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Contemporary MathematicsVolume 00, 0000A Structural Decomposition for HypergraphsPETER JEAVONS, DAVID COHEN, AND MARC GYSSENSAbstract. Hypergraphs arise in a variety of applications and are com-monly classi�ed as cyclic or acyclic. In this paper we develop a more re�nedclassi�cation scheme for cyclic hypergraphs based on a natural decomposi-tion strategy. The fundamental building blocks in our decompositions aresubsets of edges known as k-hinges. For any hypergraph, a set of more thank of its edges is de�ned to be a k-hinge if all connected components of thehypergraph with respect to the set of edges meet the latter within at mostk of its edges. A k-hinge tree is a set of minimal k-hinges that cover alledges of H, and form a tree with respect to intersection.The size of the largest node in any 1-hinge tree is shown to be an in-variant of the hypergraph, which we call the degree of cyclicity. Acyclichypergraphs are hypergraphs with degree of cyclicity 2. The concept ofdegree of cyclicity was �rst presented by Gyssens in the context of re-lational database design, but is presented here for arbitrary hypergraphswith a greatly simpli�ed proof. For more general k-hinges we show thatit is possible to obtain more powerful decompositions. However, in thiscase there may be several possible decompositions which do not share anystructural invariant. We therefore consider restrictions on k-hinges whichare necessary in order to guarantee this structural invariant.1. IntroductionThe complexity of any problem associated with a graph may depend verystrongly on the structure of that graph. Examples of such problems are �ndinga minimal triangulation of a graph [11], coloring problems, and more generalconstraint satisfaction problems [6].Problems which are computationally hard for general graphs may be tractablefor particular classes of graphs with some restriction on the structure (for a sur-vey, see [1]). In particular, if the graph may be decomposed into suitable sub-graphs (e.g., the biconnected components) in such a way that the problem can besolved for each subgraph separately, and the solutions to these subproblems can1991 Mathematics Subject Classi�cation. 05C65, 05C85; Secondary 68P15, 68R15, 68T20.This research was supported by the \British-Flemish Academic Research CollaborationProgramme" of the British Council and the Belgian National Fund of Scienti�c Research.c0000 American Mathematical Society0000-0000/00 $1.00 + $.25 per page1



2 PETER JEAVONS, ET AL.be e�ciently combined to obtain an overall solution, then signi�cant reductionsin complexity may be achieved.The corresponding theory for general hypergraphs is much less well-developed.It has been shown that many problems possess e�cient solution techniques whenthe associated hypergraph is acyclic [2, 3]. However, the classi�cation of hyper-graphs into acyclic and cyclic ones is rather crude.A more powerful decomposition strategy for hypergraphs was developed inthe context of a particular application in database theory. This approach ledto a hierarchy of classes of hypergraphs in which the acyclic hypergraphs aremerely the smallest non-trivial class [9, 10, 7]. It has been shown that in thespecial case of graphs this approach gives rise to a �ner decomposition thanthe decomposition into biconnected components, and therefore provides a moreinformative bound on the complexity of many problems [7, 8].In this paper, we develop a very general decomposition strategy for hyper-graphs in the context of general hypergraph theory and discuss its properties.The paper is organized as follows. In Section 2, we introduce some terminologyand de�ne hypergraph decompositions in terms of k-hinges and k-hinge-trees.In Section 3, we review the desirable properties of 1-hinges and 1-hinge-treesthat motivated this study and propose a new, short, and more insightful proofof the main property. The remaining sections are devoted to general k-hinges.In Section 4, we demonstrate the usefulness of general k-hinge-tree decomposi-tions. In Section 5 we discuss the di�culties that arise when trying to build ageneral theory for constructing arbitrary k-hinge-tree decompositions, and theopen problems resulting from them. Most of the di�culties arise from the factthat the desirable properties for 1-hinges exhibited in Section 3 do not carry overto arbitrary k-hinges, even for k = 2.2. De�nitionsThe building blocks of the decomposition we intend to propose are so-calledk-hinges, which are de�ned in this section. Our notion of hypergraph decompo-sition is then formalized by the concept of k-hinge-trees.First though, we briey review some of the relevant terminology concerninghypergraphs.Definition 2.1. [4] A hypergraph is an ordered pair (V;E) where V is a �niteset of vertices and E is a set of edges, each of which is a subset of V .Undirected graphs can be seen as special cases of hypergraphs, where eachedge contains exactly two vertices.Definition 2.2. Let (V;E) be a hypergraph, let H � E, and let F � E�H.F is called connected with respect to H if, for any two edges e; f 2 F , there existsa sequence e1; : : : ; en of edges in F such that (i) e1 = e; (ii) for i = 1; : : : ; n�1,ei \ ei+1 6� SH; and (iii) en = f . Such a sequence is called a path with respectto H connecting e and f in F .



