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ABSTRACT 1 

Assessing the safety impacts of Travel Demand Management (TDM) policies is essential to be 2 

carried out by means of a proactive approach. Since TDM policies are typically implemented at 3 
an aggregate level, Crash Prediction Models (CPMs) should also be developed at a similar level 4 
of aggregation. These models should match better with the resolution at which TDM evaluations 5 
are performed. Therefore Zonal Crash Prediction Models (ZCPMs) are considered to construct 6 
the association between observed crashes and a set of predictor variables in each zone. This is 7 

carried out by the Generalized Linear Modeling (GLM) procedure with the assumption of 8 
Negative Binomial (NB) error distribution. Different exposure, network and socio-demographic 9 
variables of 2200 Traffic Analysis Zones (TAZs) are considered as predictors of crashes in the 10 
study area, Flanders, Belgium. To this end, an activity-based transportation model framework is 11 
applied to produce exposure measurements. Crash data used in this study consist of recorded 12 

injury crashes between 2004 and 2007. The network and socio-demographic variables are also 13 

collected from other sources. In this study, different ZCPMs are developed to predict the Number 14 
of Injury Crashes (NOICs); including fatal, severely and slightly injury crashes. These models 15 

are classified into three different groups, i.e. 1) flow-based models, 2) trip-based models and 3) a 16 
combination of the two. The results show a considerable improvement of the model performance 17 
when both trip-based and flow-based exposure variables are used simultaneously in the model’s 18 

formulation. The main purpose of this study is to provide a predictive tool at the planning-level 19 
which can be applied on different TDM policies to evaluate their traffic safety impacts.  20 
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INTRODUCTION 1 

For many years, researchers have attempted to investigate the negative impacts of growing travel 2 

demand on traffic safety by predicting the Number of Crashes (NOCs) based on the patterns they 3 
have learnt from crashes that occurred in the past. Traditionally, this reactive approach consists 4 
of different phases such as; identification, diagnosis and improvement of unsafe locations, so 5 
called hot-spots. From the ethical point of view, this reactive approach is not acceptable because 6 
it requires several years of crashes to occur in order to identify and treat safety problems. Thus, 7 

providing a more proactive approach, which is capable of evaluating road safety at the planning-8 
level, is essential. This proactive approach is increasingly being paid attention to by researchers 9 
and practitioners in the last few years. Dealing with traffic safety at the planning-level requires 10 
the ability to integrate TDM policies into a crash predicting context. TDM policies are usually 11 
performed and evaluated at a more aggregate level than just on the level of individual 12 

intersections or road section. However, local TDM implementations like adding capacity to a 13 

segment of road may also be conducted. Typically the before/after analysis of such an 14 
infrastructure adjustment is carried out locally despite the fact that such an adjustment may have 15 

broader consequences. Thus, the impact of adopting a TDM strategy on transportation or traffic 16 
safety should be evaluated at a higher level rather than merely the local consequences. Therefore, 17 
application of CPMs at a zonal level like TAZ leads to ZCPM. 18 

The main goal of this study is therefore to develop ZCPMs that can be used to evaluate 19 
the traffic safety effects of conducted TDM policies. Exposure is an important determinant of 20 

traffic safety. Therefore, it is needed to assess the exposure under different TDMs to be able to 21 
evaluate their traffic safety impacts. To this end, the FEATHERS (Forecasting Evolutionary 22 
Activity-Travel of Households and their Environmental RepercussionS) activity-based 23 

transportation model is applied on the Flemish population. The FEATHERS framework (1) was 24 
developed in order to facilitate the development of activity-based models for transportation 25 

demand in Flanders, Belgium. Currently, the framework is fully operational at the level of 26 
Flanders. The real-life representation of Flanders is embedded in an agent-based simulation 27 

model which consists of over six million agents, each agent representing one member of the 28 
Flemish population. A sequence of 26 decision trees is used in the scheduling process and 29 
decisions are based on a number of attributes of the individual (e.g. age, gender), of the 30 

household (e.g. number of cars) and of the geographical zone (e.g. population density, number of 31 
shops). For each agent with its specific attributes, the model simulates whether an activity (e.g. 32 

