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Abstract—With the increasing public awareness of the complexity 
of road safety phenomenon, much more detailed aspects of crash 
and injury causation rather than only crash data (e.g., the 
number of road fatalities) are extensively investigated in the 
current road safety research. Safety performance indicators 
(SPIs), which are causally related to the number of crashes or to 
the injury consequences of a crash, are thus rapidly developed 
and increasingly used. Furthermore, to measure the multi-
dimensional concept of road safety which cannot be captured by 
a single indicator, the exploration of a composite road safety 
performance index is attractive and desirable. This study 
proposes a hierarchical fuzzy TOPSIS method to combine the 
multilayer SPIs into one overall index by incorporating experts’ 
opinions. Using the number of road fatalities per million 
inhabitants as a relevant point of reference, the proposed method 
has proven valuable as an alternative way in creating a composite 
road safety performance index for a set of European countries. 
Meanwhile, it effectively handles experts' linguistic expressions 
instead of crisp values and takes the layered hierarchy of the 
indicators into account which is seldom considered in the current 
index research. 

Keywords-road safety performance indicators; composite index; 
multi-criteria decision making; TOPSIS; fuzzy set theory; 
hierarchical structure 

I.  INTRODUCTION 
As one of the most fast growing sectors, transport system is 

expected to experience an accelerated expansion in the near 
future. However, rapid growth of traffic volume, especially the 
motorized road mobility, has also resulted in continuously 
increasing safety problems. Worldwide, an estimated 1.2 
million people are killed in road crashes each year, and as 
many as 50 million more are injured [1]. It not only imposes 
huge economic costs representing between 1 and 3 percent of 
GDP in most countries, but also causes great emotional and 
financial stress to the millions of families affected. More 
seriously, projections indicate that these figures will increase 
by about 65% over the next 20 years unless there is new 
commitment to prevention [1].  

Given the high number of road casualties and the 
corresponding suffering and socio-economic costs, measures 
are urgently needed to reduce this number and make progress 
in road safety. In this respect, safety performance indicators 
(SPIs), which are causally related to the number of crashes or 
to the injury consequences of a crash (e.g., seat belt wearing 
rate), are rapidly developed and increasingly used, especially 
over the last decade (e.g., [2-4]). Knowledge on these 
indicators is valuable in understanding the processes that lead 
to crashes, determining the main risk factors, identifying the 
corresponding interventions, and monitoring the effectiveness 
of the safety actions that are taken.  

However, various underlying risk factors of road safety 
exist, and each risk factor (e.g., protective system) could be 
possibly represented by several appropriate SPIs (e.g., seat belt 
wearing rate in front and rear seats, respectively) constituting a 
layered hierarchy. Thus, a simple comparison per indicator 
only shows a small piece of the road safety picture, and it can 
be misleading since different countries may operate in different 
circumstances with different focal points. Consequently, to 
measure the multi-dimensional concept of road safety which 
cannot be captured by a single indicator, the exploration of a 
composite road safety index is attractive and desirable. The 
index thus presents the overall road safety picture by capturing 
a multitude of risk information in one index score, and offers 
advantages in terms of communication, benchmarking, and 
prioritizing road safety actions [5,6].  

Compared to other fields such as environment, economy, 
and society, the development of a composite index for road 
safety is relatively new. This is because the traditional research 
mainly focuses on the road safety final outcomes in terms of 
fatalities per head of population, vehicle fleet or other measures 
of exposure [7]. However, they are limited to the “worst case 
scenario” in the unsafe operational conditions of traffic system, 
and are insufficient in explaining more detailed aspects of crash 
causation and injury prevention. Recent studies (e.g., [5,8-10]) 
have been carried out for the development of a composite road 
safety index, in which both objective weighting methods (e.g., 
principal component analysis, factor analysis, data 
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envelopment analysis, neural networks and rough set theory) 
and subjective weighting methods (e.g., analytical hierarchy 
process and budget allocation) were adopted. However, there 
are still some limitations in practice that need to be paid 
attention to. Firstly, relatively small number of basic indicators 
was considered, for example, in [9] and [10], only one 
quantitative indicator was selected for each risk factor, which 
might be insufficient in reflecting the entire situation of the risk 
factors. While in [5] and [8], although one or several indicators 
were suggested for each factor, all of them were treated to be in 
the same layer, and the information on the layered hierarchy 
was ignored. Secondly, of all the weighting methods mentioned 
above, those objective ones rely mostly on the quality of 
information about the indicators. In other words, they are 
usually used with the precondition that all the indicators are 
measurable and quantitative. If some of them are specified with 
either ordinal measures or the help of expert subjective 
judgments, these methods may not be applied directly. 
Moreover, concerning those subjective weighting methods 
based on experts' opinions, it is known that experts prefer to 
give linguistic valued assessments rather than crisp value 
judgments, such as ‘low’, ‘relatively low’, and ‘high’, 
‘extremely high’. This phenomenon results from inability to 
explicitly state their preferences due to the fuzzy nature of the 
comparison process. In this case, precise mathematical 
approaches are not enough to tackle such uncertain variables 
and derive a satisfactory solution [11]. 

