

An Empirical Evaluation of Martins’ Algorithm for

the Multi-Objective Shortest Path Problem

Gerrit K. Janssens
Hasselt University, Diepenbeek, Belgium

gerrit.janssens@uhasselt.be

and

Jose Maria Pangilinan

Saint Louis University, Baguio City, Philippines

joey.pangilinan@slu.edu.ph

KEYWORDS

Multi-objective optimization, Martins’ algorithm, shortest
path problem

ABSTRACT

The Shortest Path Problem is a popular optimization

problem in operations research due to its wide range of

practical applications. In most cases a single objective is

considered, while also the multi-objective case has useful
applications. The algorithms by Martins is considered very

efficient. This study evaluates this algorithm by comparing

it to a brute force algorithm as a first step to develop

evolutionary algorithms for the multi-objective case.

Experiments confirm the strength of the Martins’ algorithm.

1. INTRODUCTION

The Multi-Objective Shortest Path Problem (MSPP) is an

extension of the Shortest Path Problem that aims to find

efficient (non-dominated or Pareto-optimal) paths from a

source vertex to a target vertex with multiple objectives in a
single execution. MSPP have applications in many different

industries such as telecommunications, traffic routing,

resource allocation and rapid response for different purposes

like cost cutting and time management. Most studies on the

evaluation of the performance of Martins’ algorithm for the

MSPP are theoretical and mathematical in nature. A few

empirical studies show the algorithm’s performance in terms

of the number of solutions it generates on different test

networks. However, recent empirical studies lack necessary

comparative illustrations to show its performance against

another search algorithm.

This paper presents a comparative performance evaluation
of Martins’ algorithm against a brute-force algorithm in

terms of the number of efficient solutions generated and

execution time. The paper first describes a brief background

on the MSPP, then gives a summary of several types of

algorithms that compute efficient paths for the multi-

objective shortest path problem. Based on these algorithms,

the performance of Martins algorithm is evaluated against a

brute-force algorithm using several test networks. Finally,

the results of the experiments are interpreted in terms of

solution sets and execution time.

2. BACKGROUND

Multi-objective Shortest Path Problem

Given a directed graph G = (V, E), where V is the set of

vertices (nodes) and E the set of edges (arcs) with

cardinality |V| = n and |E| = m and a d-dimensional function

vector c:E [+
]

d
. Each e belonging to E is associated with

a cost vector c(e). A source vertex s and a target vertex t are

identified. A path p is a sequence of vertices and arcs from

s to t. The cost vector C(p) for linear functions of path p is

the sum of the cost vectors of its edges, that is C(p) =  ep

c(e) while C(p) = minep c(e) for maxmin functions. Given
two vertices s and t, let P(s, t) denote the set of all s-t paths

in G. If all objectives are to be minimized, a path pP(s, t)

dominates a path qP(s, t) iff Ci(p)  Ci(q), i = 1,…,d and

we write p  q. A path p is Pareto-optimal if it is not

dominated by any other path and the set of non-dominated
solutions (paths) is called the Pareto-optimal set. The

objective of the MSPP is to compute the set of non-

dominated solutions that is the Pareto-optimal set P of

P(s,t) with respect to c.

The problem of the single-source s, single-target t multi-

objective shortest path is to find the set of all paths from s to

t in G.

Algorithms for the MSPP

A variety of algorithms and methods such as dynamic
programming, label selecting, label correcting, interactive

methods, and approximation algorithms to name a few have

been implemented and investigated with respect to the

MSPP (Ehrgott and Gandibleux, 2000). The problem is

known to be NP-complete (Garey and Johnson, 1979). It has

been shown that a set of problems exist wherein the number

of Pareto-optimal solutions is exponential which implies that

any deterministic algorithm that attempts to solve it is also

exponential in terms of runtime complexity at least in the

worst-case. But some labeling algorithm studies

(Gandibleux et al., 2006; Müller-Hannemann and Weihe,

2001) dispute this exponential behavior. They show that the
number of efficient paths is not exponential in practice.

