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Abstract

Understanding the mechanisms involved in long-term persistence of humoral immunity after natural infection or
vaccination is challenging and crucial for further research in immunology, vaccine development as well as health policy.
Long-lived plasma cells, which have recently been shown to reside in survival niches in the bone marrow, are instrumental
in the process of immunity induction and persistence. We developed a mathematical model, assuming two antibody-
secreting cell subpopulations (short- and long-lived plasma cells), to analyze the antibody kinetics after HAV-vaccination
using data from two long-term follow-up studies. Model parameters were estimated through a hierarchical nonlinear mixed-
effects model analysis. Long-term individual predictions were derived from the individual empirical parameters and were
used to estimate the mean time to immunity waning. We show that three life spans are essential to explain the observed
antibody kinetics: that of the antibodies (around one month), the short-lived plasma cells (several months) and the long-
lived plasma cells (decades). Although our model is a simplified representation of the actual mechanisms that govern
individual immune responses, the level of agreement between long-term individual predictions and observed kinetics is
reassuringly close. The quantitative assessment of the time scales over which plasma cells and antibodies live and interact
provides a basis for further quantitative research on immunology, with direct consequences for understanding the
epidemiology of infectious diseases, and for timing serum sampling in clinical trials of vaccines.
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Introduction

The human adaptive immune response relies on a complex

combination of cellular and humoral immunity, mediated by T-

and B-lymphocytes. Although vaccination aims to activate both

cellular and humoral immunity, vaccine induced immunity is

typically evaluated by means of the antibody titer, secreted by B-

lymphocytes [1]. After encountering antigens, B-cells are stimu-

lated to proliferate and/or differentiate into memory B-cells and

plasma cells (PC). Memory B-cells permit a faster and more

effective immune response upon further exposures to the antigens,

whereas PC are the main antibody-secreting cells (ASC). Different

antibody isotopes are present in human sera (IgM, IgA and IgG).

They each have relatively limited half-lives, with a maximum of

17.5–26.0 days for Immunoglobulin G (IgG), which represent

about 75% of the antibody isotopes in humans [2,3,4].

Nonetheless, exposure to common viral and vaccine antigens has

been shown to induce a long-term humoral immune response,

which illustrates that improving our understanding of the

mechanisms involved in the production and persistence of

antibodies remains a (relatively rarely explored) topic of funda-

mental scientific interest [5].

Recently, Amanna and Slifka reviewed six plausible models

describing the evolution of the humoral immune response over

time [2]. Four of these models were based on a memory B-cell

dependent process, assuming antibody production either due to

chronic or repeated infections, persisting antigen immune

complexes on the surface of follicular dendritic cells, or cross-

reactive antigen stimulation [6,7,8,9]. According to the authors,

none of these models is suitable to reproduce the evolution of

antibody levels with time after exposure to viral or vaccine

antigens. In contrast with the previous approaches, Amanna and

Slifka [2] proposed two theoretical models considering plasma cells

as an independent B-cell subpopulation that is long-lived even in

the absence of replenishment by memory B-cells [5,10]: the ‘plasma

cell niche competition model’ and the ‘plasma cell imprinted lifespan model’

[2]. There is strong evidence that plasma cells can be long-lived

when located in survival niches, especially in bone marrow and to

a lesser extent the spleen. These antibody-secreting cells could be

pivotal for the maintenance of humoral immunity [11,12,13,14].
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As suggested by Radbruch et al. [13], the first model was based on

the assumption that there is competition between resident and new

migratory plasma cells for a finite number of survival niches. New

migratory plasma cells are unable to survive for long periods

outside of these niches. Since plasma cells accumulate in these

niches due to new infections and reinfections over time, the

average age of plasma cells occupying the niches increases.

