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ABSTRACT. Hypergraphs arise in a variety of applications and are com-
monly classified as cyclic or acyclic. In this paper we develop a more refined
classification scheme for cyclic hypergraphs based on a natural decomposi-
tion strategy. The fundamental building blocks in our decompositions are
subsets of edges known as k-hinges. For any hypergraph, a set of more than
k of its edges is defined to be a k-hinge if all connected components of the
hypergraph with respect to the set of edges meet the latter within at most
k of its edges. A k-hinge tree is a set of minimal k-hinges that cover all
edges of H, and form a tree with respect to intersection.

The size of the largest node in any 1-hinge tree is shown to be an in-
variant of the hypergraph, which we call the degree of cyclicity. Acyclic
hypergraphs are hypergraphs with degree of cyclicity 2. The concept of
degree of cyclicity was first presented by Gyssens in the context of re-
lational database design, but is presented here for arbitrary hypergraphs
with a greatly simplified proof. For more general k-hinges we show that
it is possible to obtain more powerful decompositions. However, in this
case there may be several possible decompositions which do not share any
structural invariant. We therefore consider restrictions on k-hinges which
are necessary in order to guarantee this structural invariant.

1. Introduction

The complexity of any problem associated with a graph may depend very
strongly on the structure of that graph. Examples of such problems are finding
a minimal triangulation of a graph [11], coloring problems, and more general
constraint satisfaction problems [6].

Problems which are computationally hard for general graphs may be tractable
for particular classes of graphs with some restriction on the structure (for a sur-
vey, see [1]). In particular, if the graph may be decomposed into suitable sub-
graphs (e.g., the biconnected components) in such a way that the problem can be
solved for each subgraph separately, and the solutions to these subproblems can
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be efficiently combined to obtain an overall solution, then significant reductions
in complexity may be achieved.

The corresponding theory for general hypergraphs is much less well-developed.
It has been shown that many problems possess efficient solution techniques when
the associated hypergraph is acyclic [2, 3]. However, the classification of hyper-
graphs into acyclic and cyclic ones is rather crude.

A more powerful decomposition strategy for hypergraphs was developed in
the context of a particular application in database theory. This approach led
to a hierarchy of classes of hypergraphs in which the acyclic hypergraphs are
merely the smallest non-trivial class [9, 10, 7]. It has been shown that in the
special case of graphs this approach gives rise to a finer decomposition than
the decomposition into biconnected components, and therefore provides a more
informative bound on the complexity of many problems [7, 8].

In this paper, we develop a very general decomposition strategy for hyper-
graphs in the context of general hypergraph theory and discuss its properties.
The paper is organized as follows. In Section 2, we introduce some terminology
and define hypergraph decompositions in terms of k-hinges and k-hinge-trees.
In Section 3, we review the desirable properties of 1-hinges and 1-hinge-trees
that motivated this study and propose a new, short, and more insightful proof
of the main property. The remaining sections are devoted to general k-hinges.
In Section 4, we demonstrate the usefulness of general k-hinge-tree decomposi-
tions. In Section 5 we discuss the difficulties that arise when trying to build a
general theory for constructing arbitrary k-hinge-tree decompositions, and the
open problems resulting from them. Most of the difficulties arise from the fact
that the desirable properties for 1-hinges exhibited in Section 3 do not carry over
to arbitrary k-hinges, even for k = 2.

2. Definitions

The building blocks of the decomposition we intend to propose are so-called
k-hinges, which are defined in this section. Our notion of hypergraph decompo-
sition is then formalized by the concept of k-hinge-trees.

First though, we briefly review some of the relevant terminology concerning
hypergraphs.

DEFINITION 2.1. [4] A hypergraph is an ordered pair (V, E') where V is a finite
set of vertices and E is a set of edges, each of which is a subset of V.

Undirected graphs can be seen as special cases of hypergraphs, where each
edge contains exactly two vertices.

DEFINITION 2.2. Let (V| E) be a hypergraph, let H C E,andlet F C E—H.
F is called connected with respect to H if, for any two edges e, f € F, there exists
a sequence eq, ..., e of edges in F such that (i) e; = ¢; (4)fori=1,... ,n—1,
e;Neiy1 € |JH; and (i) e, = f. Such a sequence is called a path with respect
to H connecting e and f in F.
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The maximal connected subsets of £ — H with respect to H are called the
connected components of E — H with respect to H. They obviously form a
partition of £ — H. In the case that H is the empty set of edges, we usually drop
the phrase “with respect to H” and simply speak about connected subsets and
connected components of E. If E itself is connected, then (V, E) is said to be a
connected hypergraph. In this paper, we shall assume that all hypergraphs to be
decomposed are connected, since in a disconnected hypergraph each connected
component may be decomposed individually.

