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Abstract Context-aware computing is a paradigm for
governing the numerous mobile devices surrounding us.
In this computing paradigm, software applications con-
tinuously and dynamically adapt to different “contexts”
implying different software configurations of such de-
vices. Unfortunately, modeling a context-aware appli-
cation for all possible contexts is only feasible in the
simplest of cases. Hence, tool support verifying certain
properties is required. In this article, we introduce the
Context-Aware Application model (CAA), in which con-
text adaptations are specified explicitly as model trans-
formations. By mapping this model to graphs and graph
transformations, we can exploit graph transformation
techniques such as critical pair analysis to find contexts
for which the resulting application model is ambiguous.
We validate our approach by means of an example of
a mobile city guide, demonstrating that we can iden-
tify subtle context interactions that might go unnoticed
otherwise.

Key words context-aware model – model transforma-
tion – critical pair analysis – context adaptation – con-
text coverage

1 Introduction

Context-aware computing refers to the idea that mobile
devices (such as smart phones and tablet PCs) can sense
what is happening around them and respond accord-
ingly. One example application is a mobile city guide:
city visitors are carrying a portable device that alerts
them when they approach a point of interest (e.g. an
architectural curiosity, a special restaurant, . . . ). While
alerting the visitors, the city guide adapts itself to the

visitor’s preferences (e.g., language of use — English or
Arabic), profiles (e.g., child or adult) and abilities (e.g.,
pedestrian, bike, wheel-chair, . . . ).

Modeling such context-aware applications is a real
challenge, certainly given the rapidly increasing num-
ber of sensors in mobile devices (e.g., light, compass,
GPS, accelerometer, gyroscope, . . . ). Separation of con-
cerns remains a guiding design principle for such appli-
cations, hence good designers will model the applica-
tion such that the variables composing the contexts are
as independent as possible. For example, in the mobile
city guide, the choice of landscape or portrait mode for
the display screen is independent from the type of net-
work connection used to retrieve data to be displayed.
Nevertheless, the very nature of context-aware appli-
cations implies that some variables will affect one an-
other. For example, the mobile city guide should adapt
its data download behaviour depending on the available
network connection: using a wifi-connection with unlim-
ited download capacity should result in videos about the
nearby points of interest, while with a paying mobile
data connection the device should restrict itself to show-
ing low-resolution pictures only.

In that sense, a context-aware application can be
represented as a multi-dimensional design space where
the axes represent the variations that may occur for a
given context variable, and where each point in the de-
sign space represents the expected behaviour of an ap-
plication for a given configuration of context variables.
A model of a context-aware application then specifies
what happens when a given context variable changes,
i.e. what happens when we move from one point to an-
other. Making the realistic assumption that the number
of dimensions is large, it should be clear that even when
most axes of the design space are effectively indepen-
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dent, exploring and analyzing such a multi-dimensional
design space is a real challenge.

In this article, we present the Context-Aware Ap-
plication model (CAA), where context adaptations are
specified explicitly as graph transformation rules and
critical pair analysis [1] is used as a verification tool.
Starting from an initial application model (named the
origin context), the critical pair analysis allows to enu-
merate all reachable contexts, this way exploring the
context design space. Moreover, for those context vari-
ables that depend on one another, the critical pair analy-
sis also identifies the transformation sequences resulting
in conflicts, this way revealing contexts for which the
resulting application model is ambiguous.

The paper itself is set up as a feasibility study, where
we investigate how one could use critical pair analysis to
find contexts for which the resulting application model
is ambiguous. To that extent, we validate the Context-
Aware Application model (CAA) using a “proof-by-con-
struction” of a mobile city guide application which has
been deployed on an Android phone. Starting from a
non-trivial application model specifying the behaviour
of the mobile city guide in a single context called the ori-
gin context (1 UML class diagram specifying 18 classes;
3 UML activity diagrams specifying 12 tasks; 1 user-
interface model specifying 4 screen layouts) we define 11
context adaptations, each one of them specifying what
should happen when a single context variable changes.
With these transformations, we perform a critical pair
analysis, which reveals that 131 out of 256 contexts of
the 5 dimensional context space can be reached. The
remaining 125 contexts are unreachable because their
context-specific models are ambiguous: the sequence of
context transformations needed to obtain them contains
conflicts. As such, we demonstrate that using the CAA
model, a designer can identify subtle context interactions
that might go unnoticed otherwise.

The remainder of this article is structured as follows:
Section 2 presents the exemplar that is used through-
out the article to illustrate the core elements composing
the CAA model. Next, Section 3 provides a definition of
a context and relates it to other definitions drawn from
the literature. This serves as an introduction to the CAA
model in Section 4, which is then mapped onto graphs
and graph transformations in Section 5. To validate the
exploration and analysis mechanism, we demonstrate the
critical pair analysis on the exemplar of the mobile city
guide in Section 6. We discuss about the lessons learned,
the limitations of our approach and some design choices
in Section 7 leading to Section 8 that relates the CAA
model to existing model-driven engineering solutions for
specifying and verifying context-aware applications. Sec-
tion 9 concludes by summarising the contributions of this
article.

2 A Specification Exemplar: The Mobile City
Guide

The archetypical example for context-aware computing
is a mobile museum guide, where “museum visitors are
endowed with a portable device which reacts to changes
of contexts, [. . . ] alerting visitors with hints and stimuli
on what is going on in each particular ambient” [2]. In
that sense, the mobile museum almost obtained the sta-
tus of a “specification exemplar”: a self-contained, infor-
mal description of a problem in some application domain
proposed as unique input for the specification process [3].
Unfortunately, the mobile museum guide in its current
incarnation lacks the necessary reality check to make it
a true specification exemplar.

Indeed, on the one hand a good specification exem-
plar should be sufficiently small to allow for condensed
representation in academic papers and textbooks and al-
low for manual inspection and comparison of results. In
this respect, the mobile museum guide clearly qualifies,
as it has been used to demonstrate modelling practices
for context-aware applications [2,4]. On the other hand,
in spite of miniaturization, a good exemplar should also
represent a real-world specification task in such a way
that it has properties which are not immediately obvious
by inspection. This reality check also avoids the problem
that specifiers interpret reality in order to better suit
the specification. Reviewing the original mobile museum
guide exemplars (i.e. [2,4]) this reality check is some-
how missing as the example so far was mainly used to
illustrate the advantages of a single modelling approach.
Consequently, three Belgian research groups aiming to
facilitate the development of context-aware applications
have contacted the City of Mons tourism office, which
—in preparation of the Cultural Capital of Europe 2015
event— is preparing a mobile city guide. These three
research groups have mixed the touch of realism pro-
vided by the city of Mons with the archetypical mobile
museum guide example to deduce the mobile city guide
as a more realistic specification exemplar “promoting re-
search and understanding among multiple researchers or
research groups” [3].

