
A Graph-Oriented Object Model 
for Database End-User Interfaces 

Marc Gyssens Jan Paredaens Dark Van Gucht 

Dept WNIF Dept of Math and Comp Science Comp Science Department 
Umversrty of Lrmburg Umversrty of Antwerp Indiana Umversrty 
Umversitaire Campus Universiteitsplem 1 Lmdley Hall 101 
B-3610 Drepenbeek, Belgium B-2610 Antwerpen, Belgium Bloommgton, IN 47405 

1 Introduction 

The current database research trend 1s towards systems 
whrch can deal with advanced data apphcatrons that go 
beyond the standard “enterprise” or “office” database ap- 
phcatron This trend 1s reflected m the research on exten- 
sion architectures [5,18,21] and obJect-oriented databases 
[2,3,12,21] Along wrth thus trend, the need for better 
and easier-to-use database end-user Interfaces has been 
stressed [18,21] Therefore, we propose a graph-based 
data model, which shares many features wrth exrstmg data 
models, but which better facrhtates the rigorous study of 
graphical database end-user interfaces 

Graphs have been an integral part of the database de- 
sign process ever since the mtroductron of semantic data 
models [11,12] Therr usage m data mampulatron lan- 
guages, however, IS far more sparse To deal wrth data 
mampulatron, typically, schemes m semantrc data models 
are transformed mto a conceptual data model such as the 
relatronal model [19] The required database language fea- 
tures then become those of the conceptual model CbJect- 
oriented data models, on the other hand, often offer com- 
putational complete, non-graphical data languages, usu- 
ally m the style of object-oriented programmmg languages 
such as Smalltalk Due to their expressrveness, however, 
these language do not lend themselves easily as high-level 
data languages [2,21] 

The first graphical database end-user interfaces were 
developed for the relational model (for example Zloof’s 
Query-By-Example (QBE) [22]) 

Permwon to copy wtthout fee all or part of this matenal II granted prowded 
that the copses are not made or dlstnbuted for dwct wmmeraal advantage the 
ACM copy@ notw and the title of the pubbcatlon and ats date appear and 
nottce II gven that qymg 18 by pemwwn of the Assoaatwn for Computmg 
Machmay To copy othenwe, or to repubbsh, requires a fee and/or specdic 
pemnwon 
0 1990 ACM 089791365 5/90/0005/0024 $150 

The earliest graphrcal database end-user interfaces 
for semantrc models were associated with the Entrty- 
Relatronshrp model [7,16,20] Subsequently, graphical m- 
terfaces were developed for more complex semantrc and 
obJect-oriented database models [4,8,13,14,15] These m- 
terfaces use grapha as their central tool, but as far as data 
languages, they are usually limited m expressive power 
Graph-oriented end-user interfaces have also been devel- 
oped for recursive data objects and querres [6,10,22] 

In [9], we introduced the Graph-Oraented Oblect 
Database Model (GOOD) This model IS built around a 
single mathematrcal tool, namely graphs, to both model 
and manipulate databases We believe that this 1s an rm- 
portant step m the directron of rrgorously studying and 
developing database end-user interfaces 

In [9], we hmrted ourselves to describing a sample yet 
powerful transformatron language and drscussmg its ex- 
pressiveness In thus paper, we further develop and mvestr- 
gate GOOD We show that rt has many features generally 
present m exrstmg semantrc, object-oriented and deduc- 
tive database models Specrfically, we demonstrate how 
the GOOD model 1s suitable for gmphzcally describing 
querying, browsing, restructuring and updating databases, 
and hence 1s Ideally suited for the study and development 
of graphically-oriented database end-user interfaces To 
demonstrate why GOOD IS useful for advanced data ap- 
phcatrons, we descrrbe how rt can be seen as an object- 
oriented data model 

In Section 2, we define the basic GOOD model In Sec- 
tron 3, we discuss querymg, browsmg, restructuring and 
updating, and show that they can all be expressed natu- 
rally m a uniform, graphically-orrented and user-friendly 
manner We also show how to use GOOD to mampulate 
and query database schemes In Section 4, we show how 
to adapt the GOOD model to mcorporate the features of 
object-oriented database systems 

24 



2 Basic features of GOOD 

A data model based on graphs offers an attractive pos- 
srbrhty to graphically formulate database actrvrtres The 
Graph-Oraented ObJect Model (GOOD), first introduced m 
[Q], 1s such a model In this section, we present its basic 
features 