A STRUCTURAL DECOMPOSITION FOR HYPERGRAPHS 3The maximal connected subsets of E � H with respect to H are called theconnected components of E � H with respect to H. They obviously form apartition of E�H. In the case that H is the empty set of edges, we usually dropthe phrase \with respect to H" and simply speak about connected subsets andconnected components of E. If E itself is connected, then (V;E) is said to be aconnected hypergraph. In this paper, we shall assume that all hypergraphs to bedecomposed are connected, since in a disconnected hypergraph each connectedcomponent may be decomposed individually.Using this notion of connectivity we now de�ne the sets of edges which willbe called k-hinges:Definition 2.3. Let (V;E) be a hypergraph, and let H be either E or aproper subset of E containing at least k + 1 edges. Let H1; : : : ;Hm be theconnected components of E �H with respect to H. Then H is called a k-hingeif, for i = 1; : : : ;m, there exists a set hi � H consisting of k edges such that(SHi) \ (SH) � Shi:The set of edges hi is called a separating edge set for Hi.In words, a k-hinge of a hypergraph is either the entire hypergraph or a subsetH of its edges (containing at least k + 1 edges) with the property that the setof nodes in each connected component with respect to that subset intersects theset of nodes in H within at most k edges.In general, k-hinges can in turn contain other k-hinges. We are most interestedin k-hinges that do not contain other k-hinges; these are called minimal k-hinges.Our aim is to decompose any hypergraph into a \tree" of minimal k-hinges,with the following properties:Definition 2.4. Let (V;E) be any hypergraph. A k-hinge-tree of (V;E) is atree1, (N;A), with nodes N and labeled arcs2 A, such that(i) each node in N is a minimal k-hinge of (V;E), and each label of an arcin A is a subset of E;(ii) SN = E;(iii) for each labeled arc (fni; njg; E0) 2 A, E0 = ni\nj and satis�es (Sni)\(Snj) = SE0 and 1 � jE0j � k; and(iv) the vertices of V shared by two tree nodes are entirely contained withineach tree node on their connecting path.Property 3 states that adjacent tree nodes share at most k edges ofE, and thisset of edges is also the label of their connecting tree-arc; moreover, the verticesshared by the adjacent tree nodes are precisely the vertices of this edge set.Note that a hypergraph may, in general, have many di�erent k-hinge-trees,containing di�erent sets of minimal k-hinges.Below, we give an example of a k-hinge-tree of a hypergraph for k = 1.1By \tree", we understand an unrooted tree, i.e., an undirected acyclic graph.2A labeled arc is formally de�ned as an ordered pair (fni; njg; a) with ni and nj di�erenttree nodes and a the arc-label.
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Figure 2. A 1-hinge-tree of the hypergraph in Figure 1.Example 2.1. Consider the hypergraph illustrated in Figure 1. The minimal1-hinges of the hypergraph in Figure 1 are the following:M1 = fe1; e2g; M4 = fe5; e6g;M2 = fe1; e3; e4; e5g; M5 = fe5; e7g;M3 = fe2; e3; e4; e5g; M6 = fe5; e8g:Figure 2 illustrates one possible 1-hinge-tree of the hypergraph in Figure 1.An alternative 1-hinge-tree of (V;E) may be obtained by replacing M3 withM2 and labeling the arc connecting it to M1 with fe1g.De�nition 2.4 is partly inspired by the notion of tree developed by Courcelle [5]in the context of (binary) graphs, and is a generalization of the notion of \hinge-tree" in [7, 8] (which correspond to 1-hinge-trees in this paper). The introductionof general k-hinge-trees was motivated by the observation that, while 1-hinge-treedecompositions have many desirable properties with respect to solving problemsde�ned on a hypergraph, many hypergraphs do not possess non-trivial 1-hinge-tree decompositions but do possess interesting k-hinge tree decompositions forhigher values of k.