In this section we list those elements of the exem-
plar relevant for the remainder of the article. Since we
do not have the space to provide a complete and de-
tailed description of the mobile city guide we refer the
interested reader to http://lore.ua.ac.be/Research/

Artefacts/mobilecityguide.

2.1 Mobile City Guide — Scope Description

The mobile city guide is an interactive application run-
ning on mobile devices (such as a smart phone or a tablet
PC) that presents information about points of interest
in the vicinity of the person carrying the device. To in-
crease interactivity, this information is displayed when
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Fig. 1 Mobile city guide presenting information about a
point of interest.

the user is approaching one of these points of interest.
The presented information can be of various kinds: pic-
tures, text, video, sound,. . . When approaching a point
of interest, the application should quasi-instantaneously
present a picture, a name and a small description and
allow a user to request more information if necessary.
Video and sound may be played on demand, depend-
ing on the availability of a connection to an external
database and memory available on the device.

Figure 1 shows a screenshot of how such a mobile ap-
plication might display a particular point of interest (in
this case, a church). The display shows active buttons
linking to video and music content concerning this point
of interest because there is an open connection to the
database providing extra media files. To guide the user
towards other points of interest situated in the neigh-
borhood, the mobile city guide displays the name, direc-
tion and distance to all points of interest in the vicinity.
In this particular case, Figure 2 illustrates what hap-
pens when the connection to the maps database is not
available; the application then uses information from the
global positioning system (GPS) to have arrows pointing
in the general direction.

2.2 Mobile City Guide — Context Variables

The mobile city guide is context-aware and therefore
tries to optimize its interactivity by taking into account
its current context of use. In this exemplar the mobile
city guide must adapt itself to the following variables:

Fig. 2 Mobile city guide guiding the user to other points of
interest.

User language preference: All texts and menus of the
mobile application should be presented depending on
the language preferences selected by the user. De-
pending on the language, texts might flow from left
to right (e.g., French, English) or right to left (e.g.,
Hebrew and Arabic). The mobile city guide must sup-
port at least one language in each category.

Screen orientation: the orientation of the device on which
the mobile city guide is running should affect the way
in which the information is displayed. The mobile city
guide must support at least portrait and landscape
mode.

Mobile data connection: Many (but not all) of the mo-
bile devices use a mobile data connection to connect
to the Internet over the mobile phone network. De-
pending on the tariff plan of the mobile data connec-
tion the mobile city guide may adapt how much data
is downloaded over this connection and whether it
should open/close the connection as quickly as pos-
sible, or leave it open for long periods of time. There-
fore, the mobile city guide must at least support the
following modes: (a) no data connection available; (b)
a pay per connection fee; (c) a pay per Mb connection
with restricted download capacity; (d) a connection
with unlimited download capacity.

Wifi availability: The availability of a wifi connection
may be exploited to proactively download and cache
information about points of interest in the vicinity,
in order to enhance and speed up user interaction,
and to reduce the need of using a slower and more
expensive mobile data connection. A wifi connection
can either be available or unavailable.
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Precision of geo-positioning: To guide the user to nearby
points of interest (An example is shown in Figure 2)
the precision of the built-in geo-positioning hardware
(GPS or GPRS) is a crucial factor. To adapt the be-
haviour for optimal guidance, the mobile application
guide must at least support the following precision
modes: 2 meters, 5 meters, 10 meters or 20 meters.

2.3 Mobile City Guide — Platform Independent Model

With the above requirements, the design space for the
context-aware model consists of five dimensions; each di-
mension representing between 2 and 4 possible values for
a context variable. As a result, the design space for the
complete mobile city guide spans 4× 2× 4× 2× 4 = 256
configurations of context variables. A complete require-
ments specification should state for each combination
what the desired application behaviour should be.

One possible way to describe the desired behaviour
for each of these configurations is modelling each configu-
ration in a so-called platform-independent model (PIM) [5].
Such a platform-independent model is suited for a re-
quirements specification for a mobile platform, as it al-
lows to abstract away from the device specific details
(operating system, display, . . . ) yet describes precisely
how an application should behave in each context.

Three aspects of a mobile application are especially
relevant in the context of such a platform-independent
model.

1. Structure model: Describing the structure of the ap-
plication in terms of classes and their relations; UML
class diagrams are well suited for this purpose. Fig-
ure 3 shows an example.

2. User Interface model: Describing the graphical user
interface independently of the particular widgets to
be used. Since the UML does not provide a nota-
tion for screen layouts, we relied on a special pur-
pose modeling language named CAP3 [6]. Figure 4
shows an example; we elaborate on the use of CAP3
in Section 7.

3. Activity model: Describing how the application may
be used to perform activities in order to reach users
goals; UML activity diagrams are well suited for de-
scribing these. Figure 5 shows an example.

Given that the design space for the complete mobile
city guide spans 256 configurations of context variables
and that each of these configurations in principle con-
tains an entire platform-independent model of the mo-
bile city guide, it is clear that automated support is desir-
able. We adopt a transformation-based approach, which
is explained in the following sections.

Fig. 3 The part of the class diagram CD0 specifying the
classes used to display information about a point of interest.

Fig. 4 The part of the CAP3 model CA0 specifying that
when the application is in the vicinity of a point of interest,
the display screen in portrait mode should include an icon, a
title, a description and a link to a video or sound clip.

3 Definition of Context

When people interact, they are using more than the ex-
plicit information that is exchanged. People are able to
capture and understand surrounding information, the
context of the discussion, and use it to interact more ef-
fectively. But when humans-computers takes place, this
crucial surrounding information has to be defined pre-
cisely in order for the application to understand it. A lot
of research has been conducted in the field of human-
computer interaction to define and model contexts as
well as its implication on software artifacts [2,7,8,9,10,
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Fig. 5 The part of the activity diagram AD0 used to ac-
tivate or deactivate the buttons when the video or sound
information is available.

11]. It is not the purpose of this article to discuss or
condense all the classifications of context, but it is im-
portant to elicit some of them to position the context
representation we propose to use. Therefore, it is impor-
tant to stress that we focus on context-awareness that
results in context adaptation impacting the interaction
between an application and its users.

The notion of context was introduced by Schilit and
Theimer [7] as location, identities of nearby people and
objects, and changes to those objects. Brown et al. [12]
define context as location, identities of the people around
the user, the time of day, season, temperature,. . . Preu-
veneers et al. [8] define context as the user, environ-
ment, platform and services. Elicitation definitions are
discussed in more detail by Dey and Abowd [9] who come
up with the following generalized definition:“Context is
any information that can be used to characterize the sit-
uation of an entity. An entity is a person, place, or object
that is considered relevant to the interaction between a
user and an application, including the user and appli-
cations themselves”. Bolchini et al. [2] expose a general
analysis framework for comparing these context models.
In contrast to these definitions, we are not interested in
the meaning or important entities nor the way context
information is collected, but more on its concrete repre-
sentation.

