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1 Introduction

The current database research trend 1s towards systems
which can deal with advanced data applications that go
beyond the standard “enterprise” or “office” database ap-
plication This trend 1s reflected in the research on exten-
sion architectures [5,18,21] and object-oriented databases
[2,3,12,21] Along with this trend, the need for better
and easier-to-use database end-user interfaces has been
stressed [18,21] Therefore, we propose a graph-based
data model, which shares many features with existing data
models, but which better facilitates the rigorous study of
graphical database end-user interfaces

Graphs have been an integral part of the database de-
sign process ever since the introduction of semantic data
models [11,12] Their usage in data manipulation lan-
guages, however, 18 far more sparse To deal with data
manipulation, typically, schemes 1n semantic data models
are transformed 1nto a conceptual data model such as the
relational model [19] The required database language fea-
tures then become those of the conceptual model Object-
oriented data models, on the other hand, often offer com-
putational complete, non-graphical data languages, usu-
ally in the style of object-oriented programmng languages
such as Smalltalk Due to their expressiveness, however,
these language do not lend themselves easily as high-level
data languages [2,21]

The first graphical database end-user interfaces were
developed for the relational model (for example Zloof’s
Query-By-Example (QBE) [22])
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The earliest graphical database end-user interfaces
for semantic models were associated with the Entity-
Relationship model [7,16,20] Subsequently, graphical in-
terfaces were developed for more complex semantic and
object-oriented database models [4,8,13,14,15] These 1n-
terfaces use graphs as their central tool, but as far as data
languages, they are usually himited in expressive power
Graph-oriented end-user interfaces have also been devel-
oped for recursive data objects and queries [6,10,22]

In [9], we introduced the Graph-Oriented Object
Database Model (GOOD) This model 1s built around a
single mathematical tool, namely graphs, to both model
and manipulate databases We believe that this 1s an 1m-
portant step 1n the direction of rigorously studying and
developing database end-user interfaces

In [9], we limited ourselves to describing a simple yet
powerful transformation language and discussing 1its ex-
pressiveness In this paper, we further develop and investi-
gate GOOD We show that 1t has many features generally
present 1n existing semantic, object-oriented and deduc-
tive database models Specifically, we demonstrate how
the GOOD model 1s suitable for graphically describing
querying, browsing, restructuring and updating databases,
and hence 1s 1deally suited for the study and development
of graphically-oriented database end-user interfaces To
demonstrate why GOOD 1s useful for advanced data ap-
plications, we describe how 1t can be seen as an object-
oriented data model

In Section 2, we define the basic GOOD model In Sec-
tion 3, we discuss querying, browsing, restructuring and
updating, and show that they can all be expressed natu-
rally in a uniform, graphically-oriented and user-friendly
manner We also show how to use GOOD to manipulate
and query database schemes In Section 4, we show how
to adapt the GOOD model to incorporate the features of
object-oriented database systems
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2 DBasic features of GOOD

A data model based on graphs offers an attractive pos-
sibility to graphically formulate database activities The
Graph-Oriented Object Model (GOOD), first introduced 1n
[9], 18 such a model In this section, we present 1ts basic
features

2.1 Object base schemes and instances

We first turn to the representation of data! At the in-
stance level, the data will be represented as a directed
labeled graph  The nodes of this graph represent the
objects of the database We only distinguish between
non-printable nodes (represented as squares) and print-
able nodes (represented as circles) As for the edges, we
only distinguish between functional edges (shown as “—”)
and non-functional edges (shown as “—") A functional
edge denotes a functional relationship between the objects
connected by that edge, 1 e, for a given functional edge la-
bel and and a given (non-printable) node, there can be a
most one edge leaving that node with the given functional
edge label On the other hand, for a given non-functional
edge label and a (non-printable) node there can be an un-
bounded (but finite) number of edges leaving that node all
having the same given non-functional edge label

As an example, consider an object base representing ve-
hicles together with their “physical” makeup Figure 1
shows a part of an (oversimplified) instance of such an ob-
Ject base, consisting of two similar cars owned by the same
person

Of course, the graph representing a particular object
base must obey certain structural constraints These are
contained in the object base scheme which can be rep-
resented by a set of graph productions For the vehi-
cle object base, which will be used as a running example
throughout the paper, we assume the object base scheme
of Figure 2 Observe that this scheme also allows for air-
planes (“A”) to be represented 1n the object base