A STRUCTURAL DECOMPOSITION FOR HYPERGRAPHS 53. Decompositions using 1-hingesThe concept of 1-hinge was introduced in [9] under the name \hinge" in thecontext of relational database theory. It was subsequently found that every hy-pergraph has at least one 1-hinge-tree, and that the size of the largest node inany 1-hinge-tree decomposition is an invariant of the hypergraph, i.e., indepen-dent of the particular 1-hinge-tree chosen [7]. This result has subsequently beenapplied to the analysis of constraint satisfaction problems [8].Unfortunately, the initial proof in [7] heavily depends on properties of certaindatabase concepts and therefore is not suitable for possible generalization todecomposition into arbitrary k-hinge-trees. Therefore, we exhibit a simpler proofstated entirely within the context of general hypergraph theory.In Section 3.1, we describe two key properties of 1-hinges. Using these keyproperties, we then prove the actual invariance result in Section 3.2. For com-pleteness, an algorithm to �nd a particular 1-hinge-tree for any hypergraph isgiven in Section 3.3. Because of the invariance result, the particular 1-hinge-treefound by this algorithm is optimal.3.1. Properties of 1-hinges. The �rst of the two key properties of 1-hingeswe shall exhibit in this section was originally proved in [9] by a straightforwardconsideration of the possible connected components with respect to H 0 and willhere be referred to as the \Inheritance Property:"Inheritance Property. [9] Let (V;E) be a hypergraph, let H be a 1-hingeof (V;E), and let H 0 � H. Then H 0 is a 1-hinge of (V;E) if and only if it is a1-hinge of the hypergraph (SH;H).To state the second property, which we shall call the \Decomposition Prop-erty," we �rst propose a notion of decomposition in De�nition 3.1. With a pos-sible generalization in mind, we state De�nition 3.1 in a slightly more generalfashion than strictly needed in this section.Definition 3.1. Let (V;E) be a hypergraph, let H be a subset of edges, andlet h be a subset of E. An h-decomposition of H is any set, D, of subsets of H,such that H = SD and, for all S; T 2 D, S 6= T , (SS) \ (ST ) � Sh.Decomposition Property. Let (V;E) be a hypergraph, and let H be a1-hinge of (V;E). Let e be an arbitrary edge in E, and let D be an feg-decomposition of H. There exists S 2 D such that, for every D0 � D withS 2 D0, SD0 is either a 1-hinge of (V;E) or a single edge in E.Proof. If e 62 H, let Ce be the connected component of E �H with respectto H which contains e, and let ffg be a corresponding singleton separating edgeset in H. If e 2 H, let Ce = ;, and let f = e. In either case, let S be anelement of D containing f . Let H 0 = H [ Ce. Note that, as H 0 is a 1-hinge of(V;E), every 1-hinge of (SH0;H 0) is also a 1-hinge of (V;E), by the InheritanceProperty.



6 PETER JEAVONS, ET AL.We have(SD0) \ (S(H 0 � (SD0)))= [(SD0) \ (S(H0 �H))] [ [(SD0) \ (S(H � (SD0)))]� [(SH) \ (SCe)] [ [(SD0) \ (S(H � (SD0))) \ (SH)]� f [ (e \ (SH))� fHence if S 2 D0, then SD0 is either ffg or a 1-hinge of (SH0;H 0), in whichcase it is a 1-hinge of (V;E).The Decomposition Property has the following immediate corollary:Inseparability Property. Let (V;E) be a hypergraph and let H be a min-imal 1-hinge of (V;E). Let e be an arbitrary edge in E and let D be an feg-decomposition of H. Then D has at most two nonempty elements, and at mostone element containing more than one edge.3.2. An invariant of 1-hinge-trees. Using the properties described above,we can now prove the following:Proposition 3.1. Let (V;E) be a hypergraph and let T = (N;A) be a 1-hinge-tree for (V;E). For any minimal 1-hinge H of (V;E), jHj � maxfjnj j n 2 Ng.Proof. Every arc of T divides T into two subtrees, and by Properties 3 and 4in De�nition 2.4, the partition of H de�ned by these subtrees is an feg-decom-position of H. By the minimality of H and the Inseparability Property, one ofthe two subsets in this partition contains at most one edge of H. Hence we mayorient each arc of T towards a subtree containing at most one edge of H.3As T is now a directed tree, there is some node nc with in-degree zero. Bythe choice of orientation, each branch out of nc contains at most one edge of H.4If there are two branches out of nc both labeled with the same edge feg andeach containing a distinct single edge of H, then we have an feg-decompositionof H containing two singleton sets, so the Inseparability Property implies thatjHj = 2, whence the result holds trivially.Otherwise, all branches out of nc labeled with the same edge contain at mostone edge of H between them. By Property 3 of De�nition 2.4, if feg is the labelof the arc connecting a branch out of nc to nc, then e is the only edge containedin both nc and the branch. Hence, if e =2 H and if the branches connected tonc by arcs labeled feg do contain an edge of H between them, then that edgecannot be contained in nc. Let L denote the set of edges that is the union ofthe labels of the arcs connecting branches to nc. By the preceding argument, it3When we say that a subtree contains an edge we mean that that subtree has a nodecontaining that edge.4The branches are de�ned not to contain the central node.
