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Abstract. Let g be an n-dimensional Lie algebra over a field k of characteristic
zero and let W be a g-module such that dimW ≥ n. Sufficient conditions are given
in order for the semi-direct product g ⊕W to satisfy the Gelfand-Kirillov conjec-

ture. This implies that this conjecture holds for an important class of Frobenius Lie

algebras. Special attention is devoted to the case where g = sl(2, k).

1. Introduction

Let L be a finite dimensional Lie algebra over a field k of characteristic zero, with

basis {y1, . . . , ys}. Let U(L) be its enveloping algebra and let D(L) be the quo-
tient division ring of U(L) with center Z(D(L)). Let R(L) be the quotient field of

the symmetric algebra S(L). Denote by i(L) the index of L, for which the following

formula holds [D, 1.14.13].

i(L) = dimL− rankR(L)([yi, yj])

and which coincides with the transcendence degree of Z(D(L)) over k if L is alge-

braic [RV, 4.6], [O1, p. 72].

In 1966, Gelfand and Kirillov formulated the following conjecture and settled it for

nilpotent Lie algebras, gl(n) and sl(n) [GK1].

The GK-conjecture: Let L be algebraic and let k be algebraically closed, then

D(L) is isomorphic to a Weyl skew field Dn(F ) over a purely transcendental exten-

sion F of k.

Later on, they established this also for L semi-simple, but only for an extension
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of the center Z(D(L)) [GK2].

In 1973, three separate proofs were given for the solvable case by Borho [BGR],

Joseph [J] and McConnell [M]. Concerning the mixed case, Nghiem treated in [N]

the semi-direct products sl(n), sp(2n) and so(n) with their standard representation

and proved the GK-conjecture for these.

In 1996, Alev, Van den Bergh and the author presented a family of counterexam-

ples in [AOV1], focusing on semi-direct products of the Lie algebra of a nonspecial

group with a representation admitting a trivial generic stabilizer. For example, the

9-dimensional semi-direct product of sl(2) with two copies of the adjoint representa-

tion (the nonspecial group to be considered here is PSL(2)). This happens to be the

smallest counterexample since the GK-conjecture holds in lower dimensions [AOV2].

In this paper we continue to consider semi-direct products. The following is our

main result:

Theorem 1.1. Let g be an n-dimensional Lie algebra over a field k of char-
acteristic zero and let W be a g-module such that dimW ≥ n. Put K = R(W ),

the quotient field of the symmetric algebra S(W ), and let Kg be the subfield of

invariants under the action of g. Consider the semi-direct product L = g ⊕W .
We assume that:

(i) g(f) = 0 for some f ∈W ∗ (where g(f) is the stabilizer of f , consisting
of all x ∈ g such that f(xw) = 0 for all w ∈W )

(ii) K is a purely transcendental extension of Kg

(iii) tr degKg(K) = n

Then D(L) is isomorphic to the Weyl skew field Dn(F ), where F = Z(D(L)) = K
g.

If in addition the extension F/k is also rational then L satisfies the GK-conjecture.

Note that g is not assumed to be algebraic and also that k need not be algebraically

closed. However, if g is algebraic, then so is L and in that case (iii) is an immediate

consequence of (i) (Remark 2.3).

Theorem 1.1, which generalizes Corollary 2.3(1) of [AOV1], has some interesting con-

sequences. In particular, it implies that an important class of Frobenius Lie algebras

satisfy the GK-conjecture. Its proof is straightforward and provides a method for

the explicit computation of the Weyl generators of D(L). In section 3 this procedure
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is applied to the 8-dimensional semi-direct product of sl(2) with W2
�
W1 (where

Wn is the (n+1)-dimensional irreducible sl(2)-module). Finally, section 4 is devoted

to the semi-direct product of sl(2) with Wn for n ≥ 5 (k algebraically closed). This
satisfies the GK-conjecture if and only if n is odd. In particular, sl(2)

�
W6 is a

10-dimensional counterexample to GK.