2.1 Object base schemes and instances 

We first turn to the representatron of data ’ At the m- 
stance level, the data ~111 be represented as a dzrected 
labeled graph The nodea of this graph represent the 
obJecta of the database We only drstmgmsh between 
non-przntable nodes (represented as squares) and prznt- 
able nodea (represented as circles) As for the edges, we 
only drstmgmsh between functtonal edgea (shown as “--P”) 
and non-functaonal edges (shown as “-++“) A functional 
edge denotes a functional relatronshrp between the obJects 
connected by that edge, 1 e, for a grven functional edge la- 
bel and and a given (non-printable) node, there can be a 
most one edge leaving that node wrth the grven functional 
edge label On the other hand, for a grven non-functronal 
edge label and a (non-printable) node there can be an un- 
bounded (but finite) number of edges leaving that node all 
having the same given non-functional edge label 

As an example, consider an object base representing ve- 
hicles together with then “physrcal” makeup Figure 1 
shows a part of an (overslmphfied) instance of such an ob- 
Ject base, consrstmg of two slmrlar cars owned by the same 
person 

Figure 1 An example of an ObJect base instance 

Of course, the graph representmg a particular object 
base must obey certain structural constraints These are 
contained m the object base scheme which can be rep- 
resented by a set of graph productrons For the vehl- 
cle object base, which will be used as a running example 

e 
throughout the paper, we assume the obJect base scheme 

q m*5 
of Figure 2 Observe that this scheme also allows for au- 
planes (“A”) to be represented m the obJect base 

More generally, we assume there are mfimtely enumer- 
able sets of nodea, non-prantable obJect labels, prantable 
object labela, functaonal obJect labels and non-functaonal 
obJect labels These four sets of labels are assumed to be 
parrwise drsJomt We also assume there 1s a function A 
which associates to each printable obJect label a set of 
constants (e g , character, a string, a number, a boolean, 

w 

N N F’S put P 

but also a drawing, a graph, a table, etc) 
We then define an obJect base scheme as a five-tuple 

S = (NPOL, POL, FEL, NFEL, P) with NPOL a finite set 
of non-printable object labels, POL a finite set of printable 
obJect labels, FEL a finite set of functional edge labels, 
NFEL a fimte set of non-functional edge labels, and ‘P 
a set of productaons (L, f) with L E NPOL and f FEL U 

~yzij 

1 It should be noted that the representation of data resembles that 
m the FunctIonal Data Model [17] 

Figure 2 An example of an object base scheme 

25 



Figure 3 An example of a pattern 

NFEL --+ NPULU POL a partial mapping from edge labels 
to object labels 

We now turn to obJect base Instances Thereto, let S = 
(NPOL, POL, FEL, NFEL, P) be an obJect base scheme 
Formally, an oblect baae znatance over S IS a labeled graph 
T = (N, E) for which 

l N IS a set of labeled nodes, if n 1s a node m N, then 
the label A(n) f o n must be m NPOL U POL, d x(n) 
IS m NPOL (respectively m POL), then n IS called a 
non-przntable node (respectively a prsntable node), 

l E IS a set of labeled edges, if e 1s a labeled edge 
m E, then e = (m,cr,n) with m and n m N, m 
a non-printable node, and the label cr = x(e) of e m 
FELuNFEL, If A( ) e 1s m FEL (respectively m NFEL), 
then e 1s called a functzonal edge (respectively a non- 
functzonal edge), 

l each printable node n m N has an additional label 
print(n), called the prznt label, print(n) must be a 
constant in a(X(n)), 

l each two functional edges (m, Q, nl) and (m, CY, nz) m 
E (leaving the same node and havmg the same label) 
are equal (1 e nl = ns), and 

l for each non-printable node m m N there exists a 
production (A(m), f) m P such that for each edge 
(m, Q, n) In E, f(a) = x(n) 

2.2 The transformation language 

The GOOD data transformation language consists of five 
operators, four of which correspond to elementary mamp- 
ulatlons of graphs addltlon of nodes, addition of edges, 
deletion of nodes and deletion of edges The fifth operator, 
called abstraction, 1s used to group nodes on the basis of 
common functional or non-functional properties 

The speclficatlon of all five operators relies on the notion 
of pattern A pattern 1s a graph used to describe subgraphs 
m an object base Instance 

As an example, consider the graph m Figure 3 This 
graph represents a pattern over the vehicle obJect base 
scheme Intultlvely, It describes an occurrence of a part, 
together with its ldentlficatlon number and one of its (lm- 
mediate) subparts with its ldentlficatlon number In or- 
der to actually obtain such occurrences m a particular m- 
stance, we have to “match” the pattern with subgraphs 

of the instance under conslderatlon E g the pattern m 
Figure 3 can be matched with a subgraph of the instance 
m Figure 1 m three different ways, correspondmg with the 
part-subpart ld#-pairs (59,33), (59,625) and (59,987) re- 
spectively 

In order to formalize this notion of “matching”, we m- 
traduce so-called embeddanga Let S be an object base 
scheme, let Z = (N, E) be an object base instance over S 
and let J = (M, F) be a pattern over S An embeddzng of 
.7 m Z 1s a total mapping z M + N preserving all labels, 
1 e node labels, edge labels as well as print labels (where 
defined) For the pattern m Figure 3, there are three em- 
beddings mto the obJect base instance m Figure 1, each of 
which corresponds with one of the “matchmgs” described 
above 