Consequently, the duration of the humoral response they induce

should decay more rapidly with time. The latter effect remains to

be demonstrated [5]. The last model proposed by Amanna and

Slifka assumed an ‘‘imprinted’’ lifespan for antigen-specific plasma

cells [2]. This model explicitly assumed no further division of

plasma cells. In the absence of replenishment of memory B-cells

(due to reinfection or vaccine boosting), this implies that serum

antibody titers would be strongly related to the lifespan of antigen-

specific plasma cell populations. Hence, the antibody kinetics can

be assumed to evolve over three time-scales: the antibody lifespan,

with an half-life ranging between 17.5 and 26 days, the short-lived

plasma cell and long-lived plasma cell lifespans. However, as noted

by the authors, the imprinted lifespan model does not differentiate

between short lived-plasma cells and memory B-cell dependent

mechanisms, such as the role of persisting antigen stimulation in

the early antibody kinetics, but provides insights on the long-term

persistence of antibodies after infection or vaccination and the

interplay between antibody titers and plasma cell kinetics.

Although based on evidenced immunological concepts, to our

knowledge, Amanna and Slifka’s models were not used to analyze

data and remained purely theoretical.

Several mathematical models have been developed to study the

long-term persistence of vaccine-induced antibodies from serolog-

ical follow-up surveys, using either the general mean titer (GMT)

or individual antibody titers as an outcome measure. Most of these

studies estimated the decay rate of antibodies assuming a simple

exponential decay or including rapid and slow components for

decay depending on the time after vaccination. Using these

frameworks, long-term persistence (over 25 years) of hepatitis A

(HAV) vaccine-induced immunity was demonstrated

[15,16,17,18,19]. Fraser et al. [20] proposed a model accounting

explicitly for B-cell population (antibody secreting cells) kinetics

and extended their model by differentiating an ‘‘activated’’ and a

memory B-cell subpopulation [20,21]. In the present study, a

mathematical formulation of the ‘‘plasma-cell imprinted lifespan’’

model proposed by Amanna and Slifka [2] was implemented and

used to estimate long-term persistence of anti-HAV antibodies

from two 10-year follow-up studies in adults vaccinated with

inactivated hepatitis A vaccines.

Materials and Methods

Data
Two long-term follow-up datasets were used for parameter

estimation. Healthy HAV-seronegative adults aged between 18

and 40 years were enrolled after giving their written informed

consent [17]. The first dataset included 289 subjects vaccinated

with 2 doses of HavrixTM 1440 with 0-6 (109 individuals) or 0–12

months (180 individuals) vaccination schedules. This inactivated

hepatitis A vaccine, manufactured by SmithKline Beecham

Biologicals and introduced in 1994, was formulated to contain

no less than 1440 ELISA units (El.U) of hepatitis A antigen (strain

HM175) per 1 ml dose, adsorbed onto 0.5 mg of aluminium salts.

Subjects received the vaccine in the right deltoid muscle. Various

vaccination schedules were shown to provide similar immune

responses [22]. Blood samples were taken in each participant

before vaccination, to ensure seronegativity, as well as between the

primary and boosting doses, and after booster administration. In

view of our aim with the present study - the evaluation of long-

term persistence of antibodies after a full vaccination schedule, the

dataset we use here is limited to time-points after boosting, i.e. at 1,

12, 18, 24, 30, 36, 42, 48, 50, 66, 78, 90, 102, 114 and 126 months

after boosting. The second dataset included 113 subjects

vaccinated with 3 doses of HavrixTM 720 according to a 0-, 1-,

6-vaccination schedule [16,23]. This vaccine, which is the

predecessor formulation of HavrixTM 1440, contained no less

than 720 Elisa units per 1.0-ml dose. Blood samples were taken at

1, 6, 12, 18, 30, 42, 54, 66, 78, 90, 102 and 114 months after the

booster dose (6 months). Antibody titration was performed using

an ‘‘in-house’’ ELISA inhibition assay [24]. Subjects with antibody

levels below 20 mIU/ml for the ELISA test were considered

seronegative.

Mathematical models of antibody kinetics
The ‘‘plasma-cell imprinted lifespan’’ model accounting for the

dynamics of plasma cell (P) and antibody (A) populations was

considered. The plasma cell population is divided in two

subpopulations according to their specific lifespan: short- and

long-lived plasma cells denoted by Ps and Pl , respectively.

Assuming no renewal, plasma cell populations decline over time

with different decay rates according to their longevity. However,

long-lived plasma cells can survive for long periods of time residing

in survival niches, mainly in the bone marrow, and could

consequently be considered as virtually steady [2,13,14]. Finally,

assuming that the antibody lifespan is short relatively to plasma

cell lifespan, antibody kinetics can be considered to reflect the

underlying kinetics of plasma cell populations [2]. Owing to these

different assumptions, three nested models were explored.

