
 

 

An Empirical Evaluation of Martins’ Algorithm for  

the Multi-Objective Shortest Path Problem 
 

 

Gerrit K. Janssens 
Hasselt University, Diepenbeek, Belgium 

gerrit.janssens@uhasselt.be 

and 

Jose Maria Pangilinan 

Saint Louis University, Baguio City, Philippines 

joey.pangilinan@slu.edu.ph 

 

 

KEYWORDS 

Multi-objective optimization, Martins’ algorithm, shortest 
path problem 

ABSTRACT 

The Shortest Path Problem is a popular optimization 

problem in operations research due to its wide range of 

practical applications. In most cases a single objective is 

considered, while also the multi-objective case has useful 
applications. The algorithms by Martins is considered very 

efficient. This study evaluates this algorithm by comparing 

it to a brute force algorithm as a first step to develop 

evolutionary algorithms for the multi-objective case. 

Experiments confirm the strength of the Martins’ algorithm.  

1. INTRODUCTION 

 

The Multi-Objective Shortest Path Problem (MSPP) is an 

extension of the Shortest Path Problem that aims to find 

efficient (non-dominated or Pareto-optimal) paths from a 

source vertex to a target vertex with multiple objectives in a 
single execution. MSPP have applications in many different 

industries such as telecommunications, traffic routing, 

resource allocation and rapid response for different purposes 

like cost cutting and time management. Most studies on the 

evaluation of the performance of Martins’ algorithm for the 

MSPP are theoretical and mathematical in nature. A few 

empirical studies show the algorithm’s performance in terms 

of the number of solutions it generates on different test 

networks. However, recent empirical studies lack necessary 

comparative illustrations to show its performance against 

another search algorithm.  

This paper presents a comparative performance evaluation 
of Martins’ algorithm against a brute-force algorithm in 

terms of the number of efficient solutions generated and 

execution time. The paper first describes a brief background 

on the MSPP, then gives a summary of several types of 

algorithms that compute efficient paths for the multi-

objective shortest path problem. Based on these algorithms, 

the performance of Martins algorithm is evaluated against a 

brute-force algorithm using several test networks. Finally, 

the results of the experiments are interpreted in terms of 

solution sets and execution time. 

 

 

 

 

 

2. BACKGROUND 

 

Multi-objective Shortest Path Problem 

 
Given a directed graph G = (V, E), where V is the set of 

vertices (nodes) and E the set of edges (arcs)  with 

cardinality |V| = n and |E| = m and a d-dimensional function 

vector c:E [+
]

d
. Each e belonging to E is associated with 

a cost vector c(e).  A source vertex s and a target vertex t are 

identified.   A path p is a sequence of vertices and arcs from 

s to t. The cost vector C(p) for linear functions of path p is 

the sum of the cost vectors of its edges, that is  C(p) =  ep 

c(e) while C(p) = minep c(e) for maxmin functions. Given 
two vertices s and t, let P(s, t) denote the set of all s-t paths 

in G.  If all objectives are to be minimized, a path pP(s, t) 

dominates a path qP(s, t) iff Ci(p)  Ci(q), i = 1,…,d and 

we write p   q. A path p is Pareto-optimal if it is not 

dominated by any other path and the set of non-dominated 
solutions (paths) is called the Pareto-optimal set. The 

objective of the MSPP is to compute the set of non-

dominated solutions that is the Pareto-optimal set P  of 

P(s,t) with respect to c. 

The problem of the single-source s, single-target t multi-

objective shortest path is to find the set of all paths from s to 

t in G. 

 

Algorithms for the MSPP 

 

A variety of algorithms and methods such as dynamic 
programming, label selecting, label correcting, interactive 

methods, and approximation algorithms to name a few have 

been implemented and investigated with respect to the 

MSPP (Ehrgott and Gandibleux, 2000). The problem is 

known to be NP-complete (Garey and Johnson, 1979). It has 

been shown that a set of problems exist wherein the number 

of Pareto-optimal solutions is exponential which implies that 

any deterministic algorithm that attempts to solve it is also 

exponential in terms of runtime complexity at least in the 

worst-case. But some labeling algorithm studies 

(Gandibleux et al., 2006; Müller-Hannemann and Weihe, 

2001) dispute this exponential behavior. They show that the 
number of efficient paths is not exponential in practice.  