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Figure 3. The hypergraph (V;E0) (Example 3.1).follows that jL � Hj � jH � ncj. Since L � nc, jnc � Lj � jH � ncj, whencejnc �Hj � jH � ncj, whence jncj � jHj, whence the theorem.Invariance Theorem. For any hypergraph, (V;E), the size of the largestnode in a 1-hinge-tree of (V;E) is an invariant.Proof. Let (V;E) be a hypergraph, and let T be any 1-hinge-tree of (V;E).By Proposition 3.1, the size of the largest node in T is equal to the size of thelargest minimal 1-hinge of (V;E).The size of the largest minimal 1-hinge of a hypergraph will be referred toas the degree of cyclicity. A hypergraph will be called n-cyclic if its degree ofcyclicity is less than or equal to n. Acyclicity [2] is equivalent to 2-cyclicity [7].Example 3.1. First consider the hypergraph in Figure 1, Example 2.1. Asthe largest node in the 1-hinge-tree illustrated in Figure 2 has size 4, the hyper-graph is 4-cyclic. Notice that the largest node of the other 1-hinge-tree describedin Example 1 also has size 4, in accordance with the Invariance Theorem.Next, consider the hypergraph (V;E) with 6 vertices, u, v, w, x, y, and z,and 3 edges, fx; y; zg, fv; w; yg, and fu; v; xg. The only 1-hinge of (V;E) is theset of all 3 edges, so (V;E) is 3-cyclic (and n-cyclic for all n � 3). If we addan additional edge, fv; x; yg, we obtain a new hypergraph, (V;E0), as shown inFigure 3.The hypergraph (V;E0) contains three 1-hinges of size 2:ffv; x; yg; fu; v; xgg; ffv; x; yg; fv; w; ygg; and ffv; x; yg; fx; y; zgg:Any tree with these three nodes and with arcs labeled fv; x; yg, is a 1-hinge-treeof (V;E0), showing that (V;E0) is 2-cyclic (i.e., acyclic).This example illustrates the surprising fact that the addition of an edge mayreduce the degree of cyclicity, and may even turn a cyclic hypergraph into anacyclic hypergraph.



8 PETER JEAVONS, ET AL.3.3. An algorithm for 1-hinge-trees. Given a hypergraph (V;E), a 1-hinge-tree may be obtained in polynomial time by the following algorithm [8]:Hinge-Tree Decomposition Algorithm.Input : A hypergraph (V;E).Output : A 1-hinge-tree T for (V;E).Method :(i) Mark each edge in E as unused. Set i = 0; N0 = fEg and A0 = ;, andmark the node E in N0 as non-minimal.(ii) If all nodes of Ni are marked minimal, then set T = (Ni; Ai) and stop.Else, choose a non-minimal node F in Ni.(iii) If all edges in F are marked used, then mark F as minimal and returnto 2. Else, choose an unused edge e 2 F and mark e as used.(iv) Let � = fG [ feg j G is a connected component of F � feg w.r.t. eg,and let  : F ! � be any function such that for all f 2 F , f 2 (f). Ifj�j = 1, then return to 3.(v) Set Ni+1 = (Ni � fFg) [ � andAi+1 = (Ai � f(fF; F 0g; ffg) j (fF; F 0g; ffg) 2 Aig)[ f(f(f); F 0g; ffg) j (fF; F 0g; ffg) 2 Aig[ f(f(f); (e)g; feg) j f 2 F; (f) 6= (e)g;and mark all the new nodes added to Ni+1 as non-minimal.(vi) Increment i and return to 2.The correctness of the algorithm relies on the Inheritance Property, the De-composition Property, and the Inseparability Property.At Step 3, we always have a set of nodes Ni which form a tree of 1-hinges,but which are not always minimal 1-hinges. At Step 4, we examine each edge eof F to see if it gives rise to an feg-decomposition of F � feg with two or morenon-empty elements. By the Decomposition Property, the existence of such adecomposition means that the node is non-minimal, so it is decomposed intosmaller nodes. The fact that these smaller nodes are 1-hinges of the originalhypergraph follows from the Inheritance Property. If no edge separates a nodein this way then each node of Ni is minimal so we have a valid 1-hinge-tree andthe algorithm stops.4. Decompositions using arbitrary k-hingesIn the previous section, we have shown that there is a straightforward de-composition strategy using 1-hinges, which provides a useful measure for thestructural complexity of hypergraphs. However, the minimal 1-hinges may bequite large in many cases, so it is natural to look for more powerful decompo-