Other authors avoid the complexity problem by developing

new methods that run in polynomial time. For instance,

Hansen and Warburton (Müller-Hannemann, 2001)

separately developed fully polynomial time approximation

schemes (FPTAS) for finding paths that are approximately

Pareto-optimal. Interactive procedures (Coutinho-

Rodriguez, 1999; Granat, 2003) similarly avoid the problem

mailto:gerrit.janssens@uhasselt.be
mailto:joey.pangilinan@slu.edu.ph

of generating the whole set of efficient paths by providing a

user-interface that assists the decision-maker to focus only

on promising paths and identify better solutions according

to preference.

Martins’ algorithm (Martins, 1984) is a label setting

algorithm that assigns for every vertex in its path permanent

labels and temporary labels. The algorithm selects the

minimum lexicographic label from all the sets of temporary

labels and converts it to a permanent label, and propagates

the information contained in this label to all the temporary

labels of its successors. The process stops when there are no

more temporary labels. Each permanent label corresponds to
a unique efficient path. Martins algorithm ensures the

computation of the maximal complete set of efficient paths

from one vertex to all the other vertices of a network.
Gandibleux et al. (2006) extended the capability of Martins

algorithm by modifying its dominance test to ensure the

computation of the maximal complete set of efficient paths

for min-max problems associated with the multi-objective

networks.

Pangilinan and Janssens (2007) explored a Multi-Objective

Evolutionary Algorithm as applied to the MSPP and

described its behavior in terms of variety of solutions,
computational complexity, and optimality of solutions.

Results showed that the evolutionary algorithm is capable of

finding diverse solutions to the MSPP in polynomial time.

Granat and Guerriero (2003) proposed an interactive

procedure for the MSPP based on a reference point labeling

algorithm. Their algorithm converts the multi-objective

problem into a parametric single-objective problem whereby

the efficient paths are found. The algorithm was tested on

different grid and random networks and performance was

measured based on execution time. They conclude that an

interactive method, from their experimental results, is

encouraging and does not require the generation of the
whole Pareto-optimal set (which avoids the intractability

problem). Likewise, Coutinho-Rodrigues et al. (1999)

proposed an interactive method that incorporates an efficient

k-shortest path algorithm in identifying Pareto-optimal paths

in a bi-objective shortest path problem. The algorithm was

tested against other MSPP algorithms on 39 network

instances. They conclude that their k-shortest path algorithm

performs better than other MSPP algorithms in terms of

execution time.
Tsaggouris and Zaroliagis (2006) provided a Fully

Polynomial-Time Approximation Scheme (FPTAS) for the
determination of an approximate Pareto curve for multi-

objective shortest paths that significantly improves

especially in the case of more than two objective functions.

The study shows that it can be used to provide better

approximate solutions to multi-objective constrained

efficient paths, multi-objective constrained paths, and non-

additive shortest paths.

Paixao and Santos (2007) proposed a ranking algorithm that

solves MSPP. This ranking algorithm finds all non-

dominated path solution between a source node to

destination node based on ranking path procedure by

applying a stop ranking condition which allows to determine
the entire set of non-dominated paths at the very early stage

of the ranking procedure.

Pinto and Pascoal (2010) developed a labeling algorithm

that computes multi-objective shortest paths by restricting

the set of arcs according to the bottleneck values in order to

find the minimal complete set of Pareto-optimal solutions.

3. EXPERIMENTS

The experiments intend to compare the performance

between Martins’ algorithm and a brute-force search

algorithm. The algorithms are evaluated in terms of the

number of efficient solutions and computation time for a

single source-target multi-objective shortest path problem.

The single source-target problem is different from the single

source MSPP as it requires the computation of all efficient

paths from a single source to a single target only and not

from a single source to all other vertices.

Program Implementation

The implementation of Martins algorithm is based on

Gandibleux et al. (2006). The algorithms are implemented

using the C++ programming language, a desktop computer

equipped with an Intel Core 2 Duo 2.56 GHz processor and

two Gigabytes of RAM on a 32-bit operating system.