Complete model. The dynamics of plasma cell and antibody

populations are described by the following system of differential

equations:

dPs

dt
~{msPs

dPl

dt
~{mlPl

dA

dt
~QsPszQlPl{mAA

A(0)~A0,Ps(0)~P0
s , Pl(0)~P0

l

8>>>>>>>><
>>>>>>>>:

ð1Þ

Where ms, ml and mA represent the average decay rates of short-

lived plasma cells, long-lived plasma cells and antibodies,

Author Summary

Recent studies evidenced the existence of long-lived
plasma-cells which could play a major role in the long-
term persistence of antibodies after infection or vaccina-
tion. A mathematical model, accounting for two plasma-
cells populations (short and long-lived), was developed to
analyze data from two long-term follow-up studies in
patients vaccinated with hepatitis A inactivated vaccines.
Parameter estimates confirmed the importance of three
time scales to explain the decay of antibody levels: the
antibodies lifespan (around one month), the short-lived
plasma cells lifespan (several months) and the long-lived
plasma cells lifespan (decades). This study also highlighted
the need of more frequent observations during the first
year post-vaccination to estimate accurately the different
parameters governing the long-term antibody dynamics.

Dynamics of Plasma Cell and Antibody Populations
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respectively; Qs and Ql are the production rates of antibodies by

short- and long-lived plasma cells, A0 is the initial antibody level,

P0
s and P0

l are the initial population sizes of short- and long-lived

plasma cells.

This system has the following analytical solution:

Ps(t)~P0
s exp({mst)

Pl(t)~P0
l exp({ml t)

A(t)~
Ws

mA{ms

e{mstz
Wl

mA{ml

e{ml tz A0{
Ws

mA{ms

{
Wl

mA{ml

� �
e{mAt

8>>><
>>>:

ð2Þ

where Ws~QsP
0
s and Wl~QlP

0
l

Asymptotic model. Assuming that the lifespan of long-lived

plasma cells is infinity, i.e. ml~0, the asymptotic total antibody

production rate is a constant different from zero Wl=mAð Þ. Solution

(2) then becomes

A(t)~
Wl

mA

z
Ws

mA{ms

e{mstz A0{
Ws

mA{ms

{
Wl

mA

� �
e{mAt, ð3Þ

Plasma cell driven kinetic (PCDK) model. Assuming that

the antibody lifespan is short relatively to plasma cell lifespan

ms,l=mAvv1
� �

, the antibody kinetics can be considered as being

an immediate reflection of the underlying kinetics of plasma cell

populations [2]. Solution (2) amounts then to

A(t)~bse
{mstzble

{ml t, ð4Þ

where bs~Ws=mA and bl~Wl=mA.

Parameter estimation
A non-linear mixed effects model was used to estimate model

parameters mA, ms, ml ,Ws,Wl , bs, blð Þ as described by Snoeck et al.

[25]. Briefly, individual parameters are assumed to be log-

normally distributed and were used to predict the antibody titer

in an individual iat a certain point in time j (Apred,ij ) [25]. The

measured antibody-titers (Aobs,ij ) were log10-transformed for the

analysis with an additive residual-error:

log10 Aobs,ij

� �
~log10 Apred,ij

� �
zeij

The eij values are assumed to be normally distributed with mean

zero and variance s2. Population parameters were estimated using

MLE by the SAEM algorithm for the hierarchical nonlinear

mixed-effects model analysis using Monolix software (http://www.

monolix.org) [26].

A nonparametric bootstrap procedure was used to determine

the 95% confidence intervals of parameter estimates permitting

the evaluation of the accuracy of parameter estimates. One

thousand bootstrap replicates were generated by resampling

individual profiles for each dataset. For each bootstrap replicate,

each model was refitted to get an estimate of the population

parameters. The 95% confidence interval was constructed from

the 2.5th and 97.5th percentiles for each of the population

parameters [27]. For each bootstrap replicate, long-term extrap-

olations of antibody decay were obtained, resulting in predictions

and 95% confidence intervals of the mean duration of vaccine-

induced immunity (antibody titers higher than 20mUI/ml), as well

as the mean time for the proportion of immune individuals to

decrease down to 95% and 90%.