shopping, working, leisure activity …) is going to be carried out or not. Subsequently, amongst 33 
others, the location, transport mode and duration of the activity are determined, taking into 34 
account the attributes of the individual (2). As such, the FEATHERS activity-based model can 35 
provide the exposure measure, Number of Trips (NOTs), by means of (time-of-day dependent) 36 
Origin-Destination (OD) matrices. Assigning these OD matrices of car trips to the Flemish road 37 

network provides other exposure variables like Vehicle Kilometers Traveled (VKT) and Vehicle 38 
Hours Traveled (VHT). These three different exposure variables together with network and 39 

socio-demographic variables are then used to construct the ZCPMs. Since the exposure which 40 
comes out of the activity-based model is sensitive to TDM policies, these ZCPMs are also TDM 41 
sensitive.  42 

The structure of this paper is as follows.  Initially, the literature about crash prediction 43 
modeling at the zone level will be reviewed. In the next sections the data preparation and model 44 
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development will be demonstrated. Finally, the results of ZCPMs will be shown followed by the 1 

final conclusions. 2 
 3 

LITERATURE REVIEW 4 

CPMs can be categorized in two different levels: the local level (e.g. road and intersection) and 5 
the regional level (e.g. TAZ). Usually CPMs at the local level aim to predict the safety 6 
benefits/detriment of infrastructure improvements. These models are not typically designed to 7 

evaluate traffic safety impacts of TDM policies; thus, application of CPMs at a higher 8 
aggregation level will be more practical (3). Recently, the application of ZCPMs became more 9 
popular amongst researchers because of their ability to estimate the effect of different TDM 10 
policies on traffic safety. This has been initially introduced by Levine et al (4). In their study a 11 
set of both socio-economic and network variables were chosen to predict the NOCs in different 12 

TAZs. They estimated a linear relationship between different explanatory variables and the 13 

NOCs. Several researchers have examined the association of a collection of network 14 
infrastructure, socio-demographic and socio-economic variables and weather conditions with the 15 

NOCs at the level of TAZs (5-12). De Guevara et al. (10) developed planning-level ZCPMs for 16 
the city of Tucson, Arizona. They considered many socio-demographic and network variables in 17 
their model construction. They concluded that predictors such as population density, the number 18 

of persons younger than 17 years old as a percentage of the total population, the number of 19 
employees, the intersection density, the percentage of miles of principal arterials, the percentage 20 

of miles of minor arterials and the percentage of miles of urban collectors are significant 21 
predictors for the NOCs. In a study carried out by Wier et al (11) it was shown that traffic 22 
volume, population size, the proportion of arterial streets without public transit, the proportion of 23 

the population living in poverty, and the number of people aged 65+ as a percentage of the total 24 
population, were significantly good predictors. Moreover, Noland and Quddus (9) concluded that 25 

TAZs with high employment density had more traffic crashes, while in urbanized more densely 26 
populated TAZs fewer crashes have been observed. 27 

Hadayeghi et al (13-18) have been working on ZCPMs for several years. In one of their 28 
first studies, it was shown that the number of accidents in a TAZ increases when the VKT, major 29 
and minor road length, total employed labor force, household population, and intersection 30 

density increase and it decreases with a higher posted speed and a higher level of congestion in 31 
the TAZ (14). Hadayeghi et al (15) investigated the temporal transferability of the ZCPMs by 32 

applying models constructed on 1996 data to predict the NOCs for each TAZ in 2001 for the 33 
City of Toronto. In another research, twenty-three regression models were developed to examine 34 
the relationships between several types of transportation planning variables and collision 35 
frequency. The results showed the potential of planning-level safety models to serve as decision 36 
support tools for planners to consider safety in the planning phase (16). Hadayeghi et al (17) 37 

conducted the same research but this time they applied Geographically Weighted Poisson 38 
Regression (GWPR) instead of taking Generalized Linear Modeling (GLM) approach. The major 39 

difference between these two types of models is that GWPR models allow the model coefficient 40 
estimates to vary spatially for each TAZ. This very important additional attribute of these models 41 
provides some extra information as it takes the spatial location of a crash into consideration. 42 
Lovegrove and Sayed (19) concluded that quantifying the relationship between the zonal 43 
characteristics such as exposure, network, socio-demographic and TDM variables (e.g. Total 44 
commuters from each zone or commuter density) and crashes at a zonal level provides a 45 

TRB 2012 Annual Meeting Paper revised from original submittal.