Bolchini et al. [2] propose a context classification
framework and use it to classify what they consider the
most interesting approaches to describe context available
in literature. We refer to their work for a more elaborate
overview of context modeling techniques. The context-
representation mechanism used in this paper falls in their

category E, “Context as a matter of selecting relevant
data, functionalities and services (data or functionality
tailoring)” for which they state among others the follow-
ing “Context definition is typically centralized, context
history and reasoning are often not provided” and “the
application as subject, the possibility to express both
variable context granularity, valid context constraints,
and multi-context models” [2]. Similar to the context
representation presented in this paper, they take a for-
mal approach. Most of these statements correspond to
our description and use of context.

We define context in a variable perspective, that does
not define entities that are considered part of the con-
text, but instead focuses on their status representation
in terms of variables. For a given application and at a
given time, the context will be unique. If two entities are
relevant for the application, the values of the variables
representing the state of these two entities are compos-
ing the context. Schmidt et al. [10] already use a vari-
able perspective, but at a lower level of abstraction, as
they are mapping each device sensor to a variable. They
aggregate different variables in order to obtain meaning-
ful contexts. They are considering that an application
can be in a multitude of contexts at the same time and
that these contexts do not interfere with one another.
Schmidt et al. group their contexts into sets of exclu-
sive contexts depending on their impact on the system,
which is closely related to our definition of variable.

Coutaz and Rey [11] also define context in terms of
variables, but they consider context to be a composition
of situations observed between a reference time t0 and
the actual time t. Each situation at a time t is related to
a user performing a certain task. This definition formal-
izes several important aspects of the definition by Dey
and Abowd and introduces the time dimension. All these
aspects are important when trying to build a runtime
infrastructure, but are less relevant for the goal of this
article, which focuses on design time and merely con-
siders the size of the composition of all these situations.
We thus use a more generic version of the definition of
Coutaz and Rey. Our definition of context is as follows:

Definition 1 [Context and context domain]
Let n ∈ N be the finite number of variables that repre-

sent the state of the entities relevant for a context-aware
application. For all i ∈ [1, n], each variable is defined
by a finite set Vi that represents all possible values. The
context domain is defined by C = V1 × V2 × . . .× Vn. A
context c = (v1, v2, . . . vn) ∈ C is a tuple of n values, one
for each variable domain Vi. Using the projection oper-
ator πi : V1 × V2 × . . .× Vn → Vi one can obtain the i-th
value of a context πi(c) = vi.

For the mobile city guide, the context domain is C =
Language × Orientation × Data connection× Wifi ×
Positioning precision where:
Language = {English,Dutch, French,Arabic},
Orientation = {portrait, landscape},
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Data connection = {noCon, pay/con, pay/Mb, unlimited},
Wifi = {wifiAvailable, noWifi} and
Positioning precision = {2m, 5m, 10m, 20m}.
Hence the mobile city guide context domain is a 5-dimensi-
onal space, covering 256 contexts in total. Each variable
corresponds to one dimension, and each point of the
space defines a particular context composed of one value
for each variable. For example, a possible context could
be c0 = (English, portrait, noCon, noWifi, 2m). We
refer to it as the origin context as we use it as a starting
point for reaching all other contexts.

Note that the theoretical number of contexts an ap-
plication has to adapt to increases exponentially in func-
tion of the number of variables, and polynomially in
function of the values these variables can take. Conse-
quently, scalability is certainly an issue and must be ad-
dressed.

4 The Context-Aware Application Model

To explore and analyze the context space we use a transfor-
mation-based specification called the Context-Aware Ap-
plication (CAA) model. Before exposing our techniques
to explore the context space, we formally define the con-
cepts used in a CAA model and the CAA model itself.

Definition 2 [Context-specific model] The specifica-
tion of an application for a given context c ∈ C is ex-
pressed using a model, that we denote as the context-
specific model Mc.

Typically, a context-specific model is specified as a
set of different platform-independent models. For exam-
ple, if we use UML as modeling language, a context-
specific model could be defined as a set of class diagrams,
activity diagrams, state machines, use case diagrams and
so on. Consequently, the domain of possible models that
can be expressed is infinite.

Definition 3 [Model Domain] The model domainM
is the set of all possible models that can be described using
the chosen modeling language.

In this article, we will restrict the models ofM to sets
containing at least one UML class diagram, one UML
activity diagram and one CAP3 model. Taking the ori-
gin context c0 of the previous section as an example,
its context-specific model Mc0 = {CD0, CA0, AD0} is
composed of the diagrams partially shown in Figure 3,
Figure 4 and Figure 5.1 The data to be displayed to the
user when he is approaching a point of interest is loaded
in the user language (i.e., English) as reflected in the
class diagram CD0. Moreover, as no wifi connection is
available and the user does not have access to a mobile

1 The entire context-specific model Mc0 is avail-
able at http://lore.ua.ac.be/Research/Artefacts/

mobilecityguide.

data connection, when some artifacts (either music or
video) are not locally available their corresponding but-
tons are deactivated as shown in the activity diagram
AD0. The CAP3 model CA0 specifies the user interface
when the mobile device is used in portrait mode. The
positioning precision is not perceptible in the part of the
diagrams shown in Figures 3, 4 and 5 as the precision is
only used by the algorithm and user interface during the
activity of guiding the user to the next point of interest.

When a context changes, the context-aware applica-
tion has to adapt accordingly, resulting in a new context-
specific model that only differs slightly from the previ-
ous one. Therefore, it is logical to represent a context
adaptation of a context-specific model by using a model
transformation. More precisely, given a context-specific
model Mc for the context c, the modification induced by
change of the application’s context to context d can be
specified by a model transformation rule denoted rc,d.
Applying this transformation rule to Mc results in a
context-specific model Md belonging to context d. We
assume that the transformation rule rc,d can always be
applied on the context-specific model Mc. This condi-
tion, that is not restrictive in practice as discussed in
Section 7, simplifies the CAA model.

Definition 4 [Context change] Let C be the context
domain of a context-aware application. A context change
over C (or simply a ’context change’ when C is implicit)
is a pair (c, d) ∈ C × C with c 6= d, representing the
change of the application context from context c to d.

Definition 5 [Model transformation (rule)]
A model transformation rule rc,d specifies the impact

of a context change (c, d), i.e., it yields Md if it would
be applied on the context-specific model Mc. The set of
all possible transformation rules is denoted R.

A model transformation is defined as a function t :
M→M.

For example, if we apply the rule rc,d to context-
specific model Mc, we obtain the model transformation
tc,d : Mc → Md. If the rule rc,d is also applicable to
another context-specific model Me, we obtain another
model transformation te,f : Me → Mf corresponding to
a context change (e, f).

