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Abstract

In this manuscript, we present a computation- and memory-efficient method to calculate
the probabilities of occurrence and exact center-masses of the aggregated isotopic distribu-
tion of a molecule. The method uses fundamental mathematical properties of polynomials
given by the Newton-Girard theorem and Viete’s formulae. The calculation is based on the
atomic composition of the molecule and the natural abundances of the elemental isotopes
in normal terrestrial matter. To evaluate the performance of the proposed method, which
we named BRAIN, we compare it to the results obtained from five existing packages (Iso-
Pro, Mercury, Emass, NeutronCluster, and IsoDalton) for ten biomolecules. Additionally,
we compare the computed mass centers with the results obtained by calculating, and sub-
sequently aggregating, the fine isotopic distribution for two of the exemplary biomolecules.
The algorithm will be made available as a Bioconductor package [6], and is also available
upon request.
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1 Introduction

The isotopic distribution is an important, but often forgotten, concept in the field of mass
spectrometry (MS). Yet, it is particularly useful for the interpretation of the complex patterns

observed in mass spectral data. For example, a peptide molecule visualized by MS should
exhibit a characteristic signal in the form of series of regularly spaced peaks of a specific profile.

The profile is related to the isotopic distribution of the peptide. Prior knowledge about the
distribution can thus be used to develop strategies for searching for the profile in the spectra and,

hence, for efficient processing of the spectral information [21, 22, 3, 5, 19]. Another application
can be found in the field of metabolomics. For example, a comparison of the observed pattern

of peaks in a mass spectrum with a set of hypothesized isotopic distributions from moieties with
a similar mass as the observed molecule can be used to construct a confidence score for the

identification.

The isotopic distribution reflects the number and probabilities of occurrence of different isotopic

variants of a molecule. The occurrence probabilities are reflected in the mass spectrum by the
relative heights of the series of peaks related to the molecule; whilst the different variants result

from the fact that there are different isotopes of chemical elements.

Every isotopic variant of a molecule has, in principle, a different mass‡. If we ignore the small
deviations of the masses from integer values, we can define aggregated isotopic variants of a

molecule, with masses differing approximately by 1 Da. The aggregated isotopic distribution

provides the number and occurrence probabilities for the aggregated isotopic variants. In fact,

given the finite resolution of mass spectrometers, the profile of peak heights observed in a
spectrum for a molecule is directly related to the aggregated isotopic distribution.

The calculation of the (aggregated) isotopic distribution for a molecule of a known atomic

composition is thus a relevant and important problem. Several methods have already been
proposed to this aim. In the early sixties of the 20th century, Biemann suggested a step-

wise procedure [2]. In the late seventies, Yamamoto and McCloskey [24] and Brownawell and
Fillippo [4] argued that, for large molecules, the isotopic distribution could be easily obtained

by symbolically expanding a polynomial function. Later in the eighties, Yergey and colleagues
[25, 26] generalized the concept of polynomial expansion to a multinomial expansion. In the
nineties, Rockwood and co-workers propagated the use of the convolution [12]. An overview

of the different procedures to calculate isotopic distributions has been recently provided by
Valkenborg et al. [23].

A vital element in the calculation of aggregated isotopic distributions is the assignment of the

center-masses to the aggregated isotope variants. To this aim, the center-mass is calculated as a
probability-weighted sum of the masses of the isotopic variants that contribute to an aggregated

variant, as defined by Roussis and Proulx [17]. The accuracy of this mass calculation depends
on the number of isotopic variants accounted for. Rockwood et al. [14] solved this problem

by a linear transformation based on the average mass and standard deviation of the isotopic
distribution to acquire semi-accurate masses. In a later paper, Rockwood and colleagues focussed

‡In this terminology, we ignore location isomers, e.g., 12
C

12
C

13
C and 13

C
12

C
12

C, which obviously do have

the same mass.
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on the accurate mass calculation of a pre-selected aggregated isotope variant [15, 13]. Another
solution to aforementioned problem was proposed by Olson and Yergey [10], who developed the

idea of using equatransneutronic isotopes. The method, however, induces some error in the mass
assignments of the aggregated isotope variants. To overcome this inaccuracy, Olson and Yergey

proposed to estimate the error and to account for it in the calculation of the center-masses.

In this manuscript, we present an alternate, computation- and memory-efficient method to
calculate the probabilities of occurrence and exact center-masses of the aggregated isotopic

distribution of a molecule. The calculation is based on the atomic composition of the molecule
and the natural abundances of stable elemental isotopes in normal terrestrial matter [16]. Note

that this excludes unstable radio-isotopes, and that our use of the term “exact center-masses”
is conditional on this assumption. Our method, which we name BRAIN (Baffling Recursive

Algorithm for Isotopic distributioN calculations), allows computing the exact center-masses,
because it accumulates the mass information along a recursive calculation of the aggregated
isotopic distribution. The algorithm will be made available as a Bioconductor package [6], and

is also available upon request.

To evaluate the performance of the proposed method, we compare it to the results obtained from
five existing packages (IsoPro [18], Mercury [14], Emass [13], NeutronCluster [10], and IsoDalton

[20]) for ten biomolecules. Additionally, we compare the computed exact mass-centers with the
results obtained by the calculation of the fine isotopic distribution and subsequent aggregation

of this distribution by the method of Roussis and Proulx [17] for two of the ten exemplary
biomolecules.