2. Proof of the main theorem and its consequences

Let g, W , L etc... be as above. In particular L =g
�
W is the semi-direct product

of g with W in which [x, w] = xw, x ∈ g, w ∈ W and in which W is an abelian

ideal. Let {x1, . . . , xn} be a basis of g and let {e1, . . . , em} be a basis of W . We now
recall the following [O3, p. 708]:

Proposition 2.1 The following are equivalent:

1. g(f) = 0 for some f ∈W ∗

2. rankK([xi, ej ]) = n

3. i(L) = dimW − dim g

4. W is a commutative polarization of L

5. K is a maximal subfield of D(L)

Moreover, if these conditions are satisfied then W is a faithful g-module and
Z(D(L)) = Kg.

Remark 2.2 If k is algebraically closed, g a simple Lie algebra, acting irre-
ducibly on W then the conditions of the proposition are satisfied if and only if

dim g < dimW [AVE]. See also [R, p. 196].

Proof of Theorem 1.1 Put F = Kg = Z(D(L)).

By assumption, we can find q1, . . . , qn ∈ K, algebraically independent over F ,
such that K = F (q1, . . . , qn).

Next, we claim that the matrix

A = ([xi, qj]) ∈ Kn×n
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is invertible.

Since ej ∈ K there exists fj ∈ F (X1, . . . , Xn) such that ej = fj(q1, . . . , qn).

Then,

[xi, ej ] =
n3
s=1

[xi, qs]
∂fj
∂qs

for all i : 1, . . . , n and j : 1, . . . ,m.

Therefore, we have the following equality of matrices:

([xi, ej]) = ([xi, qs])� ,� 1
A

X
∂fj
∂qs

~

On the left hand side we have an n×mmatrix of rank n. Consequently, A ∈ Kn×n

is also of rank n, establishing our claim. Let B = (bjs) ∈ Kn×n be the inverse

of A and put

pj =
n3
s=1

bjsxs j : 1, . . . , n

Note that: pj ∈ gK = K⊗k g.
It follows that

n3
j=1

[xi, qj ]pj =
3
j,s

[xi, qj ]bjsxs = xi

In other words, p1, . . . , pn ∈ gK are the unique solutions of the following system
of equations

n3
j=1

[xi, qj]pj = xi i : 1, . . . , n (∗)

This implies that (since K is commutative)

n3
j=1

[x, qj]pj = x for all x ∈ gK (∗∗)

Next, we want to verify that

p1, . . . , pn, q1, . . . , qn

form a set of Weyl generators of D(L) over F .

For all i, j : 1, . . . , n we have:
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1) [qi, qj ] = 0 since K is commutative.

2) [pi, qj ] = δij

First we observe that for all j, t : 1, . . . , n:

[pj , qt] = [
3
s

bjsxs, qt] =
3
s

bjs[xs, qt] ∈ K

Using (∗) and the fact that K is commutative we get for all i, t : 1, . . . , n:

n3
j=1

[xi, qj ][pj, qt] =

⎡⎣ n3
j=1

[xi, qj]pj , qt

⎤⎦ = [xi, qt]
Therefore we have the following equality of matrices ∈ Kn×n:

([xi, qj])� ,� 1
A

([pj , qt]) = ([xi, qt])� ,� 1
A

Consequently, [pj , qt] = δjt as A is invertible.

3) [pi, pj] = 0

Using (2) we see that for all s : 1, . . . , n:

[[pi, pj], qs] = [[pi, qs], pj ] + [pi, [pj , qs]] = 0.

Hence, [pi, pj ] ∈ C(K) = K, K being a maximal subfield of D(L) by Proposi-

tion 2.1.