Using this notion of connectivity we now define the sets of edges which will
be called k-hinges:

DEFINITION 2.3. Let (V, E) be a hypergraph, and let H be either E or a
proper subset of E containing at least k¥ + 1 edges. Let Hy,...,H,, be the
connected components of F — H with respect to H. Then H is called a k-hinge
if, for : = 1,...,m, there exists a set h; C H consisting of k edges such that

(UH:)n (UH) € Uhs

The set of edges h; is called a separating edge set for H;.

In words, a k-hinge of a hypergraph is either the entire hypergraph or a subset
H of its edges (containing at least k + 1 edges) with the property that the set
of nodes in each connected component with respect to that subset intersects the
set of nodes in H within at most k edges.

In general, k-hinges can in turn contain other k-hinges. We are most interested
in k-hinges that do not contain other k-hinges; these are called minimal k-hinges.

Our aim is to decompose any hypergraph into a “tree” of minimal k-hinges,
with the following properties:

DEFINITION 2.4. Let (V, E) be any hypergraph. A k-hinge-tree of (V, E) is a
tree!, (N, A), with nodes N and labeled arcs? A, such that

(i) each node in N is a minimal k-hinge of (V, E), and each label of an arc
in A is a subset of F;
(i) UN = B
(iii) for each labeled arc ({n;,n;}, E') € A, E' = n;Nn; and satisfies (|Jn;)N
(Unj)=UFE and 1 < |E'| < k; and

(iv) the vertices of V shared by two tree nodes are entirely contained within

each tree node on their connecting path.

Property 3 states that adjacent tree nodes share at most &k edges of E, and this
set of edges is also the label of their connecting tree-arc; moreover, the vertices
shared by the adjacent tree nodes are precisely the vertices of this edge set.

Note that a hypergraph may, in general, have many different k-hinge-trees,
containing different sets of minimal k-hinges.

Below, we give an example of a k-hinge-tree of a hypergraph for & = 1.

1By “tree”, we understand an unrooted tree, i.e., an undirected acyclic graph.
2A labeled arc is formally defined as an ordered pair ({n;,n;},a) with n; and n; different
tree nodes and a the arc-label.
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FiGURE 1. A hypergraph (Example 2.1).
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FIGURE 2. A 1-hinge-tree of the hypergraph in Figure 1.

ExaMPLE 2.1. Consider the hypergraph illustrated in Figure 1. The minimal
1-hinges of the hypergraph in Figure 1 are the following:

My = {e, e2}; My = {e5,e6};
My = {e1, €3, €4, €5}; Ms = {es5,er};
M; = {62763764765}; Mg = {65,68}.

Figure 2 illustrates one possible 1-hinge-tree of the hypergraph in Figure 1.

An alternative 1-hinge-tree of (V, E') may be obtained by replacing M3 with
M, and labeling the arc connecting it to M; with {e1}.

Definition 2.4 is partly inspired by the notion of tree developed by Courcelle [5]
in the context of (binary) graphs, and is a generalization of the notion of “hinge-
tree” in [7, 8] (which correspond to 1-hinge-trees in this paper). The introduction
of general k-hinge-trees was motivated by the observation that, while 1-hinge-tree
decompositions have many desirable properties with respect to solving problems
defined on a hypergraph, many hypergraphs do not possess non-trivial 1-hinge-
tree decompositions but do possess interesting k-hinge tree decompositions for
higher values of k.
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3. Decompositions using 1-hinges

The concept of 1-hinge was introduced in [9] under the name “hinge” in the
context of relational database theory. It was subsequently found that every hy-
pergraph has at least one 1-hinge-tree, and that the size of the largest node in
any l-hinge-tree decomposition is an invariant of the hypergraph, i.e., indepen-
dent of the particular 1-hinge-tree chosen [7]. This result has subsequently been
applied to the analysis of constraint satisfaction problems [8].

Unfortunately, the initial proof in [7] heavily depends on properties of certain
database concepts and therefore is not suitable for possible generalization to
decomposition into arbitrary k-hinge-trees. Therefore, we exhibit a simpler proof
stated entirely within the context of general hypergraph theory.

In Section 3.1, we describe two key properties of 1-hinges. Using these key
properties, we then prove the actual invariance result in Section 3.2. For com-
pleteness, an algorithm to find a particular 1-hinge-tree for any hypergraph is
given in Section 3.3. Because of the invariance result, the particular 1-hinge-tree
found by this algorithm is optimal.