More generally, we assume there are infimitely enumer-
able sets of nodes, non-printable object labels, printable
object labels, functional object labels and non-functional
object labels These four sets of labels are assumed to be
pairwise digjoint We also assume there 18 a function =
which associates to each printable object label a set of
constants (e g , character, a string, a number, a boolean,

, but also a drawing, a graph, a table, etc)

We then define an object base scheme as a five-tuple
S = (NPOL, POL, FEL, NFEL,P) with NPOL a finite set
of non-printable object labels, POL a finite set of printable
object labels, FEL a finite set of functional edge labels,
NFEL a fimte set of non-functional edge labels, and P
a set of productions (L, f) with L € NPOL and f FELU

L1t should be noted that the representation of data resembles that
in the Functional Data Model [17)
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Figure 1 An example of an object base instance

Figure 2 An example of an object base scheme
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Figure 3 An example of a pattern

NFEL — NPOLUPOL a partial mapping from edge labels
to object labels

We now turn to object base instances Thereto, let § =
(NPOL, POL, FEL, NFEL, ) be an object base scheme

Formally, an object base instance over S 1s a labeled graph
I = (N, E) for which

e N 1s a set of labeled nodes, i1f n 1s a node 1n N, then
the label A(n) of n must be .n NPOLU POL, if A(n)
1s in NPOL (respectively in POL), then n 1s called a
non-printable node (respectively a printable node),

e E 13 a set of labeled edges, if e 18 a labeled edge
in E, then e = (m,a,n) with m and n in N, m
a non-printable node, and the label a = A(e) of e 1n
FELUNFEL, 1f A(e) 1s1n FEL (respectively in NFEL),
then e 1s called a functional edge (respectively a non-
functional edge),

e each printable node n in N has an additional label
print(n), called the print label, print(n) must be a
constant 1n w(A(n)),

o each two functional edges (m, o, n,;) and (m, &, ny) n
E (leaving the same node and having the same label)
are equal (1e ny; =ny), and

o for each non-printable node m in N there exists a
production (A(m), f) mn P such that for each edge
(m,e,n) mn E, f(a) = A(n)

2.2 The transformation language

The GOOD data transformation language consists of five
operators, four of which correspond to elementary manip-
ulations of graphs addition of nodes, addition of edges,
deletion of nodes and deletion of edges The fifth operator,
called abstraction, 1s used to group nodes on the basis of
common functional or non-functional properties

The specification of all five operators relies on the notion
of pattern A pattern 1s a graph used to describe subgraphs
mn an object base instance

As an example, consider the graph in Figure 3 This
graph represents a pattern over the vehicle object base
scheme Intuitively, 1t describes an occurrence of a part,
together with 1ts identification number and one of 1ts (1m-
mediate) subparts with 1ts 1dentification number In or-
der to actually obtain such occurrences 1n a particular n-
stance, we have to “match” the pattern with subgraphs

of the instance under consideration E g the pattern in
Figure 3 can be matched with a subgraph of the instance
1n Figure 1 1n three different ways, corresponding with the
part-subpart 1d#-paurs (59, 33), (59, 625) and (59, 987) re-
spectively

In order to formalize this notion of “matching”, we 1n-
troduce so-called embeddings Let & be an object base
scheme, let 7 = (N, E) be an object base instance over S
and let 7 = (M, F) be a pattern over S An embedding of
J 1n T 1s a total mapping + M — N preserving all labels,
1e node labels, edge labels as well as print labels (where
defined) For the pattern in Figure 3, there are three em-
beddings into the object base instance 1n Figure 1, each of
which corresponds with one of the “matchings” described
above

We are now ready to define the five operations of the
GOOD transformation language

2.2.1 Node addition

Let T = (N, E) be an object base instance and J = (M, F)
a pattern over object base scheme S Let m;, ,m, be
nodes in M Let K be a non-printable object label that
158 not the label of a node In M and let a;, ,a, be
functional edge labels The node addition