Other authors avoid the complexity problem by developing 

new methods that run in polynomial time. For instance, 

Hansen and Warburton (Müller-Hannemann, 2001) 

separately developed fully polynomial time approximation 

schemes (FPTAS) for finding paths that are approximately 

Pareto-optimal. Interactive procedures (Coutinho-

Rodriguez, 1999; Granat, 2003) similarly avoid the problem 
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of generating the whole set of efficient paths by providing a 

user-interface that assists the decision-maker to focus only 

on  promising paths and identify better solutions according 

to preference. 

Martins’ algorithm (Martins, 1984) is a label setting 

algorithm that assigns for every vertex in its path permanent 

labels and temporary labels. The algorithm selects the 

minimum lexicographic label from all the sets of temporary 

labels and converts it to a permanent label, and propagates 

the information contained in this label to all the temporary 

labels of its successors. The process stops when there are no 

more temporary labels. Each permanent label corresponds to 
a unique efficient path. Martins algorithm ensures the 

computation of the maximal complete set of efficient paths 

from one vertex to all the other vertices of a network. 
Gandibleux et al. (2006) extended the capability of Martins 

algorithm by modifying its dominance test to ensure the 

computation of the maximal complete set of efficient paths 

for min-max problems associated with the multi-objective 

networks.  

Pangilinan and Janssens (2007) explored a Multi-Objective 

Evolutionary Algorithm as applied to the MSPP and 

described its behavior in terms of variety of solutions, 
computational complexity, and optimality of solutions. 

Results showed that the evolutionary algorithm is capable of 

finding diverse solutions to the MSPP in polynomial time.  

Granat and Guerriero (2003) proposed an interactive 

procedure for the MSPP based on a reference point labeling 

algorithm. Their algorithm converts the multi-objective 

problem into a parametric single-objective problem whereby 

the efficient paths are found. The algorithm was tested on 

different grid and random networks and performance was 

measured based on execution time. They conclude that an 

interactive method, from their experimental results, is 

encouraging and  does not require the generation of the 
whole Pareto-optimal set (which avoids the intractability 

problem). Likewise, Coutinho-Rodrigues et al. (1999) 

proposed an interactive method that incorporates an efficient 

k-shortest path algorithm in identifying Pareto-optimal paths 

in a bi-objective shortest path problem. The algorithm was 

tested against other MSPP algorithms on 39 network 

instances. They conclude that their k-shortest path algorithm 

performs better than other MSPP algorithms in terms of 

execution time. 
Tsaggouris and Zaroliagis (2006) provided a Fully 

Polynomial-Time Approximation Scheme (FPTAS) for the 
determination of an approximate Pareto curve for multi-

objective shortest paths that significantly improves 

especially in the case of more than two objective functions. 

The study shows that it can be used to provide better 

approximate solutions to multi-objective constrained 

efficient paths, multi-objective constrained paths, and non-

additive shortest paths. 

Paixao and Santos (2007) proposed a ranking algorithm that 

solves MSPP. This ranking algorithm finds all non-

dominated path solution between a source node to 

destination node based on ranking path procedure by 

applying a stop ranking condition which allows to determine 
the entire set of non-dominated paths at the very early stage 

of the ranking procedure. 

Pinto and Pascoal (2010) developed a labeling algorithm 

that computes multi-objective shortest paths by restricting 

the set of arcs according to the bottleneck values in order to 

find the minimal complete set of Pareto-optimal solutions. 

 

3. EXPERIMENTS 

 

The experiments intend to compare the performance  

between Martins’ algorithm and a brute-force search 

algorithm. The algorithms are evaluated in terms of the 

number of efficient solutions and computation time for a 

single source-target multi-objective shortest path problem. 

The single source-target problem is different from the single 

source MSPP as it requires the computation of all efficient 

paths from a single source to a single target only and not 

from a single source to all other vertices. 

 

Program Implementation 

 

The implementation of Martins algorithm is based on 

Gandibleux et al. (2006).  The algorithms are implemented 

using the C++ programming language, a desktop computer 

equipped with an Intel Core 2 Duo 2.56 GHz processor and 

two Gigabytes of RAM on a 32-bit operating system.  