3.1. Properties of 1-hinges. The first of the two key properties of 1-hinges
we shall exhibit in this section was originally proved in [9] by a straightforward
consideration of the possible connected components with respect to H' and will
here be referred to as the “Inheritance Property:”

INHERITANCE PROPERTY. [9] Let (V, E) be a hypergraph, let H be a 1-hinge
of (V,E), and let H' C H. Then H' is a 1-hinge of (V, E) if and only if it is a
1-hinge of the hypergraph (|J H, H).

To state the second property, which we shall call the “Decomposition Prop-
erty,” we first propose a notion of decomposition in Definition 3.1. With a pos-
sible generalization in mind, we state Definition 3.1 in a slightly more general
fashion than strictly needed in this section.

DEFINITION 3.1. Let (V, E) be a hypergraph, let H be a subset of edges, and
let h be a subset of E. An h-decomposition of H is any set, D, of subsets of H,
such that H = |JD and, for all S, 7D, S£ T, (US)NUT) CUr.

DECOMPOSITION PROPERTY. Let (V, E) be a hypergraph, and let H be a
1-hinge of (V,E). Let e be an arbitrary edge in E, and let D be an {e}-
decomposition of H. There exists S € D such that, for every D' C D with
S eD!, |UD' is either a 1-hinge of (V, E) or a single edge in E.

Proor. If e ¢ H, let C. be the connected component of E — H with respect
to H which contains e, and let {f} be a corresponding singleton separating edge
set in H. If e € H,let C, = 0, and let f = e. In either case, let S be an
element of D containing f. Let H' = H U C.. Note that, as H' is a 1-hinge of
(V, E), every 1-hinge of (|J H', H') is also a 1-hinge of (V, E), by the Inheritance
Property.
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We have

Hence if S € D', then | D' is either {f} or a 1-hinge of (|JH', H'), in which
case it is a 1-hinge of (V, E). O

The Decomposition Property has the following immediate corollary:

INSEPARABILITY PROPERTY. Let (V, E) be a hypergraph and let H be a min-
imal 1-hinge of (V, E). Let e be an arbitrary edge in E and let D be an {e}-
decomposition of H. Then D has at most two nonempty elements, and at most
one element containing more than one edge.

3.2. An invariant of 1-hinge-trees. Using the properties described above,
we can now prove the following:

PRrROPOSITION 3.1. Let (V, E) be a hypergraph and let T = (N, A) be a 1-hinge-
tree for (V, E). For any minimal 1-hinge H of (V, E), |H| < maz{|n| |n € N}.

PrOOF. Every arc of T' divides T into two subtrees, and by Properties 3 and 4
in Definition 2.4, the partition of H defined by these subtrees is an {e}-decom-
position of H. By the minimality of H and the Inseparability Property, one of
the two subsets in this partition contains at most one edge of H. Hence we may
orient each arc of T towards a subtree containing at most one edge of H.2

As T is now a directed tree, there is some node n, with in-degree zero. By
the choice of orientation, each branch out of n. contains at most one edge of H.*

If there are two branches out of n. both labeled with the same edge {e} and
each containing a distinct single edge of H, then we have an {e}-decomposition
of H containing two singleton sets, so the Inseparability Property implies that
|H| = 2, whence the result holds trivially.

Otherwise, all branches out of n. labeled with the same edge contain at most
one edge of H between them. By Property 3 of Definition 2.4, if {e} is the label
of the arc connecting a branch out of n, to n., then e is the only edge contained
in both n, and the branch. Hence, if e ¢ H and if the branches connected to
n. by arcs labeled {e} do contain an edge of H between them, then that edge
cannot be contained in n.. Let L denote the set of edges that is the union of
the labels of the arcs connecting branches to n.. By the preceding argument, it

3When we say that a subtree contains an edge we mean that that subtree has a node
containing that edge.
4The branches are defined not to contain the central node.
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F1GURE 3. The hypergraph (V, E') (Example 3.1).

follows that |L — H| > |H — n.|. Since L C n., |n. — L| > |H — n.|, whence
|n. — H| > |H — n.|, whence |n.| > |H|, whence the theorem. O

INVARIANCE THEOREM. For any hypergraph, (V, E), the size of the largest
node in a 1-hinge-tree of (V, E) is an invariant.