NA[\:T) S’ I) Kl {(aly ml)’ ’ (an) mn)}] = (:711 Sl, II)
where (1) J' = (M',F') where M’ 1s obtamned by
adding to M a new node m with label K, F' 1s
then obtained by adding to F the labeled functional
edges (m,a;,my), ,(m,an,my), (2) & 18 the mmmal
scheme of which S 18 a subscheme 2 and over which 7’
1s a pattern, and (3) I’ 1s the minimal instance over &'
for which 7 1s a subinstance of Z’, for each embedding
1 of J 1n I, there exists a K-labeled node n 1n I’ such
that (n, a1, 2(m;y)), ,(n, an,2(m,)) are functional edges
in I’, and each edge in T’ leaving a node of 7 1s also an
edge of I

A node addition will be represented by drawing the pat-
tern P’ and mark in bold the node and edges not in ./
Suppose for example we want to effectively create nodes
representing the pairs of identification numbers of parts
and their (immediate) subparts, occurring 1n the object
base instance of Figure 1 Using the pattern in Figure 3,
this operation can be accomplished by performing the
node-addition represented in Figure 4 The resulting ob-
ject base mnstance 1s obtained by adding to the instance
in Figure 1 three PN-labeled nodes, one for each of the
part-subpart 1d#-pairs (59, 33), (569, 625) and (59, 987), to-
gether with the associated edges

2.2.2 Edge addition

Let I = (N,E) be an object base mstance and J =
(M, F) a pattern over object base scheme S  Let

2Subscheme and subinstance are defined with respect to set
mnclusion
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Figure 4 Example of a node addition
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Figure 5 An example of an edge addition

C

m;, ,m,,mj, ,m, benodesinM and leta;,
be arbitrary edge labels
The edge addition
EA[J,S,I,{(ml,al,m’l), )(mn)an,m;z)}]

(J',S8',1') where (1) J’ (M’,F’) where M’
equals M and F’ 1s obtained by adding to F the la-
beled edges (mj,a;,mjy), ,(mp,op,m,), (2) & 1s
the mimimal scheme of which & 1s a subscheme and
over which J' 1s a pattern, and (3) I’ 1s the mn-
imal instance over &' for which 7 1s a subinstance
of I'’; and such that for each embedding : of J 1n
I, (s(my), ay,2(m})), ,((my),an,2(ml)) are labeled
edges in 7'

As for node addition, we will denote an edge addition by
drawing the graph J' and marking in bold the edges not
in J As an example, reconsider the vehicle object base
Suppose we want to see the serial number as a property of
cars too, rather than of vehicles alone This transforma-
tion can be accomplished by the edge addition shown in
Figure 5

y On

Note that the edge addition can have a recursive effect
(1t 1s the only such operator), since we allow some of the
labels @y, ,a, to occur in the pattern J (for examples,
see [9])

2.2.3 Node deletion

To the node addition corresponds a node deletion, which
1in the object base instance removes nodes 1n all subgraphs
described by a pattern The node to be deleted 18 marked
1n outline

As an example, consider the very simple node deletion
of Figure 6 It removes the information about owners from
the vehicle object base

9]

Figure 6 An example of a node deletion
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Figure 7 An example of an edge deletion

2.2.4 Edge deletion

To the edge addition corresponds the edge deletion As
for node deletion, the edges to be removed are marked in
outline

Reconsider the vehicle object base Suppose we want
to remove the weight from all elementary parts for which
the weight 1s neghgible (1 ¢, equal to zero in Figure 1)
This removal can be accomplished with the edge deletion
in Figure 7

225 Abstraction

In the GOOD model, different nodes represent different
objects, even if they cannot be distinguished on the basis
of their properties Therefore, we have introduced an ab-
straction operator that allows to define new nodes 1n terms
of functional or non-functional properties represented in
the object base

Let & be an object base scheme Let I = (N,E) be
an object base instance and J = (M, F) a pattern over
S Let n be a non-printable node in M Let K be a
non-printable object label that 1s not the label of a node
m M, let a;, ,a, be edge labels and let 3 be a non-
functional edge label not occurring 1n & Intuitively, the
abstraction creates sets (labeled K) Each set contains all
the objects n that match the pattern 7 and that have the
same ¢, ,Qp-properties