ALGORITHM 1: MARTINS’ ALGORITHM

Requires: G= (V, A) and C, the cost matrix for all arcs

(i,j) ∈ A
Ensures: All efficient paths from s to all vertices i ∈ V\{s}

li : is the label of vertex i
lti : is the entire list of temporary labels of vertex i
lpi : is the entire list of permanent labels of vertex i
z pq,h : is the pth performance of a permanent label of

vertex q in position h
△ : is the dominance relation (if z△z’ then z is

dominated by z’)
perf() : performance operator

Initialization
lti,, lpi ⟵ ∅, ∀i ∈ V
lts ⟵ *[0,…,0,,]} (the latter two have no meaning in
the start vertex)

Iteration
while (⋃i∈V lti ∅)do
 Find the minimum lexicographic label in lti, ∀i ∈ V
 lq ⟵ min lex{⋃i∈V lti}
 Move the selected label from the ‘temporary’ to the

‘permanent’ list ltq ⟵ ltq \{lq}; lpq ⟵ lpq ⋃{lq}
 Store the position of label lq from list of vertex j
 hq ⟵ location(lpq)
 Label all successors of q
 for all j ∈V | (q,j) ∈ A do
 Compute lj, the current label of vertex of j
 lj ⟵ [z1q,h + c1(q,j),…, zkq,h + cK(q,h), q, h]
 Verify that there is no performance of vertex j

labels dominating perf(lj)
 if (∄ l’j ∈ {ltj ⋃ lpj} | perf(lj) △ perf(l’j)) then
 Store the label lj of vertex j as ‘temporary’
 ltj ⟵ ltj ⋃ {lj}
 Delete all temporary labels of vertex j

dominated by lj

 ltj ⟵ ltj \ {l’j ∈ ltj | perf(l’j) △ perf(lj)}
 end if
 end for
end while

The brute-force search algorithm used in the study is

implemented as a depth-first search algorithm. The depth-

first search starts at the root vertex and explores all possible

successors before backtracking. The brute-force search

algorithm lists all possible paths that lead to the target

vertex. After the listing process, all dominated solutions are

eliminated by dominance tests.

ALGORITHM 2: BRUTE-FORCE SEARCH ALGORITHM

BruteForceSearchAlgorithm(G,v) (v is the source vertex)

Stack S : ⟵ ∅; (start with an empty stack)

for each vertex u, set visited[u] := false;

 push S, v;

 while (S is not empty) do

 u ⟵ pop S;

 if (not visited[u]) then
 visited[u] := true;

 for each unvisited neighbor w of u

 push S, w;

 end if

 end while

end for

for path paths p in S

 if (perf(lj) △ perf(l’j)) then

 if perf(lj) is dominated by perf(l’j) then

 Store the label lj as an optimal solution

 ltj ⟵ ltj ⋃ {lj}

 Delete all temporary labels of vertex j

dominated by lj

 ltj ⟵ ltj \ {l’j ∈ ltj | perf(l’j) △ perf(lj)}

 else

 else if perf(lj) and perf(l’j) is non-dominated then

 Store the label lj

 ltj ⟵ ltj ⋃ {lj}

 end if

end for

END BruteForceSearchAlgorithm()

Test Networks

Forty-five network configurations were randomly chosen

from Gandibleux et al. (2006). The configuration is as
follows: 15 networks with 50 vertices (5 networks of 5%

density, 5 networks of 10% density and 5 networks of 20%

density); 15 networks with 100 vertices (5 networks of 5%

density, 5 networks of 10% density and 5 networks of 20%

density); and 15 networks 200 vertices (5 networks of 5%

density, 5 networks of 10% density and 5 networks of 20%

density). Each edge of network has two cost values in the

range [1, 1000].