 
ALGORITHM 1: MARTINS’ ALGORITHM  

 
Requires: G= (V, A ) and C, the cost matrix for all arcs   

(i,j ) ∈ A 
Ensures: All efficient paths from s to all vertices i ∈ V\{s} 
 
li : is the label of vertex i 
lti  : is the entire list of temporary labels of vertex i 
lpi : is the entire list of permanent labels of vertex i 
z pq,h : is the pth performance of a permanent label of 

vertex q in position h 
△ : is the dominance relation (if z△z’ then z is 

dominated by z’) 
perf() : performance operator 
 
Initialization 
lti,, lpi ⟵ ∅, ∀i ∈ V 
lts ⟵ *[0,…,0,,]} (the latter two have no meaning in 
the start vertex) 
 
Iteration 
while (⋃i∈V  lti  ∅)do 
 Find the minimum lexicographic label in lti, ∀i ∈ V
 lq ⟵ min lex{⋃i∈V lti} 
 Move the selected label from the ‘temporary’ to the 

‘permanent’ list  ltq ⟵ ltq \{lq}; lpq ⟵ lpq ⋃{lq} 
 Store the position of label lq from list of vertex j 
 hq ⟵ location(lpq) 
 Label all successors of q 
 for all j ∈V | (q,j) ∈ A do 
  Compute lj, the current label of vertex of j 
  lj ⟵ [z1q,h + c1(q,j),…, zkq,h + cK(q,h), q, h] 
  Verify that there is no performance of vertex j 

labels dominating perf(lj) 
  if (∄ l’j  ∈ {ltj  ⋃ lpj} | perf(lj) △ perf(l’j)) then 
   Store the label lj of vertex j as ‘temporary’ 
   ltj ⟵ ltj  ⋃ {lj} 
   Delete all temporary labels of vertex j 

dominated by lj 

   ltj ⟵ ltj \ {l’j   ∈  ltj | perf(l’j) △ perf(lj)} 
  end if 
 end for 
end while 

 



 
The brute-force search algorithm used in the study is 

implemented as a depth-first search algorithm. The depth-

first search starts at the root vertex and explores all possible 

successors before backtracking. The brute-force search 

algorithm lists all possible paths that lead to the target 

vertex. After the listing process, all dominated solutions are 

eliminated by dominance tests. 

 
ALGORITHM 2: BRUTE-FORCE SEARCH ALGORITHM  

  

BruteForceSearchAlgorithm(G,v)  (v  is the source vertex)  

Stack S : ⟵ ∅;   ( start with an empty stack ) 

for each vertex u, set visited[u] := false; 

 push S, v; 

 while (S is not empty) do 

  u ⟵ pop S; 

  if (not visited[u]) then 
   visited[u] := true; 

   for each unvisited neighbor w of u 

    push S, w; 

  end if 

 end while 

end for 

        

for path paths p in S 

 if (perf(lj) △ perf(l’j)) then 

   if perf(lj) is dominated by perf(l’j) then 

   Store the label lj as an optimal solution 

   ltj ⟵ ltj  ⋃ {lj} 

   Delete all temporary labels of vertex j 

dominated by lj 

   ltj ⟵ ltj \ {l’j ∈  ltj | perf(l’j) △ perf(lj)} 

  else 

 else if perf(lj) and perf(l’j) is non-dominated then  

   Store the label lj  

   ltj ⟵ ltj  ⋃ {lj} 

 end if 

end for 

END BruteForceSearchAlgorithm() 

 
Test Networks 

 

Forty-five network configurations were randomly chosen 

from Gandibleux et al. (2006). The configuration is as 
follows:  15 networks with 50 vertices (5 networks of 5% 

density, 5 networks of 10% density and 5 networks of 20% 

density); 15 networks with 100 vertices   (5 networks of 5% 

density, 5 networks of 10% density and 5 networks of 20% 

density); and 15 networks 200 vertices (5 networks of 5% 

density, 5 networks of 10% density and 5 networks of 20% 

density). Each edge of network has two cost values in the 

range [1, 1000].  

 

For each network configuration, the maximal complete set 

of the shortest paths from vertex = 1 to a randomly selected 
vertex was computed. The objective function is a minimize 

a (2-Sum) problem, i.e. min ep c(e). The algorithms were 
run and given a 24 hours duration limit to complete. All 

network traversals that are still in-process after 24 hours 

were marked as an incomplete execution.  

 

 

 

 

 

4. RESULTS AND FINDINGS 

 

Figure 1 and Figure 2 show the efficient paths found for a 

single source-target problem on five different 50-vertex 

networks using Martins’ algorithm and the brute-force 

search algorithm respectively. Martins’ algorithm was able 

to compute the maximal complete set of efficient solutions 

to the 50-vertex networks of different densities whereas the 

brute-force search algorithm can only compute the maximal 

complete set of efficient solutions to the 50-vertex networks 

with 5% density.  

Figure 1 shows that the number of efficient solutions 
generally increases as the density of the test network 

increases. This is not the case for Network 1 wherein the 

number of solutions for the 20% test network is lower than 

the 5% and 10% networks. 