Alternative modeling assumptions: the power-law
models

Fraser et al. [20] proposed an alternative to exponential

distributions of decay rates, assuming an heterogeneity in the

decay rate of B-cells expressed by a gamma distribution. This

hypothesis led to the formulation of the so-called ‘‘conventional

power-law’’ model previously used to model antibody persistence

[28,29,30]. In [20], this model was further improved to account

for two B-cell subpopulations leading to an ‘‘asymptotic model’’,

assuming that a proportion of the B-cell population does not

decrease, and a ‘‘full model’’, assuming a slower decay rate for a

proportion of the B-cell population. Using the notations in [20],

these three models describing the antibody kinetics are given by:

1. Conventional power-law model

f (t)~k{alog10(czt),

2. Asymptotic power-law model

f (t)~kzlog10((1{p)(czt){azp),

3. Full power-law model

f (t)~kzlog10((1{p)(czt){azp(czt){b),

where f (t) is the log10-transform of antibody titer at time t, kis the

peak log10-level, a and b represent the decay rates of short-lived

and long-lived plasma cells, respectively, and c is an arbitrary

constant (often set to 0). Finally, p (0vpv1) is the relative level of

antibodies produced in the long-term plateau. Using the same

methodology as previously described, parameters were estimated

for each power-law model.

Model diagnostic
AIC (Akaike Information Criterion) was used for model

selection. As population based diagnostics were not very

informative, goodness of fit was assessed based on diagnostic plots

for the individual predictions (IPRED), and individual weighted

residuals (IWRES) by calculation of the e-shrinkage [31].

Results

Parameter estimates are given in Table 1. For the complete

model, the population average antibody decay rates were close to

0.8 for both datasets (95% confidence intervals [0.63, 1.34] and

[0.65, 1.36] for the first and second datasets, respectively),

corresponding to a half-life of 26 days. Under the assumption of

the asymptotic model, the average decay rate obtained with the

first dataset (0.75 [0.49, 1.10]) was slightly lower than the one

obtained with the second dataset (0.95 [0.68, 1.48]); these values

remained consistent with the literature (half-lives of 27.7 and 21.9

days, respectively) [2]. Using the individual estimates of the decay

rate parameter provided by Monolix as the mean of their posterior

distribution [26], we performed Kruskal-Wallis tests to investigate

the difference between the kinetics at early time-points after the

boosting dose according to model assumptions (complete and

asymptotic) and vaccine formulation (HavrixTM 1440 and

HavrixTM 720). Although no difference was found between the

Dynamics of Plasma Cell and Antibody Populations
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two models (p = 0.84), a significant difference was shown between

the two vaccines, with a higher decay rate for the oldest vaccine

(HavrixTM 720; p = 0.004). However, this difference could also be

due to the inclusion of the 6-month time-point in the second

dataset which allows for a decomposition of the kinetics according

to the different population time-scales. Moreover, under the

asymptotic assumption (lowest AIC), the inter-individual variabil-

ity, estimated as the standard deviation of random-effects [26], was

reduced from 84% (HavrixTM 1440) with the first dataset to 61%

for the second dataset (HavrixTM 720). Note that when looking at

the exclusion of random effects one by one, all were significant

(5% significance level) based on a 50:50 mixture of a x2(0) and

x2(1) distribution.

Testing whether ml is significantly different from 0 was done

using a likelihood ratio test for which the asymptotic null

distribution is a 50:50 mixture of a x2(0) and x2(1) distribution

[32,33]. The estimate of ml was not found to be significantly

different from 0 with the complete model, meaning that the

lifespan of long-lived plasma cells cannot be estimated and this

subpopulation could be considered constant. Nevertheless, the

inclusion of a supplementary data-point in the early stage of the

kinetics (6 month post-boosting; HavrixTM 720 dataset) permitted

to improve the estimation accuracy for the long-lived plasma-cells

decay rate, decreasing substantially the relative standard error

(RSE) of the estimate from 2e4% for the first dataset to 231% for

the second (data not shown). Discarding the additional 6-month

data point from the second dataset, the asymptotic model resulted

in estimates of the antibody decay rate close to the one obtained

with the first dataset (data not shown). This result suggests that

more time points during the first year would allow estimating the

three time scales using the complete model. The third model

(PCDK) assumed that the antibody decay rate can be ignored

relative to the plasma-cell kinetics, leading to an ‘‘adiabatic’’

formulation. For both datasets, the time scales obtained for the

short- and long-lived plasma cell lifespan differ by two orders of

magnitude. For the first dataset (HavrixTM 1440), the estimated

lifespan of short-lived plasma cells (1=ms), averaged around 7

months, which is much longer than the 1 month antibody lifespan.