In the example of the mobile city guide, what should
happen if at a certain point in time the wifi network be-
comes available? Starting from the aforementioned context-
specific model Mc0 for the origin context c0, one can
obtain a context-specific model Md for the context d =
(English, portrait, noCon, wifiAvailable, 2m) by ap-
plying the transformation rule rc0,d of Figure 6. In this
figure, the model transformation rule is presented as a
graph transformation rule with a left-hand side L and a
right-hand side R specifying the abstract syntax of the
model transformation rule. The effect of applying the
rule rc0,d to model Mc0 , resulting in model Md, is visu-
alised in Figure 6. As the impact of discovering a wifi

http://lore.ua.ac.be/Research/Artefacts/mobilecityguide
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network does not affect the user interface, only some
elements of the activity diagram (node 1:Activity of
Figure 6) and the class diagram (node 2:Class of Fig-
ure 6) are transformed.

For any given context, a special relation, called con-
text mutation, links this context with all the contexts
that only differ from it by one variable value.

Definition 6 [Context mutation] We define the func-
tion muti : C → P(C) such that muti(c) is the set of
i-mutations of the context c, i.e., muti(c) =

{d ∈ C | πi(c) 6= πi(d) ∧ ∀k ∈ [1, n] \ {i}, πk(c) = πk(d)}

Based on the context mutation function we can define
the more specific notion of context projection as follows:

Definition 7 [Context projection] We define the i-
th context projection function proji : C × C → C such
that proji(c, d) is the context with all variables’ values
equal to the corresponding value in c except for the i-
th variable value that is equal to its respective value of
d. More precisely, proji(c, d) = e ∈ muti(c) such that
πi(e) = πi(d).

Definition 8 [CAA model] A CAA model is a triple
(c0,Mc0 ,X ) ∈ C ×M × P(R) where c0 ∈ C represents
the origin context for which this application is entirely
specified in the context-specific model Mc0 ∈M.

The set X ∈ P(R) contains transformation rules
specifying the impact of a context change where only one
variable value is modified while the values of all the other
variables are equal to their respective value in c0. More
precisely, rc0,d ∈ X if ∃i ∈ [1, n] such that d ∈ muti(c0),
and rc,d ∈ X if ∃j ∈ [1, n] such that c ∈ mutj(c0) and
d ∈ mutj(c).

Conceptually, if we consider the context space with
c0 as origin, the set X contains the transformation rules
specifying a context change impact where the starting
context and the destination context are on the same vari-
able axis. This last constraint is induced by the separa-
tion of concerns principle a modeler would follow spec-
ifying a context-aware application. The rules rc,d with
c ∈ muti(c0) and d ∈ muti(c) are considered part of
X because a modeler would want to specify what the
impact is of a context mutation from a context-specific
model different from Mc0 . For example, it is natural to
think that after modeling a user’s language change from
‘English’ to ‘Arabic’, a modeler would prefer to specify
a rule representing a change from ‘Arabic’ to ‘Hebrew’,
two right-to-left read languages. To abstract away the
complexity of this sort of transformation rules from the
context coverage, a closure function is needed.

Definition 9 [Closure] We define the function
closurec : P(R)→ P(R) such that closurec(Y) is the sub-
set of transformation rules rc,d of Y closed under sequen-
tial composition seqComp. More precisely, closurec(Y) is

the set Z = Y ∪ {seqComp(rc,f , rf,e) | rc,f ∈ Z ∧ rf,e ∈
Z} In the remainder of this article we use Y∗c to denote
closurec(Y).

Given the set of transformation rules X and the context-
specific model for the origin context c0, obtaining the
specification of the application for a context d seems
simple. For each variable i, it is possible to find in X ∗c0 a
transformation rule that specifies the context i-mutation
from the i-th value of co (i.e., πi(c0)) to the i-th value of
d (i.e., πi(d)). To obtain the context-specific model of the
application for context d, it is then necessary to apply
consecutively the rules for each i. In practice, however, it
is likely that for some context d the variables that change
value between c0 and d are interdependent. This depen-
dency can be detected at the model level by a conflict
occurring between a pair of transformation rules corre-
sponding to the mutations that have to be sequentially
composed in order to obtain the model transformation
tc0,d : Mc0 →Md.

Definition 10 [Conflicting] For a context-specific model
M , we define the partial boolean function conflictingM :
R × R → B such that conflictingM (r, s) is true if and
only if the transformation rule s cannot be applied after
r on M i.e. r is not sequentially composable with s in
M .

Let us consider again the situation where a context
adapts to a wifi network becoming available, thus mov-
ing from c = (English, portrait, noCon, noWifi, 2m)
to d = (English, portrait, noCon, wifiAvailable, 2m)
by applying the transformation rule rc0,d of Figure 6.
On the other hand, consider the context adaptation of
an unlimited mobile data connection becoming available,
from c = (English, portrait, noCon, noWifi, 2m) to
e = (English, portrait, unlimited, noWifi, 2m) by
applying the transformation rule rc,e of Figure 7. Both
transformation rules rc,e and rc,d are in conflict because
both are modifying the onResume activity. Conceptually,
we decided to model the change of behaviour of an ac-
tivity by a change of the activity’s name. The real be-
haviour is specified at implementation level.

This example highlights the need for a verification of
the contexts covered by a given specification. The con-
flict between rc,d and rc,e reveals that it is impossible
to obtain the corresponding context-specific model from
the CAA specification, where a wifi is available and an
unlimited mobile data connection is established. This re-
veals a partial dependency between the variables related
to the wifi and the mobile data connection. The goal of
the context coverage construction is therefore twofold.
Firstly, it allows to validate the modeled design against
the requirements, not in terms of behaviour but in terms
of supported contexts. Secondly, it allows an analysis of
the independence of the variables constituting the con-
text.

Given a set of transformation rules X and the context-
specific model for the origin context c0, it is possible to
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Fig. 6 Application of the transformation rule rc0,d on the context-specific model Mc0 . rc0,d specifies the context change when
a public wifi is detected.

Fig. 7 Transformation rule specifying the adaptation of the
mobile city guide when an unlimited mobile data connection
is established

know if a given context d is part of the reachable con-
text. Intuitively context d is reachable if for each variable
i it is possible to find a transformation rule in X ∗c0 that
specified the context i-mutation from the i-th value of
c0 to the i-th value of d, and that these transformations
are not in conflict.

Definition 11 [Context coverage] We define the func-
tion coverage : C ×M×P(R)→ P(C) such that
coverage(c,Mc,Y) contains all possible contexts for which
it is possible to obtain the associated context-specific model
from context-specific model Mc by applying non-conflicting
transformation rules in Y. Formally,

coverage(c,Mc,Y) =

{c} ∪ {d|∃rc,d ∈ Y∗c }

∪{e | ∀i, j ∈ {1 . . . n}, i 6= j,

rc,Proji(c,e), rc,Projj(c,e) ∈ Y
∗
c∧

¬conflicting(rc,Proji(c,e), rc,Projj(c,e))}

5 Graph transformation

To enable the computation of the context coverage com-
putation, the abstract CAA model of Definition 8 needs
to be mapped to a formal executable language. Many of
the definitions of Section 4 do not need such a mapping.
Only those notions need to be mapped that are explic-
itly used and needed in the definition of context cover-
age (Definition 11). This is the case for the definitions
of context-specific model, model domain, model trans-
formation rule, closure and conflicting (Definitions 2, 3,
5, 9 and 10).