For the purposes of the current manuscript, we restrict the calculation of the isotopic distribution

to molecules containing only carbon (C), nitrogen (N ), hydrogen (H), oxygen (O), and sulphur
(S), unless specified otherwise. The most-abundant (and lightest) isotopes for the latter elements

are 12C, 1H, 14N , 16O, and 32S. A molecule composed out of only these elemental isotopes is
called the monoisotopic variant. In addition, we only consider stable isotopes, that is, the

isotopes just mentioned, together with 13C, 2H , 15N , 17O, 18O, 33S, 34S, and 36S. Extending
the presented algorithm to molecules containing other poly-isotopic elements is straightforward.

2 Methods

Yamamoto et al. [24] and Brownawell et al. [4] argued that, for large molecules, the isotopic
forms could be easily obtained by symbolically expanding a polynomial function. In the case

of proteins or peptides with a composition CvHwNxOySz, this polynomial takes the following
form:

(12C + 13C)v × (1H + 2H)w × (14N + 15N )x ×

(16O + 17O + 18O)y × (32S + 33S + 34S + 36S)z . (1)

Symbolic expansion of (1) results in many product terms, which correspond to different isotopic

variants of a molecule. By substituting the probabilities of occurrence for 12C, 13C, . . . , 36S from
Table 1 in each term, the prevalence of the variants of the peptide could be obtained.
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Table 1: List of stable isotopes for carbon, hydrogen, nitrogen, oxygen, and sulphur. Source:

IUPAC 1997 standard [16].

Isotope Mass (ma/u) Abundance (%) Isotope Mass (ma/u) Abundance (%)
12C 12.0000000000 98.93 16O 15.9949146 99.757
13C 13.0033548378 1.07 17O 16.9991312 0.038
1H 1.0078250321 99.9885 18O 17.9991603 0.205
2H 2.0141017780 0.0115 32S 31.97207070 94.93
14N 14.0030740052 99.632 33S 32.97145843 0.76
15N 15.0001088984 0.368 34S 33.96786665 4.29

36S 35.96708062 0.02

Given that the deviations of the masses of the isotopes of C, N , H , O, and S from integer values

are different (see Table 1), every isotopic variant of a molecule has, in principle, a different
mass. By ignoring the small deviations, we obtain the aggregated isotopic variants, with masses

differing by approximately 1 Da. The aggregated variants are represented in the expansion
of (1) by multiple product terms. To identify these components more explicitly, we introduce

in (1) an indicator variable I . The introduction explicitly expresses the calculation of the
isotopic distribution in terms of the additional neutron content, i.e., as an aggregated isotopic
distribution. The modified form of (1) is given as follows:

Q(I ; v, w, x, y, z) =
(

PC12
I0 + PC13

I1
)v

×
(

PH1
I0 + PH2

I1
)w

×
(

PN14
I0 + PN15

I1
)x

×
(

PO16
I0 + PO17

I1 + PO18
I2
)y

×
(

PS32
I0 + PS33

I1 + PS34
I2 + PS36

I4
)z

, (2)

where PC12
, PC13

, . . ., PS36
represent the natural abundances (probabilities of occurrence) of

the isotopes of carbon, hydrogen, nitrogen, oxygen, and sulphur in normal terrestrial matter, as
displayed in Table 1. Note that the power of the symbolic indicator I represents the additional

neutron content (or discrete mass shift) with respect to the monoisotopic variant. This indicator
serves a book keeping-device to keep track of the different aggregated isotopic variants.

It should be stressed that equation (2) makes abstraction of the mass information, as the aggre-

gated isotopic variants are presented by their additional neutron count. Later in the manuscript
we discuss how the exact center-masses can be calculated.

In what follows, we will also be referring to the following, abbreviated form of (2):

Q(I ; v, w, x, y, z) = {QC(I)}v × {QH(I)}w × {QN (I)}x × {QO(I)}y × {QS(I)}z , (3)

with QC(I) =
(

PC12
I0 + PC13

I1
)

, etc.

Generally, the expansion of the polynomial (2) can be written as

Q(I ; v, w, x, y, z) ≡

n
∑

j=0

qjI
j , (4)

where n = v + w + x + 2y + 4z is a function of the atomic composition of the molecule. The

coefficient qj represents the occurrence probability of the j-th aggregated isotopic variant of
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the molecule. Hence, the problem of calculating the aggregated isotopic distribution may be
reformulated as the problem of finding values of the coefficients q0, q1, . . . , qn of the expanded

polynomial (4).

To clarify the role of the polynomial (2), consider a very simple example of ozone (O3). For this
molecule, the polynomial takes the following form:

Q(I ; 0, 0, 0, 3, 0) =
(

PO16
I0 + PO17

I1 + PO18
I2
)3

= {QO(I)}3 =
6
∑

j=0

qjI
j , (5)

where the coefficients q0, . . . , q6 are the result of expanding 5:

q0 = P 3
O16

, q1 = 3P 2
O16

PO17
, q2 = 3P 2

O16
PO18

+ 3PO16
P 2

O17
, q3 = P 3

O17
+ 6PO16

PO17
PO18

,

q4 = 3P 2
O17

PO18
+ 3PO16

P 2
O18

, q5 = 3PO17
P 2

O18
, q6 = P 3

O18
. (6)

Thus, the coefficients indeed provide the probabilities of occurrence of aggregated isotopic vari-

ants with masses differing from the monoisotopic one by a specified integer number of mass
units. In particular, q0 gives the occurrence probability of the monoisotopic variant of O3.