In this study, we investigate the Technique for Order 
Preference by Similarity to Ideal Solution (TOPSIS) [12], 
which is one of the well-known classical multi-criteria decision 
making (MCDM) methods. To deal with the above-mentioned 
linguistic expression given by experts and the layered hierarchy 
of the indicators, we propose a hierarchical fuzzy TOPSIS 
model to combine the multilayer SPIs into one overall index by 
incorporating experts’ opinions. Using the number of road 
fatalities per million inhabitants as a relevant point of reference, 
the proposed method has proven valuable as an alternative way 
in creating a composite road safety performance index for a set 
of European countries.  

II. SAFETY PERFORMANCE INDICATORS  
Based on a review of safety policies in the European Union 

and its member states, a number of road safety risk factors 
were designated as central to road safety activities in Europe 
and were selected for the development of SPIs [2,6]. They are: 
alcohol and drugs; speed; protective systems; vehicle; roads; 
and trauma management. Moreover, each risk factor needs to 
be measured by at least one performance indicator which is 
policy relevance, data availability and reliability. In this study, 
we construct a hierarchical structure of SPIs as in Fig. 1. More 
specifically, for alcohol and drugs, the percentage of drivers 
disrespecting the alcohol limit is the indicator (A1); the speed 
indicator is the percentage of drivers exceeding the speed limit 
in built-up areas (S1); the protective systems are represented by 
the seat belt wearing rate in front and rear seats, respectively 
(P1 and P2); the age distribution and the composition of the 
vehicle fleet are the two main aspects reflecting the vehicle 
performance, and totally four indicators are selected, which are 
the share of passenger cars of maximum five years old (V1), 

the median age of the passenger car fleet (V2), the share of 
motorcycles and heavy goods vehicles (HGV) in the vehicle 
fleet, respectively (V3 and V4); the motorways density (R1) 
and the share of motorways in total road length (R2) describe 
the roads domain, and for trauma management the health 
expenditure as share of the gross domestic product (GDP) is 
the selected indicator (T1).  

 

Figure 1.  The hierarchical structure of the SPIs 

From a wide range of international databases and recent 
publications of international working groups [13-16], values 
related to 2003 are obtained for the developed 11 SPIs of 21 
European countries being Austria (AT), Belgium (BE), Cyprus 
(CY), Czech Republic (CZ), Denmark (DK), Estonia (EE), 
Finland (FI), France (FR), Germany (DE), Greece (EL), 
Hungary (HU), Ireland (IE), Italy (IT), the Netherlands (NL), 
Poland (PL), Portugal (PT), Slovenia (SL), Spain (ES), Sweden 
(SE), Switzerland (CH), and United Kingdom (UK). In the 
following sections, the above 11 SPIs are combined into an 
overall road safety performance index for each country by 
using the hierarchical fuzzy TOPSIS method, and the 2003 
number of road fatalities per million inhabitants for these 21 
countries will serve as the reference point of the index results. 

III. THE HIERACHICAL FUZZY TOPSIS 
Hwang and Yoon in 1981 developed TOPSIS as one of the 

well known classical MCDM methods. It bases upon the 
concept that the chosen alternative should have the shortest 
distance from the positive-ideal solution (PIS) and the farthest 
distance from the negative-ideal solution (NIS), in which the 
PIS is formed as a composite of the best performance values 
exhibited by any alternative for each criterion, and the NIS is 
the composite of the worst performance values. Proximity to 
each of these performance poles is measured in the Euclidean 
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sense (e.g., square root of the sum of the squared distances 
along each axis in the ‘criterion space’), with optional 
weighting of each criterion. Since the construction process of 
this method is transparent which makes it easily understood by 
the general public, and can be used to support a desired policy, 
during the last three decades, a large amount of literature exists 
involving TOPSIS theory and applications [17].  

