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ABSTRACT 
 
In this paper we investigate the impact of several weather conditions on the hourly number of 
crashes in the Netherlands during 2002. The impact of 17 climatic factors, belonging to the 
categories wind, temperature, sunshine, precipitation, weather image and visibility is 
quantified and compared with results from other research. The following could be concluded: 
an increase in maximum wind gust causes an increase in the number of crashes. Global 
radiation and sunshine duration both have a significant negative impact on road safety. Of all 
categorical weather indicators, presence of precipitation had the most significant impact. 
Moreover, the impact of precipitation duration seemed higher than the amount of precipitation. 
Finally, the direction of the effect of cloudiness on the number of crashes was also found 
positive. We applied a regression methodology making use of several distributions of the 
Poisson family. We tested which distribution fitted the actual observations best and found that, 
on average, the Negative binomial model performed better than the Poisson model, the Zero-
inflated Poisson model and the Zero-inflated negative binomial model.  
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1. INTRODUCTION 
Worldwide, an estimated 1.2 million people are killed in road crashes each year and as many 
as 50 million are injured (1). The human as well as material damage caused by road accidents 
is estimated on 1 to 2% of the gross national product. Consequently, there is a lot of interest in 
the way road safety can be enhanced. Research on specific aspects has been done in order to 
gain insights in the processes affecting accident risk. Knowledge about which factors affect 
road safety and what their influence is can be helpful to reduce the accident toll. The impact 
of factors influencing road safety is, however, a complex theme. Looking at the causes of 
crashes a distinction can be made into three categories: human, vehicle and infrastructure (2).  
 

Of all the groups of explanatory factors worth investigating, in this research we will 
focus on the impact of weather conditions on crashes. The relationship between weather 
conditions and crashes has been the subject of a number of studies. It is estimated that weather 
conditions can explain 5% of the variation in injury crashes. This may seem small but one has 
to take into account that traffic intensity explains over 70% of the variation and another 5% is 
determined by randomness (3). In this study, we will look at the number of crashes on an 
hourly basis using regression techniques on distributions of the Poisson family. The analyses 
have the objective to investigate whether the examined weather phenomenon has a significant 
impact on road safety and in case it does, which effect this is. Besides quantifying to what 
extent a change in the weather produces a change in road safety we investigate which 
statistical model is most appropriate for the analyses.  
 

The paper is organized as follows: in the background section we give an overview of 
the most relevant literature concerning weather impact studies. Second, the methodology will 
be amplified, followed by the presentation of the data and an elucidation of the data 
processing. After that, the results will be presented and discussed. Finally, this report is 
completed by a summary of the conclusions and topics for further research.  
 

2. BACKGROUND 
 
In the literature a considerable amount of information concerning the impact of weather 
conditions on road safety can be found. Research on this subject began in the fifties. Although 
these studies are clearly on the rise since the seventies, gaps are still noticeable and 
knowledge on this subject is far from complete. Certain sub domains received much attention 
from the academic world, while others barely.  
 

Research on this subject can be classified in several ways, depending on the statistical 
methods being used, the level of aggregation, considered time period, choice of road system, 
the dependent variables being studied and the explanatory variables included in the models. 
Concerning the level of aggregation or size of the studied observation periods three levels are 
usually distinguished: the macro level with one observation each year, the meso level with 
one observation each day and the micro level, which covers only one observation each 
fraction of a day. Furthermore, there exist intermediate forms which study road safety for 
example season per season or on a monthly or weekly basis. The oldest studies concentrated 
especially on the macro level. Later on, the meso level received more attention. Nowadays, 
most information is available on the macro and meso level. Research on an hourly basis (the 
so-called micro level) is rarely done. Yet, all levels of aggregation have their advantages and 
disadvantages. Traffic studies on the macro level can be used to detect structural influences 
like car design or road policy but have difficulties distinguishing weather or seasonal effects 
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(4). Monthly studies can take seasonal influences into account while retaining the advantages 
of studies on a yearly basis. However, they are also less appropriate for measuring weather 
influences due to oversimplification. Next, they can not take into account traffic volume 
patterns, which are mostly daily or hourly related. Researchers have therefore warned against 
the modelling of accidents with a high level of aggregation (5). Studies on the meso or micro 
level succeed much more in linking accidents to weather conditions. However, as the number 
of crashes per observation is on average lower (which is obviously the case since the periods 
are shorter) a larger part of the variation in the number of crashes will be attributable to 
randomness. The systematic causal factors however still determine the expected crash count 
around which the observed variation in crash data will be centred (3). Furthermore, we remark 
that not all studies work with constant observation periods. For example, in the study of 
Knapp (6) one observation period coincides with one winter storm. The level of aggregation 
also has an impact on the duration of the time period and the size of the territory. Macro 
studies need much longer periods to obtain a sufficient number of observations and have the 
objective to study general tendencies in a large territory of one or several countries (4). In 
case a large number of variables, which are generally only measured in densely populated 
areas, like traffic counts, are necessary one may opt to geographically restrict the research to a 
metropolis (4) or a certain road section (6).  
 