The estimated lifespan of long-lived plasma cells, averaged around

60 years (i.e. roughly similar to the average human lifespan). For

the second dataset (HavrixTM 720), the estimated lifespan of short-

lived plasma cells was close to 1 months and the estimated lifespan

of long-lived plasma cells was only 10 years. However, due to the

additional measurement at 6 months after the (final) booster dose

the adiabatic assumption is no longer valid (ignoring the antibody

lifespan compared to the plasma cell lifespan). Indeed, at the 6

months post booster point, the observed antibody kinetics are

principally driven by the antibody decay rate, implying that we

can no longer assume that its effect is negligible relative to that of

the plasma-cell kinetics. In both cases, the estimates of ms are the

result of a combination of antibody and short-lived plasma cell

decays. However, the lifespan of long-lived plasma cells,

contributing to long-term persistence of the humoral response,

was found to be 6-fold longer with the more recent and more

potent vaccine formulation (HavrixTM 1440) than with the older

formulation (HavrixTM 720). The conventional power-law model

assumes that the antibody level declines continuously with time

but the data suggest the existence of at least two phases of decline:

a short-term component with a high decay rate in the first 2 years

of observation, followed by a long-term component which could

be thought as a ‘‘plateau’’ phase. The results obtained for the two

datasets using the conventional power-law model are similar with

a low decay rate (a = 0.63) reflecting both phases using only one

parameter (Table 2). The inclusion of an asymptotic phase in the

modified power-law model allows for a focus on the short term

dynamics. For both datasets, the decay rate estimates were

drastically increased compared with conventional power-law

approaches. The decay rate obtained with the second dataset

was slightly lower than for the first dataset, but combined with a

lower peak of the antibody titer, the immunity provided by the

HavrixTM 720 vaccine remains weakest compared to the more

recent HavrixTM 1440 vaccine. Finally, the introduction of the

second time scale, governing the long-term behaviour, referred as

‘‘full power-law model’’ supports the results obtained in our study:

the presence of a supplementary point (6 months post-boosting) in

the second dataset allow for a better estimation of the long-term

component. The results obtained with the first dataset are close to

the ones obtained with the asymptotic model with a decay rate

Table 1. Parameter estimates according to the modeling assumptions: complete, asymptotic or plasma-cell driven kinetics (PCDK)
model (95% confidence intervals determined using bootstrap percentile intervals).

Population parameter estimates (CI)

HavrixTM 1440 dataset HavrixTM 720 dataset

Parameters Complete Model Asymptotic Model PCDK Model Complete Model Asymptotic Model PCDK Model

Ws (1e3 mIU/ml*
Month21)

1.12 (0.81, 2.20) 1.04 (0.55, 1.71) - 1.00 (0.65, 1.37) 0.97 (0.68, 1.72) -

Wl (1e3 mIU/ml*
Month21)

0.54 (0.43, 0.92) 0.51 (0.33, 0.75) - 0.26 (0.20, 0.59) 0.40 (0.20, 0.65) -

bs (1e3 mIU/ml) - - 3.38 (2.95, 3.96) - - 5.56 (3.89, 8.01)

bl (1e3 mIU/ml) - - 0.84 (0.70, 0.97) - - 1.43 (1.15, 1.71)

ms (Month21) 0.069 (0.062, 0.080) 0.07 (0.058, 0.074) 0.14 (0.12, 0.16) 0.014 (0.011, 0.026) 0.02 (0.013, 0.028) 0.76 (0.51, 1.04)

ml (Month21) 1.8e26 (5.2e-7, 7.8e-6) - 1.5e23 (3.03e-5, 2.3e23) 9.8e24 (1.4e24, 1.3e23) - 8.1e23 (6.1e23, 9.8e23)

mA (Month21) 0.79 (0.63, 1.34) 0.75 (0.49, 1.10) - 0.82 (0.65, 1.36) 0.95(0.68, 1.48) -