However, due to the ever increasing complexity of today’s 
performance evaluation and decision making activities, the 
application of the classical TOPSIS methods may face serious 
practical problems from the criteria (which usually construct a 
hierarchical structure) to the weights (which perhaps contain 
imprecision or vagueness inherent in the information such as 
linguistic expression instead of crisp values given by experts). 
Therefore, we propose a hierarchical fuzzy TOPSIS method as 
a nature extension of the classical TOPSIS. The main 
procedure of this method has in the following ten steps: 

Step 1 Identify a decision matrix 

To obtain the performance of a set of alternatives on a 
given set of criteria, a decision matrix, , of m×n dimension is 
constructed firstly. Consider a two-layer situation of m 
alternatives Ai (i = 1, 2, … , m), each including n main criteria 
(MC), and r sub-criteria (SC). Assume each main criterion has 
rj sub-criteria, thereby the total number of sub-criteria r is equal 
to the sum of rj (j = 1, 2, … , n). ijkx�  represents the value of the 
kth sub-criteria within the jth main criteria of the ith alternative, 
which can be crisp data or linguistic variables (e.g., low, 
medium, and high), and can be further represented by fuzzy 
numbers, e.g., ( , , )ijk ijk ijk ijkx a b c=� . Thus, a hierarchical fuzzy 
multi-criteria decision-making problem can be concisely 
expressed in matrix format as in (1): 

1 2

1 2

1 2

1 2
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 (1)

Step 2 Normalize the decision matrix 

All the elements in the decision matrix must be normalized 
to the same units, so that all possible criteria in the decision 
problem can be considered simultaneously. Here, convert the 
decision making matrix ( ) to a dimensionless matrix ( ) is 
done by using linear scale transformation shown in (2). 

*
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�
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(2)

where ijkr�  are normalized values. * * * *( , , )jk jk jk jkx a b c=�  and 

( , , )jk jk jk jkx a b c− − − −=�  present the largest and the lowest value of 
each sub-criterion, respectively. 

Step 3 Determine the main criteria weight matrix MCw�  

Determination of the relative importance of each criterion 
is critical and several approaches exist. In this study, the 
geometric mean method is used to combine different 
individual weights given by the group decision makers into a 
single collective weight for each corresponding criterion. 

1 1

2 2

MC
j j

n n

MC w
MC w

w
MC w

MC w

� �
� �
� �
� �
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� �
� �
� �
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�
�

� �
�

�
� �

�

  (3)

where ( )1,2, ,jw j n=� �  is the geometric mean of the main 
criteria weight scores assigned by the K experts, which is 
calculated according to (4). 

1 2( ) ( ) ( ) KK
j j j jw w w w= ⋅ ⋅ ⋅� � � ��  (4)

where K
jw�  is the weight score assigned by the Kth decision 

maker.  

The weights jw�  are also linguistic variables (e.g., 
important and unimportant), and can be represented by fuzzy 
numbers, e.g.,

 1 2 3( , , )j j j jw w w w=� . 

Step 4 Obtain the sub-criteria weight matrix SCw�  
concerning the corresponding main criteria 

Based on the same method, the importance weight scores 
of the sub-criteria with respect to the corresponding main 
criteria are presented in (5). 
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 (5)

where ( )1,2, ,
jjrw j n=� � is the geometric mean of the sub-

criteria weight scores with respect to the corresponding main 
criteria given by the K experts. 

Step 5 Calculate the final weight score for each sub-
criterion 

The final weight score for each sub-criterion is the product 
of the main criterion weight score and the sub-criterion weight 
score with respect to the corresponding main criterion as 
shown in (6). 

( )
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(6)

where SCjW�  represents the final sub-criteria weight matrix 
concerning the jth main criterion. MCjw�  and SCjw�  denote the 
jth main criterion weight score and the sub-criteria weight 
scores with respect to this main criterion, respectively. 