More formally, the abstraction

AB[:],S,I,II, K:{alv 1an}1ﬂ] = (J/)$’1[,)

where (1) 7' = (M, F’) where M’ 1s obtained by adding
to M a new node m with label K, F/ 1s then obtained by
adding to F the labeled non-functional edge (m, 8, n}, (2)
&’ 1s the minimal scheme of which S 15 a subscheme and
over which 7' 1s a pattern, (3) I’ 1s the mimimal instance
over &' for which 7 1s a subinstance of I’, and (4) for
each embedding 2 of J 1n T, there exists a K-labeled node
p in I’ such that (p,3,:(n)) 1s a non-functional edge of
7', 1f (p,B,q1) and (p, B, qz) are both 1n T’ then for each
¢+ =1, ,n and for each node r n I, (q;,0,,r) € E' &
(q2, o, r) € E', and each edge 1n I’ leaving a node of T 1s
also an edge of 7

As for node addition, we will denote an abstraction by
drawing the graph /' and marking in bold the node and
edges not in J The edges a1, ,a, will be marked dot-
dashed, 1f these edges do not occur in J, they will be
added without drawing the nodes in which they arrive

To conclude this section, we present an example of an
abstraction Suppose that in the vehicle object base we
want to “abstract” over vehicles, independent of their se-
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Figure 8 An example of an abstraction

no~own . RO~-OWh . owner .

Figure 9 An example of a query involving node deletion

rial numbers This can be done by performing the abstrac-
tion of Figure 8 At the instance level, the abstraction 1n
Figure 8 results in the creation of one new non-printable
node labeled V' from which two non-functional edges la-
beled “abs” leave, pointing to both vehicle nodes, respec-
tively

3 GOOD as a database interface

The GOOD model 15 equipped with the necessary tools to
handle typical database operations To validate this, we
will give examples of how to browse, query, restructure,
and update GOOD object bases The graph-orientation
of the GOOD model will then imply that such database
operations can be formulated graphically

3.1 Querying

Querying 1s retrieving information from a database with-
out affecting 1ts information contents We have already,
on several occasions, discussed the GOOD data transfor-
mation language as a tool to query databases (see Sec-
tion 221 and Section 222) In this section, we will
consider some additional queries about the vehicle object
base We will begin with a query using the node deletion
operator Consider the query “Find all the cars which do
not have an owner ” We start with marking all the cars,
using the node addition in Figure 9 Using node deletion,
we then remove the NO-nodes associated with owned cars
The remaining NO-nodes now point to cars without own-
ers

Now, consider the range query “Find all elementary
parts (parts without subparts) with weight strictly between
10 and 100" As such, we can not solve this query, be-
cause 1t 1nvolves the larger than relation over the natural
numbers However, since considering larger than, within
the context of GOOD, yields some interesting insights, we
will make a small digression at this point
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Figure 10 A representation of natural numbers in GOOD
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Figure 11 Computing the larger than relation

Assume that we are given an arbitrary but finite se-
quence of successive natural numbers starting at zero
Since 1t 15 the most characteristic aspect of the natural
numbers, we assume the successor function to be known
Figure 10 1llustrates how to represent such a sequence 1n
GOOD at the instance level, the corresponding scheme 1s
obvious

It 15 now a straightforward exercise to construct the
larger than relation over the numbers in this sequence
This can be done by a node addition, followed by two
edge additions, as shown in Figure 11 The first edge ad-
dition indicates that the direct successor of a number 1s
larger than that number The second edge addition then
basically computes the transitive closure of that relation

Let us now return to the above range query To denote
its result, we first introduce a new node, R, via a simple
node addition over an empty pattern The edge addition
1n Figure 12 specifies the solution to the query

3.2 Browsing

Browsing 1s traversing a database according to 1ts under-
lying scheme Obviously, browsing does not alter the in-
formation contents of the database Browsing can be ac-
complished as a succession of node additions wherein the
newly created nodes serve as markers for the object(s) of
interest

3.3 Restructuring

Restructuring a database 1s transforming its structure
(scheme) without altering its information contents This
can be necessary to accommodate a different view of the
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Figure 12 An example of a query involving the larger than
relation

Figure 13 Restructuring the vehicle object base

database, to remove redundancy, or to allow for more effi-
clent access to the data