Pirdavani, Brijs, Bellemans, Kochan and Wets  5 

predictive tool to predict the NOCs in a TAZ. They have used GLM techniques to develop 1 

ZCPMs for both urban and rural areas across the Greater Vancouver Regional District (GVRD). 2 
The results of their study show that increasing signal density, intersection density per unit area 3 
and lane kilometers, arterial-local intersections in rural areas and total arterial road lane 4 

kilometers will lead to an increase in the NOCs. On the contrary, an increase in the number of 5 
three-leg intersections and local road lane kilometers will decrease the NOCs in a TAZ. 6 
Lovegrove and Sayed (20) further developed a set of ZCPMs for a “black-spot” study in GVRD. 7 
These sets of ZCPMs consist of an exposure variable (i.e. VKT) and other network, socio-8 
demographic and TDM variables. The results of this study also confirmed that ZCPMs have the 9 

ability to round out traditional reactive road safety improvement programs. An et al (21) found 10 
VHT, the number of intersections and the number of households with low income level to be 11 
correlated with the NOCs in TAZs. 12 

To conclude, many variables such as traffic volume, VHT, VKT, population, 13 

employment, level of income, urbanization degree, traffic intensity, number of intersections and 14 
intersection density, speed and road length are confirmed in different studies to be significant 15 

predictors of crashes at the zonal level. 16 
Recently, some researchers constructed ZCPMs by associating the NOCs in a TAZ with 17 

trip production/attraction and other network characteristics. Abdel-Aty et al (22) identified and 18 
prioritized important variables which can be associated with crashes per TAZ by means of the 19 
Classification and Regression Trees (CART) technique. It was shown that this methodology will 20 

be helpful in incorporating proactive safety measures for long range transportation planning. 21 
Abdel-Aty et al (23) also developed different ZCPMs for different crash severity levels using the 22 

NOTs as the exposure variable. They concluded that different sets of predictors should be 23 
considered based on the type or severity of crashes (e.g. total trip productions and attractions 24 
provide better model fit for the total and peak hour crashes while severe crashes were better 25 

predicted by different trip motive related variables). Naderan and Shahi (24) investigated the 26 

feasibility of associating travel demand in urban areas with crash frequencies in each TAZ. They 27 
developed a series of ZCPMs using the NOTs produced/attracted as predictors. They concluded 28 
that these models provide the basic tool for evaluating TDM policies in urban transportation 29 

planning in terms of traffic safety as the application of a specific TDM policy may reduce trip 30 
productions of a specific motive. 31 

The drawback of considering only trips as an exposure variable is that the impact of trip 32 
time, trip length, route choice, intrazonal traffic and transit traffic on a TAZ will be neglected. 33 

The number of produced/attracted trips might be an acceptable indicator of how busy or active a 34 
TAZ is or how much people are exposed to unsafe situations, but it always leaves out the effects 35 
of through traffic which is just passing through a TAZ neither having their origin or destination 36 
in that TAZ. It is a well known relationship in literature that road crashes are tightly linked to 37 
traffic exposure (13-24); therefore, having a more informative measure of exposure, is expected 38 

to result in a better crash prediction. This study demonstrates the impact of applying different 39 

exposure variables on the performance of ZCPMs. 40 

  41 
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DATA PREPARATION 1 

The required information to construct ZCPMs consists of exposure, network and socio-2 

demographic data accompanied with the crash data. These data should be collected for the whole 3 
study area and also be aggregated to the zonal level. The study area in this research is the Dutch 4 
speaking region in northern Belgium, Flanders. Flanders has over 6 million inhabitants, about 5 
60% of the population of Belgium. As already mentioned, an activity-based model within the 6 
FEATHERS framework is applied on the Flemish population to derive the in depth information 7 

of Flemish peoples’ travel behavior and travel demand for a null-scenario (current situation). The 8 
basic outputs of FEATHERS are activity-travel schedules/diaries. These can then be aggregated 9 
to OD matrices. These OD matrices include the NOTs for each traffic mode at different 10 
disaggregation levels (i.e. age, gender, day of the week, time of a day and motive). This traffic 11 
demand is then assigned to the network to obtain detailed exposure measures at the network level 12 