Step 6 Compute the weighted normalized decision matrix 

By multiplying the fuzzy criteria values and the final fuzzy 
weight scores of each sub-criterion, the weighted normalized 
fuzzy decision matrix V�  is achieved as calculated by (7). 

( ) , ,ijk ijk SCj jv r w j= ⋅ ∀� � �  (7)

The result of (7) can be summarized as (8). 
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Subsequently, the fuzzy addition principle is used to 
aggregate the values within each main criterion as follows. 

'

1
, 1, 2, , .

jr

ij ijk
k

v v j n
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= =�� � �   (9)

The matrix V�  is thus converted into 'V� : 
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Step 7 Identify the fuzzy positive ideal solution, *A� , and 
the fuzzy negative ideal solution, A−� . 

We now define the fuzzy positive ideal solution (FPIS), 
i.e., * * *

1[ ,..., ]nA v v=� � �  and fuzzy negative ideal solution (FNIS), 
i.e., 1[ ,..., ]nA v v− − −=� � � . The *

jv�  and jv−�  are the fuzzy numbers 
with the largest and the smallest generalized mean, 
respectively. The generalized mean for fuzzy number 

( , , )ij ij ij ijv a b c=� , j∀ , is defined as: 

2 2

( )
[3( )]

ij ij ij ij ij ij
ij

ij ij

a c a b b c
M v

a c
− + − +

=
− +

�   (11)
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For each column j, we find the greatest generalized mean 
as *

jv�  and the lowest generalized mean as jv−� . Consequently, 

the FPIS ( *A� ) and FNIS ( A−� ) are derived. 

Step 8 Obtain the separation measures *
iS�  and iS −�

 
The separation measures are defined as: 

* *

1
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where ( , , )ij ij ij ijv a b c=� represents arbitrary element of matrix 
'V� ; * * * *( , , )jv a b c=�  and  ( , , )jv a b c− − − −=�  are the fuzzy 

numbers with the largest generalized mean and the smallest 
generalized mean, respectively. 

Note that both *
ijD�  and ijD−�  are crisp values now. 

Therefore, the separation measures *
iS�  and iS −�  can be 

calculated according to (12) and (13). 

Step 9 Compute the relative closeness to ideals 

The relative closeness index is used to combine *
iS�  and 

iS −�  indices obtained in Step 8, which is calculated as follows: 

*/( )i i i iC S S S− −= +  (16)

Step 10 Prioritize Alternatives 

According to the composite index value Ci, the set of 
alternatives can be ranked from the most preferred to the least 
preferred feasible solutions. Ci is also called the overall or 
composite index score of alternative Ai. 

IV. APPLICATION AND DISCUSSIONS 
In this section, we apply the proposed hierarchical fuzzy 

TOPSIS method to combine the 11 layered SPIs (see Fig. 1) 
into an overall road safety performance index for the 21 

European countries. The indicator values are all crisp in this 
study, and they constitute a hierarchical decision making 
matrix, D� , whereas the weight scores for the main risk factors 
and the (sub-)indicators are given by eight road safety experts 
with linguistic variables. 

According to the hierarchical fuzzy TOPSIS method 
described in Section III, the hierarchical decision making 
matrix need to be normalized and converted into a 
dimensionless one, which is 'D� . In this case, 5 out of 11 SPIs, 
(i.e., the percentage of surveyed car drivers disrespecting the 
alcohol limit (A1); the percentage of surveyed car drivers 
exceeding the speed limit in built-up areas (S1); the median 
age of the passenger car fleet (V2); the share of motorcycles in 
the vehicle fleet (V3) and the share of HGV in the vehicle fleet 
(V4)) are the cost indicators, while the remaining six are 
benefit ones. After normalization, all the indicator values in the 
decision matrix 'D�  are expected to be the higher the better.  

Moreover, based on the triangular membership function, 
the weight scores expressed by linguistic terms are transferred 
into positive triangular fuzzy numbers as in Table I. 