Although all traffic studies describe road safety, the dependent variable can differ. 
Concerning road crashes, one can study the total number of crashes, the number of crashes 
with injured persons or the number of fatal crashes. It may however be practical to use all 
three crash series (7, 3). Then it is possible to detect which weather variables have a different 
effect on the frequency and severity of accidents. Additionally, crash figures can be split up 
according to other crash types, like single-vehicle crashes, frontal crashes, involvement of 
vulnerable road users, etc. in order to get an idea about the influence of weather on certain 
crash types (8). The number or severity of victims as the central variable is less appropriate 
since they result from probabilistic dependent events.  
 

Furthermore, some studies only take one weather aspect into account, whereas other 
aim at describing a weather image as completely as possible. In the next paragraphs, we 
present some general conclusions per weather variable as reported by earlier studies. 

 
Snow seems to have a positive effect on material-damage-only-crashes as well as non-

fatal injury crashes while the impact on fatal crashes is favourable (7). Fridstrøm (3) found 
negative coefficients when he tested the monthly number of days with snow for different 
crash severities. Possible explanations are reduced exposure during winter, increased visibility 
at night and adaptation of driving habits (driving more slowly) in case of high-risk situations. 
Research on a daily basis showed some other insights. Snowfall shows an inverted U-
relationship with respect to crash rates (7). Crash rates appear to peak around the medium 
level of snow and actually decrease during very heavy snowfall. This is not surprising 
considering the reduced traffic volumes and driving speeds during snowstorms. Knapp (6) 
found that winter storms – defined as lasting for at least four hours with 2.5 centimeters each 
hour – increases the relative risk with 1303%. Zhang et al. (9) concluded that crash risk is 
highest under snow conditions with the overall relative risk ratio 53.12% higher than under 
non-precipitation conditions. 

 
The impact of black ice has been studied for the Scandinavian countries. Each time 

significant decreases for an extra day of frost were found. Here the same reasoning goes as for 
snow.  
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The next weather element that will be discussed is precipitation. Slight rainfall did not 

significantly effect the total number of highway accidents in California, contrary to 29% more 
crashes on very wet days and an increase of 123% in case of extremely wet days (8). Strong 
and extreme rainfall specifically effected single-vehicle and frontal crashes. Due to reduced 
friction on the road surface, braking distances are longer. Furthermore, visibility diminishes 
because of the reflection on wet surfaces. Zhang et al. (9) concluded that the overall relative 
risk ratio under rain conditions is 39.79% higher than under non-precipitation conditions. This 
positive relationship between precipitation and crashes was also found in (3). Keay and 
Simmonds (10) studied the relative impact of precipitation during night and daytime. 
Generally, an increase in precipitation causes an increase in the number of crashes. Moreover, 
if it concerns the first day after a dry period this number is even higher. An often suggested 
explanation is that during dry periods, oil and fuel end up on the road which mixed with 
rainwater forms slippery spots that disappear in time (4, 7, 11). These conclusions are in line 
with the study of Eisenberg (7) on a monthly and daily basis. 