(i.e. VHT and VKT). These network level exposure measures are then aggregated to TAZ level.   13 

This has been carried out at the zonal level comprising of 2200 TAZs. The average size of TAZs 14 
is 6.09 square kilometers with standard deviation of 4.78 square kilometers. In addition, for each 15 

TAZ a set of variables including socio-demographic and network variables were derived to 16 
construct the ZCPMs. 17 

The crash data used in this study consist of a geo-coded set of injury crashes that have 18 

occurred during the period 2004 to 2007 and were provided by the Flemish Ministry of Mobility 19 
and Public Works. Table 1 shows a list of selected variables, together with their definition and 20 

descriptive statistics, which have been used in developing the ZCPMs presented in this paper. 21 
 22 

MODEL DEVELOPMENT 23 

Crash data consist of non-negative integers, so using ordinary least-squares regression which 24 
serves continuous dependent variables (e.g. time) is not an option (25). For decades researchers 25 
applied Poisson Regression model for crash prediction analysis. Because of the natural 26 

characteristics of crash data that variance does not necessarily equals to mean, application of 27 
Poisson Regression models becomes risky as it might bias the results by making parameter 28 

estimates inconsistent (25). To overcome this problem, the Negative Binomial (NB) model, 29 

which allows the variance to differ from the mean, was applied as an extension of the Poisson 30 
model. The NB model is the most commonly used model in crash data modeling (25). 31 

Application of CPMs at TAZ level has been initially introduced by Levine et al based on 32 
a Linear Regression (4). As mentioned before, application of NB model in crash prediction 33 
analysis became popular amongst many researchers (6-10, 13-16, 19-21, 23-27) . This is due to 34 

the fact that usually crash data have a greater variance compared to mean, therefore NB model 35 
can handle this over-dispersion better. In this study, NB models were developed within the 36 

Generalized Linear Modeling GLM framework. 37 
Reviewing the literature for different model forms showed that the following model has 38 

been widely used by different researchers (13, 21, 23, 27): 39 
 40 

 41 

 42 
 43 

TRB 2012 Annual Meeting Paper revised from original submittal.



Pirdavani, Brijs, Bellemans, Kochan and Wets  7 

TABLE 1 List of Explanatory Variables for the ZCPMs with Their Definition and Descriptive 1 

Statistics 2 

 Variable Definition Average Min Max SD
a 

 Crash total NOICs observed in a TAZ 36.03 0 326 41.58 

E
x
p
o
su

re
 v

ar
ia

b
le

s 

Number of Trips average daily number of trips originating/destined from/to a TAZ 2765.8 0 18111.4 2869.8 

Total Flow Average Annual Daily Traffic (AADT) in a TAZ (vehicle) 96414.5 70.9 4423325 181695 

VHT total daily vehicle hours traveled in a TAZ 608.26 1.50 9998.6 930.29 

VKT total daily vehicle kilometers traveled in a TAZ 52533.8 84.06 985192 90715.2 

Motorway Flow AADT of motorways in a TAZ (vehicle) 37724.96 0 3881777 146757.5 

Motorway VHT total daily vehicle hours traveled on motorways in a TAZ 260.52 0 9762.5 832.97 

Motorway VKT total daily vehicle kilometers traveled on motorways in a TAZ 27471.82 0 946152.8 84669.53 

Other Roads Flow AADT of other roads in a TAZ (vehicle) 58690.29 0 734152.5 73632.5 

Other Roads VHT total daily vehicle hours traveled on other roads in a TAZ 348.51 0 3777.69 358.76 

Other Roads VKT total daily vehicle kilometers traveled on other roads in a TAZ 26662.85 0 303237.6 28133.04 