A graph transformation language is suitable as for-
mal executable language. On the one hand, it allows to
specify the abstract syntax of a context-specific model
as a typed attributed directed graph. On the other hand,
the model transformation rules specifying context adap-
tations can be represented as graph transformation rules.
An additional benefit of graph transformation is that
several tools exist that offer mechanisms to facilitate the
computation of context coverage. The language and tool
that has been used in our validation is AGG [13].

Given a CAA model (c0,Mc0 ,X ), the abstract syn-
tax of the context-specific model Mc0 is specified by a
graph denoted Gc0 . We decide to represent all diagrams
that make up the context-specific model Mc0 using a sin-
gle graph Gc0 in order to facilitate keeping track of the
existing relations between the different views (i.e., the
different diagrams) of the same element. For example,
for context c0 = (English, portrait, noCon, noWifi,
2m), the graph of Figure 8 specifies the abstract syn-
tax of the part of the context-specific model Mc0 pre-
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sented in Figure 6. Consequently the graph domain G
corresponding to the model domain M defined in Defi-
nition 3, includes the abstract syntax of all the models
included in M. Similarly, the set of model transforma-
tion rules X is mapped to a set of graph transformation
rules GX .

Definition 12 (graph transformation) We denote a
graph transformation by t : G −−→

r,m
H where G is the

source graph, r : L → R a graph transformation rule,
m : L→ G a match and H the result graph.

The match m is a function that links the elements
of the left-hand side L of the graph transformation rule
r to elements of the graph G the rule is applied to. A
constraint of our approach is that all rules rc0,d of X have
a unique match in the graph Gc0 . While this could seem
restrictive from a graph transformation perspective, this
is not the case for the specific use we make of it. We
discuss this further in Section 7.

Graph transformation rules can be enhanced with
application conditions to further constrain their appli-
cation [14]. Because this enhanced expressiveness is not
needed for specifying the impact of a context change, we
will not use it in the remainder of this article.

An example of a graph transformation rule rc0,d, spec-
ifying the adaptation of the mobile city guide when a
public wifi connection is established is given in the top
part of Figure 6. To be precise, the bottom part Tc0,d :
Mc0 → Md of the figure should also be replaced by its
graph equivalent t : Gc0 −−→

r,m
Gd.

Following Definition 9, the computation of the clo-
sure requires to sequentially compose graph transforma-
tion rules. Since version 2 of AGG [15], the sequential
composition seqcomp of two graph transformation rules
rc,d and rd,e can be achieved by creating the concurrent
rule for a rule sequence that corresponds to a new rule
rc,e. Figure 9 illustrates this, with rc,d the rule specifying
a change of the user language from ‘English’ to ‘Dutch’
and rd,e a change of the user language from ‘Dutch’ to
‘French’. The sequential composition results in a rule rc,e
specifying a language change from ‘English’ to ‘French’.

We used this sequential composition seqcomp(r, s)
in the closure computation of Algorithm 1. Note that
seqcomp is a partial function since it is only computable
for two graph transformation rules r and s if they can
be applied in sequence.

Algorithm 1 [closurec(GX )]

GX ∗ ← {}
for all context variables Vi of C do
I ← all rc,d ∈ GX with d ∈ muti(c)
create a queue Q
enqueue all rc,d ∈ I in Q
while Q is not empty do

dequeue a graph transformation rule rc,d from Q
for all rd,e ∈ GX such that rc,e /∈ I do

if seqcomp(rc,d, rd,e) is defined then
rc,e = seqcomp(rc,d, rd,e)
enqueue rc,e in Q
I ← I ∪ {rc,e}

end if
end for

end while
GX ∗ ← GX ∗ ∪ I

end for

Algorithm 1 is a transitive closure algorithm execut-
ing in a polynomial time that use the seqcomp as com-
position operator for graph transformation rules. This
algorithm is used to compute the closure for the mobile
city guide example in Section 6.

Finally, to compute the context coverage, the compu-
tation of the conflicting function of Definition 10 needs
to be made applicable on a pair of graph transformation
rules. The critical pair analysis of AGG is used for this
purpose. Critical pairs formalize the idea of a conflicting
situation in a minimal context [16,17]. Moreover, from
the set of all critical pairs we can retrieve the result of
the context coverage by extracting the objects and links
that cause the conflicts leading to uncovered context.

Definition 13 (conflicting transformations)
Two graph transformations t1 : G −−−−→

r1,m1

H1 and

t2 : G −−−−→
r2,m2

H2 are in conflict if t1 cannot be performed

after t2 (i.e., rule r1 cannot be applied to H2) or vice
versa (i.e., rule r2 cannot be applied to H1).

Definition 14 (critical pairs) A critical pair is a pair
of conflicting graph transformations t1 : G −−−−→

r1,m1

H1

and t2 : G −−−−→
r2,m2

H2 such that G is a minimal graph,

i.e., there is no proper subgraph G′ of G such that there
are conflicting transformations t′1 : G′ −−−−→

r1,m′
1

H ′1 and

t′2 : G′ −−−−→
r2,m′

2

H ′2 with m′i(x) = mi(x) for all x ∈ Lpi

and i = 1, 2.
To each pair of graph transformation rules r1 and r2

we can associate a (possibly empty) set of critical pairs
t1 : G −−−−→

r1,m1

H1, t2 : G −−−−→
r2,m2

H2.

There are two reasons why graph transformation rules
can be in conflict. First a rule application deletes a graph
element (i.e., a node or edge) that is in the match of an-
other rule application. Secondly a rule application changes
attributes being in the match of another rule application.

The existence of critical pairs between two graph
transformation rules can be used to derive if the corre-
sponding model transformation rules are conflicting with
respect to our definition 10. If one or more critical pairs
are detected between two graph transformation rules,
these transformations can be conflicting. It is however
possible that some detected critical pairs will never oc-
cur in the graph on which the transformation rules are
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Fig. 8 Graph Gc0 specifying abstract syntax of the part of the context-specific model Mc0 presented in Figure 6

Fig. 9 Sequential composition of two rules rc,d and rd,e resulting in a new rule rc,e.

applied. AGG can reduce the number or reported crit-
ical pairs, by checking for the existence of a match for
each critical pair with respect to a given graph. In our
case, the graph Gc0 on which the transformation rules
are applied is well known, so we can use it to remove
automatically the irrelevant critical pairs.