Note that, even for this seemingly simple example, the form of the coefficients is already quite

complex. They are obtained by summing the occurrence probabilities of all isotope variants
with exactly j additional neutrons, as compared to the monoisotopic variant. In a general case,

however, such a naive approach to the calculation of the values of the coefficients is numerically
not feasible.

Rockwood [12] proposed to approach the problem of the calculation of the coefficients by using

the Fast Fourier Transform. The approach is numerically efficient and has been widely used.
In what follows, we outline an alternate method by using the properties of the elementary
symmetric polynomials and power sums of the roots of the polynomial in equation (2).

2.1 The new method for calculating the aggregated isotopic distribution

By applying the Newton-Girard theorem and Viete’s formulae [9], we can express the coefficients

qj in the following recursive form:

qj = −
1

j

j
∑

l=1

qj−lψl, (7)

where ψl is a linear combination of the (−l)-th power of the roots of QC(I), QH(I), QN(I),
QO(I), and QS(I), defined in (3). More specifically, for C, H , and N , the roots become equal

to

rC = −
PC12

PC13

, rH = −
PH1

PH2

, and rN = −
PN14

PN15

. (8)

The roots of QO(I) are conjugate complex numbers rO and r̄O, defined as follows:

rO =
−PO17

+
√

P 2
O17

− 4PO16
PO18

2PO18

, r̄O =
−PO17

−
√

P 2
O17

− 4PO16
PO18

2PO18

. (9)
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The roots of QS(I), a fourth-order polynomial, are less trivial, but can be expressed in a closed
form. The expression is not very transparent, though; it can also be calculated using numerical

root finding methods. There are two pairs of complex and conjugate roots of QS(I), which we
will denote by (rS,1, r̄S,1) and (rS,2, r̄S,2).

Using the roots defined above, the coefficients ψl can be expressed in general as follows:

ψl = v(rC)−l+w(rH)−l+x(rN)−l+y(rO)−l+y(r̄O)−l+z(rS,1)
−l+z(r̄S,1)

−l+z(rS,2)
−l+z(r̄S,2)

−l .

(10)
Note that the sum of powers for conjugate complex numbers r and r̄ can be written as

r−l + r̄−l = |r|−l cos{−lϕ(r)} , (11)

where |r| and ϕ(r) indicate the modulus and argument of r and r̄, respectively. From (11) it

follows that the sum on the right-hand side of (10) can be simplified by replacing the sum of
the powers of the conjugate roots of oxygen and sulphur by their reduced forms.

As it was already noted, equation (7) is recursive. To start the recursion, we need to compute

the value of the coefficient q0. In this case, the computation is trivial, as q0 corresponds to
the probability of occurrence of the monoisotopic variant. As pointed out by Beynon [1], the

probability that no heavy isotopes would occur in a peptide of composition CvHwNxOySz is

q0 = P v
C12

× Pw
H1

× Px
N14

× P y
O16

× P z
S32

. (12)

After having computed q0, we can use (7) to compute q1, q2, etc.

Let us consider an example. For propane C3H8, the polynomial (2) assumes the following form:

Q(I ; 3, 8, 0, 0, 0) =
(

PC12
I0 + PC13

I1
)3

×
(

PH1
I0 + PH2

I1
)8

= {QC(I)}3{QH(I)}8 =

11
∑

j=0

qjI
j.

Following (12), the probability of occurrence of the monoisotopic variant (see Table 1) is given
by

q0 = P 3
C12

× P 8
H1

= 0.98933 × 0.9998858 = 0.967352.

From (7), the probability of occurrence of the first aggregated isotopic variant is obtained as

q1 = q0 × ψ1, where, according to (10),

ψ1 = 3 × r−1
C + 8 × r−1

H = 3×

(

−
0.9893

0.0107

)−1

+ 8 ×

(

−
0.999885

0.000115

)−1

= −0.033367.

Hence, q1 = −q0×ψ1 = −0.967352×(−0.033367) = 0.032278.Thus, the probability of occurrence

of an isotopic variant heavier by approximately 1 mass unit than the monoisotopic one is equal
to 0.032278.

Next, we have q2 = −(q0 × ψ2 + q1 × ψ1)/2, where

ψ2 = 3× r−2
C + 8 × r−2

H = 3 ×

(

−
0.9893

0.0107

)−2

+ 8 ×

(

−
0.999885

0.000115

)−2

= 0.000351.
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It follows that q2 = −(0.967352× 0.000351+ 0.032278× (−0.033367))/2 = 0.000369. And so on
up to q11. The resulting aggregated isotopic distribution of propane is a follows:

q0 = 0.967352, q1 = 0.032278, q2 = 0.000369, q3 = 1.55× 10−6,
q4 = 1.25× 10−9, q5 = 4.83× 10−13, q6 = 1.09× 10−16, q7 = 1.54× 10−20,
q8 = 1.40× 10−24, q9 = 8.01× 10−29, q10 = 2.62× 10−33, q11 = 2.26× 10−38.

A few comments are worth giving here.