V/C average volume to capacity in a TAZ 0.0478 0 0.5697 0.0422 

N
et

w
o
rk

 v
ar

ia
b
le

s 

Speed average speed limit in a TAZ (km/hr) 69.4 31 120 10.91 

Capacity hourly average capacity of links in a TAZ 1790.1 1200 7348.1 554.6 

Area total area of a TAZ in square kilometers 6.09 0.09 45.22 4.78 

No. of Links number of links in a TAZ 39.27 1 230 30.46 

Link Length total length of the links in a TAZ (km) 15.86 0.39 87.95 10.79 

Link Density link length per square kilometers  in a TAZ 3.37 0.03 20.44 2.41 

Intersection total number of intersections in a TAZ 5.8 0 40 5.9 

Intersection Density number of intersection per square kilometers 1.76 0 50.63 3.39 

Motorway 

presence of motorway in a TAZ describes as below: 

          “No” represented by 0 

          “Yes” represented by 1 

0 0 1 -
b 

Urban 

Is the TAZ in an urban area? 

          “No” represented by 0 

          “Yes” represented by 1 

0 0 1 - 

Suburban 

Is the TAZ in a suburban area? 

          “No” represented by 0 

          “Yes” represented by 1 
0 0 1 - 

S
o
ci

o
-d

em
o
g
ra

p
h
ic

 v
ar

ia
b
le

s 

Driving License 

average driving license ownership in a TAZ describes as below: 

          “No” represented by 0 

          “Yes” represented by 1 

1 0 1 - 

 

Income Level  

 

average income of residents in a TAZ describes as below: 

          “Monthly salary less than 2249 Euro” represented by 0 

          “Monthly salary more than 2250 Euro” represented by 1 

1 0 1 - 

Work Status 

average work status of the residents in a TAZ describes as below: 

          “Don’t work” represented by 0 

          “Work” represented by 1 

1 0 1 - 

Population total number of inhabitants in a TAZ 2614.52 0 15803 2582.6 

Population Density population per square kilometers 774.14 0 14567.4 1398.4 

Adults Population total number of adult inhabitants in a TAZ 1796.06 0 12014 1823.5 

Adults Population 

Density 
adults population per square kilometers 542.85 0 10444.8 1013.4 

a: Standard deviation                                  b: Data not applicable. 
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𝐸 𝐶 = 𝛽0 × (𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒)𝛽𝑖 × 𝑒 𝛽𝑖𝑥𝑖        (1) 1 

 2 
Where; 3 
 4 

𝐸 𝐶  : expected crash frequency, 5 

𝛽0 and 𝛽𝑖 : model parameters, 6 

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 : exposure variable (e.g. VHT, VKT or NOTs), and 7 

𝑥𝑖  : other explanatory variables. 8 
 9 
Logarithmic transformation of equation 1 when considering only one exposure variable yields: 10 
 11 
𝑙𝑛 𝐸 𝐶  = 𝑙𝑛 𝛽0 + 𝛽1𝑙𝑛 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + 𝛽2𝑥2 + 𝛽3𝑥3 +  … + 𝛽𝑛𝑥𝑛   (2) 12 

 13 

Several models were constructed to associate the relationship between crash frequency 14 
and the explanatory variables while the main focus is on the application of different exposure 15 

measures. The models can be categorized into three different groups based on the type of 16 
exposure measure that was utilized, i.e. 1) flow-based models, 2) trip-based models and 3) 17 

models based on a combination of the two. Flow-based models were constructed by regressing 18 
the NOICs in each TAZ on VHT or VKT, as the exposure variables, and a selection of network 19 
and socio-demographic variables listed in Table 1. Trip-based models use the same network and 20 

socio-demographic variables but use NOTs as the exposure variable. In the third type of models, 21 
both flow and trip based variables are included simultaneously as measures of exposure. 22 

Initially in the flow-based models, VKT and VHT were computed based on all types of 23 
roads together. The Preliminary results showed that all models overestimated the NOICs in the 24 
TAZs in which a significant length of motorway was present. Based on this observation it was 25 

concluded that it is necessary to make the distinction between different road types (i.e. 26 

motorways and non-motorway roads) and consider each of their exposure values separately. 27 