 
Concerning thunderstorm Laaidi (11) noticed that crashes happen just before a 

thunderstorm bursting instead of during. Once lightning and rainfall begin, the risk decreases. 
Limited research has been done concerning the effects of wind on road safety. One study (11) 
found a positive relationship between wind variation and the total number of crashes. It is 
assumable that wind has an impact because a side wind of 13m/s is sufficient to cause a 
considerable change of route for a standard bus and a gust of 20m/s can results in overturning 
of vehicles (12). 
 

Subsequently, the impact of sunlight on road safety will be discussed. In areas closer 
to the poles the difference in duration between night and day are larger, which makes these 
areas suitable for this kind of research. Extra daylight has a favourable effect on the expected 
number of crashes in the Scandinavian countries (3). Laaidi and Laaidi (11) reported that 
sudden variations in the strength of sunlight reaching the earth cause an increase in the 
number of crashes. Drivers have probably difficulties to adjust. Van den Bossche et al. (13) 
found that the monthly number of sunny hours decreased road safety. It is plausible to assume 
a higher exposure on sunny days or crashes caused by the dazzling sun. Satterthwaite (8) 
concluded that fewer crashes occurred during cloudy and very cloudy days. 

 
Concerning temperature, researchers (11) found that in France heat waves have 

strongly positive effects on injury crashes. Possible reasons are that drivers prefer to shift their 
planned trips to the late evening or early morning. Furthermore, heat waves disturb the 
sleeping pattern of persons, which could cause a higher degree of tiredness amongst drivers.  
 

A final point of difference between studies is the inclusion of a measure for intensity 
as explanatory variable in the model. This determines if the absolute or relative effect of 
weather on road safety is investigated. To be able to estimate the relative risk one has to find a 
way of including exposure in the model. The problem is that such data are rarely on hand and 
when they are it often is an average for a very large area or counted solely on a few points of 
the road system. The scope of the research can be restricted or surrogate variables like fuel 
sales (3) can be used. This is, however, no option in case of a low level of aggregation.  
 

The two mostly applied statistical methods in earlier studies are the ‘matched pair 
approach’ and ‘regression analysis’. The basic idea of the matched pair approach is to 
compare crash figures of time periods in which the studied weather phenomenon happened 
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with a similar period (for example the same day and same hour but one week later) in which 
the phenomenon was absent. In case of regression analysis the dependent variable is regressed 
on a selection of explanatory variables. Several types of regressions are possible. For count 
data, like crash data, the Poisson regression is generally the most adopted and well known (6). 
Various researchers, however, recommend the use of generalized Poisson regression models 
like the negative binomial regression model, which takes possible overdispersion into account 
(3, 7). In this study, we will apply regression techniques, further discussed in the following 
section.  
 

3. METHODOLOGY 
 
Crashes on the road seem to occur randomly in time and space. In addition, the probability of 
a crash occurring during a short period of time is constant within this period of time. Since 
crashes are assumed to be Poisson distributed, this distribution has been used in earlier 
research. From the study of Lord, Washington and Ivan (14) discussing the range of statistical 
count models commonly applied, the following is derived:  
 

A crash is in theory the result of a Bernoulli trial with p the probability of success (a 
crash) and q = 1-p the probability of failure (no crash). The random variable Z records the 
number of successes out of N independent trials. The binomial distribution is given as: 
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For typical motor vehicle crashes where the event has a very low probability of 
occurrence but a large number of trials exist (e.g. million driving vehicles simultaneously on 
the road) it can be shown that the binomial distribution is approximated by a Poisson 
distribution 
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This approximation works well when the mean λ  and p are assumed to be constant. 
Properties of a hypothetical population of identical drivers all having the same crash risk can 
be computed using the Poisson distribution (15). In practice however, it is reasonable to 
assume that crash probabilities differ across drivers and road segments due to driving 
experience, risk adversity, reaction times and vehicle characteristics.  
 

The Poisson is a one-parameter distribution, with the property that the variance equals 
the mean, both being equal to the Poisson parameter iλ . To identify and estimate the effects 
of systematic factors on the crash counts, we specify ii x )log( βλ =  where β is a vector of 
regression coefficients and xi a vector of independent variables. Then, the Poisson regression 
model has the following algebraic form:  
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==   with y the actual number of crashes (16).  