We are now ready to define the five operations of the 
GOOD transformation language 

2.2.1 Node addition 

Let Z = (N, E) be an object base instance and ,7 = (M, F) 
a pattern over obJect base scheme S Let ml, ,m, be 
nodes m M Let K be a non-printable obJect label that 
IS not the label of a node m M and let al, , CY, be 
functional edge labels The node addztzon 

NA[J, S,Z, K, {(al, ml), , (an, m,))] = (:I’, s’,z’) 
where (1) J” = (M’, F’) where M’ 1s obtained by 
adding to M a new node m with label K, F’ IS 
then obtained by adding to F the labeled functional 
edges (m, ~1, ml), , (m, CY,, m,), (2) S’ IS the mmlmal 
scheme of which S 1s a subscheme ’ and over which .‘I’ 
1s a pattern, and (3) 1’ 1s the mmlmal instance over S’ 
for which 1 1s a submstance of Z’, for each embedding 
z of 3 m 1, there exists a K-labeled node n m 1’ such 
that (n, crl, z(ml)), , (n, CY,, z(m,)) are functional edges 
m Z’, and each edge m Z’ leaving a node of Z 1s also an 
edge of 1 

A node addltlon will be represented by drawing the pat- 
tern P’ and mark m bold the node and edges not m ,7 
Suppose for example we want to effectively create nodes 
representmg the pairs of ldentlficatlon numbers of parts 
and their (immediate) subparts, occurrmg m the object 
base instance of Figure 1 Using the pattern m Figure 3, 
this operation can be accomplished by performmg the 
node-addltlon represented m Figure 4 The resulting ob- 
Ject base instance 1s obtained by adding to the instance 
m Figure 1 three PN-labeled nodes, one for each of the 
part-subpart ld#-pairs (59,33), (59,625) and (59,987)) to- 
gether with the associated edges 

2.2.2 Edge addition 

Let I = (N,E) b e an obJect base instance and ,7 = 

(MY F) a pattern over object base scheme S Let 

2Subscheme and submstance are defined wth respect to set 
mclusmn 

26 



Figure 4 Example of a node addltlon 

Figure 5 An example of an edge addition 

ml, ,m,,mi, , rnk be nodes m M and let 01, 
be arbitrary edge labels 

The edge addztzon 

,% 

WJ, s,z, {(ml, al, n-4)) , (m, an, mi))l 
= (J’, S’,Z’) where (1) 3’ = (M’, F’) where M’ 
equals M and F’ 1s obtained by adding to F the la- 
beled edges (ml,al, mi), , (m,,cr,,mk), (2) S’ 1s 
the mmlmal scheme of which S 1s a subscheme and 
over which 3’ 1s a pattern, and (3) 1’ 1s the mm- 
lmal Instance over S’ for which Z IS a submstance 
of L’, and such that for each embedding a of J m 
I’, (4mlh 01, dmi)), , (z(m,), a,.,, z(mi)) are labeled 
edges m 1’ 

As for node addition, we will denote an edge addition by 
drawing the graph 3’ and marking m bold the edges not 
m ,7 As an example, reconsider the vehicle obJect base 
Suppose we want to see the serial number as a property of 
cars too, rather than of vehicles alone This transforma- 
tlon can be accomplished by the edge addition shown m 
Figure 5 

Note that the edge addltlon can have a Tecurawe effect 
(it 1s the only such operator), since we allow some of the 
labels Cal, , CY, to occur m the pattern 3 (for examples, 

see PI) 

2.2.3 Node deletion 

To the node addition corresponds a node deletzon, which 
m the object base Instance removes nodes m all subgraphs 
described by a pattern The node to be deleted 1s marked 
in outlme 

As an example, consider the very simple node deletion 
of Figure 6 It removes the mformatlon about owners from 
the vehicle object base 

ml 0 

Figure 6 An example of a node deletion 

I 
0 

Figure 7 An example of an edge deletion 

2.2.4 Edge deletion 

To the edge addition corresponds the edge deletaon As 
for node deletion, the edges to be removed are marked m 
outline 

Reconsider the vehicle object base Suppose we want 
to remove the weight from all elementary parts for which 
the weight 1s negligible (1 e , equal to zero m Figure 1) 
This removal can be accomplished with the edge deletion 
m Figure 7 

2 2 5 Abstraction 

In the GOOD model, different nodes represent different 
objects, even if they cannot be dlstmgulshed on the basis 
of their properties Therefore, we have introduced an ab- 
atractzon operator that allows to define new nodes zn terms 
of functzonal or non-functaonal propertaea represented an 
the obJect base 