Next,

[xi, ps] =

^
n�
j=1
[xi, qj ]pj, ps

�

=
n�
j=1
[[xi, qj], ps] pj +

n�
j=1
[xi, qj ][pj, ps]

=
n�
j=1
[[xi, ps], qj ] pj +

n�
j=1
[xi, [qj, ps]]� ,� 1

0

pj +
n�
j=1
[xi, qj ][pj , ps]

= [xi, ps] +
n�
j=1
[xi, qj ][pj, ps]

(using (∗∗) since [xi, ps] ∈ gK).
Hence,

n�
j=1
[xi, qj ][pj, ps] = 0 which forces [pj , ps] = 0 for all j, s :

1, . . . , n as A = ([xi, qj ]) is an invertible matrix.
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4. p1, . . . , pn, q1, . . . , qn generate D(L) as a skew field over F .

From q1, . . . , qn and F we obtain all of K as K = F (q1, . . . , qn).

In particular, also W ⊂ K.
On the other hand, we also obtain the basis x1, . . . , xn of g since
xi =

n�
j=1
[xi, qj ]pj and [xi, qj ] ∈ K.

We may now conclude that D(L) = Dn(F ).

Remark 2.3 Suppose g is algebraic. Then the same holds for L and in that

case (iii) is an immediate consequence of (i).

Proof. First, we show that L is algebraic. adLW is algebraic, since it is an abelian

Lie subalgebra of EndL, consisting of nilpotent endomorphisms [C, p. 303]. Hence,

adLL = adLg +adLW is also algebraic, being the sum of two algebraic Lie subalge-

bras of EndL [C, p. 175]. Consequently, L is algebraic [C, p. 336].

Therefore,

tr degk(K
g) = tr degk Z(D(L)) = i(L)

= dimW − dim g = m− n (by Proposition 2.1)

From k ⊂ Kg ⊂ K we see that

tr degKg(K) = tr degk(K)− tr degk(Kg)

= m− (m− n) = n

Corollary 2.4 Assume L =g
�
W satisfies all the conditions of Theorem 1.1. In

particular,

F = k(c1, . . . , ct) and K = F (q1, . . . , qn)

are purely transcendental extensions of k and F respectively (where F = Kg =

Z(D(L))). Let d ∈ DerL be an outer derivation of L such that

(i) d(g) ⊂g

(ii) d(ci) = αici for some αi ∈ IQ, i : 1, . . . , t

(iii) d(qj) = λjqj for some λj ∈ k, j : 1, . . . , n
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Then the semi-direct product L
�
kd satisfies the GK-conjecture.

Proof. We construct p1, . . . , pn ∈ D(L) as in the proof of Theorem 1.1. Then

we know that p1, . . . , pn, q1, . . . , qn form a system of Weyl generators of D(L) over

F , a rational extension of k. In view of Lemma 4 of [AOV2] it suffices to show

that d(pj) = −λjpj for all j : 1, . . . , n.

For this purpose, we let d act on both sides of formule (∗)

xi =
n3
j=1

[xi, qj ]pj i : 1, . . . , n

We obtain:

d(xi) =
n3
j=1

d([xi, qj ])pj +
n3
j=1

[xi, qj]d(pj)

=
n3
j=1

[d(xi), qj]pj +
n3
j=1

[xi, d(qj)]pj +
n3
j=1

[xi, qj ]d(pj)

= d(xi) +
n3
j=1

[xi,λjqj]pj +
n3
j=1

[xi, qj ]d(pj)

(using (∗∗) since d(xi) ∈ g)
Consequently

n�
j=1
[xi, qj ](λjpj + d(pj)) = 0 for all i : 1, . . . , n. This implies that

λjpj + d(pj) = 0 for all j : 1, . . . , n as the matrix A = ([xi, qj]) ∈ Kn×n is

invertible.

Proposition 2.5 Let g be an n-dimensional Lie algebra over k and W an n-

dimensional g-module such that g(f) = 0 for some f ∈W ∗.

(i) Then the semi-direct product L =g
�
W is Frobenius and satisfies the

GK-conjecture. In fact, D(L) ∼= Dn(k).