 
 In a number of studies (3, 7, 17) crash data were found to be significantly 
overdispersed. Strong overdispersion means presence of extra variation in the data, not 
explained by the model. Overdispersion arises from crash data as a result of Bernoulli trials 
with non-equal zeros (more zeros than expected under a Poisson process), excess large 
outcomes (large values of Z) or both (14). In that case, the Poisson approximation is unlikely 
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to be appropriate. One solution is to use the Negative binomial distribution, a generalization 
of the Poisson distribution, which does no longer assume the expected value of the 
distribution to be equal to the variation. Instead a parameter θ  is used for the over- or 
underdispersion compared to the Poisson distribution. In the special case that this parameter is 
zero, the negative binomial distribution equals the Poisson distribution. The negative binomial 
regression model is given by:  
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Especially for the modelling of data containing a preponderance of zeros, like crash 

data, two new variants of the Poisson distribution were drawn up, more specifically the 
Hurdle model (18) and the Zero-inflated model (19). Both assume a so-called dual-state data 
generation process. An observation passes a first step in which it is determined if its value is 
zero or the observation has to go through the second step. In this possible second step the final 
value will be assigned. In that case a Poisson or other family related distribution is applicable. 
The difference between the two models is that the Hurdle model does not generate zeros in 
the second stadium while the Zero-inflated model does. Taking this difference into account, 
we opt here for the Zero-inflated model. Even in case of the most dangerous weather 
conditions there still exists a probability that no crash will take place. It has to be noticed, 
however, that the difference between the finally obtained models of both methods is usually 
very small (20). The Zero-inflated model will be applied with a Poisson model as well as a 
negative binomial model for the second stage. The Zero-inflated Poisson and negative 
binomial regression model are algebraically shown below:  
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for the observed count to be located in a perfect state, or (1-π) to be located in the Poisson 
respectively negative binomial distribution with unknown mean. Now that all four regression 
models have been presented, the data will be discussed.  
 

4. DATA 

 
Two types of data will be used in this study, namely the hourly number of crashes taken place 
in 2002 on the primary Dutch road system and measurement data of 37 weather stations of the 
Dutch Meteorological Institute KNMI spread across the Netherlands (see figure 1). The crash 
data were obtained from the Transport Research Centre AVV of the Dutch Ministry of 
Transport and Public Works. In total 26,940 crashes with material and/or physical damage 
occurred, most of them between 6-10 am and 3-6 pm. This indicates that part of the variation 
in the data can be attributed to traffic intensity.  
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FIGURE 1 Location of the Weather Stations in the Netherlands. 
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Additional to the dependent variable, we distinguish six groups of weather variables: wind, 
temperature, sunshine, precipitation, weather indicators and visibility. However, not all 
weather stations measure the same data. Since the measurements took place each hour during 
one year, each station disposes of 8,760 observations per variable. 
 

In a first phase, the data were processed in order to obtain useful variables. Certain 
factors were removed, other transformed to a more usable form. Furthermore, in case it was 
possible, missing values were filled in and certain samples were split . After these operations, 
we disposed of 41 samples with at most 17 explanatory factors describing several aspects of 
the weather. The data pre-processing will be discussed in the remainder of this section.  
 

Based on its location, each individual crash was assigned to the closest and thus most 
relevant weather station. Next, all crashes were counted per weather station, date and hour in 
time. This information formed the key in combining the crash and the climatologic dataset. 
Three weather stations that registered, as result of the absence of neighbouring primary roads, 
no crashes during 2002 were eliminated. Next, the explanatory variables will be described.  

 
The wind direction (DD) represents the direction the wind comes from and is 

expressed in degrees. In case of no wind this variables takes value ‘0’, in case of a strongly 
varying wind direction it takes the value ‘990’. The remaining wind variables are expressed in 
meter per second and measure the maximum wind gust (FX), the average hourly wind speed 
(FH) and the average wind speed during the latest ten minutes (FF) at the weather station. To 
the group of temperature variables belong four variables, all expressed in centigrade Celsius. 
T stands for the temperature during the observation on a 1.5 meters height, TX6 respectively 
TN6 for the maximum and minimum temperature during the last six hours while T10 
represents the minimum temperature during the last six hours at 10 centimeters above the 
surface. The next three variables are related to sunshine. The global hourly radiation (Q) 
measures how much sun energy reaches the earth surface in one hour, expressed in Joule per 
square centimeter. The variable SQ describes, in tenths of an hour, how long the sun was 
shining during an hour. The variable N is an indicator of the total sky surface coverage. Value 
‘0’ represents an open sky while value ‘8’ points at an entirely clouded sky. Another group of 
weather conditions that will be examined is linked to precipitation. The variable U stands for 
the percentage relative humidity, RD for the hourly precipitation duration in tenths of an hour 
and RD represents the precipitation amount during the previous hour in millimeters.  
 