PROOF. Let (V, E) be a hypergraph, and let T' be any 1-hinge-tree of (V, E).
By Proposition 3.1, the size of the largest node in T is equal to the size of the
largest minimal 1-hinge of (V, E). O

The size of the largest minimal 1-hinge of a hypergraph will be referred to
as the degree of cyclicity. A hypergraph will be called n-cyclic if its degree of
cyclicity is less than or equal to n. Acyclicity [2] is equivalent to 2-cyclicity [7].

ExAMPLE 3.1. First consider the hypergraph in Figure 1, Example 2.1. As
the largest node in the 1-hinge-tree illustrated in Figure 2 has size 4, the hyper-
graph is 4-cyclic. Notice that the largest node of the other 1-hinge-tree described
in Example 1 also has size 4, in accordance with the Invariance Theorem.

Next, consider the hypergraph (V, E) with 6 vertices, u, v, w, @, y, and z,
and 3 edges, {z, vy, z}, {v, w,y}, and {u,v,2}. The only 1-hinge of (V, E) is the
set of all 3 edges, so (V, E) is 3-cyclic (and n-cyclic for all n > 3). If we add
an additional edge, {v,,y}, we obtain a new hypergraph, (V, E'), as shown in
Figure 3.

The hypergraph (V, E') contains three 1-hinges of size 2:

Hv, 2, 9} {w, v, 23} {{v, 2, 9}, {v, w, y}}; and {{v, 2,4}, {=, 9, 2}}.

Any tree with these three nodes and with arcs labeled {v, z, y}, is a 1-hinge-tree
of (V, E'), showing that (V, E') is 2-cyclic (i.e., acyclic).

This example illustrates the surprising fact that the addition of an edge may
reduce the degree of cyclicity, and may even turn a cyclic hypergraph into an
acyclic hypergraph.
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3.3. An algorithm for 1l-hinge-trees. Given a hypergraph (V, E), a 1-
hinge-tree may be obtained in polynomial time by the following algorithm [8]:

HINGE-TREE DECOMPOSITION ALGORITHM.
Input: A hypergraph (V, E).

Output: A 1-hinge-tree T for (V, E).
Method:

(1) Mark each edge in E as unused. Set ¢ = 0, Ng = {E} and Ay = 0, and
mark the node F in Ny as non-minimal.

(i) If all nodes of N; are marked minimal, then set T = (N;, A;) and stop.
Else, choose a non-minimal node F in N;.

(iii) If all edges in F' are marked used, then mark F as minimal and return
to 2. Else, choose an unused edge e € F and mark e as used.

(iv) Let T' = {G U {e} | G is a connected component of F — {e} w.r.t. e},
and let 4 : F — T be any function such that for all f € F, f € 4(f). If
IT'| = 1, then return to 3.

(v) Set Nyy1 = (N; —{F})UT and

Ay = (A —{({F, F'L{fD) | {F F'}{f}) € Ai})
U{({y(f), F'}1, {f}) | {F, F'} {f}) € Ai}
U{({r(f),v(e)} {e}) | f € F, 7(f) # ()},

and mark all the new nodes added to N;y1 as non-minimal.
(vi) Increment ¢ and return to 2.

The correctness of the algorithm relies on the Inheritance Property, the De-
composition Property, and the Inseparability Property.

At Step 3, we always have a set of nodes N; which form a tree of 1-hinges,
but which are not always minimal 1-hinges. At Step 4, we examine each edge e
of F to see if it gives rise to an {e}-decomposition of F' — {e} with two or more
non-empty elements. By the Decomposition Property, the existence of such a
decomposition means that the node is non-minimal, so it is decomposed into
smaller nodes. The fact that these smaller nodes are 1-hinges of the original
hypergraph follows from the Inheritance Property. If no edge separates a node
in this way then each node of N; is minimal so we have a valid 1-hinge-tree and
the algorithm stops.

4. Decompositions using arbitrary k-hinges

In the previous section, we have shown that there is a straightforward de-
composition strategy using 1-hinges, which provides a useful measure for the
structural complexity of hypergraphs. However, the minimal 1-hinges may be
quite large in many cases, so it is natural to look for more powerful decompo-
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FI1GURE 4. A hypergraph with a 2-hinge-tree decomposition.

sition strategies which can break down hypergraphs into smaller units. In this
section, we show that more powerful decompositions are possible in certain cases
if we are not restricted to 1-hinges.

The following example shows that a hypergraph may have a useful 2-hinge-tree
decomposition even when it contains no proper 1-hinges:

ExaMPLE 4.1. Figure 4 shows a hypergraph with 7 edges, e;,...,e7, con-
taining no smaller 1-hinges. It therefore has degree of cyclicity 7. However, this
hypergraph has a 2-hinge-tree in which the size of the largest node is 4. The
largest 2-hinge in this tree, {e1, es, €3, €7}, is indicated by the heavy lines.