Suppose we want to restructure the vehicle object base
so that serial numbers are no longer associated with vehicle
objects but rather are directly associated with the appro-
prniate car and plane objects Reconsider Figure 8, repre-
senting an abstraction operation Each added V'-object
1s assoclated with all the vehicles (V-objects) sharing the
same year, parts, model, and manufacturer Using four
edge additions, we can attach the year, parts, model, and
manufacturer information to the V’-objects Figure 13
(upper left) shows the edge addition involving the year in-
formation, similar edge additions can be done for parts,
model, and manufacturer information Next, we can as-
sociate the serial numbers with the car and plane objects
(see Figure 13, upper right drawing, for the car objects)
An additional edge addition 1s needed to associate the ap-
propriate V’-objects with the car (plane) objects (see Fig-
ure 13, lower left drawing, for the car objects) Finally,
the node deletion shown in the lower night corner of Fig-
ure 13 removes the redundant V-objects and completes
the restructuring
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Figure 14 An example of an insertion
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Figure 15 An example of a modification

3.4 Updating

Updating a database involves changing 1ts information
contents, without affecting its scheme Updates are typi-
cally the result of insertions, deletions, and modifications
of data

As an example, suppose, we want to insert a (new) blue
car, with owner Mills, into the vehicle object base This
nsertion can be expressed by two subsequent node add:i-
tions, shown 1n Figure 14 First, we add an owner with
name Mills Then, we insert a blue car with owner Mills

Assuming that the owner’s name of the just inserted car
1s really Mailes, we can do the following GOOD operations
to reflect this modification, shown in Figure 15 First, we
use a node addition to mark the owner with name Malls
(If the “name”-edge umquely 1dentifies an owner, we wll
have marked one node ) Using an edge deletion, we disas-
sociate the printable node with print label Muills from the
marked owner object An additional edge addition asso-
ciates the marked owner with the name Mules, and finally
use a node deletion to remove the marking object

3.5 Meta modeling

Many data models have the ability to specify a scheme
which has as instances the vahd database schemes of that
model This technique 18 commonly referred to as meta
modeling Meta modeling allows for the application of the
data model operations to database schemes

In Figure 16 we show a meta scheme for valid GOOD
object base schemes The node labels “N”, “E”, “NT”,
“ET”, and “S” stand for node, edge, type of node (non-
printable or printable), type of edge (functional or not

/@ &l
type type
N cdge E E node N

label label
N

Figure 16 The meta scheme of the GOOD model
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Figure 17 Browsing through the scheme using the meta
object base

functional), and string, respectively The edge labels
“edge”, “type” and “label” are self explanatory The edge
label “node” indicates the node in which the edge arrives

If we are now 1nterested 1n the node labels pointed at by
edge labels emanating from the “PS”-nodes 1n the object
base scheme of Figure 2, we can obtain these labels by
applying the GOOD transformation language to the meta
object base This GOOD transformation, consisting of a
node addition and an edge addition, 1s shown 1n Figure 17

4 Object-orientedness of GOOD

In Section 2 and Section 3 we discussed GOOD as a sim-
ple model to rigorously study graphical database end-user
interfaces Here, we will concentrate on the GOOD model
as a data model More specifically, we will consider the
GOOD model 1n the context of object-oriented database
models [2,3,12,21] This analysis will yield two insights
first, 1t will 1llustrate the modeling power of the GOOD
model, and second, 1t will propose an explicit tool to study
graphical end-user interfaces for object-oriented database
systems Our analysis was guided by the Object-Oriented
Database System Manifesto [2]

4.1 Modeling features

4.1.1 Complex objects and object-identity

Complez objects are typically built from primitive objects
(natural numbers, booleans, strings etc ) [1,2] according
to certain object constructors, such as tuples, sets, and
hists Clearly, the GOOD model supports such complex
objects

The notion of object-identity refers to the existence of
objects in the database independent of their associated
properties As stressed from the outset, object-identity 1s
a basic feature of the GOOD model

4.1.2 Classes, hierarchies and inheritance

All object-oriented databases support some form of nher-
wtance, 1 e, 1t 1s customary to define new classes as sub-
classes of existing ones (e g [12,21]), therefore orgamzing
the classes 1n a class hierarchy

v o VY
158,
A
C color
h 0
own

o

Figure 18 An object base scheme with subclasses

Jones
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Figure 19 Speaifying a query using inheritance

In the GOOD model, classes can be associated with
node labels 1n schemes Functional edge labels can then
support the notion of subclass However, 1t 1s clear that
not all functional edge labels 1n an object base scheme can
be interpreted as a subclass-relationship Therefore, we
will mark 1n bold the functional edges in the scheme graph
we wish to interpret as subclass edges (we will imphcitly
assume that the subclass edges do not form a “cycle” in
the object base scheme)