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ss ss sss ssFigure 4. A hypergraph with a 2-hinge-tree decomposition.sition strategies which can break down hypergraphs into smaller units. In thissection, we show that more powerful decompositions are possible in certain casesif we are not restricted to 1-hinges.The following example shows that a hypergraph may have a useful 2-hinge-treedecomposition even when it contains no proper 1-hinges:Example 4.1. Figure 4 shows a hypergraph with 7 edges, e1; : : : ; e7, con-taining no smaller 1-hinges. It therefore has degree of cyclicity 7. However, thishypergraph has a 2-hinge-tree in which the size of the largest node is 4. Thelargest 2-hinge in this tree, fe1; e2; e3; e7g, is indicated by the heavy lines.Example 4.1 also shows that minimal 2-hinges need not be connected, incontrast to minimal 1-hinges which are always connected [9].The next result demonstrates the power of 2-hinges for the decomposition ofseries-parallel graphs:Proposition 4.1. Any series-parallel graph has a 2-hinge-tree decompositionin which every tree node contains at most three edges.Proof. Let G = (V;E) be a series-parallel graph with terminals u and v. Forany such graph we may write G = G1 �G2, where G1 = (V1; E1), G2 = (V2; E2),and \�" represents either series combination or parallel combination. Chooseany edges e1 2 E1 and e2 2 E2 such that u 2 e1 and v 2 e2. We will prove, byinduction on the number of edges, that G can be decomposed into a 2-hinge-treein which the largest node has size 3, and some node contains both e1 and e2.If jEj � 3, then E itself, obviously containing e1 and e2, is a minimal 2-hinge,yielding a single-node 2-hinge-tree, so the result holds trivially. Now assume thatjEj > 3 and that the induction hypothesis holds for all series-parallel graphs withfewer than jEj edges. The graph G may be written as G1 � G2, as above, withjE1j < jEj and jE2j < jEj. Let the terminals of G1 be u1 and v1, and let theterminals of G2 be u2 and v2. Choose f1 2 E1 and f2 2 E2 such that u1 2 e1



10 PETER JEAVONS, ET AL.and v1 2 f1 or vice versa and u2 2 e2 and v2 2 f2 or vice versa. If possible, f1should be chosen di�erent from e1, and f2 di�erent from e2. By the inductionhypothesis, there exists a 2-hinge-tree T 01 of G1 with a node n01 containing bothe1 and f1, and a 2-hinge-tree of G2 with a node n02 containing both e2 and f2. Letn1 = fe1; e2; f1g, and n2 = fe1; e2; f2g. Then n1 (respectively n2) is a 2-hingeof G if its size is 3. There are three cases to consider:Case 1. jE1j = 1 or jE2j = 1. We only consider the �rst possibility. FromjE1j = 1 and jEj > 3 it follows that jE2j > 2. By the choice of f2, it then followsthat jn2j = 3, whence n2 is a 2-hinge of G. It can also be seen straightforwardlythat all nodes of T 02 are also minimal 2-hinges of G. A 2-hinge-tree of G with anode containing both e1 and e2 is now obtained from T 02 and n2 by connectingn2 to n02, and labeling the arc fe2; f2g.Case 2. jE1j = 2 or jE2j = 2. Again, we only consider the �rst possibility.From jE1j = 2, it follows that jE2j � 2, whence both jn1j = 3 and jn2j = 3, andboth n1 and n2 are 2-hinges of G. Now if jE2j = 2, a 2-hinge-tree of G with anode containing both e1 and e2 is obtained from n1 and n2 by simply connectingthem, and labeling the arc fe1; e2g. If jE2j > 2, all nodes of T 02 are also minimal2-hinges of G, as in Case 1. A 2-hinge-tree of G with a node containing both e1and e2 is now obtained from T 02, n1, and n2 by connecting n1 to n2, n2 to n02,and labeling the arcs appropriately.Case 3. jE1j > 2 and jE2j > 2. Then both jn1j = 3 and jn2j = 3, both n1 andn2 are 2-hinges of G, and both the nodes of T 01 and T 02 are minimal 2-hinges ofG. A 2-hinge-tree for G with a node containing both e1 and e2 is now obtainedfrom T 01, T 02, n1, and n2 by connecting n1 to n2, n1 to n01, and n2 to n02, andlabeling the arcs appropriately.We can apply Proposition 4.1 to obtain a decomposition for the cycle graph.(Note that in the cycle graph every set of three edges is a 2-hinge.)Example 4.2. The cycle graph Cn with n vertices and edges, n � 3, has a2-hinge-tree where every node contains exactly three edges. This tree is in facta linear list. We construct it by consecutively labeling the edges as 0; 1; : : :n� 1and putting Ni = ff0; i; i+ 1g j i = 1; : : : ; n� 2g. The required 2-hinge-tree isnow obtained by connecting sets of edges with consecutive indices.The next result shows that most graphs contain many small k-hinges:Proposition 4.2. In any graph, every set of k+1 edges containing a path oflength 3 is a k-hinge.Proof. Let G = (V;E) be a graph, and let E0 = fe1; e2; : : : ; ek+1g be asubset of edges containing a path of length 3. Without loss of generality, assumethat e1; e2; e3 form a path. ThenSE0 = S(E0�e2). Hence E0�e2 is a separatingset of k edges for each connected component of E�E0 with respect to E0, whenceE0 is a k-hinge.