Coefficients were estimated by using a forward selection procedure by taking the 28 
intercept and one of the exposure variables for the starting point and then additional candidate 29 

variables were selected from the available data described in Table 1. When the exposure variable 30 
is included in the model, the next step is to include the second variable with the smallest p-value. 31 
This procedure continues until the remaining candidate variables have a p-value of higher than 32 

0.05. At this point the final model is obtained. For each model, the multicollinearity phenomenon 33 
was also checked for by means of computing the variance inflation factor (VIF) for all variables 34 
which are present in the model. The results of this test did not show any multicollinearity 35 
problem for any of the developed models. 36 

The data used in this study consists of the information from 2200 TAZs. This provides a 37 

sufficient number of cases with respect to sample size. Therefore for model development, 70% of 38 
the TAZs were chosen randomly as training set and the rest of 30% were used as a test set. 39 

Applying the developed models to the test sets shows a significant correlation between the 40 
observed and the predicted NOICs for all developed models (see Figure 1). The Pearson 41 

Correlation Coefficients (PCC) of all developed models shown in Table 2 indicate that all 42 
models are capable of predicting the NOICs quite well; however, more statistical tests are needed 43 
to be able to select the best fitted model (from the alternatives). This analysis will be carried out 44 
in the next section. The regression results of the developed models are presented in Table 2. 45 

 46 
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MODELING RESULTS 1 

As already mentioned before, models were constructed by regressing the NOICs in each TAZ on 2 

the natural logarithmic transformation of NOTs, VHT or VKT, as the exposure variables, in 3 
addition to other network and socio-demographic variables. Different statistical tests were used 4 
to assess the goodness-of-fit of each developed model. The results of the analysis show that one 5 
or two exposure variables together with the variables (See Table 1 for a more detailed 6 
description of the variables) V/C, Capacity, Speed, Intersection, Income level, Population, Urban 7 

and Suburban were statistically significant at 95% confidence level. 8 

 9 
FIGURE 1 Correlations between the observed and the predicted NOICs. 10 
 11 

For all models, exposure variables were positively associated with the NOICs in each 12 
TAZ. As the NOTs, VHT or VKT increases, total NOICs also tends to increase. Many studies 13 
found similar association between VKT (13-20, 27, 28), VHT (21), NOTs (22-24) and NOICs 14 
per TAZ. For the trip based model V/C is also positively associated with the NOICs, whereas 15 
capacity shows a greater contribution in predicting the NOICs for other models (Table 2).16 
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TABLE 2 Regression Results of the Developed ZCPMs 1 

 Model  #1 Model  #2 Model  #3 Model  #4 Model  #5 Model  #6 

Coefficients Estimate Estimate Estimate Estimate Estimate Estimate 

(Intercept) -3.713e+00 -1.885e+00 -3.744e-01 -2.226e+00 -2.886e+00 -4.141e+00 

log(Number of Trips) 7.338e-01 6.659e-01
 

-
 a
 - 4.676e-01 4.520e-01 

log(Motorways VKT) - - - 9.472e-03 - 7.744e-03 

log(Other Roads VKT) - - - 4.267e-01 - 3.132e-01 

log(Motorways VHT) - - 1.025e-02 - 7.717e-03 - 

log(Other Roads VHT) - - 4.143e-01 - 3.040e-01 - 

log(V/C) - 

 
1.883e-01 - - - - 

Speed 9.806e-03 - - - - - 

Capacity 3.157e-04 3.190e-04 4.317e-04 3.913e-04 4.220e-04 3.894e-04 

Intersection 4.184e-02 4.433e-02 3.220e-02 3.271e-02 2.844e-02 2.888e-02 

Income level -1.160e-01 -1.308e-01 -5.401e-02 -5.879e-02 -1.056e-01 -1.071e-01 

Urban 3.111e-01 - 3.182e-01 4.848e-01 2.287e-01 3.520e-01 

Suburban 3.487e-02 - 1.624e-01 2.047e-01 5.712e-02 9.095e-02 

Population  - - 1.372e-04 1.299e-04 2.340e-05 2.293e-05 

Deviance/DF
b
 1.1386 1.1365 1.1331 1.1302 1.1365 1.1355 

AIC
c
  17353 17255 17196 17166 16921 16918 

MSPE
d
 581.04 583.59 1141.17 1089.96 482.41 489.74 

PCC
e
 0.8458 0.8448 0.8247 0.8276 0.8709 0.8697 

R
2 

0.7155 0.7138 0.6802 0.6848 0.7584 0.7564 

a: Data not applicable 

b: Degree of Freedom (DF) 

c: Akaike Information Criterion (AIC) 

d: Mean Squared Prediction Error (MSPE) 

e: Pearson Correlation Coefficient  (PCC) between observed and predicted crash values 

