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ABSTRACT 

Travel Demand Management (TDM) consists of a variety of policy measures that affect 

the transportation system’s effectiveness by changing travel behavior. The primary objective to 

implement such TDM strategies is not to improve traffic safety, although their impact on traffic 

safety should not be neglected. The main purpose of this study is to evaluate the traffic safety 

impact of conducting a fuel-cost increase scenario (i.e. increasing the fuel price by 20%) in 

Flanders, Belgium. Since TDM strategies are usually conducted at an aggregate level, Crash 

Prediction Models (CPMs) should also be developed at a geographically aggregated level. 

Therefore Zonal Crash Prediction Models (ZCPMs) are considered to present the association 

between observed crashes in each zone and a set of predictor variables. To this end, an activity-

based transportation model framework is applied to produce exposure metrics which will be used 

in prediction models. This allows us to conduct a more detailed and reliable assessment while 

TDM strategies are inherently modeled in the activity-based models unlike traditional models in 

which the impact of TDM strategies are assumed. The crash data used in this study consist of 

fatal and injury crashes observed between 2004 and 2007. The network and socio-demographic 

variables are also collected from other sources. In this study, different ZCPMs are developed to 

predict the Number of Injury Crashes (NOCs) (disaggregated by different severity levels and 

crash types) for both the null and the fuel-cost increase scenario. The results show a considerable 

traffic safety benefit of conducting the fuel-cost increase scenario apart from its impact on the 

reduction of the total Vehicle Kilometers Travelled (VKT). A 20% increase in fuel price is 

predicted to reduce the annual VKT by 5.02 billion (11.57% of the total annual VKT in 

Flanders), which causes the total NOCs to decline by 2.83%. 

 

Keywords: Crash prediction models; Traffic analysis zones; Transportation planning; Travel 

demand management; Safety planning; Fuel-cost increase scenario; Activity-based models.  
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1. Introduction 

It is beneficial to know the consequences of TDM (Travel Demand Management) 

strategies e.g. on traffic safety, which is considered to be an external side effect. Road crashes 

are known as one of the negative impacts of growing travel demand. For many years, researchers 

have attempted to investigate this impact by predicting the NOCs based on patterns they learned 

from crashes that occurred in the past. Traditionally, this reactive approach consists of different 

phases such as identification, diagnosis and improvement of dangerous locations, so-called hot 

spots. From an ethical point of view, this reactive approach is not acceptable because it requires 

several years of crashes to occur in order to identify and treat safety problems. Providing a more 

proactive approach, capable of evaluating road safety at the planning-level is therefore essential. 

In the last few years researchers and practitioners have increasingly applied this proactive 

approach. Dealing with traffic safety at the planning level requires the ability to integrate a crash 

predicting context into TDM strategies. TDM consists of several policies and strategies which 

aim to overcome transportation problems in different ways, e.g. changing travel behavior, 

making transportation systems more efficient or reducing travel demand. In general, TDM 

strategies are implemented to improve transportation systems’ efficiency. However their 

potential traffic safety impact should not be ignored. TDM strategies improve transport system 

efficiency by means of mode shift (e.g. using public transportation instead of cars, biking for 

short distance trips or carpooling), travel time shift (e.g. avoiding traffic peak-hours by leaving 

home/the work place earlier or later), or travel demand reduction (e.g. teleworking) (VTPI, 

2011). TDM strategies are usually performed and evaluated at geographically aggregated levels 

rather than merely the level of individual intersections or road sections. Therefore the impact of 

adopting a TDM strategy on transportation or traffic safety should also be evaluated at a level 

higher than merely the local consequences. 

The application of CPMs (Crash Prediction Models) at a geographically aggregated level 

such as a Traffic Analysis Zone (TAZ) leads to a ZCPM (Zonal Crash Prediction Model). Until 

now, ZCPMs have hardly ever been incorporated in TDM strategies. The main goal of this study 

is therefore to integrate ZCPMs with a fuel-cost increase scenario to evaluate the traffic safety 

effects of conducting such a TDM strategy by means of a simulation-based analysis of the 

impact of fuel price on the travel demand in Flanders, Belgium. This way, the behavioral impact 

of the TDM scenario in terms of traffic demand is incorporated in the analysis. By assigning 

traffic demand to the road network and using this information at zonal level, the impact of 

responses to TDM, such as changes in trip planning, route choice and modal choice are 

incorporated in the analysis. This study is an assessment exercise which illustrates the impact of 

a 20% increase in fuel-related costs on traffic safety. It is essential to note that this 20% increase 

in fuel-related costs (expressed in € per kilometer) is not an optimized value and is the result of a 

change in fuel price (expressed in € per liter) on the one hand and fuel economy (liter per 

kilometer) on the other hand. 