For each network configuration, the maximal complete set

of the shortest paths from vertex = 1 to a randomly selected
vertex was computed. The objective function is a minimize

a (2-Sum) problem, i.e. min ep c(e). The algorithms were
run and given a 24 hours duration limit to complete. All

network traversals that are still in-process after 24 hours

were marked as an incomplete execution.

4. RESULTS AND FINDINGS

Figure 1 and Figure 2 show the efficient paths found for a

single source-target problem on five different 50-vertex

networks using Martins’ algorithm and the brute-force

search algorithm respectively. Martins’ algorithm was able

to compute the maximal complete set of efficient solutions

to the 50-vertex networks of different densities whereas the

brute-force search algorithm can only compute the maximal

complete set of efficient solutions to the 50-vertex networks

with 5% density.

Figure 1 shows that the number of efficient solutions
generally increases as the density of the test network

increases. This is not the case for Network 1 wherein the

number of solutions for the 20% test network is lower than

the 5% and 10% networks.

Figure 1 Efficient Solutions using Martins' Algorithm

for 50-Vertex Networks

Figure 2 shows the cardinality of the solutions sets of the

test networks and it is evident that the brute-force algorithm

failed to compute efficient paths when the densities of the

networks are 10% and 20%. This means that there were no

solutions found in a span of 24 hours.

Figure 2. Efficient Solutions of the Brute-force algorithm

for 50-Vertex networks

Looking at Figure 1 and 2, the number of efficient solutions

and the efficient solutions to the 50-vertex test networks

with 5% density found by Martins’ algorithm and by the

brute-force algorithm are the same. Since the brute-force

algorithm in this case computed for the complete set of

efficient solutions, means that Martins’ algorithm also

computed the complete set of efficient solutions for 50-

vertex, 5% density test networks.

Figures 3 and 4 show solution sets to the 100-vertex and

200-vertex test networks obtained by Martins’ algorithm.

No solutions were generated by the brute-force algorithm

for these types of networks. Figure 3 presents the cardinality
of the solution sets of efficient paths for the 100-vertex

networks with 5%, 10%, 20% densities. It is observed that

the number of efficient solutions increases as the density of

each network increases.

Figure 3 Efficient Solutions using Martins Algorithm for

100-Vertex networks

Figure 4 shows the cardinality of the solution sets of

efficient paths for 200-vertex networks with 5%, 10%, 20%

densities. Again, it is observed that the number of efficient

solutions increases as the density of each network increases.

Figure 4 Efficient Solutions using Martins' Algorithm

for 200-Vertex networks

Figure 5 and Figure 6 show the execution times of Martins

algorithm and the brute-force algorithm for the 50-vertex

sample networks respectively. Martins’ algorithm computes

all efficient paths in less than 4 seconds for all density

configurations and execution time ranges from 0.02 to 3.31

seconds whereas the brute-force algorithm computes for

efficient paths in the range of 16 to 5,823 seconds. With

respect to Network 5 at 5% density, Martins algorithm

computes for the solution set in 0.02 seconds while the

brute-force algorithm requires 1.6 hours. The variability in

the execution time of Martins algorithm is small while the

variability in the brute-force algorithm is very large.

Figure 5 Execution Time in Seconds using Martins'

Algorithm for 50-Vertex Networks

The execution times of the brute-force algorithm for the

10% and 20% density configurations cannot be shown since

no solutions were found within a 24-hour execution time
span. The zeroes shown in Figure 6 are equivalent to

undetermined execution times.

Figure 6 Execution Time of Brute-force algorithm for

50-Vertex Networks

Figure 7 and Figure 8 show the execution times of Martins’

algorithm for the 100-vertex and 200-vertex test networks

respectively. It can be observed from Figure 7 and Figure 8

that the execution times increase as the network density

increases. With respect to the 100-vertex test networks and

considering all density configurations, Martins’ algorithm
computes all efficient paths in 2.4 to 140.8 seconds. With

respect to the 200-vertex test networks and all density

configurations, Martins’ algorithm computes all efficient

paths in 1.0 to 3.5 seconds. It is evident that the execution

times of the 100-vertex test networks are higher than the

execution times of the 200-vertex test networks. This may

be due to the test problem i.e. efficient paths are computed

for only one pair of vertices instead of one source vertex to

all other vertices in the network .