Example 4.1 also shows that minimal 2-hinges need not be connected, in
contrast to minimal 1-hinges which are always connected [9].

The next result demonstrates the power of 2-hinges for the decomposition of
series-parallel graphs:

PROPOSITION 4.1. Any series-parallel graph has a 2-hinge-tree decomposition
in which every tree node contains at most three edges.

PROOF. Let G = (V, E) be a series-parallel graph with terminals « and v. For
any such graph we may write G = G1 x G, where G1 = (V1, E1), G2 = (WVa, E3),

and “x”

represents either series combination or parallel combination. Choose
any edges e; € E7 and ey € E5 such that w € e; and v € e;. We will prove, by
induction on the number of edges, that G can be decomposed into a 2-hinge-tree
in which the largest node has size 3, and some node contains both e; and es.
If |E| < 3, then F itself, obviously containing e; and e2, is a minimal 2-hinge,
yielding a single-node 2-hinge-tree, so the result holds trivially. Now assume that
|E| > 3 and that the induction hypothesis holds for all series-parallel graphs with
fewer than |E| edges. The graph G may be written as G1 * G2, as above, with
|E1| < |E| and |E3| < |E|. Let the terminals of Gy be u; and v1, and let the

terminals of G5 be uy and vs. Choose fi € Ey and f3 € E5 such that u; € e
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and v; € fi or vice versa and us € ey and vy € f5 or vice versa. If possible, f;
should be chosen different from ej, and f; different from e3. By the induction
hypothesis, there exists a 2-hinge-tree T} of G; with a node n}] containing both
e1 and f1, and a 2-hinge-tree of G5 with a node n4 containing both es and f. Let
n1 = {e1,e2, fi}, and ny = {e1, €3, fa}. Then n; (respectively ng) is a 2-hinge
of GG if its size is 3. There are three cases to consider:

Case 1. |E1] = 1 or |E2| = 1. We only consider the first possibility. From
|E1] =1 and |E| > 3 it follows that | Es| > 2. By the choice of f5, it then follows
that |ng| = 3, whence ng is a 2-hinge of G. It can also be seen straightforwardly
that all nodes of T} are also minimal 2-hinges of G. A 2-hinge-tree of G with a
node containing both e; and e is now obtained from T4 and ns by connecting
ng to nb, and labeling the arc {es, fo}.

Case 2. |E1| = 2 or |E3| = 2. Again, we only consider the first possibility.
From |Eq| = 2, it follows that |E3| > 2, whence both |n1| = 3 and |n2| = 3, and
both n; and ny are 2-hinges of G. Now if |E3| = 2, a 2-hinge-tree of G with a
node containing both e; and ey is obtained from n; and ny by simply connecting
them, and labeling the arc {e1, ea}. If |[E3| > 2, all nodes of T3 are also minimal
2-hinges of G, as in Case 1. A 2-hinge-tree of G with a node containing both e;
and ej is now obtained from T3, n1, and ny by connecting n; to ng, ng to nj,
and labeling the arcs appropriately.

Case 3. |E1| > 2 and |E3| > 2. Then both |n1| = 3 and |n3| = 3, both ny and
ny are 2-hinges of G, and both the nodes of 7] and Ty are minimal 2-hinges of
G. A 2-hinge-tree for G with a node containing both e; and ez is now obtained
from Ty, Ty, n1, and ng by connecting n; to na, n1 to nj, and ny to ny, and
labeling the arcs appropriately. [

We can apply Proposition 4.1 to obtain a decomposition for the cycle graph.
(Note that in the cycle graph every set of three edges is a 2-hinge.)

ExAMPLE 4.2. The cycle graph C, with n vertices and edges, n > 3, has a
2-hinge-tree where every node contains exactly three edges. This tree is in fact
a linear list. We construct it by consecutively labeling the edges as 0,1,...n—1
and putting N; = {{0,4,¢+ 1} | i = 1,...,n — 2}. The required 2-hinge-tree is
now obtained by connecting sets of edges with consecutive indices.

The next result shows that most graphs contain many small k-hinges:

PROPOSITION 4.2. In any graph, every set of k+ 1 edges containing a path of
length 3 is a k-hinge.

PROOF. Let G = (V, E) be a graph, and let E' = {eq,e3,...,ep41} be a
subset of edges containing a path of length 3. Without loss of generality, assume
that e1, es, eg form a path. Then |J E' = |J(E'—e2). Hence E’'—ey is a separating
set of k edges for each connected component of F— E’ with respect to F’, whence

E'is a k-hinge. [
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Since there are so many k-hinges with k 4+ 1 edges in simple graphs, it is
natural to ask whether a minimal k-hinge in a graph can be very large. We
therefore list some examples of large minimal 2-hinges in graphs.