(ii) We may assume that g ⊂ EndW . Let T ⊂ EndW be an abelian

Lie subalgebra consisting of diagonalizable endomorphisms of W such that

[T, g] ⊂ g and T ∩ g = {0}. Then the semi-direct product L1 =

(T
�
g)
�
W also satisfies the GK-conjecture.

Proof. (i) L is Frobenius since i(L) = 0 by Proposition 2.1. In particular,

Kg = Z(D(L)) = k [O2], [O4, p. 283].
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Therefore, the conditions of Theorem 1.1 are trivially satisfied.

(ii) Let {t1, . . . , tr} be a basis of T . We can find a basis {q1, . . . , qn} of W

such that [ti, qj] = ti(qj) = λijqj for some λij ∈ k for all i, j.
We can construct p1, . . . , pn ∈ D(L) as in the proof of Theorem 1.1 such that

p1, . . . , pn, q1, . . . , qn is a system of Weyl generators of D(L) over k = Z(D(L)).

Then each derivation di = adLti is a derivation of L which satisfies the condi-

tions of Corollary 2.4, which implies that

[ti, pj ] = di(pj) = −λijpj for all i, j

and so [ti, pjqj ] = 0.

First, we introduce for each i : 1, . . . , r

ui =
n3
j=1

λijpjqj ∈ D(L)\{0}

Clearly, [ts, ui] = 0 for all s, i.

Note that

[ui, ps] = [
3
j

λijpjqj, ps] =
3
j

λijpj[qj, ps]

= −λisps
Similarly, [ui, qs] = λisqs.

In particular, [ui, psqs] = 0 for all s and hence also [ui, uj ] = 0 for all i, j.

Next, we put

zi = ti − ui ∈ D(L1)\{0}, i : 1, . . . , r

Then we observe that for all i, j:

[zi, pj ] = [ti − ui, pj] = [ti, pj]− [ui, pj] = 0
similarly, [zi, qj ] = 0 and also [zi, zj] = 0. We now proceed step by step.

Step 1: t = 1

Because z1 = t1 − u1 commutes with all the p’s and q’s we may conclude, as

in the proof (case 2) of lemma 4 of [AOV2], that p1, . . . , pn, q1, . . . , qn form a

system of Weyl generators of D(L1) over k(z1).

Step 2 (t = 2) follows from step 1 using the same argument, and so on.

In the end, p1, . . . , pn, q1, . . . , qn form a system of Weyl generators of D(L1) over

k(z1, . . . , zr), a purely transcendental extension of k. In particular,

Z(D(L1)) = k(z1, . . . , zr).
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Examples (all of type (i) of the proposition)

1. Let g be an n-dimensional Frobenius Lie algebra and let W be its adjoint

representation. Then the Takiff Lie algebra L = g
�
W is Frobenius and

D(L) ∼= Dn(k).
2. Let g be an n-dimensional reductive Lie algebra over k, k algebraically closed,

and let W ∗ be a prehomogeneous g-module (i.e. W ∗ has an open orbit) such
that dimW = n. Then L = g

�
W is Frobenius [EO, p. 143] and

D(L) ∼= Dn(k).

3. Let A be an n-dimensional (associative) Frobenius algebra with a unit. A

becomes a Lie algebra g for the Lie bracket [a, b] = ab− ba and W = A

becomes a g-module by left multiplication. Then L = g
�
W is a Frobe-

nius Lie algebra [EO, p. 144] and D(L) ∼= Dn(k).

3. The explicit verification of L = sl(2, k)
�
W2

�
W1

We want to demonstrate the method of Theorem 1.1 (and its proof) for this Lie

algebra (which is L8,2 of [AOV2, p. 567]) in order to obtain the Weyl generators of

D(L).