Given the ability to compute the conflicting function
and given the closure of the transformation rules spec-

ifying the context mutations (i.e., modifications of one
context variable value), it is possible to determine the
set of reachable contexts. By combining context muta-
tions, it is possible to obtain a specific context d from
the origin context c0. For each variable Vi whose value
differs between context c0 and context d, closurec0(GX )
must contain a graph transformation rule rc0,e with e =
proji(c0, d). If rc0,e is not part of closurec0(GX ), the
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context d is not reachable. But when all the transfor-
mations corresponding to the mutations necessary to
transform the origin context to d are part of the clo-
sure and have no critical pair (i.e., are not conflicting),
the context d is reachable. In this case, the resulting
context-specific graph Gd, and by extension its corre-
sponding context-specific model Md can be obtained in
a non-ambiguous way. As the critical pair analysis checks
a pair of graph transformation rules, all transformation
rules corresponding to a mutation required to obtain d
from c0 are checked pairwise.

Algorithm 2 computes the set of contexts that are
reachable given a CAA model in a polynomial time.

Algorithm 2 [Coverage(c0, Gc0, GX ∗)]

CC = {c} ∪ {d|∃rc,d ∈ Y∗c0}
for all e ∈ C do
inCC ← true
for all i ∈ [1, n] do

if ∃rc0,f ∈ GX
∗ with f = proji(c0, e) then

for all j ∈ [1, n] with j 6= i do
if ∃rc0,g ∈ GX

∗ with g = projj(c0, e) then
if |criticalpairsGc0

(rc0,f , rc0,g)| ≥ 0 then
inCC ← false

end if
else
inCC ← false

end if
end for

else
inCC ← false

end if
end for
if inCC then
CC = CC ∪ {e}

end if
end for

This algorithm is used in Section 6 on the mobile city
guide validation.

6 Validation

To validate our approach, we explore the design space of
the mobile city guide, searching for the unreachable con-
texts caused by the dependencies of context variables for
some of their values. Some of these dependencies might
be intuitively predictable without formal support, yet
since the approach enumerates all possibilities systemat-
ically, it is guaranteed to reveal also those dependencies
which might go unnoticed otherwise.

We start with an overview of the mobile city guide
and the contexts it should adapt to. The CAA model
representing the mobile city guide is then constructed
using the graph transformation language and presented
partially. Finally, the context coverage is computed for

the CAA model, and the results are used to character-
ize the design space and the relations between context
variables.

As introduced in Section 2, the mobile city guide is
composed of an activity presenting information about
the nearest point of interest and an activity to guide the
user to reach points of interest. The mobile city guide
encompasses two more activities, one taking care of the
mobile city guide main menu, and one to manage the
user preferences. All these activities are context-aware
and adapt to the mobile city guide context. The variables
impacting the mobile city guide have been described in
Section 2, and their formalizations were presented in Sec-
tion 3.

The context adaptations of the CAA model for the
mobile city guide are specified using graph transforma-
tion rules. The origin context has been arbitrarily de-
fined as the context c0 = (English, portrait, noCon,
noWifi, 2m) in which the user’s language is English,
the mobile device is used in portrait mode, the mobile
device has no mobile connection access, noWifi is avail-
able and the precision of the built-in geopositioning sen-
sor is 2 meters. The mobile city guide is then entirely
modeled for this origin context in order to create the
context-specific model Mc0 . This model is composed of
three different kinds of diagrams: a class diagram speci-
fying the structure of the mobile city guide, activity di-
agrams specifying how activities are organized in order
to fulfill application tasks, and finally some user inter-
face diagrams using the CAP3 notation [6]. The com-
plete model is too large to show in the article. Interested
readers can find it on our mobile city guide website:
lore.ua.ac.be/Research/Artefacts/mobilecityguide

As an illustration of the used diagrams, part of the
class diagram is presented in Figure 3, part of an activity
diagram is presented in Figure 5, and Figure 4 presents
the user interface of the presentation activity using the
CAP3 notation. Table 1 shows the size of the context-
specific model for the origin context in terms of class
diagrams, activity diagrams and user interface diagrams
but also in terms of the elements they define: classes,
tasks, screen layouts and their respective abstract syntax
node elements.

For this context-specific model, the following set GX
of 11 graph transformation rules has been created to
specify the impact of context variable changes:

– 3 graph transformation rules to represent language
related adaptations:
rl1 = rc0,(Dutch,portrait,noCon,noWifi,2m)

rl2 = r(Dutch,portrait,noCon,noWifi,2m),

(French,portrait,noCon,noWifi,2m)

rl3 = rc0,(Arabic,portrait,noCon,noWifi,2m)

– 1 graph transformation rule to change the mobile de-
vice orientation:
ro1 = rc0,(EN,landscape,noCon,noWifi,2m)

– 3 graph transformation rules to change the mobile
data connection mode:

lore.ua.ac.be/Research/Artefacts/mobilecityguide
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Type of diagram #diagrams # diagram elements #graph nodes #graph edges

Class diagram 1 18 classes 102 nodes 126 edges
Activity diagram 3 12 tasks 36 nodes 36 edges
UI diagrams 1 3 layouts 21 nodes 23 edges

Table 1 Size of context-specific model for the origin context.

rg1 = rc0,(EN,portrait,pay/con,noWifi,2m)

rg2 = rc0,(EN,portrait,pay/Mb,noWifi,2m)

rg3 = rc0,(EN,portrait,unlimited,noWifi,2m)

– 1 graph transformation rule to change the wifi avail-
ability:
rw1 = rc0,(EN,portrait,noCon,wifiAvailable,2m)

– 3 graph transformation rules to adapt the positioning
precision:
rp1 = rc0,(AR,portrait,noCon,noWifi,5m)

rp2 = rc0,(AR,portrait,noCon,noWifi,10m)

rp3 = rc0,(AR,portrait,noCon,noWifi,20m)

As an example, the transformation rule rg3 of Fig-
ure 7 specifies the adaptation of the mobile city guide to
a change from no data connection to an unlimited data
connection. Table 2 shows the complexity of the trans-
formation rules in terms of the size of the left-hand side,
the number of created nodes and edges and the number
of modified attribute values.

In order to compute the context coverage of the mo-
bile city guide CAA model, the closure GX ∗ of the GX
set has to be computed first. Executing the closure algo-
rithm (Algorithm 1) results in one possible combination
of transformation rules rl1 and rl2 (respectively repre-
sented in Figure 9 by rc,d and rd,e) that can be sequen-
tially composed to obtain the transformation specifying
the adaptation of the mobile city guide when the lan-
guage preference changes from English to French. The
closure GX ∗ is then composed of all transformation rules
of GX , excluding Tl2 and including the sequential com-
position of Tl1 and Tl2.