 2 
Positive correlation of average speed limit and number of intersections with NOICs per 3 

TAZ can be observed for all models. This positive relationship has also been reported in other 4 
studies (10, 14, 19, 21, 23). This can be explained as injury crashes are more likely to occur at 5 
higher speeds. In general, intersections have a higher risk of experiencing conflicts compared to 6 
road links because of their natural design, therefore there are more crashes expected to occur in 7 

TAZs that have a higher number of intersections. Population is also found to have a positive 8 

association with the NOICs. It can be explained as in the TAZs with a higher number of 9 

inhabitants, there will be more people exposed to unsafe situations compared to TAZs with fewer 10 
inhabitants. The same association has been recognized by other researchers (4, 5, 11). As it can 11 
be observed in Table 2, all of the constructed models showed negative association with “Income 12 
Level” unlike other explanatory variables, which have positive signs. These results are in line 13 
with other studies’ findings. It has been shown in many studies that poverty has a positive 14 
relationship with the crashes that occurred in a TAZ (5-9, 11, 12, 21). The negative sign for the 15 
“Income Level” variable indicates that TAZs with higher income level are expected to have 16 
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fewer crashes compared to less prosperous TAZs. In all of the models, coefficient estimate of the 1 

variable “Urban” is more than the coefficient estimate of “Suburban”. This means that the model 2 
is correctly predict more crashes for more urbanized TAZs. If a TAZ is located in a rural area, 3 
both variables relevant to urbanization degree will be zero and subsequently there will be less 4 

crashes predicted for rural areas. This is in line with the findings of Huang et al (5) that counties 5 
with a higher level of urbanization are associated with higher crash risk. In general, it can be 6 
concluded that all of the parameters’ signs are along the lines of theoretical expectations and 7 
findings of other previously published studies. 8 

To select the best fitted model, different criteria were taken into consideration. The 9 

Akaike Information Criterion (AIC) is a measure of the relative goodness of fit. AIC is defined 10 
as: 11 
 12 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿) 
 13 
Where; 14 

𝑘 : the number of parameters in the model and 15 

𝐿 : the maximized value of the likelihood function for the estimated model. 16 

 17 
Models may be ranked according to their AIC values in a sense that the preferred model 18 

is the one with the minimum AIC value. 19 
Another measure that has been used in comparative analysis between different models is 20 

Mean Squared Prediction Error (MSPE) (13). The MSPE is the sum of the squared differences 21 

between predicted and observed crashes divided by the sample size. The MSPE is defined as: 22 
 23 

𝑀𝑆𝑃𝐸 =
  Pi − Oi 

2𝑛

𝑖=1
n

 
 

Where; 24 

Pi : predicted NOICs for ith TAZ, 25 

Oi : observed NOICs for ith TAZ and 26 

n : total number of TAZs 27 
 28 
Comparing different models performance shows a significant improvement in models 29 

which are developed based on both types of exposure variables; NOTs and assigned traffic on 30 

the network (i.e. VHT or VKT). The maximum AIC value stands for the trip-based model 31 
(Model #1) (See Table 2). It indicates that this model achieves the poorest fit on the data 32 
compared to other models. The model which includes V/C as an exposure related model also 33 
performs badly (Model #2). Flow-based models (Models #3 and #4) provide a better fit 34 

compared to trip-based model according to their AIC values; however their MSPE values are the 35 
greatest among other models. Goodness-of-fit measures for combined exposure models (Models 36 
#5 and #6) signify the better performance of these models compared to the ones that include only 37 