Figure 7 Execution Time using Martins' Algorithm for

100-Vertex networks

Figure 8 Execution Time of Martins' Algorithm for 200-

Vertex networks

CONCLUSIONS

This study presents an empirical evaluation of Martins’

algorithm against a brute-force search algorithm for the

single source-target multi-objective shortest path problem.

The efficient solutions and execution times are the primary

concern of the evaluation process. Several network

configurations with varying sizes and densities were used to

compare the performance of Martins’ algorithm and the

brute-force search algorithm.

The results of the experiments show that Martins algorithm

generates a complete set of efficient solutions to all network

configurations whereas the brute-force algorithm only
generates solutions for small-sized and low-density

networks. Hence comparison of solutions between

algorithms is defined by the limitations of the brute-force

algorithm. With respect to Martins’ algorithm, the size of

the solution set increases as size and density increases. In

terms of execution times Martins algorithm is fast but its

execution time is dependent on the density of the network

i.e. it requires longer execution times for higher density

networks.

Acknowledgment The authors would like to thank the group

of Kevin Sumagit, CS students in 2010 at Saint Louis

University, in Baguio, The Philippines for coding the

algorithms and running the experiments.

REFERENCES

Coutinho-Rodrigues, J., Climaco, J., and Current, J. 1999.

“An interactive bi-objective shortest path approach:

searching for unsupported nondominated solutions”,

Computers and Operations Research Vol. 26(8), pages

789-798.
Ehrgott, M. and Gandibleux, X. 2000. “A survey and

annotated bibliography of multi-objective combinatorial

optimization”, OR Spektrum Vol. 22(4), pages 425-

460.

Gandibleux, X., Beugnies, F., and Randriamasy, S. 2006.

“Martins' algorithm revisited for multi-objective

shortest path problems with a MaxMin cost function”,

4OR: A Quarterly Journal of Operations Research Vol.

4(1), pages 47-59.

Garey, M.R. and Johnson D.S. 1979. Computers and

intractability: A guide to the theory of NP-
completeness, San Francisco, CA: Freeman.

Granat, J., and Guerriero, F. 2003. “The interactive analysis

of the multi-criteria shortest path problem by the

reference point method”, European Journal of

Operational Research Vol. 151, pages 103-111.

Martins, E.Q.V. 1984. On a multicriteria shortest path

problem. European Journal of Operational Research

Vol.16, pages 236-245.

Müller-Hannemann, M. and Weihe, K. 2001. “Pareto

Shortest Paths is often feasible in practice”, In:

Brodal, G., Frigioni D., Marchetti-Spaccamela A.

(eds.): Proc. 5th International Workshop on Algorithm
Engineering: WAE 2001. Lecture Notes in Computer

Science, Vol. 2141, pages 185-198.

Pangilinan, J.M., and Janssens, G.K. 2007. “Evolutionary

Algorithms for the Multiobjective Shortest Path

Problem”, World Academy of Science, Engineering

and Technology Vol. 25, pages 205-210.

Paixao, J.M. and Santos, J.L. 2007. Labelling methods for

the general case of the multi-objective shortest path

problem – a computational study. Pre-publications of

the Department of Mathematics 07-42, Universidade

de Coimbra.
Pinto, L. and Pascoal, M. 2010. “On algorithms for the tri-

criteria shortest path problem with two bottleneck

objective functions”, Computers and Operations

Research, Vol. 37(1), pages 1774-1779.
Tsaggouris, G. and Zaroliagis C. 2005. “Multiobjective

optimization: Improved FPTAS for Shortest Paths and

Non-linear objectives with Applications”, In:

Algorithms and Computation – ISAAC2006, Lecture

Notes in Computer Science Vol.4288, Springer-Verlag,

pages 389-398.