• It can be observed that the complexity of calculations depends primarily on the number
of different chemical elements present in the molecule (for peptides: C, H , N , O, S). It

does not depend on the numbers of atoms for each element present in the molecule, but
on the number of the aggregated isotopic variants, for which computations are required.

In practice, one would stop the computations when the value of qj falls below a particular
(very small) threshold or when a preset percentage of the isotopic distribution is covered.

Alternately, the computation of a fixed number of the qj coefficients might be of interest.

• The method is very memory-efficient. In particular, it requires the storage of the mono-
isotopic variant and only two variables, namely, qj and ψl, for each desired aggregated
isotopic variant. Hence, calculating the first, e.g., 100 aggregated isotopic variants requires

only 201 numbers to be stored.

• It is possible to reduce the number of computations by computing in advance the roots and
their powers (by using the logarithmic transformation for improved numerical stability)

needed to compute the coefficients ψl and storing them for consecutive calculation steps.

• For chemical elements with more than four isotopic variants, a closed form solution of the

roots is in general infeasible (the Abel-Ruffini theorem). The roots can be calculated by
using numerical root-finding methods, such as the Newton-Raphson or Dandelin-Graeffe

method. Again, the computed roots and their powers can be stored for further calculations.

• The value of ψl may be easily calculated by using vectorization and recursive formulae.
For instance, because b−l = b−1b−(l−1), if we have already calculated ψ1, ψ2, . . . , ψ(l−1), we

can use the values to calculate ψl.

In the next section we show how the method can be used to compute the center-masses of the
aggregated isotopic variants.

2.2 The new method for calculating the center-masses of the aggregated

isotopic variants

As discussed by Roussis and Proulx [17], the center-mass m̄j of the j-th aggregated variant is

calculated as a probability-weighted sum of masses of the contributing isotopic variants:

m̄j =

∑

kmjkpjk
∑

k pjk

, (13)
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where pjk and mjk denote, respectively, the probability of occurrence and the mass of the
k-th isotopic variant contributing to the j-th aggregated variant. Note that the sum in the

denominator of the fraction at the right-hand side of (13) is the occurrence probability of the
j-th aggregated isotopic variant. Thus,

∑

k pjk is equal qj and can be computed as outlined in

Section 2.1.

It is obvious that accurate computations of the center-masses can only be achieved if all the
isotopic variants contributing to the particular aggregated one are considered. Again, com-

putations for all individual isotopic variants are in general infeasible due to the combinatorial
explosion of the number of the variants for large molecules. However, we can circumvent this

exhaustive method of calculation by resorting to the use of the Newton-Girard theorem and
Viete’s formulae.

To this aim, we first consider the following polynomial:

U(I ; v, w, x, y, z) =
∑

j

(

∑

k

mjkpjk

)

Ij ≡
∑

j

q?
j I

j. (14)

Note that we are interested in the coefficients q?
j ≡

∑

k mjkpjk, which correspond to the numer-
ator of the fraction at the right-hand side of the equation (13).

In order to obtain information about q?
j , we define a new polynomial by adding an additional

indicator variable K in the polynomial (2):

Q∗(I, K; v,w, x, y, z) =
(

PC12
KMC12 I0 + PC13

KMC13 I1
)v

×
(

PH1
KMH1I0 + PH2

KMH2I1
)w

×
(

PN14
KMN14 I0 + PN15

KMN15 I1
)x

×
(

PO16
KMO16I0 + PO17

KMO17I1 + PO18
KMO18 I2

)y
×

(

PS32
KMS32I0 + PS33

KMS33I1 + PS34
KMS34I2 + PS36

KMS36 I4
)z

, (15)

where MC12
, MC13

, . . ., MS36
represent the masses of the isotopes of carbon, hydrogen, nitrogen,

oxygen, and sulphur in normal terrestrial matter, as displayed in Table 1. The indicator variable
K acts as a tracking device for the masses.

By using argumentation similar to the one used in Section 2.1, we can express the polynomial

(15) as follows:

Q∗(I, K; v, w, x, y, z)≡
∑

j

(

∑

k

pjkK
mjk

)

Ij . (16)

We will use Q∗(I, K; v,w, x, y, z) to obtain the polynomial U(I ; v, w, x, y, z) from the equation
(14). To this aim, we differentiate Q∗(I, K; v, w, x, y, z) with respect to K:

∂

∂K
Q∗(I, K; v, w, x, y, z) =

∑

j

(

∑

k

mjkpjkK
mjk−1

)

Ij . (17)
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Then, by setting K = 1 in (17), we obtain:

U(I ; v, w, x, y, z) =

vQ∗(I ; v− 1, w, x, y, z)
(

PC12
MC12

+ PC13
MC13

I1
)

(18)

+ wQ∗(I ; v, w− 1, x, y, z)
(

PH1
MH1

+ PH2
MH2

I1
)

(19)

+ xQ∗(I ; v, w, x− 1, y, z)
(

PN14
MN14

+ PN15
MN15

I1
)

(20)

+ yQ∗(I ; v, w, x, y− 1, z)
(

PO16
MO16

+ PO17
MO17

I1 + PO18
MO18

I2
)

(21)

+ zQ∗(I ; v, w, x, y, z− 1)× (22)
(

PS32
MS32

+ PS33
MS33

I1 + PS34
MS34

I2 + PS36
MS36

I4
)

. (23)

By using the method outlined in Section 2.1, we can compute the coefficient qj , i.e., the oc-

currence probability of the j-th aggregated isotopic variant, separately for each of the Q∗(·)
polynomials, present in (18)–(23). Consequently, we can compute the coefficients of the five

polynomials included in the sum on the right-hand side of (18)–(23). By adding the coefficients
corresponding to Ij for the five polynomials, we obtain q?

j for (14). Finally, the centered mass

for the j-th aggregated isotopic variant is obtained from the equation (13) as q?
j /qj.