The coverage(co, GX ∗) of the mobile city guide’s
CAA model can be computed using critical pair anal-
ysis. The critical pair analysis results in a set of critical
pairs detected between each pair of graph transformation
rules in GX ∗ and is shown in Figure 10. As the number
of rules involved does not permit to display the entire
table of critical pairs, we disabled all rules related to the
positioning precision from the figure since they were not
in conflict with any other transformation rules.

Based on the detected critical pairs, Algorithm 2
computes the coverage of the mobile city guide CAA
model, resulting in a coverage set containing 131 con-
texts (out of 256) that are reachable from the origin
context given the mobile city guide specification. The
remaining 125 contexts of the mobile city guide context
domain are not present in the coverage set and there-
fore not reachable from the origin context. An in-depth
exploration of the design space of reachable versus un-
reachable contexts reveals that all the contexts in which
the data connection preference value is different from

noCon and having wifiAvailable are not reachable. The
contexts combining a mobile device in landscape mode
with the Arabic language are also unreachable.

Guided by the results of the coverage computation,
further investigations of the transformation rules to adapt
the mobile city guide to establish a data connection or
to discover a wifi network reveal a complete dependency
between these two variables (i.e., all their possible val-
ues are in conflict). Indeed, in case of the mobile city
guide, these two variables have exactly the same effect
on the behaviour of the mobile city guide. The ‘onRe-
sume’ activity (shown in Figure 5) is modified to reflect
the possibility the user has to download music and video,
by activating the video and music buttons. In addition,
a call to a download functionality is added to the same
‘onResume’ activity to pro-actively download music and
video when a wifi is available or when an unlimited data
connection is established.

This reveals a first defect, representative for an entire
class of faults — overlaps between two variables repre-
senting context switches. In this particular case the vari-
ables Data connection and Wifi overlap because, when
a wifi is available, the mobile city guide has to prefer
the Wifi connection over the mobile data connection for
downloading the data related to a point of interest in-
dependent of the status of the data connection. To re-
solve this overlap it is sufficient to merge the variables
Data connection and Wifi into a single variable (for ex-
ample named Connection). After this modification the
number of contexts for which the mobile city guide needs
to adapt itself decreases to 160 and the number of reach-
able context increases to 140.

Concerning the last 20 unreachable contexts, these
reveal a second defect, representative for another class of
faults — context switches where the order in which they
are applied matters. In this particular case, when the
user changes to Arabic language and the device switches
to landscape mode — the change to Arabic rearranges
all text from right to left, but the device rotation will also
affects the display of the text. This represent unintended
side-effects that a designer should be aware of.

To summarise, while the intuition of a designer mod-
eling a context-aware application can be used upfront
during the specification of a CAA model, a complete
systematic exploration of the design space remains nec-
essary to detect situations that have been modeled in-
correctly. In particular, we have demonstrated that our
approach can detect two classes of faults which may
result in ambiguous specifications (a) overlaps between
two variables representing context switches; (b) context
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Rule name # nodes in LHS #edges in LHS #attributes modified #created nodes #created edges

rl1 4 3 1 0 0
rl2 4 3 1 0 0
rl3 8 3 5 0 0
ro1 6 5 10 0 0
rg1 3 0 3 0 0
rg2 3 0 3 0 0
rg3 2 0 1 1 1
rw1 2 0 1 1 1
rp1 3 2 2 0 0
rp2 3 2 2 0 0
rp3 3 2 2 0 0

Table 2 Size of transformation rules representing context variable changes.

Fig. 10 Result of the critical pair analysis

switches where the order in which they are applied mat-
ters. Consequently, verifying context-models seems in-
dispensable during the design phase, in order to itera-
tively improve design models for context-adaptive appli-
cations.

7 Discussion

Since this paper is set up as a feasibility study, inves-
tigating how one could use critical pair analysis to find
contexts for which the resulting application model is am-
biguous, obviously some restrictions on the applicability
of the CAA model are in order. In this section, we list the
design choices made for the feasibility study, the most
important limitations we are aware of, and the lessons
learned during the validation.

CAP3 notation. Of the three notations used to specify
the platform independent model, one perhaps requires
some extra explanation — the MOF-compliant CAP3
language [6]. We use this notation to specify the coarse-
grained layout of the user interface independently of the
particular widgets to be used, as should be the case for a
platform-independent model. There are other modeling

languages that allow to specify user-interface layouts. In
this paper we opted to use CAP3 because it is explicitly
designed to support user interfaces for context-aware ap-
plications and because it can be easily transformed into
the format used to represent layout in the Android plat-
form. The reader should be aware that the choice for
CAP3 is a pragmatic one — it is possible to use other
notations instead of CAP3 and still be able to exploit
critical pair analysis for exploring the design space.

Scalability. At the time of writing, we have validated
the CAA approach on a small context model — 256 con-
figurations of context variables where each configuration
corresponds to 1 UML class diagram, 3 UML activity di-
agrams and 1 CAP3 user-interface model. The AGG tool
could load models of that size flawlessly and running the
critical pair analysis was still a matter of seconds. Never-
theless, since the theoretical number of contexts an ap-
plication has to adapt to increases exponentially with the
number of variables, and polynomially with the discrete
values these variables can take it is at the moment un-
clear how far the approach would scale for realistic con-
text models spanning thousands of configurations, each
of them representing platform independent models with
hundreds of diagrams.
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Applicability and matching of rules. In this paper, we
consider a transformation rule rc,d always applicable on
the context-specific model Mc. This assumption could
lead to failure in the entire reasoning to compute the
context coverage. In practice however, the modeler will
typically define the set of transformation rules rc,d by
recording the modification he has to do on the model Mc

to obtain the context-specific model Md. This method is
feasible thanks to the context-specific model Mc0 from
which it is possible to start creating transformations. We
could have chosen to incorporate a checking mechanism
that would simply check this applicability constraint us-
ing AGG and therefore would allow us to remove this
assumption, but we preferred not to complicate the con-
text coverage computation. An implication of the appli-
cability is the existence of a match for the rule rc,d in the
context-specific model Mc. Another assumption that we
made is that this match is unique. Once again, this is not
restrictive in practice as the model elements modified by
rc,d (i.e., the match) are uniquely identified inside Mc.
It is therefore not possible to substitute in the match,
one of these elements with another element of Mc.

Expressiveness of rules. AGG allows a greater expres-
siveness to specify graph transformation rules than the
one we used in this article. In our feasibility study, we
have not been confronted with a situation requiring the
use of negative and positive application conditions. More-
over, we believe that these application conditions are
rarely needed when specifying the impact of a context
change. Nevertheless, as the critical pair analysis as well
as the concurrent rule generation mechanism of AGG
can be used on graph transformation rules in presence of
positive and negative application conditions, the context
coverage could still be computed on such extended trans-
formation rules. For even more general (nested) condi-
tions, AGG currently does not provide critical pair anal-
ysis support[15].