Let S be an object base scheme Let 1 = (N, E) be 
an obJect base mstance and .7 = (M, F) a pattern over 
S Let n be a non-prmtable node m M Let K be a 
non-printable obJect label that IS not the label of a node 
m M, let CYI, , cr, be edge labels and let ,B be a non- 
functional edge label not occurrmg m S Intultlvely, the 
abstraction creates sets (labeled K) Each set contains all 
the objects n that match the pattern ,7 and that have the 
same 011, cr,-properties 

More fordally, the abatractton 
A%‘7, s, 1, n, K, ((~1, ,%J,P] = (J’,s’,q 

where (1) ,7’ = (M’, F’) where M’ 1s obtamed by adding 
to M a new node m with label K, F’ 1s then obtained bv 
adding to F the labeled non-functional edge (m, p, n), (2) 
St IS the mmlmal scheme of which S 1s a subscheme and 
over which 3’ IS a pattern, (3) 1’ IS the mmlmal instance 
over S’ for which Z 1s a submstance of Z’, and (4) for 
each embedding z of J m 1, there exists a K-labeled node 
p m 1“ such that (p, 0, a(n)) IS a non-functional edge of 
Z’, if (p, @, ql) and (p, p, 92) are both m 1’ then for each 
a = 1, , n and for each node r m It, (91, Q,, I-) E E’ 9 
(q2 , CY,, r) E Et, and each edge m 1’ leavmg a node of Z IS 
also an edge of Z 

As for node addition, we will denote an abstraction by 
drawing the graph -7’ and markmg m bold the node and 
edges not m :7 The edges ~1, , LY,, will be marked dot- 
dashed, if these edges do not occur m J, they will be 
added without drawing the nodes m which they arrive 

To conclude this sectlon, we present an example of an 
abstraction Suppose that m the vehicle object base we 
want to “abstract” over vehicles, independent of their se- 

27 



Figure 8 An example of an abstraction 

Figure 9 An example of a query mvolvmg node deletion 

real numbers This can be done by performing the abstrac- 
tion of Figure 8 At the instance level, the abstraction m 
Figure 8 results m the creation of one new non-printable 
node labeled V’ from which two non-functional edges la- 
beled “aba” leave, pomtmg to both vehicle nodes, respec- 
tively 

3 GOOD as a database interface 

The GOOD model 1s equipped with the necessary tools to 
handle typical database operations To vahdate this, we 
will give examples of how to browse, query, restructure, 
and update GOOD obJect bases The graph-onentatlon 
of the GOOD model will then imply that such database 
operations can be formulated graphically 

3.1 Querying 

Querying 1s retrieving mformatlon from a database wlth- 
out affectmg its information contents We have already, 
on several occasions, discussed the GOOD data transfor- 
mation language as a tool to query databases (see Sec- 
tion 2 2 1 and Section 2 2 2) In this section, we will 
consider some addltlonal queries about the vehicle object 
base We will begin with a query using the node deletion 
operator Consider the query “Fand all the cars whach do 
not have an owner ” We start with marking all the cars, 
usmg the node addition m Figure 9 Using node deletion, 
we then remove the NO-nodes associated with owned cars 
The remaining NO-nodes now point to cars without own- 
ers 

Now, consider the range query “Fand all elementary 
parts (parts wathovt subparts) wath weaght stractly between 
10 and l@O ” As such, we can not solve this query, be- 
cause it involves the larger than relation over the natural 
numbers However, smce consldermg larger than, within 
the context of GOOD, yields some interesting insights, we 
will make a small dlgresslon at this point 

Figure 10 A representation of natural numbers m GOOD 

LJ NN 

I 
- 
“al 

N 

t 

““In 

L 

Figure 11 Computmg the larger than relation 

Assume that we are given an arbitrary but finite se- 
quence of successive natural numbers starting at zero 
Since It 1s the most characterlstlc aspect of the natural 
numbers, we assume the successor function to be known 
Figure 10 illustrates how to represent such a sequence m 
GOOD at the instance level, the corresponding scheme IS 
obvious 

It 1s now a straightforward exercise to construct the 
larger than relation over the numbers m this sequence 
This can be done by a node addltlon, followed by two 
edge additions, as shown m Figure 11 The first edge ad- 
dition indicates that the direct successor of a number 1s 
larger than that number The second edge addltlon then 
basically computes the transitive closure of that relation 

Let us now return to the above range query To denote 
its result, we first Introduce a new node, R, via a simple 
node addition over an empty pattern The edge addition 
m Figure 12 specifies the solution to the query 

3.2 Browsing 

Browsing 1s traversing a database according to its under- 
lying scheme Obviously, browsing does not alter the m- 
formation contents of the database Browsing can be ac- 
comphshed as a succession of node adtlltlons wherein the 
newly created nodes serve as markers for the object(s) of 
interest 