EXAMPLE 4.3.

(i) Any 1-factor of K2, is a minimal 2-hinge with n edges.5
(ii) Any maximal star, K1 ,_1,in K,, n > 4, is a connected minimal 2-hinge
with n — 1 edges.%
(i) Consider the previous example. If each edge of K, not in Ky ,_1 is
replaced by a path of length 2, K; ,_; remains a connected minimal
2-hinge with n — 1 edges which is moreover vertex-generated.

In order to decompose an arbitrary graph into a k-hinge-tree we are sometimes
forced to use k-hinges which contain more than k + 1 edges, as the following
proposition shows:

PROPOSITION 4.3. There is no k-hinge-tree of Kap1g in which every node has
size k + 1.

ProOF. Assume, for contradiction, that there exists a k-hinge-tree T" of Kap 13
in which every node has size k + 1. Thus each node of T contains at most 2k + 2
vertices. Let m; be a node in T of which the number of vertices is maximal.
Let vy be an arbitrary vertex of Kap3 not in ny (such a vertex exists), and let
ns be a node of T' containing vy such that the distance in 7" between n; and
ng is minimal. By the choice of n; and ns, ny contains a vertex, say vy, not
in ng. Let ng be an arbitrary node of T containing the edge {vi,vs}. Clearly,
ng # n1 and ng # na. By Property 4 of Definition 2.4, the node ns is not on
the path in T connecting n; and ng, since n; and ng share the vertex vy, which
is not in ng. Similarly, n; cannot be on the path connecting ny and ng. Hence
the path connecting n; to ns contains an internal node n4 which is both on the
path connecting n; to ns and the path connecting ns to n3.” By Property 4 of
Definition 2.4, the node n4 contains the vertex vy shared by the nodes n; and
ng. However ny is closer to n; than is nsy, a contradiction. Hence K43 has no
k-tree in which every node has size k + 1. [

5. Difficulties and open problems for arbitrary k-hinges

Since arbitrary k-hinges allow more powerful decompositions than 1-hinges, it
is natural to ask whether the results of Section 3 can be generalized to k-hinges.
In other words, is it also true that, for ¥ > 1, every hypergraph has a k-hinge-tree
decomposition, and if so, is there an associated invariant complexity measurel’

5A 1-factor of a graph is a set of edges that are pairwise non-incident and cover the set of
nodes. For any number n, K, denotes the complete graph on n vertices.

8 A star is a graph the edges of which are incident with a common vertex.

7Observe that ns and n4 can be equal.
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FIGURE 5. A hypergraph illustrating that 2-hinges do not have
the Inheritance Property.

In order to establish the results for 1-hinges we made use of the Inheritance
Property, the Decomposition Property, and the Inseparability Property. The
following results indicate that these properties do not directly generalize to ar-
bitrary k-hinges.

First of all unlike 1-hinges, 2-hinges do not have the Inheritance Property.

ExaMPLE 5.1. Figure 5 shows a graph, G, with edges e, ..., e19, which con-
tains a 2-hinge, H = {ei,...,es5, e}, indicated by heavy lines. The subgraph
(UH, H) contains a 2-hinge, H' = {eq,...,es}, which is not a 2-hinge of G.

Furthermore, 2-hinges do not have the Decomposition Property, the obvious
generalization of which to arbitrary k-hinges is as follows:

DECOMPOSITION PROPERTY FOR k-HINGES. Let (V, E) be a hypergraph and
let H be a k-hinge of (V, E). Then H satisfies the decomposition property if for
every subset A C E containing k edges and for every h-decomposition D of H,
there exists S € D such that, for every D' C D with § € D', |JD' is either a
k-hinge of (V] E) or a subset of E containing at most k edges.

ExaMPLE 5.2. Consider a family of hypergraphs, R,,n > 2. For every n, R,
consists of 3n points and 2n 4 2 edges. The points are labeled z;, y;, and z;,
i=1,...,n, and the edges are as follows:

ez ={z1,..., 20}
€y :{yla"' 7yn};
fi :{a:iayiazi}a = 17"'777‘;

gi = {zia $(i+1)modna y(i+1)modn}a 1= 17 BRI (D
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1

Fy

F
YRR
A

FI1GURE 6. The hypergraph R3 and its minimal 2-hinges E1, F,
and F; (Example 5.2).