Transformation rule The complexity and effort needed
to define transformation rules is quite subjective: it de-
pends on the experience, skills and knowledgeability of
the designer with the transformation language that is
needed to specify these rules. Instead of using a graph
transformation language, other model transformation lan-
guages could have been chosen such as ATL [18,19] or
QVT [20]. These languages have the advantage of be-
ing more widespread and would therefore reduce the ef-
fort needed to define transformation rules. On the other
hand, AGG’s graph transformation language is, to our
knowledge, the only formalism offering some ready to
use implementation of critical pair analysis for model
transformations.

The CAA model proposed in this article represents
a necessary first step to help the designer during the
model-driven specification of context-aware applications.
In particular, it helped us to explore the context space

of the mobile city guide and consequently increased our
knowledge about the relations between the variables com-
posing its context. As a side effect we have gained a bet-
ter understanding of the conflicting context adaptations
involved in the computation of the ambiguous context-
specific models. This helped us substantially while de-
veloping the mobile city guide on the Android platform,
as it allowed us to identify which functional behaviour
was context-dependent.

8 Related work

Context-awareness introduces some specific difficulties
in the development process. At the level of source code,
some mechanisms and frameworks have been developed
to assist the programmer. For example, Henricksen et
al. [21] propose a complete framework to support the de-
velopment of context-aware applications. Raw data from
sensors is collected and aggregated to obtain meaningful
situation variables that can be used by the developer di-
rectly in the source code. Gonzalez et. al [22] propose
context-oriented programming support for mobile de-
vices called Subjective-C that enable the use of runtime
adaptation through layer activation.

The actual development of such new mechanisms and
frameworks at the source code level is indicating that
traditional languages are not well suited to express context-
aware applications. In a similar vein, modeling languages
need to be improved in order to express context-specific
models and their adaptations in a more effective way.
In the human-computer interaction community, the im-
portance of applying model-driven engineering to design
and model context-aware applications has been broadly
recognized. The Cameleon framework [23] proposes to
create a model of the application for each context in
which the application can be used. The context itself is
modeled separately and can be linked to a specific ap-
plication model.

Pribeanu et al. [24] propose several alternatives for
the specification of interactions that are partly context-
aware. They conclude that an integrated task model with
context-dependent subtrees that are specific for a certain
context would be the best way to model user interac-
tion with application in multiple contexts. The context-
dependent subtrees share a common parent task and
have choice operators specified between them. UsiXML [25,
Chapter 3] makes this approach concrete through the
use of three distinct models: a context model, a map-
ping model and the specific user interface model that
contains context-aware parts. Clerckx et al. [26] build
further on this and create a separate notation for this
common parent task, the decision node. This node spec-
ifies the contexts of use in which the subtrees should
be executed. This allows them to create a user interface
that adapts to the active context at runtime by linking
the tasks to concrete interaction objects.



A Transformation-Based Approach to Context-Aware Modeling 15

All the approaches mentioned above are treating con-
text as a set of different situations and model the user in-
terface for each situation. This results in a solution that
does not scale as the number of contexts increases. The
Contextual ConcurTaskTrees notation [27] takes a dif-
ferent approach and specifies what should happen when
a certain context change happens through the definition
of different task types. The idea of treating context as an
active entity was inspired by programmatic support for
context-aware applications as offered by, e.g., the Con-
text Toolkit [28]. This approach was also used in CUP
2.0 [29] to model context-aware user interfaces at differ-
ent levels of abstraction.

Lohmann et al. [30] define an approach to gener-
ate context-aware web applications at runtime. They do
this by specifying a conceptual model, containing a con-
text model, a domain model, a context-relations model,
and user interface models. These user interface models
contain rules on how the system behaviour should be
adapted to a specific context.

All the aforementioned solutions are restricted to a
specific model. In contrast, our CAA model approach is
independent of the modeling language used to specify
the context-aware application, hence enabling the use of
domain-specific languages.

In complement to the above approaches, some mech-
anisms have been developed to verify context-aware ap-
plications. For example, Fleurey et al. [31] define a model
in which contexts are specified in terms of variable values
and application configurations in terms of variants. An
objective function is then used to automatically deter-
mine which variants compose the best configuration of
the application for a specific context. In contrast to this
model that focuses on the relation between context vari-
ables and configuration variants, our CAA model allows
to identify the relation between context variables. These
relations can be identified because the adaptations to
context change are modeled as executable specifications
(i.e. the transformation rules). Nevertheless, the model
defined by Fleurey et al. is similar to the CAA model,
since the authors reduce the inherent complexity of the
context-aware applications using a context variable per-
spective.

Sama et al. [32] define a model and some algorithms
in order to identify fault patterns in the context adap-
tation of context-aware applications (CAA). CAAs are
typically supported by a context-aware middleware com-
posed of a context manager and an adaptation manager.
The context manager collects and maintains context in-
formation that can be queried by a CAA. Using con-
text value changes provided by the context manager, the
adaptation manager maintains, evaluates and applies a
set of rules defining adaptive actions to take. This ap-
proach, based on an analysis of the adaptation rules,
reveals nondeterministic adaptations as well as unreach-
able configurations. In contrast to the CAA model that

focuses on the application logic, Sama et al. focus their
verification on the adaptation logic.

9 Conclusion

In this article, we presented the Context-Aware Appli-
cation model (CAA), in which a context-aware applica-
tion is represented as a multi-dimensional design space
with axes representing the variations that may occur for
a given context variable, and where each point in the
design space represents the expected behaviour of an
application as a platform-independent model. By map-
ping this model to graphs and graph transformations, we
exploit critical pair analysis to enumerate all reachable
contexts, this way exploring the context design space.
Moreover, for those context variables that are dependent
on one another, the critical pair analysis also identifies
sequencing of transformations resulting in conflicts, this
way revealing contexts for which the resulting applica-
tion model is ambiguous.

The approach has been validated on a so-called spec-
ification exemplar: a self-contained, informal description
of a problem in some application domain proposed as
unique input for the specification process [3]. The exem-
plar is that of a mobile city guide, which is sufficiently
small to allow for condensed representation and manual
inspection, yet is sufficiently realistic to be representa-
tive for context-aware applications developed by a small
team of software engineers. On this example, we illus-
trated that (a) exploration of the design space helps to
reveal omissions in the model transformations; (b) con-
flicts during the critical pair analysis reveal ambiguities
in the design space that might go unnoticed otherwise.

Of course, good designers will apply the separation
of concerns principle, hence for realistic applications the
variables composing the contexts will often be indepen-
dent of one another. Nevertheless, the very nature of
context-aware applications implies that some variables
will have an effect on one another. With our Context-
Aware Application model (CAA), we can reveal such
dependencies at the end of the requirements analysis or
design phase (i.e., once a platform-independent model
has been created), thus early in the life-cycle of applica-
tion development for mobile devices.
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