To account for severity of crashes, different ZCPMs are developed at different severity 

levels; i.e. “fatal + severe injury” and “slight injury” crashes. Additionally, in order to represent 

the mode shift effects, crashes are disaggregated into two different types namely “Car-Car” and 

“Car-Slowmode” crashes (“Slowmode” comprises pedestrians and cyclists). Accordingly, four 

different ZCPMs are developed to explain the traffic safety impacts of the fuel-related cost 

increase at different crash type/severity levels. 



  4 

It is necessary to indicate that the FEATHERS model (Bellemans et al. 2010) models the 

transportation demand of a population who is aware of the state of the transportation network. 

Hence, the assumed travel times during the activity-travel planning phase are in correspondence 

with the travel times obtained after assigning the total traffic demand to the road network (this is 

achieved through iteration). This means that the model is a steady state model and that no 

transients are modeled. Moreover, the model is a short term model in the sense that it does not 

assume a shift in the composition of the vehicle fleet as a result of the change in fuel cost. This 

assumption is justified by the slower time scale of vehicle fleet composition (in the order of 

several months to even years). Also changes in the location of businesses and/or the location 

choice for living (i.e. land use characteristics) occur at a far slower time scale than the adaptation 

of travel behavior to changing fuel cost triggers. 

The structure of this paper is as follows.  Initially, we will review the literature. Then the 

activity-based model which is used in this study will be briefly introduced. In the next sections 

the data preparation and the fuel-cost increase scenario evaluation process will be demonstrated. 

Finally, the results of this evaluation will be shown followed by the final conclusions and 

discussions. 

 

2. Literature review 

TDM strategies have hardly ever been implemented to improve traffic safety. Their main 

objectives are usually the reduction of congestion and emission, as well as travel cost and energy 

by means of reducing travel demand and consequently vehicle distance travelled. Nevertheless, 

apart from improving the efficiency of the transportation system and economic/environmental 

benefits, identifying the traffic safety impacts of a TDM strategy, can strengthen the 

implementation of such a strategy. It is a well-known fact in literature that road crashes are 

tightly linked to traffic exposure. Therefore, strategies that reduce travel demand or distance 

travelled, or cause a modal shift to a safer mode (e.g. from car to public transportation) tend to 

reduce the NOCs (Litman 2006; Litman 2011).  

Lovegrove and Litman (2008) applied community-based, macro-level CPMs to calculate 

the road safety impacts of three mobility management strategies: smart growth, congestion 

pricing and improving transport options. They assumed the effect of implementing these 

strategies on different explanatory variables of the CPMs (e.g. they found that the smart growth 

strategy will decrease vehicle kilometers traveled (VKT) by 15%). Based on these assumptions 

the expected NOCs have been calculated for each TDM strategy. The results indicated that 

mobility management strategies can significantly improve traffic safety. 

Fuel-related costs are a major component of each motor vehicle’s operating expenses. By 

increasing the fuel price as a TDM strategy, people tend to travel less by car, and instead use 

public transportation, carpool, or shift towards slow modes (biking and walking) etc. Thus, 

traffic crashes are expected to decrease as a result of a reduction in the number of car kilometers 

traveled. Fuel-related costs have an impact on traffic safety through changes in travel demand. 

Grabowski and Morrisey (2004) reported a relatively stable number of fatal motor vehicle 

crashes despite new traffic safety laws and vehicle innovations over a period of time. Their 

explanation was that the price of gasoline declined, which resulted in more vehicle miles traveled 

and potentially more fatalities.  Chi et al. (2010) also investigated the impact of gasoline price 

changes on different types of crashes at a more disaggregated level for different ages and 

genders. In their reactive approach, they developed models to predict traffic crashes based on 
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explanatory variables like exposure, gasoline price, alcohol consumption, seat belt usage, etc. It 

was concluded that an increase in gasoline price both has a short-term and intermediate-term 

effect on reducing total traffic crashes. One of the longer-term effects of a fuel cost increase is 

the change of the fleet composition to more fuel-economic vehicles, which can partially 

compensate the increased fuel price by an increased fuel economy. In literature it is described 

(Goodwin et al. 2004; Litman 2010) that the fuel price elasticity of fuel consumption ranges from 

-0.25 to -0.6, the elasticity of fuel efficiency ranges from 0.3 to 0.4 and the vehicle mileage 

elasticity ranges from –0.1 to -0.3. 