The largest group of independent variables is formed by the overall weather indicators. 
These are six Boolean (0-1) variables indicating if a certain weather type has occurred during 
the last hour. More specifically, it concerns precipitation (WW-R), fog (WW-M), snow (WW-
S), hail (WW-H), thunderstorm (WW-O) and black ice (WW-Y). The final group contains 
visibility variables. VV represents the horizontal sight on a scale of ‘0’ to ‘100’. This scale is 
however not entirely linear. Until a value of ‘50’ one unity corresponds to 100 meters. In case 
of higher values one unity resembles more meters. We use the additional variable V if VV is 
equal to ‘0’ (or a visibility less than 100 meters) to give a more precise indication (in 
decameters). We believe that the described variables create a rather complete weather image. 
Nevertheless, information concerning extra variables, like the quantity or duration of snowfall, 
would have been desirable. 
 

Since in this study the effect of several weather related variables will be tested one 
may assume that multicollinearity is present. Several heuristics are available to assess the 
degree of multicollinearity (21). A first technique makes use of scatter diagrams. For each 
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observation the values of two variables will be plotted against each other. From the pattern in 
the diagram the relationship between the two variables is deduced (22). However, because of 
the large number of variables this graphical method is not very efficient. The second 
technique looks at the pair wise correlations between the variables. Too large values indicate 
danger for multicollinearity. As could be expected intuitively high correlations are found 
between the wind related variables FF, FX and FH. Correlation coefficients close to one and 
significant at the 0.001 level ask for a solution. Less extreme, but still high correlation was 
found between the duration and the quantity of precipitation. Both factors are related to the 
presence of precipitation. The radiation and duration of sunshine and relative humidity also 
have a strong relationship, even as the presence of fog and visibility (negatively correlated). 
Because we may conclude that there is a certain significant level of multicollinearity present, 
which influences the regression results, attention has been paid to reduce the amount of 
multicollinearity to an acceptable level. In order to obtain an as extensive as possible 
description of the impact of weather on road safety, we try not to eliminate too much variables. 
Some removal is however inevitable. Available techniques are the exclusion of certain highly 
correlated variables which are less justified, factor analysis and principal component analysis. 
Use of these last two methods is however hampered here because for the weather stations 
different variables are available. Beside the removal technique we opt for post-regression 
techniques such as stepwise selection. 

 
The temperature variables measuring over six hours (TX6, TN6, T10) do not fit the 

research intention. Although previous studies showed a relationship between so-called history 
variables for precipitation and road safety, nothing seems to indicate that this will also be the 
case with history variables concerning temperature. These two reasons justify the exclusion of 
these three variables. As mentioned before, a high correlation was also found between the 
wind variables. Since FF and FH both measure average wind speed with the distinction of FF 
measuring the speed ten minutes before the observation, the use of FF is less justified and will 
be deleted in favour of FH. DD, the wind direction variable, has the problem of many possible 
values. However, this variable is still useful because DD can take value ‘990’ to indicate a 
strongly varying wind direction. DD will be replaced by a Boolean variable WIS, which takes 
value ‘1’ if DD has value ‘990’ and zero otherwise. The additional visibility variable V will 
also be eliminated from the dataset because this variable is only used when the original 
variable VV indicates a horizontal sight of less than hundred meters, which only occurs in 
0.2% of the observations.  
 