For example, we can consider the “isa”-edges in the
vehicle object base scheme shown i1n Figure 2 as subclass-
edges The effect to the user 1s the same as 1f all properties
of vehicle objects were attached to the corresponding car
and plane objects (Clearly, this transformation can be
simulated by a number of edge additions ) The user can
now apply the vehicle operations directly to cars E g,
suppose we want to know the models of cars owned by
Jones This query can now be specified as in Figure 19

(top)

4.2 Language features

4.2.1 Methods, encapsulation and ad-hoc query
language

In this section, we define the concept of method in the
GOOD model and discuss encapsulation As for the ad-
hoc query language, we refer to Section 3 1

A GOOD method 1s a named procedure associated with
alabeled node ® It has parameters, a method specification,
a method body and a method interface Throughout this
section, let S be an object base scheme

3This node corresponds to a class, as described 1n Section 4 1 2
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Figure 20 Examples of method specifications
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Figure 21 The interfaces of methods L and M

The method specification contains the method’s name,
1ts associated node label (class) and its parameters For-
mally, the method spectfication Spq of a method M 15 a
couple (O, fu), where Oaq € NPOL U POL 1s called
the ownerand faq 1s a total function, foq Lyy - NPOLU
POL, with L » a fimite (possibly empty) set of labels faq
assoclates with each of 1ts labels a parameter Graphically
(O, Faq) 18 represented by a diamond-shaped node that
1s labeled by M, with one unlabeled outgoing edge to a
node labeled by Oy and a labeled outgoing edge for each
label A € L4 to a node labeled by fi(A) No two edges
point to a same node

As an example, consider Figure 20, 1n which two meth-
ods are specified The first method 18 L = (N,0) L has as
owner the non-printable node label N and has no parame-
ters The second method 1s M = (P, fpr) M has as owner
the non-printable node label P and has two parameters,
ie, far associates with the label Ib the printable node la-
bel N and fyr associates with the label ub the printable
node label N

In general, it may be anticipated that a method call has
“side effects” 1n the form of objects and edges which are 1n-
troduced to perform intermediate computations Some of
these side effects will be desirable, some other unwanted
Since a user needs to be protected from unwanted side
effects, our methods have an associated interface which
specifies only the desired side effects Formally, the inter-
face Iy of a method M 18 an object base scheme (We
will also require that if (L, f) 1s a production mn the ob-
ject base scheme S and (L, g) 1s a production Iaq then
dom( f) N dom(g) must be empty )

The method interface for method L 1s shown in Fig-
ure 21 (left) and that for method M 1s shown 1n Figure 21
(r1ght)

The method body specifies the implementation of the
method Formally, the method body Bay of a method M
1s a sequence of parameterized operations Parameterized
operations are normal operations (1e , NA, ND, EA, ED,
AB or MC (method call, see further)) or normal opera-
tions where the source pattern J 1s augmented with one
diamond-shaped node labeled by M, called the M-head-
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Figure 23 The body of method M

node, and with edges leaving that node At most one un-
labeled edge can leave the M-head-node It has to point
to a node mo labeled by O, At most one edge for each
label A of Loq can leave the M-head-node It has to point
to a node m; labeled by fiq(A) No other edges can leave
the M-head-node

As an example, suppose L 1s the method computing the
larger than relation over the natural numbers as repre-
sented 1n Figure 10 In Section 3 1, we computed this re-
lation as a query using three primitive GOOD operations
(see Figure 11) We can represent these three operations
as consecutive steps in the body of the method L, as shown
1n Figure 22

As another example, suppose M 18 the method return-
ing all parts 1n the vehicle object base having a weight
strictly included between a given lower and upper bound
(cfr. 12) Using the method L, the body of M can be
drawn as in Figure 23 It consists of three steps The
second and third are primitive GOOD operations (Note
the parameter binding in the third step ) The first step 1s
a method call of the method L, 1t 1s used to compute the
larger than relation