So, here g = sl(2, k) (which is algebraic), with standard basis h, x, y and

W = W2
�
W1, with standard basis e0, e1, e2; e3, e4. The Lie brackets of these

form the following matrix M :

h x y e0 e1 e2 e3 e4

h 0 2x −2y 2e0 0 −2e2 e3 −e4
x −2x 0 h 0 2e0 e1 0 e3

y 2y −h 0 e1 2e2 0 e4 0

e0 −2e0 0 −e1 0 0 0 0 0

e1 0 −2e0 −2e2 0 0 0 0 0

e2 2e2 −e1 0 0 0 0 0 0

e3 −e3 0 −e4 0 0 0 0 0

e4 e4 −e3 0 0 0 0 0 0

Put K = R(W ) = k(e0, e1, e2, e3, e4). First, we verify the conditions of Theorem

1.1.
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(i) We notice that the 3 × 5 submatrix of M in the top right corner has rank 3

over K (since det

⎛⎜⎜⎝
−2e2 e3 −e4
e1 0 e3

0 e4 0

⎞⎟⎟⎠ = 2e2e3e4−e1e24 W= 0). This implies that
g(f) = 0 for some f ∈W ∗ by Proposition 2.1. In particular, Z(D(L)) = Kg.

(ii) Since L is algebraic we know that:

tr degk(Z(D(L))) = i(L) = dimW − dimg = 2
Put

c1 = e
2
1 − 4e0e2 and c2 = e0e

2
4 − e1e3e4 + e2e23

We verify that c1, c2 ∈ Z(D(L))
[x, c1] = 2[x, e1]e1 − 4e0[x, e2]

= 4e0e1 − 4e0e1 = 0
[y, c1] = 2[y, e1]e1 − 4[y, e0]e2

= 4e1e2 − 4e1e2 = 0
[x, c2] = e0[x, e

2
4]− [x, e1]e3e4 − e1e3[x, e4] + [x, e2]e23

= 2e0e3e4 − 2e0e3e4 − e1e23 + e1e23 = 0
[y, c2] = [y, e0]e

2
4 − [y, e1]e3e4 − e1[y, e3]e4 + e2[y, e23]

= e1e
2
4 − 2e2e3e4 − e1e24 + 2e2e3e4 = 0

Put F = k(c1, c2) ⊂ Z(D(L)) and note that tr degk(F ) = 2 = tr deg(Z(D(L))).

So, Z(D(L)) is algebraic over F .

We now consider the following elements of K:

q1 = e3 q2 = e0e
−1
3 e4 q3 = 2q2 − e1

Then,

4e0c2 = (q1q3)
2 − c1q21 (∗ ∗ ∗)

Indeed,

(q1q3)
2 − c1q21 = (2q1q2 − q1e1)2 − c1q21

= (2e0e4 − e1e3)2 − (e21 − 4e0e2)e23
= 4e20e

2
4 − 4e0e1e3e4 + e21e23 − e21e23 + 4e0e2e23

= 4e0(e0e
2
4 − e1e3e4 + e2e23) = 4e0c2
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Next, K = k(c1, c2, q1, q2, q3).

Indeed, using (∗ ∗ ∗) we obtain e0 from c1, c2, q1, q3. From q2, q3 we

obtain e1. From e0, e1 and c1 = e
2
1 − 4e0e2 we get e2. Finally, from

e0, q1 = e3 and q2 = e0e
−1
3 e4 we obtain e4.

Clearly, K = F (q1, q2, q3), a purely transcendental extension of degree 3 over

F = k(c1, c2). The subfield Z(D(L)) ⊂ K is algebraic over F . Hence,

Z(D(L)) = F . By Theorem 1.1 we may conclude that D(L) ∼= D3(F ) where
F = k(c1, c2), a rational extension of k. So, L satisfies the GK-conjecture.