A last point in the data pre-processing relates to missing values. Due to technical 
failure in the equipment, organizational problems, etc. not every measurement of all variables 
the specific station should have measured is available. For certain missing values, a value can 
be proposed based on known measurements. For other variables the group of missing values 
was too large so the variable was deleted from the dataset. For 7 weather stations a 
considerable number of weather image observations are missing. Since several thousands of 
observations per weather station are still sufficient, the data of these weather stations are 
divided. Each of these stations contains an A part including the weather indicators and a B 
part without these variables.  As indicated above, all these data operations finally resulted in 
41 different samples of data, each with at most 17 explanatory variables describing several 
weather aspects. 
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5. RESULTS AND DISCUSSION 
 
The dependent variable in this research – the hourly number of accidents per weather station – 
is a count variable. As discussed earlier, a Poisson distribution is therefore assumed. The 
expected value and the variance of a Poisson distribution are both equal to the expected 
incidence of an accident during the observation period. As a consequence, the dispersion – 
defined as the ratio of variance and expected value – equals one. Calculating the dispersion 
for each weather station separately and the Netherlands as a whole learn us that most stations 
have values close to one but for a number of areas, more specifically around large cities, 
overdispersion in the crash counts occurs. For this reason, the second model assumes the 
accident data to follow a negative binomial distribution. Furthermore, the exploratory analysis 
revealed in addition to overdispersion the presence of a large proportion of zeros in the data. 
In fact, as a result of the high number of zeros, the average crash count per hour per weather 
station lies at 0.09. Therefore, the Zero-inflated Poisson and Zero-inflated negative binomial 
model will also be tested.  
 

The frequency of the hourly area crashes is presented in Figure 1. The graph also 
shows the division into the eight categories for the four models. As can be seen, the actual 
proportion of zeros is slightly higher than is assumed for a Poisson distributed variable with 
parameter 0.09. This distribution overestimates the frequency of 1 crash while the occurrence 
of 2 and 3 crashes is too low compared to the observed number. Values higher than three are 
almost impossible according to the Poisson distribution whereas in our dataset this was 200 
times the case. Furthermore, the figure indicates that the negative binomial distribution 
approaches the observed counts better than the Poisson distribution does. Especially for the 
categories with large crash figures the negative binomial distribution is superior. The Zero-
inflated Poisson distribution seems to fit reality better than the Poisson distribution while the 
Zero-inflated negative binomial seems to yield a worse fit than the negative binomial 
distribution.  
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FIGURE 2 Frequency of the actual hourly area crashes together with the expected 

numbers from the Poisson, Negative binomial, Zero-inflated Poisson and 
Zero-inflated negative binomial distribution. 
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As mentioned before a large degree of multicollinearity is suspected. Although some 
measures have already been taken, the most important one – stepwise regression – will now 
take place. After the execution of the original regression, a number of variants will be 
elaborated. Each time, one of the explanatory variables will be removed. For all models (the 
original one plus the models which contain one variable less) the Akaike Information 
Criterion (AIC) (23) will be calculated, defined as dLLAIC 22 +−=  with LL the value of the 
log likelihood function and d the number of parameter estimates. The model with the lowest 
AIC offers the best balance between fit and complexity and is temporarily the optimal model. 
This process of removing one variable at the time repeats itself until the more complete model 
yields a lower AIC than each of the variants. Then the final solution is found.  
 

All four regression models are fitted. A stepwise regression is, however, not possible 
for the Zero-inflated models. For these models, the complete model will be fitted and the 
explanatory factor with the least significant coefficient will be eliminated. This process is 
repeated as long as AIC decreases.  
 

In the output, we find the coefficients of the regressors, their standard error, t- and p-
value, the AIC and information concerning the disturbances. The estimated regression 
parameters represent the expected relative change in the number of accidents due to a change 
in the explanatory variable. The significance of a variable can be deduced from the t- and p-
value. In general it is assumed that 0.05 is the minimum level on which a result has to be 
significant. However, there are cases in which the 0.05 rule can be relaxed and findings with a 
slightly lower significance are acceptable (24). The use of stepwise regression made the 
coefficients retained from this research to a large extent significant on the 0.05 level.  
 