CPMs can be categorized in two different levels: the local level (road and intersection) 

and the regional level (e.g. TAZ). Usually local level CPMs aim to predict the safety 

benefits/detriment of infrastructural improvements. These models are not typically designed to 

evaluate traffic safety impacts of TDM strategies; thus, the application of CPMs at a higher 

aggregation level will be more practical (Tarko et al. 2008). The application of CPMs at TAZ 

level has been initially introduced by Levine et al (1995). In their study, a set of both socio-

economic and road network variables were chosen to predict the NOCs in TAZs. They 

developed a linear relationship between different explanatory variables and the NOCs. 

Recently, the application of ZCPMs became more popular amongst researchers. Several 

researchers examined the association of a collection of network infrastructure variables, socio-

demographic and socio-economic variables and weather conditions with the NOCs in TAZs 

(Aguero-Valverde and Jovanis 2006; Amoros et al. 2003; Huang et al. 2010; Noland and Oh 

2004; Noland and Quddus 2004; Quddus 2008; Wier et al. 2009). It was found that the number 

of lanes, road length and road density were significantly correlated with the NOCs. As for the 

demographic variables, it was found that TAZs with a higher percentage of population under the 

poverty level and a higher percentage of population in the young and also elderly age groups 

have the potential of increasing crash risk. It was also found that the traffic safety situation is 

worse for TAZs with lower income and education levels and a higher unemployment rate 

compared to relatively affluent TAZs. In another study by Wier et al. (2009) it was shown that 

traffic volume, population size, the proportion of arterial streets without public transit, the 

proportion of population living in poverty, and the number of people aged 65+ as percentage of 

the total population, were significantly good predictors of crashes. Moreover, Noland and 

Quddus (2004) concluded that TAZs with high employment density had more traffic crashes, 

while in urbanized more densely populated TAZs fewer crashes were observed. De Guevara et 

al. (2004) developed planning-level ZCPMs for the city of Tucson, Arizona. They considered 

many socio-demographic and road network variables in their model construction. They 

concluded that predictors such as population density, the number of persons younger than 17 

years old as a percentage of the total population, the number of employees, the intersection 

density, the percentage of miles of principal arterials, the percentage of miles of minor arterials 

and the percentage of miles of urban collectors are significant predictors for the NOCs. 

Hadayeghi et al. (Hadayeghi 2009; Hadayeghi et al. 2003; Hadayeghi et al. 2006; 

Hadayeghi et al. 2007; Hadayeghi et al. 2010a, 2010b) have been working on ZCPMs for several 

years. In one of their first studies, it was shown that the number of accidents in a TAZ increases 

when the VKT, major and minor road length, total employed labor force, household population, 

and intersection density increase whereas it decreases with a higher posted speed and a higher 

level of congestion in the TAZ (Hadayeghi et al. 2003). Hadayeghi et al. (2006) investigated the 

temporal transferability of the ZCPMs by applying models constructed on 1996 data to predict 

the NOCs for each TAZ in 2001 for the City of Toronto. They concluded that the models are not 
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transferable statistically but that VKT, socioeconomic and demographic parameters are 

significantly stable over time. In another research, twenty-three regression models were 

developed to examine the relationships between several types of transportation planning 

variables and collision frequency. Models were developed for each planning category 

individually and in combination with other categories. A comparison of the models’ performance 

showed that the comprehensive models are performing statistically better than the individual 

models. The results showed the potential of planning-level safety models to provide decision 

support tools for planners to consider safety in the planning phase (Hadayeghi et al. 2007). 

Hadayeghi et al (2010a) conducted the same research but this time they applied 

Geographically Weighted Poisson Regression (GWPR) instead of taking a Generalized Linear 

Modeling (GLM) approach. The major difference between these two types of models is that 

GWPR models allow the model coefficient estimates to vary spatially for each TAZ. This very 

important additional attribute of these models provides some extra information as it takes the 

spatial location of a crash into consideration. 

Lovegrove and Sayed (2006) concluded that quantifying the relationship between the 

zonal characteristics such as exposure, network, socio-demographic and TDM variables and 

crashes at a zonal level provides a predictive tool to predict the NOCs in a TAZ. They used GLM 

techniques to develop ZCPMs for both urban and rural areas across the Greater Vancouver 

Regional District (GVRD). Their results show that increasing signal density, intersection density 

per unit area and per lane kilometers, arterial-local intersections in rural areas and total arterial 

road lane kilometers will lead to an increase in the NOCs. On the contrary, an increase in the 

number of three-leg intersections and local road lane kilometers will decrease the NOCs in a 

TAZ. Lovegrove and Sayed (2007) further developed a set of ZCPMs for a “black-spot” study in 

the GVRD. These sets of ZCPMs consist of an exposure variable (VKT) and other network, 

socio-demographic and TDM variables. The results of this study also confirmed that ZCPMs 

have the potential to complement traditional reactive road safety improvement programs. 