3 Results and Discussion

We compared our method, named BRAIN, with five other algorithms. All methods were used

to compare the aggregated isotopic distribution of 10 biomolecules shown in Table 2. The 10
biomolecules are the same as those used in the paper of Olson and Yergey [10]. The size of the

molecules ranges from considerably small to very large.

3.1 Compared algorithms

The five packages considered in our comparison with BRAIN are IsoPro, Mercury, Emass,
NeutronCluster, and IsoDalton.

IsoPro [18] is an implementation of the multinomial expansion method proposed by Yergey [25].
Mercury contains an implementation of the convolution method of Rockwood and Van Orden

[14]. Emass calculates the masses and intensities of isotopic peaks by the linear transformation
of Rockwood and Haimi [13]. NeutronCluster uses the equatransneutronic isotopes proposed

by Olson and Yergey [10]. IsoDalton [20] efficiently calculates the fine isotopic distribution by
means of dynamic programming. The outcome can be used as an intermediate step to retrieve

the aggregated isotopic structure of a biomolecule.

For large molecules, the implementations of IsoPro and IsoDalton become computationally
inefficient in terms of the memory usage and computation time. Because of this limitation,

we report for these two methods the masses for the first seven and first five biomolecules,
respectively.

All the algorithms were used with their default parameter settings, except of IsoPro and Neu-

tronCluster. For the former the permutation threshold was set to 10−6, while for the latter the
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Table 2: List of selected biomolecules.

No. Common Name Molecular Formula Mass (Da)

Monoisotopic Average

(1) Angiotensin II C50H71N13O12 1045.534515 1046.181107

(2) Bovine insulin C254H377N65O75S6 5729.600867 5733.510759
(3) Human insulin C520H817N139O147S8 11616.849350 11624.448751

(4) Human myoglobin C744H1224N210O222S5 16812.954775 16823.321352
(5) Human intrinsic factor C2023H3208N524O619S20 45387.007033 45415.679370

(6) Bovine serum albumin C2934H4615N781O897S39 66389.862474 66432.455561
(7) Human Na/K ATPase C5047H8014N1338O1495S8 112823.879546 112895.125932

Renal isoform, subunit
(8) Human ATP C8574H13378N2092O2392S77 186386.799265 186506.052594

binding cassette protein

(9) Human intrinsic factor C17600H26474N4752O5486S197 398470.366994 398722.972484
-hydroxocobalamin

receptor
(10) Human dynein C23832H37816N6528O7031S170 533403.475090 533735.214651

heavy chain

required ion current coverage was changed to 0.999. As four out of the five algorithms use differ-

ent values for the atomic masses and abundances of the isotopes (see Table S1 in the appendix),
we have changed the abundances and masses to the values used by IsoDalton, which correspond
to the IUPAC 1997 standard [16] as displayed in Table 1.

All the algorithms, except of NeutronCluster, have been run on a Dell Latitude E6500 with
an Intel dual core P8400 2.26 GHz and 4 GB RAM. NeutronCluster has been run on a Apple
MacBook with 4GB RAM, due to technical incompatibilities with the BigFloat and BigInt

packages of Perl on a Windows operating system (personal communication with Olson and
Yergey).

3.2 Results of the comparison

Table 3 presents the comparison of the mass of the first peak returned by BRAIN and by the

other selected algorithms with the theoretical monoisotopic mass of the molecules presented in
Table 2. The theoretical monoisotopic mass was simply computed as follows:

Monoisotopic mass = vMC12
+ wMH1

+ xMN14
+ yMO16

+ zMS32
, (24)

assuming that the atomic composition of the molecule is of the form CvHwNxOySz. In the

remainder of this manuscript, we use the term ”peak” to indicate the aggregated isotopic variant
and not a variant of the isotopic fine structure as calculated via IsoDalton.

Negative values in Table 3 indicate that the mass of the first returned peak is higher than

the monoisotopic mass. As BRAIN ’s algorithm uses the same formula for the calculation of
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the monoisotopic mass as (24), there is no difference between the reported and theoretical
monoisotopic mass for BRAIN. For NeutronCluster, awkwardly, there is a considerably large

difference for molecule no. 4. The returned monoisotopic mass of the molecule is identical to the
mass reported in the paper of Olson and Yergey[10]. All other monoisotopic masses returned by

NeutronCluster are identical to the ones calculated by (24).

For the first four molecules, the mass of the returned first peak is the same or close to the
monoisotopic-variant mass in the case of Emass and IsoPro. Starting from molecule no. 5, the

difference between the monoisotopic and the returned mass increases. To put these results in
perspective, it is worth noting that for large molecules, e.g., (5)-(10) in Table 2, the probability

of occurrence of the monoisotopic variants is very small, < 10−10. In practice, such small values
fall below the detection limits of a mass spectrometer and will go unnoticed. Therefore, one

can argue that returning isotopic variants with such low probabilities is not meaningful. It
can happen that some of the non-reported peaks were actually calculated inside the compared
programs, but were not reported due to a reporting threshold built into the method. In our

method, we have chosen to return all aggregated isotope variants regardless of their probability
of occurrence.