The minimal 2-hinges of R,, are as follows:

E; ={es ey, fir9:}, i=1,...,m;

F=Aes ey, f1,. .., fa};

G=A{es €y, 91, ,9n};

Fi = {fi, 9, fatl)modn }» 1 =1,...,m;

Gi = {9i; f(i+1)modn> 9(i+1)modn }» 1 = 1,..., .

The hypergraph Rg and its minimal 2-hinges EF;, F, and F) are illustrated in
Figure 6.

To see that 2-hinges do not have the Decomposition Property, consider the
minimal 2-hinge F'. Let h = {e,, ey}, and let D = {{es, ey}, {f1},...,{fu}}.
Clearly, D is an h-decomposition of F. Now notice that, for + = 1,...,n,
{ez, ey, fi} is not a 2-hinge of R,. Hence there is no S € D such that ev-
ery subset of D encompassing at least 3 edges including those of S generates a
2-hinge of (V, E).

As Proposition 3.1 and the Invariance Theorem rely on the Decomposition
Property, we cannot hope to generalize their proofs to show the equivalent results
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for arbitrary k-hinges. As a matter of fact, a hypergraph can indeed have two
different 2-hinge-trees where the size of the largest node is not the same, as the
following example shows:

ExaMPLE 5.3. Consider the family of hypergraphs R,, n > 2, described in
Example 5.2. A first possible 2-hinge-tree, Tg, is the linear list E;,...,E,. A
second possible 2-hinge-tree, T, is the star with central node F and leaf nodes
Fy,...F,. A third possible 2-hinge-tree, T, is the star with central node G and
leaf nodes G1,...G,. The size of the largest node in Tg is 4, whereas the size
of the largest node in both Tr and Ty is n + 2.

A closer examination of the proof of Proposition 3.1 reveals that it does not
rely on the full Decomposition Property, but rather on the consequent Insepara-
bility Property. We might therefore attempt to remedy the situation by requiring
that the nodes of a k-hinge-tree satisfy the Inseparability Property below, which
is a generalization of the Inseparability Property for 1-hinges.

INSEPARABILITY PROPERTY FOR k-HINGES. Let (V| E) be a hypergraph and
let H be a k-hinge of (V, E). Then H is inseparable if for every subset h C E
containing k edges, and for every h-decomposition D of H, at most one element
of D contains more than k edges, and all elements of D except for a largest one
contain at most k edges in total.

Notice that, for general k-hinges, the Inseparability Property follows from the
Decomposition Property in the same way as it does for 1-hinges. Furthermore
notice that inseparability implies minimality:

PROPOSITION 5.1. An inseparable k-hinge of a hypergraph is also minimal.

PROOF. We prove the contrapositive. Thereto, let (V, E) be a hypergraph
and let H be a k-hinge of (V, E) that is not minimal. Thus H contains another
k-hinge of (V, E), say H'. Let e be any edge of H — H', let C. be the connected
component of E — H' with respect H' containing e and let h' = {ef,...,e,}
be a corresponding separating edge set. Let D = {{e{},...,{e,}, HNCe, H —
(C.UR")}. Clearly, D is an h’-decomposition of H which contains k42 nonempty
elements, whence it necessarily violates the second condition of the Inseparability
Property for k-hinges. Hence H is not inseparable. [J

On the other hand, not every minimal k-hinge is inseparable, as is shown by
Example 5.4, below.

EXAMPLE 5.4. Consider the following variation on Example 5.1. Let G be the
hypergraph constructed from the graph G in Figure 5 by adding a unique extra
node to each of the edges ey, ... ,es5, and by adding all binary edges connecting
two extra nodes. Let H and H' be the sets of edges of G corresponding to H
and H' in G, respectively. An exhaustive but straightforward examination of all
subsets of H shows that H is a minimal 2-hinge. However, H is not inseparable,
since {H', H — H'} is an {ey, es}-decomposition of H which does not satisfy the
Inseparability Property for 2-hinges.
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Hence imposing the Inseparability Property on the nodes of a k-hinge-tree
yields a genuine restriction.

We might hope that, with this restriction, it would be possible to derive an
invariant for k-hinge-trees. Notice that Example 5.3 is not a counterexample to
this proposal, as the nodes F in Tr and G in Tg are not inseparable, as can be
easily verified. We conjecture that, using similar arguments as in the proof of
Proposition 3.1, it is possible to find a bound for the largest inseparable k-hinge
in terms of the size of the largest node in an arbitrary k-hinge-tree of which
all the nodes are inseparable. Unfortunately, the bound will be weaker than in
Proposition 3.1 and will not allow us to derive an equality as in the proof of the
Invariance Theorem. In fact, Example 5.5 below demonstrates that the size of
the largest node in a k-hinge-tree of which all the nodes are inseparable is not
an invariant.