So far, for each weather station, four regression models have been estimated. 
Obviously, we want to determine the optimal model. The results of the four models are 
generally quite similar. Furthermore, the explanatory variables included in the models are 
equal in 28 of the 41 cases. For the comparison of nested models we use the Likelihood Ratio 
Test that calculates the difference in Log Likelihood of two models. If this difference exceeds 
a certain critical value, the more complex model (requiring more estimates) is accepted in 
favour of the more parsimonious model. In case of non-nested models like the negative 
binomial and the Zero-inflated Poisson model the comparison is made based on the Bayesian 
Information Criterion (BIC) which also balances fit against complexity. Executing these 
procedures gives the following results: 5 weather stations are best fitted by the Poisson model, 
31 by the negative binomial model, 1 by the Zero-inflated Poisson model, 3 by the negative 
binomial model as well as the Zero-inflated Poisson model and 1 by the Zero-inflated 
negative binomial model.  
 

Table 1 gives an overview of the results of the negative binomial regression models 
for each explanatory variable. Columns 3, 4 and 5 represent respectively the minimum, 
median and maximum of the coefficients obtained for each weather variable. Columns 6 and 7 
give the number of times a positive coefficient, significant on the 0.05 level and only on the 
0.10 level appeared. Columns 8 and 9 report this for the negative coefficients. The last 
column shows in how many cases e.g. weather stations the variable was available for a model.  
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TABLE 1 Explanatory Results of the Negative Binomial Regression Models 
 

 VAR MIN MED MAX P0.05 P0.05-

0.10 

N0.05-

0.10 
N0.05 Cases 

Maximum wind gust FX -0.0061 0.0040 0.0196 18 1 1 1 40 

Average wind speed FH -0.0347 -0.0089 0.0108 3 2 4 6 40 

Varying wind direction WIS -0.7420 0.3830 2.7820 5 0 0 1 40 

Temperature T -0.0031 -0.0018 0.0178 3 1 1 7 39 

Global radiation Q 0.0014 0.0029 0.0168 26 4 0 0 38 

Sunshine duration  SQ -0.2530 0.0552 0.1140 15 6 0 1 38 

Cloudiness N -0.0626 0.0493 0.0812 8 0 1 1 16 

Precipitation duration RD 0.0322 0.0629 0.1380 26 2 0 0 38 

Precipitation amount RH 0.0100 0.0178 0.0405 8 1 0 0 38 

Relative humidity U -0.0193 0.0011 0.0221 2 2 1 3 39 

Presence of precipitation WW_R 0.3160 0.4050 0.8320 11 0 0 0 16 

Presence of fog WW_M -1.2800 0.0288 0.7170 2 1 0 1 16 

Presence of snow WW_S 1.0700 1.2500 1.4300 1 1 0 0 16 

Presence of thunderstorm WW_O 0.7950 0.7950 0.7950 1 0 0 0 16 

Presence of black ice WW_Y 0.6800 0.8680 1.2000 3 0 0 0 12 

Presence of hail WW_H / / / 0 0 0 0 14 

Horizontal visibility VV -0.0091 0.0044 0.0123 2 2 0 2 28 

 
The maximum wind gust seemed significant in half of the cases, almost always on the 

5% level. The obtained parameters vary between -0.006 and 0.020, on average around 0.004. 
The impact is unambiguous since almost all significant relationships are positive. The hourly 
mean wind speed has a less clear impact. The effect was significant in 15 of the 40 models of 
which 10 times negative. A closer inspection shows that the coefficients were nearly always 
negative when FX was included in the model and positive otherwise. Strong variation in wind 
direction proved little significant.  
 

In 12 of the 39 cases for which temperature was available this variable was retained 
and found significant. Although the results for temperature vary, the negative influence on the 
number of accidents seems to dominate. 

 
A link between sun(light) related variables and traffic intensity must be kept in mind. 

The radiation seems to have a significant impact in 30 out of 38 cases. 
 
An increase in radiation causes more crashes. Additionally, SQ has a significant 

positive impact in 21 cases, nearly always positive meaning that extra sunshine increases the 
number of accidents. 

 
Cloudiness (N) has a significant impact in 10 of 16 cases, 8 times with a positive 

significance between exp(-0.063) and exp(0.081).  
 

Of all the 38 cases for which precipitation data were available, RD had 28 times a 
significant positive effect while this was only 9 times the case for RH. It often happened that 
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only one of these variables was selected to be retained in the model. Precipitation is 
unfavourable for road safety, especially the impact of precipitation duration. 