For Mercury, the first returned peaks have masses which are lower than the monoisotopic mass in

the case of small biomolecules. A possible explanation for this behavior could be the numerical
imprecisions of the (discrete) Fast Fourier Transform, e.g., distortion of the signal due to aliasing.

This could be fixed by a slight modification of the computer code to widen the calculation
window. Generally, peaks with lower masses than the monoisotopic one should just be ignored.

For larger molecules, the masses returned for the first peaks by Emass and IsoPro are higher than

the theoretical monoisotopic mass. This is probably the result of pruning techniques applied by
these methods. Note that this is also the case for Mercury.

Table 3: Differences between the monoisotopic mass according to (24) (see Table 2) and the

mass of the first returned peak by the algorithm. Negative values correspond to higher reported
masses.

Molecule BRAIN Emass Mercury NeutronCluster IsoPro IsoDalton

(1) 0 0 7.019535 0 -0.000005 0

(2) 0 0 12.019012 0 -0.000023 -0.000001
(3) 0 0 8.013385 0 0.000030 -0.000003

(4) 0 0 22.053225 -360 -0.000055 -0.000005
(5) 0 -2.005731 2.996274 0 -8.024597 -0.000014

(6) 0 -8.022072 22.028846 0 -19.055126
(7) 0 -24.065517 -7.029971 0 -51.133714

(8) 0 -55.149869 -55.161957 0
(9) 0 -155.399787 -124.322610 0
(10) 0 -220.583942 -203.597009 0

Although IsoDalton calculates the fine structure of the isotopic distribution, there are slight dif-

ferences between the returned and theoretical monoisotopic mass. These differences can possibly
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be explained by the fact that, in the calculations presented in Table 3, the ”exact probability”
module has been used, as was advised by Snider (personal communication), instead of the

”exact mass” module. The latter results in more accurate estimates for the masses, but is less
accurate for the average aggregated mass and its corresponding expected peak abundance.

To check the overall accuracy of the computation of an aggregated isotopic distribution, we

considered the theoretical average mass of the molecules presented in Table 2. The average
mass is computed according to the following definition:

Average mass = vMC12
× PC12

+ vMC13
× PC13

+ wMH1
× PH1

+ wMH2
× PH2

+ xMN14
× PN14

+ xMN15
× PN15

+ yMO16
× PO16

+ yMO17
× PO17

+ yMO18
× PO18

+ zMS32
× PS32

+ zMS33
× PS33

+ zMS34
× PS34

+ zMS36
× PS36

. (25)

Table 4 presents the results of the comparison of the theoretical average mass, as computed in

(25), and the weighted average based upon the predicted masses and occurrence probabilities
for all peaks returned by a particular algorithm. There is virtually no difference between the
two average values for BRAIN and for Emass. Somewhat larger, but small deviations are

obtained for IsoDalton. The differences are larger for Mercury and NeutronCluster and they
increase as the molecules become larger. IsoPro is unexpectedly the least accurate method in

our comparison; the large differences are most likely a side effect of the pruning step, which
removes low probability variants during the calculation. Pruning is a necessity to calculate the

isotope fine structure for large molecules in order to maintain the computational complexity
memory usage within limits.

It is worth mentioning that, when the results in Table 4 are viewed in relative terms, all of

the reported numbers are quite satisfactory. The reported differences between Emass, Mercury,
NeutronCluster, and IsoDalton are in fact not measurable with the accuracy available in the

current generation of mass spectrometers.

Table 4: Difference between the theoretical (see Table 2) and calculated (using all returned
peaks) average mass. Negative values correspond to higher calculated masses. The values in

parentheses are the relative differences in ppb.
Molecule BRAIN Emass Mercury NeutronCluster IsoPro IsoDalton

(1) 0 (0) -0.000001 (0.956) 0.000090 (86.027) 0.000238 (227.494) 0.001297 (1.240e+3) -0.000001 (0.956)

(2) 0 (0) 0 (0) 0.000323 (56.336) 0.002474 (431.498) 0.011478 (2.002e+3) -0.000001 (0.174)
(3) 0 (0) 0 (0) 0.000225 (19.356) 0.006620 (569.489) 0.093513 (8.045e+3) 0.000245 (21.076)

(4) 0 (0) 0 (0) 0.002916 (173.331) -360.315145 (-2.142e+7) 0.155448 (9.240e+3) -0.000005 (0.297)
(5) 0 (0) 0 (0) -0.003078 (67.774) -0.008751 (-192.687) 0.947604 (20.865e+3) -0.000013 (0.286)

(6) 0 (0) 0 (0) -0.004153 (62.515) -0.003685 (-55.470) 2.094637 (31.530e+3)
(7) 0 (0) 0 (0) 0.003699 (32.765) -0.021463 (-190.114) 1.944364 (17.223e+3)