3.3 Restructuring 

Restructurmg a database 1s transforming its structure 
(scheme) without altering its mformatlon contents This 
can be necessary to accommodate a different view of the 

28 



10 100 ,,, 

Figure 12 An example of a query mvolvmg the larger than 
relation 

n V 

Figure 13 Restructuring the vehicle obJect base 

database, to remove redundancy, or to allow for more effi- 
cient access to the data 

Suppose we want to restructure the vehicle object base 
so that serial numbers are no longer associated with vehicle 
obJects but rather are directly associated with the appro- 
priate car and plane obJects Reconsider Figure 8, repre- 
senting an abstraction operation Each added V’-obJect 
IS associated with all the vehicles (I’-obJects) sharing the 
same year, parts, model, and manufacturer Using four 
edge additions, we can attach the year, parts, model, and 
manufacturer mformatlon to the v’-obJects Figure 13 
(upper left) shows the edge addition mvolvmg the year m- 
formatlon, slmllar edge additions can be done for parts, 
model, and manufacturer mformatlon Next, we can as- 
sociate the serial numbers with the car and plane objects 
(see Figure 13, upper right drawing, for the car obJects) 
An additional edge addition 1s needed to associate the ap- 
proprlate v/-objects with the car (plane) obJects (see Fig- 
ure 13, lower left drawing, for the car objects) Fmally, 
the node deletion shown m the lower right corner of Fig- 
ure 13 removes the redundant v-objects and completes 
the restructuring 

Figure 14 An example of an msertlon 

Figure 15 An example of a modlficatlon 

3.4 Updating 

Updating a database involves changing its mformatlon 
contents, without affecting its scheme Updates are typl- 
tally the result of insertions, deletions, and modlficatlons 
of data 

As an example, suppose, we want to insert a (new) blue 
car, with owner Malls, mto the vehicle obJect base This 
insertion can be expressed by two subsequent node addl- 
tlons, shown m Figure 14 First, we add an owner with 
name Malls Then, we insert a blue car with owner IVa11s 

Assuming that the owner’s name of the Just inserted car 
1s really Males, we can do the followmg GOOD operations 
to reflect this modlficatlon, shown m Figure 15 First, we 
use a node addition to mark the owner with name lllzlls 
(If the %eme”-edge uniquely identifies an owner, we will 
have marked one node ) Using an edge deletion, we dlsas- 
soclate the printable node with print label 113211s from the 
marked owner obJect An additional edge addition asso- 
ciates the marked owner with the name E/lzles, and finally 
use a node deletion to remove the marking object 

3.5 Meta modeling 

Many data models have the ability to specify a scheme 
which has as instances the vahd database schemes of that 
model This technique 1s commonly referred to as meta 
modelzng Meta modeling allows for the apphcatlon of the 
data model operations to database schemes 

In Figure 16 we show a meta scheme for valid GOOD 
obJect base schemes The node labels “N”, “E”, “NT”, 
“ET”, and “9 stand for node, edge, type of node (non- 
printable or printable), type of edge (functional or not 

Figure 16 The meta scheme of the GOOD model 

29 



Figure 17 Browsing through the scheme using the meta 
object base 

functional), and string, respectively The edge labels 
“edge”, “type” and “label” arc self explanatory The edge 
label “node” indicates the node m which the edge arrives 

If we are now interested m the node labels pointed at by 
edge labels emanating from the “PS”-nodes m the obJect 
base scheme of Figure 2, we can obtain these labels by 
applying the GOOD transformation language to the meta 
object base This GOOD transformation, conslstmg of a 
node addition and an edge addition, 1s shown m Figure 17 

4 Object-orientedness of GOOD 

In Section 2 and Section 3 we discussed GOOD as a slm- 
ple model to rigorously study graphical database end-user 
interfaces Here, we will concentrate on the GOOD model 
as a data model More specifically, we will consider the 
GOOD model m the context of obJect-oriented database 
models [2,3,12,21] This analysis will yield two insights 
first, it will illustrate the modeling power of the GOOD 
model, and second, it will propose an explicit tool to study 
graphical end-user interfaces for obJect-oriented database 
systems Our analysis was guided by the Oblect-Oraented 
Database System Manzfesto [2] 

4.1 Modeling features 

4.1.1 Complex objects and object-identity 

Complez oblects are typically built from prlmltlve objects 
(natural numbers, booleans, strings etc ) [1,2] according 
to certain object constructors, such as tuples, sets, and 
lists Clearly, the GOOD model supports such complex 
objects 

The notion of obJect-zdentzty refers to the existence of 
obJect8 m the database independent of their associated 
propertles As stressed from the outset, obJect-identity 1s 
a basic feature of the GOOD model 