A0 (1e3 mIU/ml) 7.79 (6.38, 12.21) 7.60 (5.90, 10.66) - 8.62 (6.32, 14.6) 9.26 (6.27, 15.41) -

AIC 21626.63 21630.63 21354.10 2346.2 2346.35 2308.16

e-shrinkage (%) 16 16 13 18 17 13

doi:10.1371/journal.pcbi.1002418.t001
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close to 0 (b = 0.07) whereas the second data set permitted to

estimate a decay rate of 0.37 for long-lived plasma cells resulting in

a slow but continuous decay of the antibody population.

All models showed a good consistency between individual

predictions and observations with e-shrinkage estimated between

13 and 18%. Additional data points in the early phase of the

kinetics might decrease the e-shrinkage as they provide more

information on high-level antibodies. Among the six models

considered throughout this study, the lowest AIC was obtained

with the asymptotic model assuming exponential decays for

antibodies and plasma cells. This model is a derivation of the

complete model by constraining the decay rate of long-lived

plasma cells to 0. Figure 1 displays the observation/prediction plot

(log10 scale) for the asymptotic model (R2 = 0.97).

Although care has to be taken using these models based on 10

years of data, long-term individual extrapolations of antibody

kinetics were derived from the individual empirical parameter

estimates for each model (complete, adiabatic and asymptotic) and

the two data sets (Figure 2). In accordance with international

current practice, the positivity threshold was fixed to 20 mIU/ml

and subjects with antibody levels below this threshold for the

ELISA test were considered seronegative. Immunity was consid-

ered as lost when a subject passed from seropositive to

seronegative status [24,34]. A focus around the positivity threshold

(20 mIU/ml, thick black line) was plotted for each model and

dataset to monitor the population serological response according

to time post-boosting. For the first dataset, including only one

point in the first year after vaccination (1 month), the asymptotic,

complete and power-law models gave similar results with a life-long

immunity for all vaccinated patients. Conversely, for the adiabatic

PCDK model a proportion of the population loses humoral

immunity, with the first seronegative patient occuring 20 years

after vaccination. However, the proportion of seronegative patients

100 years after vaccination did not exceed 15% (figure 3), showing a

good long-term efficacy of the vaccine. The mean time to immunity

waning was 216 years (95%confidence interval [143.0, 848.6],

table 3). The results for the second data set differ according to the

model assumptions. Although the asymptotic model gave similar

results as for the first dataset predicting lifelong immunity due to the

supposed asymptot, results with the complete and adiabatic

approach were divergent. The complete model was found closer

to the adiabatic due to the existence of an additional sample time in

the early phase of the kinetics (6 months). Although the power-law

models predicted lifelong immunity for both vaccines, the estimate

of the decay rate of long lived plasma-cells was found to be higher

for the second dataset, confirming that the ‘‘plateau’’ assumption in

the asymptotic model provides crude approximations of the actual

long-term kinetics. Adiabatic model predictions showed that the

total population lost immunity within 100 years after vaccination.

Moreover, the mean time to lose immunity was evaluated to be 43

years (95% confidence interval [34.8, 52.0]; Table 3).

Discussion

A mathematical model, based on the ‘‘imprinted plasma cell lifespan

model’’ proposed by Amanna and Slifka, was developed to study the

Table 2. Parameter estimates using power-law model (95% confidence intervals determined using bootstrap percentile intervals).