(8) 0 (0) 0 (0) -0.005138 (27.549) -0.078241(-419.509)
(9) 0 (0) 0 (0) 0.017207 (43.155) -0.057899 (-145.211)
(10) 0 (0) 0 (0) -0.047547 (89.084) 0.092907 (174.069)

The differences observed in Table 4 are mainly due to the fact that every algorithm returns

a different number of peaks (i.e., aggregated isotopic variants), with a different first and last
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Figure 1: The calculated aggregated isotopic distribution of human intrinsic factor. (The height

of the lines have no meaning, they are only chosen to facilitate the interpretation of the graph.)

reported peak. Figure 1 illustrates how the methods perform in the tail of the distribution for the
molecule no. 5 from Table 2. The figure shows three vertical lines for each method, indicating
the mass of the first reported peak, the average mass, and the last reported peak. In other

words, the representation in Figure 1 can be seen as the coverage of the isotopic distribution
by a particular method. Note that the lines indicating the mass of the first reported peak for

BRAIN, NeutronCluster, and IsoDalton overlap with the line corresponding to the theoretical
monoisotopic mass, in agreement with the results presented in Table 3. Similarly, the lines

indicating the average mass practically overlap with the line corresponding to the theoretical
expected mass for BRAIN, Emass, IsoDalton, Mercury, and NeutronCluster, in agreement with

the results presented in Table 4. A clear difference can be observed in the mass of the last
reported peak. IsoPro and NeutronCluster report a peak with the smallest mass, followed by

Mercury, Emass, IsoDalton, and BRAIN. Depending on the shape of the true aggregated isotopic
distribution, the different number and location of the reported peaks may lead to a difference
between the value of the average mass computed for a particular algorithm and the theoretical

value, obtained from (25). For the case presented in Figure 1, the difference is small, though
visible for IsoPro.

As it was mentioned in Section 2.1, for BRAIN, the calculations can be stopped when the com-

puted occurrence probabilities become too small or when the required number of aggregated
isotopic variants has been reached. The latter number can be heuristically obtained. For this

purpose, we propose the following rule of thumb: compute the difference between the theoretical
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monoisotopic mass and the theoretical average mass, multiply this number by two, and subse-
quently round it to the nearest integer greater than or equal to the multiplied difference. For

instance, for the molecule no. 10 in Table 2, the heavy chain of the human dynein protein, this
method gives 664 as the number of the aggregated isotopic variants to be included in the calcu-

lations. Note, however, that the method may return a too small number for smaller molecules.
For instance, in the case of the molecule no. 1 in Table 2, angiotensin II, the obtained number

is equal to 2. For such small molecules, the minimal number of peaks should be four or five. As
already mentioned before, schemes based on the percentage coverage of the isotopic distribution

can also be used.

The number of isotopic variants used in the computation of the average masses in Table 4 and
the corresponding computation time for our method are listed in Table 5. Increasing the number

of the requested variants influences the computation time, but the effect is minor. Comparison
of the computation time of BRAIN with the other algorithms is difficult, as the methods are
implemented using different software and platforms. In general terms, Emass and Mercury are

faster than our method, but the differences are negligible small. It is worth noting, however,
that BRAIN is now operated by an interpreted language. We believe that a compiled version

of BRAIN will be as fast as Emass and Mercury.

Table 5: Requested number of aggregated isotopic variants and the associated computation time

for BRAIN. The calculations were performed in Matlab.

Molecule Requested no. of variants Time (s)

(1) 50 0.037523
(2) 50 0.037040

(3) 50 0.037627
(4) 100 0.037019
(5) 322 0.072257

(6) 400 0.075427
(7) 643 0.155975

(8) 807 0.216821
(9) 1163 0.355737

(10) 1325 0.408562

The results presented in Table 4 already indicate the proper functioning of BRAIN. If the calcu-
lation of the occurrence probabilities and/or center-masses were wrong, then the average masses
of the molecules would deviate from their theoretical values. In order to further investigate the

accuracy of the calculations for our method in more detail, we computed the isotopic distribu-
tion for the molecules no. 1 (angiotensin II) and 2 (bovine insulin) from Table 2 by considering

all possible isotopic variants, while using an implementation of the multinomial expansion [25].
From the obtained result we derived the aggregated isotopic distribution. Tables 6 and 7 present

the center-masses and occurrence probabilities for the first 50 aggregated isotopic variants for
angiotensin II and bovine insulin, respectively. We can confirm that BRAIN provides exactly

the same masses and occurrence probabilities for these aggregated isotopic variants.

As mentioned previously, for large molecules, the occurrence probabilities for the monoisotopic
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Table 6: The first 50 aggregated isotopic variants for angiotensin II.

Mass Abundance Mass Abundance Mass Abundance

1045.534515 0.536241 1062.576779 0 1079.617682 0

1046.537411 0.322570 1063.579164 0 1080.620130 0
1047.540111 0.108627 1064.581550 0 1081.622584 0

1048.542719 0.026442 1065.583936 0 1082.625044 0
1049.545270 0.005141 1066.586324 0 1083.627509 0

1050.547780 0.000842 1067.588713 0 1084.629979 0
1051.550262 0.000120 1068.591105 0 1085.632454 0
1052.552722 0.000015 1069.593499 0 1086.634932 0

1053.555164 0.000002 1070.595897 0 1087.637413 0
1054.557593 0 1071.598298 0 1088.639897 0

1055.560011 0 1072.600703 0 1089.642381 0
1056.562421 0 1073.603113 0 1090.644866 0

1057.564824 0 1074.605527 0 1091.647350 0
1058.567221 0 1075.607947 0 1092.649831 0

1059.569614 0 1076.610372 0 1093.652310 0
1060.572004 0 1077.612803 0 1094.654784 0

1061.574392 0 1078.615239 0

Table 7: The first 50 aggregated isotopic variants for bovine insuline.