4.1.2 Classes, hierarchies and inheritance 

All obJect-oriented databases support some form of znher- 
ztance, 1 e , it IS customary to define new classes as sub- 
classes of existing ones (e g [12,21]), therefore orgamsmg 
the classes m a class hzerarchy 

Figure 18 An object base scheme with subclasses 

q R 

q R 

Figure 19 Specifying a query using inheritance 

In the GOOD model, classes can be associated with 
node labels m schemes Functional edge labels can then 
support the notion of subclass However, it 1s clear that 
not all functional edge labels m an object base scheme can 
be interpreted as a subclass-relationship Therefore, we 
will mark m bold the functional edges m the scheme graph 
we wish to interpret as subclass edges (we will lmphcltly 
assume that the subclass edges do not form a “cycle” m 
the obJect base scheme) 

For example, we can consider the “zsa’‘-edges m the 
vehicle object base scheme shown m Figure 2 as subclass- 
edges The effect to the user IS the same as if all properties 
of vehicle obJects were attached to the corresponding car 
and plane obJects (Clearly, this transformation can be 
simulated by a number of edge additions ) The user can 
now apply the vehicle operations directly to cars E g , 
suppose we want to know the models of cars owned by 
Jones This query can now be specified as m Figure 19 

(top) 

4.2 Language features 

4.2.1 Methods, encapsulation and ad-hoc query 
language 

In this section, we define the concept of method m the 
GOOD model and discuss encapsulation As for the ad- 
hoc query language, we refer to Sectlon 3 1 

A GOOD method IS a named procedure associated with 
a labeled node 3 It has parameters, a method speczficataon, 
a method body and a method znterface Throughout this 
section, let S be an obJect base scheme 

3Thls node corresponds to a class, as described m SectIon 4 1 2 

30 



L 0 
4 

0 N 
cl 

P 

Figure 20 Examples of method speclficatlons 

Figure 21 The interfaces of methods L and M 

The method speclficatlon contains the method’s name, 
its associated node label (class) and its parameters For- 
mally, the method speczficatzon S,Q of a method M 1s a 
couple (OU, f4.1)~ where 0~ E NPOL U POL IS called 

owner and f,~ 1s a total function, f,~ L,M -+ NPOLU A L the 

Y 
0 N 

-I VII 
lb 

N 

num 

L L 

Figure 22 The body of method L 

POL, with L u a finite (possrbly empty) set of labels f,~ 
assocrates wrth each of its labels a parameter Graphically 
(Ow, FM) 1s represented by a diamond-shaped node that 
1s labeled by M, with one unlabeled outgomg edge to a 

node labeled by 0 M and a labeled outgoing edge for each 
label X E LM to a node labeled by f,ti (X) No two edges 
point to a same node 

As an example, consider Figure 20, m whrch two meth- 
ods are specrfied The first method IS L = (N, 0) L has as 
owner the non-printable node label N and has no parame- 
ters The second method 1s M = (P, f~,,) M has as owner 
the non-printable node label P and has two parameters, 
i e , f~ assocrates with the label lb the printable node la- 
bel N and f~ associates with the label ub the printable 
node label N 

In general, rt may be antrclpated that a method call has 
“side effects” m the form of objects and edges which are m- 
traduced to perform mtermedrate computatrons Some of 
these side effects will be desirable, some other unwanted 
Since a user needs to be protected from unwanted side 
effects, our methods have an assocrated interface which 
specifies only the desired side effects Formally, the znter- 
face I M of a method M 1s an object base scheme (We 
will also require that rf (L, f) 1s a productron m the ob- 
ject base scheme S and (L, g) IS a productron IN then 
dam(f) n dam(g) must be empty ) 

The method interface for method L 1s shown m Frg- 
ure 21 (left) and that for method M 1s shown m Figure 21 

(r&t) 
The method body specifies the lmplementatron of the 

method Formally, the method body B,u of a method M 
IS a sequence of parameterlzed operatrons Parameterzzed 
operatzons are normal operations (1 e , NA, ND, EA, ED, 
AB or MC (method call, see further)) or normal opera- 
tions where the source pattern ,7 IS augmented with one 
diamond-shaped node labeled by M, called the M-head- 

cl R 

ub 

Figure 23 The body of method M 

node, and with edges leaving that node At most one un- 
labeled edge can leave the M-head-node It has to point 
to a node rno labeled by 0,~ At most one edge for each 
label X of LM can leave the M-head-node It has to point 
to a node rnx labeled by f,~ (X) No other edges can leave 
the M-head-node 

As an example, suppose L IS the method computmg the 
larger than relation over the natural numbers as repre- 
sented m Figure 10 In Section 3 1, we computed this re- 
latron as a query using three prlmltlve GOOD operations 
(see Figure 11) We can represent these three operations 
as consecutive steps m the body of the method L, as shown 
m Figure 22 