TABLE I.  TRIANGULAR FUZZY NUMBERS FOR THE 
LINGUISTIC TERMS OF INDICATOR WEIGHTS 

 

Linguistic terms Triangular fuzzy numbers 
Absolutely unimportant (0, 0, 1/6) 

Unimportant (0, 1/6, 2/6) 
Less important (1/6, 2/6, 3/6) 

Important (2/6, 3/6, 4/6) 
More important (3/6, 4/6, 5/6) 

Strongly important (4/6, 5/6, 1) 
Absolutely important (5/6, 1, 1) 

 

By calculating the product of each main risk factor weight 
scores and the (sub-)indicator weight scores with respect to the 
corresponding risk factor, we obtain the final weight scores for 
each indicator. Subsequently, the weighted normalized fuzzy 
decision matrix V�  is achieved by computing the product of 
the normalized hierarchical decision matrix 'D�  and the fuzzy 
weight scores for each indicator. After aggregating the values 
belonging to each main risk factor by the fuzzy addition 
principle, we obtain the final weighted normalized fuzzy 
decision matrix � 'V . 

It should be mentioned here that each element in 'V�  is a 
fuzzy number, so its generalized mean ( )ijM v�  should be 
figured out according to (11). The largest generalized mean 
and the smallest generalized mean of each indicator could then 
be picked out constituting the FPIS ( *A� ) and the FNIS ( A−� ). 
Now, the Euclidean distances *

ijD�  and ijD−�  are calculated as in 

(14) and (15), and the separation measures *
iS�  and iS −� , as well 

as the final composite index scores Ci are subsequently 
obtained. The results are presented in Table II, together with 
the rankings based on the number of road fatalities per million 
inhabitants. 
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TABLE II.  THE RESULTS FROM THE HIERARCHICAL FUZZY TOPSIS 
AND THE NUMBER OF FATALITY PER MILLION INHABITANTS (F) 

 

Country C Ranking F Fatality 
Ranking 

Austria 0.544 10 115 11 
Belgium 0.501 12 117 12 
Cyprus 0.297 21 134 17 

Czech Republic 0.463 15 142 18 
Denmark 0.672 3 80 6.5 
Estonia 0.355 20 121 13.5 
Finland 0.540 11 73 4 
France 0.560 9 101 9 

Germany 0.679 2 80 6.5 
Greece 0.396 18 146 19 

Hungary 0.413 17 131 16 
Ireland 0.562 8 84 8 
Italy 0.420 16 105 10 

Netherlands 0.630 6 63 3 
Poland 0.395 19 149 21 

Portugal 0.469 14 148 20 
Slovenia 0.592 7 121 13.5 

Spain 0.499 13 130 15 
Sweden 0.715 1 59 1 

Switzerland 0.653 5 74 5 
United Kingdom 0.654 4 61 2 

 

The ranking results derived from the hierarchical fuzzy 
TOPSIS method show that Sweden is the best performing 
country, which is the same as the fatality ranking. Taking a 
close look at the two ranking results, we find that over half of 
the countries have the difference in rankings with no more than 
two positions, and about two thirds are no more than three 
positions, which indicates the high similarity between the 
derived road safety performance index and the final outcome. 
The Pearson's correlation analysis further reveals that the 
composite road safety performance index score of the 21 
European countries is highly correlated with their number of 
fatalities per million inhabitants, which is -0.810. 

V. CONCLUSIONS  
Composite indexes are increasingly recognized as a useful 

tool in policy analysis and public communication. In this 
study, we mainly focused on the use of multi-criteria decision 
making framework for composite index research in the context 
of road safety. In this respect, a set of hierarchical safety 
performance indicators was combined into an overall index by 
applying one of the well-known MCDM techniques, i.e., the 
TOPSIS method. Meanwhile, to deal with the subjective kind 
of uncertainty on data (i.e., linguistic variables given by 
experts) and the hierarchical structure of the indicators, a 
hierarchical fuzzy TOPSIS method was realized and proved 
valuable in creating a composite road safety performance 
index. First, the construction process of this method is 
transparent which makes it easily understood by the general 
public, and can be used to support a desired policy. Second, 
the linguistic valued judgments from experts which are usually 

expressed by using fuzzy numbers can be easily integrated in 
the classical TOPSIS. Moreover, the realization of a 
hierarchical TOPSIS method which enables taking the 
hierarchical structure of indicators into account makes it 
particularly suitable in combining layered road safety 
performance indicators into one index. In the application case, 
the derived composite index scores shown a relatively high 
correlation with the number of road fatalities per million 
inhabitants, which indicates the effectiveness of the proposed 
hierarchical fuzzy TOPSIS method, and further implies the 
feasibility of applying this method to a great number of 
composite index studies in other wide ranging fields. 
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