A STRUCTURAL DECOMPOSITION FOR HYPERGRAPHS 11Since there are so many k-hinges with k + 1 edges in simple graphs, it isnatural to ask whether a minimal k-hinge in a graph can be very large. Wetherefore list some examples of large minimal 2-hinges in graphs.Example 4.3.(i) Any 1-factor of K2n is a minimal 2-hinge with n edges.5(ii) Any maximal star, K1;n�1, in Kn, n � 4, is a connected minimal 2-hingewith n� 1 edges.6(iii) Consider the previous example. If each edge of Kn not in K1;n�1 isreplaced by a path of length 2, K1;n�1 remains a connected minimal2-hinge with n� 1 edges which is moreover vertex-generated.In order to decompose an arbitrary graph into a k-hinge-tree we are sometimesforced to use k-hinges which contain more than k + 1 edges, as the followingproposition shows:Proposition 4.3. There is no k-hinge-tree of K2k+3 in which every node hassize k + 1.Proof. Assume, for contradiction, that there exists a k-hinge-tree T ofK2k+3in which every node has size k+1. Thus each node of T contains at most 2k+2vertices. Let n1 be a node in T of which the number of vertices is maximal.Let v2 be an arbitrary vertex of K2k+3 not in n1 (such a vertex exists), and letn2 be a node of T containing v2 such that the distance in T between n1 andn2 is minimal. By the choice of n1 and n2, n1 contains a vertex, say v1, notin n2. Let n3 be an arbitrary node of T containing the edge fv1; v2g. Clearly,n3 6= n1 and n3 6= n2. By Property 4 of De�nition 2.4, the node n2 is not onthe path in T connecting n1 and n3, since n1 and n3 share the vertex v1, whichis not in n2. Similarly, n1 cannot be on the path connecting n2 and n3. Hencethe path connecting n1 to n2 contains an internal node n4 which is both on thepath connecting n1 to n3 and the path connecting n2 to n3.7 By Property 4 ofDe�nition 2.4, the node n4 contains the vertex v2 shared by the nodes n1 andn3. However n4 is closer to n1 than is n2, a contradiction. Hence K2k+3 has nok-tree in which every node has size k + 1.5. Di�culties and open problems for arbitrary k-hingesSince arbitrary k-hinges allow more powerful decompositions than 1-hinges, itis natural to ask whether the results of Section 3 can be generalized to k-hinges.In other words, is it also true that, for k > 1, every hypergraph has a k-hinge-treedecomposition, and if so, is there an associated invariant complexity measure?5A 1-factor of a graph is a set of edges that are pairwise non-incident and cover the set ofnodes. For any number n, Kn denotes the complete graph on n vertices.6A star is a graph the edges of which are incident with a common vertex.7Observe that n3 and n4 can be equal.
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Figure 5. A hypergraph illustrating that 2-hinges do not havethe Inheritance Property.In order to establish the results for 1-hinges we made use of the InheritanceProperty, the Decomposition Property, and the Inseparability Property. Thefollowing results indicate that these properties do not directly generalize to ar-bitrary k-hinges.First of all unlike 1-hinges, 2-hinges do not have the Inheritance Property.Example 5.1. Figure 5 shows a graph, G, with edges e1; : : : ; e10, which con-tains a 2-hinge, H = fe1; : : : ; e5; e6g, indicated by heavy lines. The subgraph(SH;H) contains a 2-hinge, H 0 = fe1; : : : ; e5g, which is not a 2-hinge of G.Furthermore, 2-hinges do not have the Decomposition Property, the obviousgeneralization of which to arbitrary k-hinges is as follows:Decomposition Property for k-hinges. Let (V;E) be a hypergraph andlet H be a k-hinge of (V;E). Then H satis�es the decomposition property if forevery subset h � E containing k edges and for every h-decomposition D of H,there exists S 2 D such that, for every D0 � D with S 2 D0, SD0 is either ak-hinge of (V;E) or a subset of E containing at most k edges.Example 5.2. Consider a family of hypergraphs, Rn; n � 2. For every n, Rnconsists of 3n points and 2n + 2 edges. The points are labeled xi, yi, and zi,i = 1; : : : ; n, and the edges are as follows:ex = fx1; : : : ; xng;ey = fy1; : : : ; yng;fi = fxi; yi; zig; i = 1; : : : ; n;gi = fzi; x(i+1)modn; y(i+1)modng; i = 1; : : : ; n:



A STRUCTURAL DECOMPOSITION FOR HYPERGRAPHS 13R3�� ��� �s s ss s ss s s������������: : : ������������: : :E1�� ��� �s s ss s ss��������F�� ��� �s s ss s ss s s������������ F1s ss ss s������������Figure 6. The hypergraph R3 and its minimal 2-hinges E1, F ,and F1 (Example 5.2).The minimal 2-hinges of Rn are as follows:Ei = fex; ey; fi; gig; i = 1; : : : ; n;F = fex; ey; f1; : : : ; fng;G = fex; ey; g1; : : : ; gng;Fi = ffi; gi; f(i+1)modng; i = 1; : : : ; n;Gi = fgi; f(i+1)modn; g(i+1)modng; i = 1; : : : ; n:The hypergraph R3 and its minimal 2-hinges E1, F , and F1 are illustrated inFigure 6.To see that 2-hinges do not have the Decomposition Property, consider theminimal 2-hinge F . Let h = fex; eyg, and let D = ffex; eyg; ff1g; : : : ; ffngg.Clearly, D is an h-decomposition of F . Now notice that, for i = 1; : : : ; n,fex; ey; fig is not a 2-hinge of Rn. Hence there is no S 2 D such that ev-ery subset of D encompassing at least 3 edges including those of S generates a2-hinge of (V;E).As Proposition 3.1 and the Invariance Theorem rely on the DecompositionProperty, we cannot hope to generalize their proofs to show the equivalent results



14 PETER JEAVONS, ET AL.for arbitrary k-hinges. As a matter of fact, a hypergraph can indeed have twodi�erent 2-hinge-trees where the size of the largest node is not the same, as thefollowing example shows:Example 5.3. Consider the family of hypergraphs Rn, n � 2, described inExample 5.2. A �rst possible 2-hinge-tree, TE , is the linear list E1; : : : ; En. Asecond possible 2-hinge-tree, TF , is the star with central node F and leaf nodesF1; : : :Fn. A third possible 2-hinge-tree, TG, is the star with central node G andleaf nodes G1; : : :Gn. The size of the largest node in TE is 4, whereas the sizeof the largest node in both TF and TG is n+ 2.A closer examination of the proof of Proposition 3.1 reveals that it does notrely on the full Decomposition Property, but rather on the consequent Insepara-bility Property. We might therefore attempt to remedy the situation by requiringthat the nodes of a k-hinge-tree satisfy the Inseparability Property below, whichis a generalization of the Inseparability Property for 1-hinges.Inseparability Property for k-hinges. Let (V;E) be a hypergraph andlet H be a k-hinge of (V;E). Then H is inseparable if for every subset h � Econtaining k edges, and for every h-decomposition D of H, at most one elementof D contains more than k edges, and all elements of D except for a largest onecontain at most k edges in total.Notice that, for general k-hinges, the Inseparability Property follows from theDecomposition Property in the same way as it does for 1-hinges. Furthermorenotice that inseparability implies minimality:Proposition 5.1. An inseparable k-hinge of a hypergraph is also minimal.Proof. We prove the contrapositive. Thereto, let (V;E) be a hypergraphand let H be a k-hinge of (V;E) that is not minimal. Thus H contains anotherk-hinge of (V;E), say H 0. Let e be any edge of H �H 0, let Ce be the connectedcomponent of E � H 0 with respect H 0 containing e and let h0 = fe01; : : : ; e0kgbe a corresponding separating edge set. Let D = ffe01g; : : : ; fe0kg;H \ Ce;H �(Ce[h0)g. Clearly, D is an h0-decomposition of H which contains k+2 nonemptyelements, whence it necessarily violates the second condition of the InseparabilityProperty for k-hinges. Hence H is not inseparable.On the other hand, not every minimal k-hinge is inseparable, as is shown byExample 5.4, below.Example 5.4. Consider the following variation on Example 5.1. Let �G be thehypergraph constructed from the graph G in Figure 5 by adding a unique extranode to each of the edges e1; : : : ; e5, and by adding all binary edges connectingtwo extra nodes. Let �H and �H0 be the sets of edges of �G corresponding to Hand H 0 in G, respectively. An exhaustive but straightforward examination of allsubsets of �H shows that �H is a minimal 2-hinge. However, �H is not inseparable,since f �H 0; �H � �H0g is an fe1; e2g-decomposition of �H which does not satisfy theInseparability Property for 2-hinges.