ExaMPLE 5.5. Consider the hypergraph G with 11 vertices, vy,...,v11, and
7 edges, e1,es, €3, fi1,..., f1, defined as follows:

e1 = {v1,va,vs, v4}; fi = {v1,v3,v4,v8,v9};
e2 = {vs, vg, V10, V11}; f2 = {v2, v3, v4, v10,v11};
es = {va, 5, v6, v7}; fa = {va, vs,v7,v8,v10};

f4 = {v‘la Vs, Vg, V9, vll}-

By an exhaustive search we find that the inseparable 2-hinges of G are

{e1,e2,e3}; {ea, e3, f3}; {e2, f1, fo};
{e1,e2, i} {ea, es, fa}; {es, f3, fa};
{e1,e2, fo}; {e1, f1, fo}; {f1, f2, f3, fa}.

Two possible 2-hinge-trees of G built from these inseparable 2-hinges are shown
in Figure 5.5. The size of the largest node in 7T, is 3, whereas the size of the
largest node in Ty is 4.

The Hinge-Tree Decomposition Algorithm for 1-hinge-tree decompositions
also relies on the Inheritance, Decomposition, and Inseparability Properties, so
it cannot be directly generalized to k-hinges either. For example, the algorithm
uses the fact that a 1-hinge-tree can be obtained by first decomposing the hyper-
graph into a tree of 1-hinges that are not necessarily minimal and then further
decomposing these 1-hinges. As is shown in Example 5.1, a similar strategy
for 2-hinge-trees is not guaranteed to yield a correct result. Another property
the Hinge-Tree Decomposition Algorithm relies on is that a singleton separating
edge set is always contained in some minimal 1-hinge. Unfortunately, this prop-
erty does not carry over to 2-hinges, either. The following example exhibits a
hypergraph having a separating edge pair not contained in any minimal 2-hinge
of that hypergraph.
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T, T

{e1,e2, i} {e1, s, fo} {e1, f1, f2} {ea, f1, f2}
{e1,e2,e3} {f1, fa, fs, fa}
{e2, es, fa} {e2, €3, fa} {es, f3, fa}

F1GURE 7. Two possible 2-hinge-trees for G (Example 5.5).
ExAMPLE 5.6. Consider the hypergraph with nodes

{a:la $2,y1,y2,21,22,U1,UQ}

and edges
e1 = {z1, 2, z1,u1}; fi = {y1, y2, 21, u2}; g1 ={z1,m};
es = {z1, %2, 22, u2}; fo = {y1,y2, 22, w1 }; g2 = {@2,y2}.

Clearly, {g1,92} is a separating edge pair separating off {ei, f1} from {es, f2}.
Now, the smallest 2-hinges (with respect to inclusion) containing {g1, g2} are the
edge sets {e1, f1,91, 92}, {e2, f2, 91, 92}, {e1, f2, 91, 92}, and {es, f1, 91, g2}, as can
easily be verified by a simple, exhaustive search. None of these four 2-hinges are
minimal however, as all eight sets obtained from them by either removing g; or
g2 are 2-hinges, too.

The above examples clearly show that an algorithm for generating k-hinge-
trees cannot simply be obtained by a straightforward generalization of the Hinge-
Tree Decomposition Algorithm. As a matter of fact, it is an open problem
whether or not there exists an efficient and effective algorithm for finding k-
hinge-trees.

6. Conclusions

We have shown that any hypergraph has a decomposition into a tree of 1-
hinges, and the size of the largest minimal hinge in such a tree is an invariant of
the hypergraph. This provides a classification scheme for hypergraphs giving a
useful measure of their structural complexity.

The extension of the notion of a 1-hinge to k-hinges allows more refined de-
compositions in many cases, but k-hinges fail to have the pertinent properties
of inheritance and inseparability. Without inheritance it is difficult to guarantee
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the existence of a tree decomposition into minimal k-hinges, whence the exis-
tence of an invariant on the structure of k-hinges is unlikely. Even when trees
do exist, it is not clear whether there is a general algorithm to construct them.

One approach to these problems is to strengthen the definition of a minimal
k-hinge in order to guarantee the required properties. Alternatively, it may be
necessary to formulate a more sophisticated definition of the invariant.

In the light of these results, it is clear that the degree of cyclicity is a strikingly
simple and important measure for the structural complexity of a hypergraph.
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