The method call 15 the operation that invokes the ex-
ecution of the method body in a context specified by a
pattern and actual parameters Formally, let 7 = (N, E)
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Figure 24 Examples of method calls

be an object base instance and 7 = (N', F) a pattern §
Let M be a method of S, m be a node of N’ that 15 labeled
by Oaq and g be a total function, g Lag — N’ where g(})
must have the label faq(A) The method call 1s specified
by MC[J,S,Z, M, m,g] and 1s represented by the pattern
J augmented with a bold diamond shaped node, labeled
M, and from this node an unlabeled bold edge to m and
a bold edge for each A € L to the node g(A)

The semantics of the method call 1s then that the steps
1n the body of the method are executed consecutively, but
only for these nodes 1n the instance under consideration
that match the node in the pattern to which the method
points, and only with the actual values of the parameters
Formally, the method call MC[7,S,Z, M, m,g] = (§',T')
results 1n a new scheme &’ and a new instance I’ over
S’ defined as follows 1f there 1s no embedding of 7 1n 7
then (&8, I') = (8, I), otherwise, there are embeddings of
J m I, called bindings embeddings Let (S1,Z;) be the
result of the execution of the parameterized operations in
the bodv of method M The execution of a parametrized
operation 1s equal to the execution of the associated nor-
mal operation, for each embedding e of this parameterized
operation 1n T for which there 1s a binding embedding b
with e(mo) = b(m) and e(my) = b(g(A)) * The new
object scheme &’ 18 obtained by augmenting the labels in
S with the labels in Iy and replacing the set P of pro-
ductions i § with the set of productions P’ = {(Z, f)
with (L, f) in P if there 1s no (L, f') in Ia (the interface
of M), or there 1s a (L, f1) in P and (L, fz) in Iy with
f = fiu f2} Finally, the new instance I’ 1s defined as
the mazimal subinstance of 71, the scheme of which 15 &’

For example, the method call of Figure 24, a method
call of L only, computes the numbers larger than 50, sub-
sequently the method M searches for all parts having
weights strictly included between 10 and 100

Hence the result of the method call of M in Figure 24 1s
an object base over the scheme consisting of the produc-
tions in Figures 2 and 21, the object base 1s obtained by
adding one R-labeled node to the object base in Figure 1
Two non-functional edges with label “cont” leave this R
node, indicating the parts with weights between 10 and
100 Note that the L-nodes created to compute the larger

“mo and m) were defined 1n the method specification of method
M

Figure 25 An example of method used for updating

than relation are not a part of the resulting instance

An important property of object-oriented methods 1s
that it provides encapsulafion the result of a method
should not depend on the actual implementation of that
method, 1 e , methods should not have side effects Clearly,
GOOD methods provide encapsulation, in the sense that
the scheme of the result only depends on the interface of
the method, 1 e , the user does not have to know the body
of the method If the user knows the method specification
and 1ts interface, he can apply the method and know the
structure of the result, no unwanted side effects will occur

As a final example of methods, we consider a method U
for updating owner names 1n the vehicle object base (cfr
Figure 15) The specification of the method U 1s shown
in Figure 25, top part, the method body 1s shown 1n the
bottom part of Figure 25, and the method interface 1s
empty

4.2,2 Other Language Features

Most often, computational completeness 1n a database sys-
tem 1s achieved by embedding the data manipulation lan-
guage 1nto a complete programming language such as Pas-
cal or C The awkwardness of this process 1s commonly
referred to as the impedance maich problem Research on
object-oriented database systems have therefore advocated
to either support a computationally complete database
language, or to design the data language so that 1t can
be easily integrated into a complete language {2,21] We
view the GOOD data transformation language augmented
with the notion of methods as such a data language In-
deed, throughout the paper, we argued that the GOOD
data transformation language 1s suitable as a data manip-
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ulation language Furthermore, 1n [9], we have shown that
the GOOD data transformation language can express the
recursive functions, thus establishing 1ts expressiveness
Finally, although not shown in this paper, the notion of
method and encapsulation should facilitate the integration
of the GOOUD data transformation language into a com-
plete (preferably object-oriented) programming language

The notion of eztensibility refers to the facility of freely
adding new data types, so that these types have the same
status as system defined types We believe that our treat-
ment of encapsulation and methods 1s broad enough to
support the extensibility feature of object-oriented data
models

The concepts of overriding, overloading , and late bind-
ing refers to the usage of the same name for different op-
erations and the consequent run time binding We do not
see any 1nherent difficulty to support these concepts in an
implementation of the GOOD model
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