A STRUCTURAL DECOMPOSITION FOR HYPERGRAPHS 15Hence imposing the Inseparability Property on the nodes of a k-hinge-treeyields a genuine restriction.We might hope that, with this restriction, it would be possible to derive aninvariant for k-hinge-trees. Notice that Example 5.3 is not a counterexample tothis proposal, as the nodes F in TF and G in TG are not inseparable, as can beeasily veri�ed. We conjecture that, using similar arguments as in the proof ofProposition 3.1, it is possible to �nd a bound for the largest inseparable k-hingein terms of the size of the largest node in an arbitrary k-hinge-tree of whichall the nodes are inseparable. Unfortunately, the bound will be weaker than inProposition 3.1 and will not allow us to derive an equality as in the proof of theInvariance Theorem. In fact, Example 5.5 below demonstrates that the size ofthe largest node in a k-hinge-tree of which all the nodes are inseparable is notan invariant.Example 5.5. Consider the hypergraph G with 11 vertices, v1; : : : ; v11, and7 edges, e1; e2; e3; f1; : : : ; f4, de�ned as follows:e1 = fv1; v2; v3; v4g; f1 = fv1; v3; v4; v8; v9g;e2 = fv8; v9; v10; v11g; f2 = fv2; v3; v4; v10; v11g;e3 = fv4; v5; v6; v7g; f3 = fv4; v5; v7; v8; v10g;f4 = fv4; v5; v6; v9; v11g:By an exhaustive search we �nd that the inseparable 2-hinges of G arefe1; e2; e3g; fe2; e3; f3g; fe2; f1; f2g;fe1; e2; f1g; fe2; e3; f4g; fe3; f3; f4g;fe1; e2; f2g; fe1; f1; f2g; ff1; f2; f3; f4g:Two possible 2-hinge-trees of G built from these inseparable 2-hinges are shownin Figure 5.5. The size of the largest node in Te is 3, whereas the size of thelargest node in Tf is 4.The Hinge-Tree Decomposition Algorithm for 1-hinge-tree decompositionsalso relies on the Inheritance, Decomposition, and Inseparability Properties, soit cannot be directly generalized to k-hinges either. For example, the algorithmuses the fact that a 1-hinge-tree can be obtained by �rst decomposing the hyper-graph into a tree of 1-hinges that are not necessarily minimal and then furtherdecomposing these 1-hinges. As is shown in Example 5.1, a similar strategyfor 2-hinge-trees is not guaranteed to yield a correct result. Another propertythe Hinge-Tree Decomposition Algorithm relies on is that a singleton separatingedge set is always contained in some minimal 1-hinge. Unfortunately, this prop-erty does not carry over to 2-hinges, either. The following example exhibits ahypergraph having a separating edge pair not contained in any minimal 2-hingeof that hypergraph.



16 PETER JEAVONS, ET AL.Te Tffe1; e2; e3gfe1; e2; f1g fe1; e2; f2gfe2; e3; f3g fe2; e3; f4g ff1; f2; f3; f4gfe1; f1; f2g fe2; f1; f2gfe3; f3; f4g����QQQQQQQQ���� QQQQ����Figure 7. Two possible 2-hinge-trees for G (Example 5.5).Example 5.6. Consider the hypergraph with nodesfx1; x2; y1; y2; z1; z2; u1; u2gand edgese1 = fx1; x2; z1; u1g; f1 = fy1; y2; z1; u2g; g1 = fx1; y1g;e2 = fx1; x2; z2; u2g; f2 = fy1; y2; z2; u1g; g2 = fx2; y2g:Clearly, fg1; g2g is a separating edge pair separating o� fe1; f1g from fe2; f2g.Now, the smallest 2-hinges (with respect to inclusion) containing fg1; g2g are theedge sets fe1; f1; g1; g2g, fe2; f2; g1; g2g, fe1; f2; g1; g2g, and fe2; f1; g1; g2g, as caneasily be veri�ed by a simple, exhaustive search. None of these four 2-hinges areminimal however, as all eight sets obtained from them by either removing g1 org2 are 2-hinges, too.The above examples clearly show that an algorithm for generating k-hinge-trees cannot simply be obtained by a straightforward generalization of the Hinge-Tree Decomposition Algorithm. As a matter of fact, it is an open problemwhether or not there exists an e�cient and e�ective algorithm for �nding k-hinge-trees. 6. ConclusionsWe have shown that any hypergraph has a decomposition into a tree of 1-hinges, and the size of the largest minimal hinge in such a tree is an invariant ofthe hypergraph. This provides a classi�cation scheme for hypergraphs giving auseful measure of their structural complexity.The extension of the notion of a 1-hinge to k-hinges allows more re�ned de-compositions in many cases, but k-hinges fail to have the pertinent propertiesof inheritance and inseparability. Without inheritance it is di�cult to guarantee
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