one of the exposure variables. As it can be seen in Table 2, Models #5 and #6 provide almost 38 
equally the minimum MSPE and AIC values, therefore it can be concluded that these models are 39 
the best fitted models. In Figure 2, the observed and the predicted NOICs are displayed for each 40 
TAZ. Darker TAZs have higher observed/predicted NOICs compared to brighter TAZs. By 41 
comparing Figures 2(a), 2(b) and 2(c), a relatively similar pattern can be noticed. This is an 42 
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indication that the final chosen models (Models #5 and #6) are capable of predicting the NOICs 1 

quite well. 2 
 3 

(a) Observed NOICs in each TAZ between 2004 and 2007 

 

(b) Predicted NOICs in each TAZ; results from Model #5 

 

(c) Predicted NOICs in each TAZ; results from Model #6 

 

 

FIGURE 2 Graphical representation of observed and expected NOICs for each TAZ in Flanders. 4 
 5 

CONCLUSIONS 6 

In this study a proactive approach was presented, which can be applied in transportation safety 7 
planning. Different ZCPMs were developed in order to associate Number of Injury Crashes 8 

(NOICs) with different exposure, network and socio-demographic variables at the zonal level 9 
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comprising of 2200 TAZs in Flanders, Belgium. To this end, Negative Binomial (NB) models 1 

were developed within the Generalized Linear Modeling (GLM) framework. This approach has 2 
been widely followed by other researchers when the crash data is over-dispersed. The results of 3 
the analysis showed the different performance of the models when different exposure variables 4 

are considered to be included in model development. The contributing variables and their 5 
measure of effectiveness also provide some information that can be used by researchers and 6 
practitioners to evaluate the impact of each variable in predicting crashes. This can serve as a 7 
useful traffic safety input into transportation projects at the planning-level.   8 

In order to assess TDM’s traffic safety implications, it is essential to have TDM sensitive 9 

exposure measures. Activity-based transportation models provide an adequate range of in-depth 10 
information about individuals’ traveling behavior. The advantage of using activity-based 11 
transportation models is that these models can be adjusted to simulate different TDM scenario 12 
and therefore a wide range of traffic safety evaluation studies can be carried out based on their 13 

output.  In this study, traffic demand was prepared by the activity-based transportation model’s 14 
outputs, FEATHERS.  15 

Based on the results presented in this paper the following conclusions can be drawn: 16 

 Different exposure, network and socio-demographic variables have been considered for 17 
model development. Coefficients were estimated by using a forward selection procedure. 18 
Variable selection has been carried out until all remaining variables have a p-value of 19 

higher than 0.05. For each developed model multicollinearity was checked and the results 20 
didn’t show any multicollinearity issues. Positive or negative association of all selected 21 
variables with the NOICs has been checked by comparing them with the results of other 22 

studies reported in the literature. The results found are in line with what can be found in 23 
literature. 24 

 Sole use of NOTs originating/destining from/to a TAZ for crash prediction will result 25 
missing some important information about the characteristics of travel demand; i.e. 26 

NOTs, as an exposure variable, is not sensitive to trip time, trip length and route choice. 27 
Moreover, transit traffic which is just passing through a TAZ can have a significant share 28 

of the exposure observed in a TAZ. This part of the exposure is left out by only using the 29 
NOTs. Thus, other exposure variables which are sensitive to the impacts of trip 30 
assignment should be taken into account. This has been carried out by assigning the 31 
traffic demand to the network using an equilibrium assignment and by computing 32 

exposure variables that are sensitive to the assignment like VHT and VKT. 33 

 Different models were developed based on the different measures of exposure that were 34 
generated. These models were categorized into three groups according to the exposure 35 

measures used as independent variables, i.e. 1) flow-based models, 2) trip-based models 36 
and 3) a combination of the two. The results of the model comparison showed that the 37 
models that contain the combination two exposure variables outperform the models 38 
which only have one of the exposure variables (NOTs or VHT/VKT) in their formulation. 39 

Therefore considering the application of both flow-based and trip-based exposure 40 
variables in ZCPM construction is recommended. 41 
Spatial and temporal transferability of the model and application of other model types 42 

would also be some directions for future studies.  43 
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