arrival and departure times at the charge location. If the available period length is larger than the291

required charge duration, their difference is the slack time (otherwise slack time equals zero). A292

non-zero slack time implies a degree of freedom for selecting the time to start charging. In many293

cases, there is an interval ∆t = [t0, t1] of starting times ts such that ∀ts ∈ ∆t the energy cost is the294

same.295

Scenario specific assumptions296

• Scenario EarlyLowTariff: If ∆t is contained in the low tariff period, the actor starts297

charging as soon as possible; otherwise (the case where the charge period contains the298

low-tariff period), the actor starts charging as late as possible thereby pushing energy299

demand to the morning hours. This scenario conforms to the situation where people are300

using simple timers to start charging.301

• Scenario UniformLowCost: Each actor tries to minimize energy cost by charging during302

the low tariff period as much as possible. The charge period start time ts is chosen from303

∆t by random selection using a uniform distribution.304

• Scenario LastHome: All actors ignore the existence of a low-tariff period and start charg-305

ing immediately when ariving at home after the last trip of the day.306

• Scenario AlwaysAtHome: All actors ignore the existence of a low-tariff period and start307

charging immediately when ariving at home after each home arrival.308

Note that scenarios EarlyLowTariff and UniformLowCost are energy cost minimising scenarios at309

the individual actor level, but the other ones are not.310
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Aggregation of microsimulation results311

Battery charging opportunities are identified during micro-simulation and inserted in the schedules312

according to the applied scenario. For each charge opportunity, the required power is accumulated313

and recorded for each minute in the charging period. This process results in a power requirement314

time series for each zone. Plots are generated for the zones having315

• maximal energy requirement (power integrated over time)316

• maximal power peak value317

for the full day, the normal-tariff period and the low-tariff periods respectively.318

SUMMARY OF RESULTS FOR FLEMISH REGION319

• Feathers statistics and energy demands have been summarized in table 2. Scenarios320

are identified by the ratio of the EV fleet being a PHEV for company cars (CC) and321

privately owned cars (POC) respectively. Replacing BEV by PHEV increases power322

demand since longer distances are driven on electricity. PHEV can exhaust the full AER323

while BEV can drive distances strictly smaller than the anxiety reduced range only.

Scenario Feathers ActBM prediction

All Fraction of actors performing work trips 0.406

All Fraction of actors performing car trips 0.555

All Fraction of car using schedules containing work activity 0.531

All Average work related car trip distance (km) 19.376

All Fraction of trips that are work trips 0.160

EV Energy demand calculation

CC=0.0 and POC=0.0 Total energy demand 1380[MWh]

CC=0.5 and POC=0.5 Total energy demand 1652[MWh]

CC=1.0 and POC=1.0 Total energy demand 1829[MWh]

TABLE 2 : Feathers Results Statistics.

324

• Table 3 shows the fractions of BEV-feasible schedules determined in the second step325

(accounting for work location recharge). Note that only 10% of the schedules having a326

work trip have been assigned a company car in the scenarios considered. Almost 78%327

of the trips is BEV-feasible when the EV category coincides with actual ICEV market328

shares given in table 1.329

• Figure 3 shows the power demand for an area with 5835 inhabitants for scenarios Unifor-330

mDist, LastHome and AlwaysAtHome. The power peak for UniformDist (individual actor331

cost minimizing) is the bigger one and the peak shifts from about 20:00h to about 02:30332

between scenarios. Note that the power demand shown is to be added to the already333

existing zone-specific demand but at the time of writing only countrywide aggregated334

time dependent electricity consumption data are available; hence data have not yet been335

presented geographically to pinpoint problematic areas. The result shows that it is worth336

extending the ActBM actor behavior model to make it sensitive to electricity prices.337
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Partition Fraction of the car using schedules

When charging after

last home arrival

When charging at each

home arrival

BEV-feasible schedules without work

trips POC (NW)

0.364 0.371

BEV-feasible schedules with work trips

POC (W_POC)

0.357 0.371

BEV-feasible schedules with work trips

CC, chargeAtWork (W_CC_CAW)

0.020 0.021

BEV-feasible schedules with work trips

CC, no chargeAtWork (W_CC_NCAW)

0.024 0.024

BEV-Infeasible 0.235 0.213

TABLE 3 : Car-using Schedule Partitions with respect to Feasibility for Electrification

• The power peak for scenario EarlyLowC at 22:00h amounts to eight times the Unifor-338

mDist peak value because everyone is assumed to start charging at the same moment339

using a timer. This peak is expected to cause problems for the electric grid and has not340

been included in the diagram.341

• Table 4 shows the fraction of charge opportunities used and the daily charge frequency342

for each usecase partition and scenario. BEV and PHEV owners are assumed to share343

the same charging behavior.