In order to construct p1, p2, p3 ∈ D(L) we need to calculate the following

Lie brackets:

[h, q1] = [h, e3] = e3 [h, q2] = [h, e0e
−1
3 e4] = 0

[h, q3] = [h, 2q2 − e1] = 2[h, q2]− [h, e1] = 0
[x, q1] = [x, e3] = 0 [x, q2] = [x, e0e

−1
3 e4] = e0e

−1
3 e3 = e0

[x, q3] = [x, 2q2 − e1] = 2[x, q2]− [x, e1] = 2e0 − 2e0 = 0
[y, q1] = [y, e3] = e4

[y, q2] = [y, e0e
−1
3 e4] = [y, e0]e

−1
3 e4 − e0e−23 [y, e3]e4

= e1e
−1
3 e4 − e0e−23 e24 = e−23 (e1e3e4 − e0e24)

= e−23 (e2e
2
3 − c2) = e2 − e−23 c2

[y, q3] = [y, 2q2 − e1] = 2[y, q2]− [y, e1]
= 2e2 − 2e−23 c2 − 2e2 = −2e−23 c2

Finally, p1, p2, p3 are the solutions of the following equations:

h = [h, q1]p1 + [h, q2]p2 + [h, q3]p3 = e3p1

x = [x, q1]p1 + [x, q2]p2 + [x, q3]p3 = e0p2

y = [y, q1]p1 + [y, q2]p2 + [y, q3]p3

= e4p1 + e
−2
3 (e2e

2
3 − c2)p2 − 2e−23 c2p3

So, p1 = e
−1
3 h p2 = e

−1
0 x and

p3 =
1

2
e23c
−1
2 [e4p1 + e

−2
3 (e2e

2
3 − c2)p2 − y]

=
1

2
c−12 [e3e4h+ e

−1
0 (e2e

2
3 − c2)x− e23y]
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4. The semi-direct product L = sl(2, k)
�
Wn

In this section we assume k to be algebraically closed. Let G be a connected semi-

simple algebraic group over k with Lie algebra g and let W be a finite dimensional

G-representation. Then W is also a g-representation. We recall that G is said to

be special if any principal homogeneous G-space is locally trivial for the Zariski

topology. For example, GL(n, k), SL(n, k) and Sp(2n, k) are special [CS, p. 18].

We now recall the main result of [AOV1], due to M. Van den Bergh:

Theorem 4.1 Assume that the generic stabilizer (in G) of W is trivial and

consider the semi-direct product L = g
�
W . Then the following are equivalent:

(1) D(L) is a Weyl skew field over some field.

(2) G is special.

We now focus our attention to the case where G = SL(2, k). As before, we

put K = R(W ), which we regard as the field of rational functions on W . Clearly,

KSL(2,k) = Ksl(2,k). This field of invariants has the following interesting property,

due to F.A. Bogomolov and P.I. Katsylo [B], [BK], [K1], [K2].

Theorem 4.2 KSL(2,k) is a purely transcendental extension of k.

Next, we replace W by Wn, the (n + 1)-dimensional irreducible representation of

SL(2, k), usually represented by the space of binary forms of degree n.

For n ≤ 4 we have already verified in [AOV2] that the Lie algebra L = sl(2, k)
�
Wn

satisfies the GK-conjecture by providing the Weyl generators explicitly. See also the

appendix (due to H. Kraft) of [AOV1] for n = 3, 4.

For larger n we now have the following simple criterion:

Proposition 4.3 Suppose n ≥ 5. Then, L = sl(2, k)
�
Wn satisfies the

GK-conjecture if and only if n is odd.

Proof Case 1: n is odd.

In this case we know that the generic stabilizer of Wn is trivial [P]. Since SL(2, k)

is special, D(L) is a Weyl skew field over some field extension F of k by Theorem

4.1.

Clearly, F = Z(D(L)) = Ksl(2,k) by Proposition 2.1 and Remark 2.2. But the
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latter is rational over k by Theorem 4.2. Therefore, the “if”-part is settled.

Case 2: n is even.

In this situation the generic stabilizer of Wn is precisely Z = {I,−I}, the center
of SL(2, k) [P]. Hence, Wn can also be regarded as a representation space for the

group PSL(2, k) = SL(2, k)/Z, with trivial generic stabilizer. Since PSL(2, k)

is not special we may conclude, using Theorem 4.1, that D(L) cannot be a Weyl

skew field over some field. In particular, L does not satisfy the GK-conjecture.
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