Population parameter estimates (CI)

HavrixTM 1440 dataset HavrixTM 720 dataset

Parameters
Conventional
power-law

Asymptotic
power-law Full power-law

Conventional
power-law

Asymptotic
power-law Full power-law

k 4.13 (4.04, 4.18) 5.87 (5.67, 6.12) 6.21 (5.65, 6.97) 4.00 (3.89, 4.10) 5.29 (4.48, 5.74) 6.37 (6.12, 6.55)

a 0.63 (0.59, 0.67) 2.26 (2.07, 2.50) 2.79 (2.09, 3.40) 0.60 (0.54, 0.66) 2.01 (0.93,2.48) 3.67 (3.28, 3.88)

p - 8.1e24 (4.3e24, 1.2e23) 0.0008 (1.8e24, 1.4e23) - 3.2e23 (1.3e23, 5.1e23) 1.7e-3 (9.7e24, 2.8e23)

b - - 0.08 (1.8e23, 0.16) - - 0.37 (0.29, 0.43)

AIC 2572.83 21226.77 21255.01 2128.36 2204.26 2297.35

doi:10.1371/journal.pcbi.1002418.t002

Figure 1. Observations Vs. model predictions (left) and residuals Vs Time (right) plots using individual parameters (HavrixTM 720
dataset, Asymptotic model, log10 scale).
doi:10.1371/journal.pcbi.1002418.g001
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long-term persistence of antibodies after vaccination with

inactivated HAV vaccines [2]. Previous studies showed that anti-

HAV antibodies can persist for at least 25 years and that a two-

phase decay of antibody levels occurs according to the time since

vaccination [35,36]. However, the models used for the estimations

were solely based on the antibody dynamics and did not handle

the underlying immunological mechanisms. Plasma-cells are the

main antibody-secreting cells and it is currently recognized that

some of these cells can survive for extended periods when located

in survival niches, especially in the bone marrow [12,13,14]. The

model used in our study assumed that the antibody kinetics are

determined by three time-scales: the antibody, the short-lived

plasma cell and long-lived plasma cell lifespans (complete model).

Two other approaches were derived from the complete model:

(i) assuming a constant long-lived plasma cell population

(asymptotic model) close to the model of Fraser et al. [20].

(ii) ignoring the antibody lifespan (assumed to be short compared

with plasma-cell lifespans (plasma cell driven kinetic model)).

The complete model, which should be the best representation of

the actual process including three time-scales (antibody, long- and

short-lived cell life-spans), did not allow for accurate estimates,

especially concerning the decay rate of long-lived plasma cells

(RSE.200%). The asymptotic model permits to estimate the

antibody decay rate corresponding to the shortest time scale

(around 1 month) [3]. However the hypothesis of the asymptotic

model, assuming a constant antibody production by long-lived

plasma cells residing in niches in the bone marrow and considered

as surviving in the host for life, generates a cost on long-term

predictions of the antibody decay which cannot be studied using

this approach. The third approach, called ‘‘plasma cell driven

kinetic’’, considers the antibody kinetics to immediately reflect the

underlying kinetics of plasma cell populations. Thus, ignoring the

antibody decay, which cannot be distinguished from plasma-cells,

allows for fitting the long-term kinetics. However, the interpreta-

tion of the parameters is not straightforward, especially when

detailed data are available in the initial phase of the kinetics, which

corresponds to the antibody decay (table 2). Although our model

selection criterion (AIC) tends to select the asymptotic model, all

three models have their own interest depending on the research

question:

Figure 2. Individual prediction plots with a focus around the positivity threshold (20 mIU/ml, black line). (a,c,b) HavrixTM 1440 dataset,
(d,e,f) HavrixTM 720 dataset; (a,d) complete model, (b,e) plasma-cell driven kinetics model, (c,f) asymptotic model.
doi:10.1371/journal.pcbi.1002418.g002

Figure 3. Predicted proportion of seropositive patients accord-
ing to time post vaccination from the plasma-cell driven
kinetics model (full blue line: HavrixTM 1440 dataset , dashed
green line: HavrixTM 720 dataset).
doi:10.1371/journal.pcbi.1002418.g003
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1) Asymptotic model: Study of the short-term antibody decay

and particularly the duration of antibody lifespan.

2) Plasma cell driven kinetic model: Study of long-term

behavior, permitting to estimate the mean time to waned

immunity.

3) Complete model: Global approach that could allow dealing

with the two previous research questions. However, this

approach would need additional data, especially in the initial

phase of the antibody decay after vaccination, which would

permit to identify the transition between the adiabatic and

the asymptotic hypotheses.

Combining the results obtained with each of these models, the

average antibody lifespan was estimated to be around one month

that is consistent with the literature whereas the average plasma

cell lifespans varied from 3 to 7 months for short-lived plasma-

cells, and over 60 years for long-lived plasma cell.