 
The impact of relative humidity however is harder to quantify. First, the variable is 

only retained in a restricted number of cases. Second, the division between positive and 
negative impact is equal.  

 
For most of the overall weather variables the number of significant results are small. WW_R 
however is an exception: 11 times out of 16 a significant positive impact was found. The 
presence of precipitation during the observation period reduces road safety by 37 to 130%. 
The presence of fog was significant in 4 cases, the presence of snow had 2 times a positive 
significant effect. For the presence of thunderstorm only one significant result was found. 
Also for black ice very few significant combinations proved significant. In case significant 
results were found, these showed that black ice causes an increase in the number of accidents 
with factor 2 to 3 and snow with factor 3 to 4. The presence of hail is the only tested variable 
for which none significant effect could be detected. 

 
Of all the 28 cases where visibility VV was measured this factor did mostly not have a 
significant effect on the number of crashes. The six significant coefficients showed 4 times 
positive and 2 times negative significance resulting in an unclear impact. 
 

6. CONCLUSIONS AND FURTHER RESEARCH 
 
In this study we investigated the relationship between the hourly number of crashes on the 
main roads in the Netherlands during the year 2002 and the corresponding hourly weather 
variables. 
 

The methodological analysis concluded that the data in most areas (defined by nearest 
weather station) could best be described by the Negative binomial distribution instead of the 
Poisson, Zero-inflated Poisson and Zero-inflated negative binomial distribution although the 
results of the four models did not differ strongly.  

 
After data pre-processing the impact was tested of 17 climatic factors belonging to the 

categories wind, temperature, sunlight, precipitation, weather image and visibility. Because 
multicollinearity was present, a stepwise variable selection was performed and applied. This 
selection excluded variables that made the model more complex without significantly 
contributing to the explanatory power of the model. 
 
The significances that are found in this study are: 

• An increase in maximum wind gust causes an increase in the number of crashes. 
• Global radiation and sunshine duration both had a significant negative impact on 

road safety. 
• Ten extra minutes of precipitation increases the number of crashes by 6.5% on 

average while a higher amount of precipitation has a smaller impact. 
• Of all overall categorical weather indicators, presence of precipitation has the most 

significant impact. 
• The direction of the effect of cloudiness on the number of crashes was also found 

positive. 
• For the other variables less significant or unambiguous relationships were found. 
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Most of these results are in line with other research.  
 
In general, we believe that the quantified weather effects found in this study serve as an 
enhancement to the overall statistics on road safety intended for policy makers. At this 
moment, the weather effects are often captured by the police accident reports, which are 
usually based on subjective and qualitative weather indicators. 
 
More specifically, these results can be used in dynamic traffic management, information 
campaigns, … In case of ‘dangerous’ weather, measures can be taken temporarily – by means 
of dynamic overhead traffic signs for example indicating a lower maximum speed – or 
geographically – for certain regions with a significantly higher impact of a weather element – 
structural measures can be taken.  
 

A topic for further research is to include an exposure measure. Weather conditions are 
assumed to have a direct impact on road safety as well as an indirect impact through traffic 
intensity. In order to make a distinction between these two effects a measure for traffic 
intensity must be included in the model.  Currently, the effect of exposure was ‘artificially’ 
filtered out by including a region-specific offset (β0) into the regression part of the model, 
hereby preventing the weather effects to be overestimated. It is also worth investigating 
whether there are regional differences in the effect of the weather variables on crashes.  It is 
reasonable to believe that weather effects are different in a coastal area compared to the centre 
of the country.  In fact, a preliminary analysis revealed such kind of effects.  For instance, the 
effect of the variable ‘maximum wind gust’ on crashes turns out to be larger and positive for 
weather stations close to the coast, which is not surprising since wind plays a more dominant 
role in coastal regions.  Further research should reveal the exact differences.  Finally, it is our 
objective to include information from RWIS sites and weather forecasts as these are highly 
relevant for this type of research.  However, at the time this study was carried out, these data 
were not yet easily accessible, but they will be in the near future. 

 
Finally, we aim to generalize the results of individual weather stations to the country 

level using the statistical technique of meta-analysis (25).  
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