As another example, suppose Al 1s the method return- 
mg all parts m the vehicle object base having a weight 
strictly included between a given lower and upper bound 
(cfr. 12) Using the method L, the body of A1 can be 
drawn as m Frgure 23 It consists of three steps The 
second and third are prlmltlve GOOD operations (Note 
the parameter bmdmg m the thud step ) The first step IS 
a method cull of the method L, rt 1s used to compute the 
larger than relation 

The method cull 1s the operation that invokes the ex- 
ecution of the method body m a context specrfied by a 
pattern and actual parameters Formallv, let T = (N, E) 

31 



L 

x 
N 

50 

Figure 24 Examples of method calls 

be an object base instance and .7 = (N’, F) a pattern S 
Let M be a method of S, m be a node of N’ that IS labeled 
by 0,~ and g be a total function, g LM + N’ where g(X) 
must have the label f,u()o The method cull IS specified 
by MW-,S,I,M, m, g] and 1s represented by the pattern 
J augmented with a bold diamond shaped node, labeled 
M, and from this node an unlabeled bold edge to m and 
a bold edge for each X E L,u to the node g(X) 

The semantics of the method call 1s then that the steps 
m the body of the method are executed consecutively, but 
only for these nodes m the instance under conslderatlon 
that match the node m the pattern to which the method 
points, and only with the actual values of the parameters 
Formally, the method call MC[J, S, 1, M, m, g] = (S’,I’) 
results m a new scheme S’ and a new mstance 1’ over 
S’ defined as follows if there 1s no embedding of ,7 m Z 
then (!‘,I’) = (S,I), th o erwlse, there are embeddmgs of 
,7 m 1, called bzndzngs embeddzngs Let (&,X1) be the 
result of the execution of the parameterlzed operations m 
the bodv of method M The execution of a parametrized 
operation 1s equal to the execution of the associated nor- 
mal operation, for each embeddmg e of thus parameterlzed 
operation m Z for whrch there IS a bmdmg embedding b 
with e(mo) = b(m) and e(mx) = b(g(X)) 4 The new 
obJect scheme S’ 1s obtained by augmenting the labels m 
S with the labels m 1,~ and replacmg the set P of pro- 
ductions m S with the set of productions P’ = {(L, f) 
with (L, f) m P if there IS no (L, f’) in 1~ (the interface 
of M), or there 1s a (L,fi) m P and (L,fi) m 1,~ with 
f = fi u fi} Finally, th e new mstance 1’ IS defined as 
the muxamul submstance of 11, the scheme of which 1s S’ 

For example, the method call of Figure 24, a method 
call of L only, computes the numbers larger than 50, sub- 
sequently the method M searches for all parts having 
weights strictly included between 10 and 100 

Hence the result of the method call of M m Figure 24 1s 
an obJect base over the scheme consrstmg of the produc- 
tions m Figures 2 and 21, the obJect base IS obtamed by 
adding one R-labeled node to the object base m Figure 1 

Two non-functional edges with label “cant” leave this R 
node, mdlcatmg the parts with weights between 10 and 
100 Note that the L-nodes created to compute the larger 

4m~ and rn~ were defined m the method speclficatlon of method 
M 

Figure 25 An example of method used for updating 

than relatron are not a part of the resulting instance 
An important property of object-orrented methods 1s 

that it provides encupsulutzon the result of a method 
should not depend on the actual lmplementatlon of that 
method, 1 e , methods should not have srde effects Clearlv, 
GOOD methods provide encapsulation, m the sense that 
the scheme of the result only depends on the interface of 
the method, 1 e , the user does not have to know the body 
of the method If the user knows the method speclficatlon 
and its interface, he can apply the method and know the 
structure of the result, no unwanted side effects will occur 

As a final example of methods, we consider a method U 
for updating owner names m the vehicle object base (cfr 
Figure 15) The speclficatlon of the method U 1s shown 
m Frgure 25, top part, the method body 1s shown m the 
bottom part of Figure 25, and the method interface 1s 
empty 

4.2.2 Other Language Features 

Most often, compututzonul completeness m a database svs- 
tern IS achieved by embedding the data mampulatlon lan- 
guage mto a complete programming language such as Pas- 
cal or C The awkwardness of this process IS commonly 
referred to as the zmpedunce match problem Research on 
obJect-oriented database systems have therefore advocated 
to erther support a computatlonally complete database 
language, or to design the data language so that rt can 
be easily integrated mto a complete language [2,21] We 
view the GOOD data transformatron language augmented 
with the notion of methods as such a data language In- 
deed, throughout the paper, we argued that the GOOD 
data transformation language 1s suitable as a data mamp- 