Power-law models present a relevant alternative to the

modelling framework based on plasma cells imprinted lifespan,

both from a methodological and from a biological point of view. In

absence of emperical evidence for ‘‘heterogeneity in the decay rate

of B-cells’’ given the data at our disposal, exponential decays were

assumed for short-lived and long-lived plasma-cells. The main

results of our study rely on the fact that three time-scales were

biologically relevant to explain the antibody decay: the antibody,

the short-lived and long-lived plasma cell lifespans. The power-law

models as described in Fraser et al. [20] included at most two time-

scales, which could explain the differences observed in the fits.

This conclusion is supported by the results obtained with the

‘‘Plasma-Cell Driven Kinetics’’ (PCDK) model, which accounted

for two time-scales and for which the AIC values were close to the

one obtained with the full power-law model (also accounting for

two time scales). Thus, whenever relevant data would be available,

the coupling of the two approaches offers an appealing perspective

for future immunological research.

Using individual parameter estimates, the mean time to

immunity waning was estimated to be 43 years for the individuals

vaccinated with HavrixTM 720 vaccine. Similar results were

previously obtained by Van Herck et al. [16] who estimated the

individual slow decay rate of antibodies (between months 76 and

128 post boosting) and estimated the mean number of years before

an individual reached the seroconversion level (20mIU/ml) to 45

years. With the same methodology, less than 15% of individuals

vaccinated with the latest vaccine formulation (HavrixTM 1440)

were estimated to lose their immunity 100 years after boosting,

showing possible life-long vaccine-induced immunity. Although

these results are based on long-term extrapolation and could be

influenced by immunosenescence and other distortions of

immunity, they elucidate in a simple way the observed differences

between the two vaccines.

Accounting for correlations between random effects was not

found to impact the accuracy of parameter estimates obtained with

the PCDK model (data not shown). Computational problems, due

to convergence failure, avoided the inclusion of such correlations

when analyzing the data with the asymptotic and complete

models. However, based on the results obtained with the PCDK

model, the main conclusions of this study are deemed to be robust

to this specific misspecification of the random effects distribution.

The effect of such misspecification would require further research

which is beyond the scope of the present study.

These results have a number of direct implications:

N In immunology, it offers a quantitative assessment of the time

scales over which plasma cells and antibodies live and interact.

This insight may provide a basis for further quantitative

research on the immunology, with direct consequences for

understanding the epidemiology of infectious diseases.

N In vaccinology, it offers an opportunity for clinical trial

researchers to collect relevant information early on, in order to

make long term predictions on immunity conferred by

vaccines. We showed in particular that antibody levels

measured within a year after a booster dose provide highly

relevant information for long term predictions of protective

immunity over time.

N In health policy, it offers more than a purely intuitive basis to

make recommendations on booster vaccinations. Our models

for hepatitis A suggest that this would not be required at least

within a 40 year time span after the booster vaccine dose.

A further improvement of our mathematical model could

include the explicit interaction between humoral and cellular

immunity. This would involve nonlinear coupling terms. The

validation of such theoretical generalisations would require much

more refined data not only about antibodies but also about B-cell

and T-cell subpopulations.
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Table 3. Long-term prediction of HAV antibody dynamics obtained with complete and plasma cell driven kinetics (PCDK) models
(95% confidence intervals determined using bootstrap percentile intervals).

HavrixTM 1440 dataset HavrixTM 720 dataset

Complete Model PCDK Model Complete Model PCDK Model

Mean Time to immunity waning (years) 1.7e5 (4.7e4, 6.7e6) 216.1 (143.0, 848.6) 237.1 (188.5, 1.7e3) 43 (34.8, 52.0)

Time below 95% of immune patients (years) 7.6e4 (1.7e4, 3.4e5) 63 (31.6, 576.9) 147.1 (111.2, 1.1e3) 23.4 (17.7, 25.3)

Time below 90% of immune patients (years) 1.0e5 (2.8e4, 4.3e5) 77.4 (52.6, 681.4) 169.4 (126.6, 1.2e3) 24.4 (22.2, 29.3)

doi:10.1371/journal.pcbi.1002418.t003
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