 

 
Figure 1 Efficient Solutions using Martins' Algorithm 

for 50-Vertex Networks  
 

Figure 2 shows  the cardinality of the solutions sets  of the 

test networks and it is evident that the brute-force algorithm 

failed to compute efficient paths when the densities of the 

networks are  10% and 20%. This means that there were no 

solutions found in a span of 24 hours. 

 
Figure 2. Efficient Solutions of the Brute-force algorithm 

for 50-Vertex networks  

 



 
Looking at Figure 1 and 2, the number of efficient solutions 

and the efficient solutions to the 50-vertex test networks 

with 5% density found by Martins’ algorithm and by the 

brute-force algorithm are the same. Since the brute-force 

algorithm in this case computed for the complete set of 

efficient solutions, means that Martins’ algorithm also 

computed the complete set of efficient solutions for 50-

vertex, 5% density test networks. 

Figures 3 and 4 show solution sets to the 100-vertex and 

200-vertex test networks obtained by Martins’ algorithm. 

No solutions were generated by the brute-force algorithm 

for these types of networks. Figure 3 presents the cardinality 
of the solution sets of efficient paths for the 100-vertex 

networks with 5%, 10%, 20% densities. It is observed that 

the number of efficient solutions increases as the density of 

each network increases. 

 

 
 

Figure 3 Efficient Solutions using Martins Algorithm for 

100-Vertex networks 

 

Figure 4 shows the cardinality of the solution sets of 

efficient paths for 200-vertex networks with 5%, 10%, 20% 

densities. Again, it is observed that the number of efficient 

solutions increases as the density of each network increases. 

 

 
Figure 4 Efficient Solutions using Martins' Algorithm 

for 200-Vertex networks 

 

Figure 5 and Figure 6 show the execution times of Martins 

algorithm and the brute-force algorithm for the 50-vertex 

sample networks respectively. Martins’ algorithm computes 

all efficient paths in less than 4 seconds for all density 

configurations and execution time ranges from 0.02 to 3.31 

seconds whereas the brute-force algorithm computes for 

efficient paths in the range of 16 to 5,823 seconds. With 

respect to  Network 5 at 5% density, Martins algorithm 

computes for the solution set in 0.02 seconds while the 

brute-force algorithm  requires 1.6 hours. The variability in 

the execution time of Martins algorithm is small while the 

variability in the brute-force algorithm is very large. 

 

 
Figure 5 Execution Time in Seconds using Martins' 

Algorithm for 50-Vertex Networks  

 

The execution times of the brute-force algorithm for the 

10% and 20% density configurations cannot be shown since 

no solutions were found within a 24-hour execution time 
span. The zeroes shown in Figure 6 are equivalent to 

undetermined execution times. 

 

 
Figure 6 Execution Time of Brute-force algorithm for 

50-Vertex Networks  

 

Figure 7 and Figure 8 show the execution times of Martins’ 

algorithm for the 100-vertex and 200-vertex test networks 

respectively. It can be observed from Figure 7 and Figure 8 

that the execution times increase as the network density 

increases. With respect to the 100-vertex test networks and 

considering all density configurations, Martins’ algorithm 
computes all efficient paths in 2.4 to 140.8 seconds. With 

respect to the 200-vertex test networks and all density 

configurations, Martins’ algorithm computes all efficient 

paths in 1.0 to 3.5 seconds. It is evident that the execution 

times of the 100-vertex test networks are higher than the 

execution times of the 200-vertex test networks. This may 

be due to the test problem i.e. efficient paths are computed 



 
for only one pair  of vertices  instead of one source vertex to 

all other vertices in the network . 

 

 
Figure 7 Execution Time using Martins' Algorithm for 

100-Vertex networks  
 

 
Figure 8 Execution Time of Martins' Algorithm for 200-

Vertex networks  

 

CONCLUSIONS 

 

This study presents an empirical evaluation of Martins’ 

algorithm against a brute-force search algorithm for the 

single source-target multi-objective shortest path problem. 

The efficient solutions and execution times are the primary 

concern of the evaluation process. Several network 

configurations with varying sizes and densities were used to 

compare the performance of Martins’ algorithm and the 

brute-force search algorithm.  

The results of the experiments show that Martins algorithm 

generates a complete set of efficient solutions to all network 

configurations whereas the brute-force algorithm only 
generates solutions for small-sized and low-density 

networks. Hence comparison of solutions between 

algorithms is defined by the limitations of the brute-force 

algorithm. With respect to Martins’ algorithm, the size of 

the solution set increases as size and density increases. In 

terms of execution times Martins algorithm is fast but its 

execution time is dependent on the density of the network 

i.e. it requires longer execution times for higher density 

networks. 
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