32 



ulatlon language Furthermore, m [9], we have shown that [8] K J Goldman, S A Goldman, P C Kanellakls, and 
the GOOD data transformatron language can express the S B Zdomk ISIS Interface for a semantrc mforma- 
recursive functrons, thus estabhshmg its expressiveness tlon system In Proc of SIGMOD Conf, Austan, 
Finally, although not shown m this paper, the notion of pages 328-342, 1985 
method and encapsulation should facilitate the mtegratlon 
of the GOOD data transformatron language mto a com- [9] M Gyssens, J Paredaens, and D Van Gucht A 

plete (preferably obJect-oriented) programmmg language graph-oriented obJect database model To appear m 

The notion of eztenszbalaty refers to the faclhty of freely 
Proc 9th A CM SIGA CT-SIGMOD-SIGART Symp 

adding new data types, so that these types have the same 
on Pranc of Database Systems, 1990 

status as system defined types We believe that our treat- [lo] S Heller and A Rosenthal G-WHIZ, a visual mter- 
ment of encapsulation and methods 1s broad enough to face for the functional model with recursron In Proc 
support the extenslbrhty feature of obJectorrented data 11th Int’l Conference on VLDB, Stockholm, pages 
models 209-218, 1985 

The concepts of overrzdzng, overloudzng , and lute band- 
zng refers to the usage of the same name for different op- 

[ll] R Hull and R Kmg Semantic database modelmg 
Survey, apphcatrons, and research Issues ACM Com- 

eratlons and the consequent run time bmdmg We do not 
see any inherent difficulty to support these concepts m an 
lmplementatlon of the GOOD model 

putzng Surveys, 19(3) 201-260, 1987 

[12] W Kim and F H Lochovsky, editors Oblect-Oraented 
Concepts, Databases, and Applacutzons ACM Press 
(Frontier Series), 1989 Acknowledgments 

The first author wishes to acknowledge the Belgran Fund 
of Sclentlfic Research, which enabled him to vunt Indl- 
ana Umversrty, where part of this research was performed 
The thud author washes to thank Latha S Colby and Ed 

[13] R Kmg S em ase b A semantic DBMS In Proc of 
the Farst Intl Workshop on Expert Database Systems, 
pages 151-171, 1984 

Robertson for their insightful comments 

References 

1141 R Kmg and S Melville The semantlcs- 
knowledgeable interface In Proc 11th Int’l Confer- 
ence on VLDB, Sangupore, pages 30-37, 1984 

1151 A Motro, A D’Atn, and L Tarentmo The de- 

[l] S Ablteboul and Beer1 C On the power of languages 
for the mampulatron of complex obJects Technical 
report, INRIA, 1988 

[2] M Atkinson, F Bancllhon, D Dewitt, K Dlt- 
trlch, D Maier, and S Zdomk The object-oriented 
database system manifesto To be published 

[3] F Bancllhon ObJect-oriented database systems In 
Proc 7th ACM SIGACT-SIGMOD-SIGART Symp 
on Pranc Database Systems, Austan, pages 152-162, 
1987 

[4] D Bryce and R Hull SNAP A graphics-based 
schema manager In PTOC of the Int’l Conf on Data 
Enganeerang, pages 151-164, 1986 

[5] M J Carey, (Ed) Sp eclal issue on extensible database 
systems Dutubuse Eng , June 1987 

[6] K F Cruz, A 0 Mendelzon, and PT Wood A 

sign of KIVIEW an obJect-oriented browser In Proc 
2nd Int’l Conf on Expert DB Systems, pages 73-106, 
1988 

[16] D Remer, M Brodle, G Brown, M Chrlenskas, 
D Kramhch, J Lehman, and A Rosenthal The 
database design and evaluation workbench (DDEW) 
IEEE Data Eng , 7(4), 1984 

[17] D Shrpman The functional data model and the data 
language DAPLEX ACM Trunsuctaons on Database 
Systems, 6(l) 140-173, 1981 

[18] M Stonebraker, editor Reudangs an Database Sys- 
tems Morgan Kaufmann Publisher, Inc , 1988 

[19] J D Ullman Prancaples of Database and Knowledge- 
Base Systems, Vol 1, Comp Science Press, 1989 

[20] H K Wong and I Kuo GUIDE A graphical user 
interface for database exploration In Proc 11th 
Int’l Conference on VLDB, Mexaco Caty, pages 22- 
32, 1982 

graphrcal query language supportmg recursion In 
Proc SIGMOD Annual Conf , Sun Frunctsco, pages [21] S B Zdomk and D Maler, editors Readangs an 

323-330, 1987 ObJect-Oraented Database Systems Morgan Kauf- 
mann, 1989 

]71 D Fogg Living m a database 
of ACM-SIGMOD 1983 Internataonul 

In Proceedang3 [22] M Zloof Query-By-Example IBM Syst Journal, 
Conference on 

Ilfunugement of Data, Boston, pages 100-106, 1984 
16 324-343, 1983 

33 