Partition Home charging scenario

EarlyLowTariff UniformLowCost LastHome AlwaysAtHome

FracOp NumCh FracOp NumCh FracOp NumCh FracOp NumCh

NW 0.853 1.000 0.850 1.000 0.854 1.000 1.000 1.196

W_POC 0.822 1.000 0.822 1.000 0.823 1.000 1.000 1.262

W_CC_CAW 0.911 2.194 0.914 2.199 0.905 2.203 1.000 2.450

W_CC_NCAW 0.817 1.000 0.828 1.000 0.821 1.000 1.000 1.260

TABLE 4 : Fraction of charge opportunities used (FracOp) and number of charge operations

per day (NumCh) for each scenario and partition (N: No, W: Work, POC: Privately Owned

Car, CC: Company Car, CAW:Can Charge at Work)

344

• Table 5 shows absolute and relative energy demand for the scenario where 10% of the345

cars are EV and BEV/PHEV ratio is 50/50. Almost 60% of the energy consumption is346

by PHEV, almost 94% by privately owned cars.347

CONCLUSION348

Schedules predicted by the Feathers ActBM have been used to predict energy demand and349

power peaks due to electric vehicle charging as a function of time and location for several EV mar-350

ket penetration scenarios and PHEV/BEV ratios. For the Flanders case, 78% of distances travelled351
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FIGURE 3 : Power demand for EV charging as a function of time. The thin line holds for

UniformDist (cost minimising, random), the thick line for AlwaysAtHome and the dashed line

for LastHome.

Partition Energy [MWh] Relative

BEV PHEV Total

NW 280.346 414.969 695.315 0.421

W_POC 363.328 486.132 849.460 0.515

W_CC_CAW 25.846 31.915 57.761 0.035

W_CC_NCAW 20.126 28.110 48.236 0.029

Total 689.647 961.126 1650.773

Relative 0.418 0.582 1.000

TABLE 5 : Absolute and relative daily energy demand when 10% of cars are EV and 50% of

the EV are PHEV both for POC (privately onwed cars) and CC (company cars) for scenario

AlwaysAtHome
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daily using a single car on working days, seem to be BEV-feasible assuming that EV categories352

deployment conforms to current one for ICEV. Secondly, replacing BEV by PHEV increases elec-353

tric energy consumption because PHEV can exploit their full electric range. Finally, the current354

reduced rate electricity period is sufficiently long to allow for charging period distribution over355

time in order to avoid unwanted power peak demand while allowing people to minimize cost.356

FUTURE RESEARCH357

Although activity based models have a firm statistical basis, some aspects of reality do not yet358

have been translated to AB-model parameters. Therefore, this study shall be the base for following359

research paths.360

On one hand, more accurate technical and market related data need to be determined from361

literature, surveys and experimentation. Data about distance specific energy consumption in real362

situations are based on measurements based on standards and are underestimated: they need to363

be refined (cabin clima effects). The amount of car users who are able to charge at home has not364

been considered a limiting factor for the current study but could be one of the main factors when365

estimating EV market share.366

The software be extended to remove the constraint of using a single vehicle for schedule367

trips executed by multi-car households. The behavioral model is to be extended to integrate car368

selection decisions based on the actor specific charging decision strategy.369

Finally, AB-models and smartgrid models need to get integrated in a closed loop. Since370

typical activity based models account for price elasticity and allow for learning, results feedback371

allows for evaluation of smartgrid strategies for charging timeslot allocation. Evaluation of the372

vehicle to grid (V2G) concept requires integration of smartgrid controllers with AB-models.373
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