Mass Abundance Mass Abundance Mass Abundance

5729.6008666 0.0298940 5746.6269490 0.0000057 5763.6514943 0
5730.6037205 0.0928879 5747.6282361 0.0000017 5764.6531171 0

5731.6060166 0.1565624 5748.6295395 0.0000005 5765.6547575 0
5732.6079855 0.1874710 5749.6308606 0.0000001 5766.6564152 0

5733.6097364 0.1774096 5750.6322007 0 5767.6580896 0
5734.6113345 0.1404106 5751.6335606 0 5768.6597801 0

5735.6128224 0.0962370 5752.6349409 0 5769.6614863 0
5736.6142300 0.0584802 5753.6363420 0 5770.6632076 0

5737.6155792 0.0320421 5754.6377643 0 5771.6649435 0
5738.6168866 0.0160312 5755.6392077 0 5772.6666936 0

5739.6181650 0.0073961 5756.6406722 0 5773.6684573 0
5740.6194246 0.0031713 5757.6421577 0 5774.6702342 0
5741.6206735 0.0012719 5758.6436640 0 5775.6720238 0

5742.6219182 0.0004797 5759.6451908 0 5776.6738256 0
5743.6231641 0.0001709 5760.6467376 0 5777.6756394 0

5744.6244157 0.0000577 5761.6483041 0 5778.6774645 0
5745.6256763 0.0000185 5762.6498899 0

and (several) consecutive aggregated isotopic variants can be very small. In that case, given that
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the recursive relationship (7) implies starting the calculations from the monoisotopic variant, the
computations of these initial probabilities can be affected by the level of the available numerical

precision. As seen from the results presented, e.g., in Table 4, these numerical precision issues do
not influence the calculations for the meaningful region of the aggregated isotopic distribution,

i.e., for the aggregated isotopic variants with non-negligible occurrence probabilities. However,
for extremely large molecules this does not hold. These molecules have abundances for the mono-

isotopic and consecutive peaks that are extremely small, i.e., � 10−100. As these molecules are
exceptional and difficult to measure with the accuracy avaible in the current generation of mass

spectrometers, we can ignore this numerical issue.

The method we propose is predominantly conceived for calculating the aggregated isotopic
distribution. From a practical point of view, ignoring the isotopic fine structure is not a serious

limitation. This is because for large molecules like, e.g., intact proteins, the resolution in MS does
not allow for observing the fine structure of aggregated isotopic variants. For large molecules,
the calculation of exact center-masses of aggregated variants becomes fundamental, and the

calculation is taken care of by our method. When information about the isotopic fine structure
is required, other methods proposed in, e.g., [7], [8], [11], or [20] can be used. If the molecule is

not too large, the multinomial expansion [25] can be applied to infer the isotopic fine structure.

4 Conclusions

The proposed BRAIN method allows a fast computation of the aggregated isotopic distribution.
It provides the correct values of the occurrence probabilities of various aggregated isotopic vari-

ants and the center-masses. In terms of speed and accuracy, BRAIN yields results comparable
to those obtained by existing algorithms like Emass, but is more memory-efficient and simpler
to implement. The BRAIN method will be made available within the Bioconductor package in

R.
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Appendix

Table S1: Atomic masses and abundance of C,H,N,O and S according to the tested algorithms.
Element Mass Abundance (%) Mass Abundance(%) Mass Abundance(%) Mass Abundance(%)

IsoPro IsoPro Emass and Mercury IsoDalton IsoDalton NeutronCluster NeutronCluster
1H 1.007825017 99.9850 1.0078246 99.985 1.0078250321 99.9885 1.007825 99.9886
2H 2.013999939 0.0105 2.0141021 0.015 2.0141017780 0.0115 2.014102 0.011570
12C 12.0 98.90 12 98.893 12 98.93 12 98.938
13C 13.003350258 1.10 13.0033554 1.1070 13.0033548378 1.07 13.003354 1.078
14N 14.003069878 99.640 14.003072 99.6337 14.0030740052 99.632 14.00307 99.6327
15N 15.000109673 0.360 15.0001088 0.3663 15.0001088984 0.368 15.000108 0.3687
16O 15.994910240 99.760 15.9949141 99.7590 15.9949146 99.757 15.99491 99.75716
17O 16.999130249 0.040 16.9991322 0.0374 16.9991315 0.038 16.99913 0.0381
18O 17.999160767 0.20 17.9991616 0.2036 17.9991604 0.205 17.99916 0.20514
32S 31.972070694 95.0 31.972070 95.02 31.97207069 94.93 31.97207069 94.9331
33S 32.971458435 0.760 32.971456 0.75 32.97145850 0.76 32.97146 0.762
34S 33.967861176 4.220 33.967866 4.21 33.96786683 4.29 33.96787 4.2928
36S 35.967090607 0.020 35.967080 0.021 35.96708088 0.02 35.96708088 0.021