Recently, some researchers constructed ZCPMs by associating the NOCs in a TAZ with 

trip production/attraction and other network characteristics. Abdel-Aty et al. (2011a) identified 

and prioritized important variables which can be associated with crashes per TAZ by means of 

the Classification and Regression Trees technique. It was shown that this methodology will be 

helpful in incorporating proactive safety measures for long-range transportation planning. They 

(Abdel-Aty et al. 2011b) also developed different ZCPMs for different crash severity levels and 

concluded that different sets of predictors should be considered based on the type or severity of 

crashes (e.g. total trip productions and attractions provide a better model fit for the total and peak 

hour crashes while severe crashes were best predicted by different trip-related variables). 

Naderan and Shahi (2010) investigated the possibility of associating travel demand in urban 

areas with crash frequencies in each TAZ. They developed a series of ZCPMs using the Number 

of Trips (NOTs) produced/attracted as predictors. They concluded that these models provide the 

basic tool for evaluating TDM scenarios in urban transportation planning in terms of traffic 

safety as the application of a specific TDM scenario may reduce trip productions of a specific 

motive. The drawback of considering only trips as an exposure variable is that the impact of trip 

time, trip length, route choice, intrazonal traffic and transit traffic on a TAZ will be neglected. 

The number of produced/attracted trips might be an acceptable indicator of how busy or active a 

TAZ is or how much people are exposed to dangerous situations, but it always leaves out the 

effects of through traffic which is just passing through a TAZ neither having their origin or 

destination in that TAZ. 
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Although most of the above-mentioned studies were trying to demonstrate their potential 

as a predictive tool at planning level, so far not much attention has been paid to the application of 

these models to evaluate the effect of TDM’s on traffic safety. There are very few attempts at 

estimating the road safety benefits of applying a specific TDM strategy. In a study conducted by 

Lovegrove and Litman (2008), they assumed the effect of implementing these strategies on 

different explanatory variables of the CPMs. Based on these assumptions the expected NOCs 

were calculated for each TDM strategy. For instance, it was concluded that a smart growth 

strategy of more compact and multi-modal land use development patterns may increase traffic 

safety by means of reducing crash frequency per capita by 20% and 29% for total and severe 

crashes respectively. An et al. (2011) found Vehicle Hours Travelled (VHT), the number of 

intersections and the number of households with low income levels to be correlated with the 

NOCs in TAZs. After running two add-capacity projects in the Pikes Peak region and applying 

the results in their developed ZCPMs for the do-nothing scenario and both project scenarios, 

total crashes for both projects were estimated to decrease respectively by 0.1% and 0.06% when 

compared with the do-nothing scenario. 

According to literature, exposure is the most important predictor of crashes Therefore, 

having a more informative measure of exposure is expected to result in a better crash prediction. 

When a TDM scenario is performed, it basically changes the exposure compared with the null 

scenario. Thus, it is essential to predict the exposure metrics as accurately as possible. Activity-

based models help with this as they are able to simulate the scenarios and in this case, they 

model the decision process of individuals with respect to the changes in fuel price. This is the 

key advantage of applying activity-based models rather than making educated guesses about the 

impact of fuel-related cost changes on travel demand in order to obtain exposure. In the next 

section the activity-based model is briefly introduced and its contribution to the fuel-cost 

increase scenario evaluation process is described. 

 

3. Impact of fuel-related cost on traffic demand 

Traditionally, travel was assumed to be the result of four subsequent decisions which 

were modeled separately, also referred to as four-step models. More recently, several researchers 

claimed that travel has an isolated role in these models and the reason why people undertake trips 

is neglected completely. This is why activity-based models have been taken into consideration. 

The main difference between four-step models and activity-based transportation models is that 

the latter try to predict interdependencies between several facets of activity profiles (Davidson et 

al. 2007). Hence, activity-based models are designed to keep the linkages between the travel 

decisions of individual members of a single household. Interactions among family members such 

as the use of household vehicles, sharing household responsibilities or performing joint activities, 

often affect and in many cases largely determine people’s travel. Four-step models that ignore 

such linkages, misstate people’s responses to TDM strategies. It is shown that activity-based 

models are capable of treating TDM strategies and policy issues whereas four-step models 

become ineffective (Vovsha and Bradley 2006). 
 

3.1. FEATHERS framework 

The FEATHERS (Forecasting Evolutionary Activity-Travel of Households and their 

Environmental RepercussionS) framework (Janssens et al. 2007) was developed in order to 

facilitate the development of activity-based models for transportation demand in Flanders, 
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Belgium. The scheduling engine that is currently implemented in the FEATHERS framework is 

based on the scheduling engine that is present in the Albatross system (Arentze and Timmermans 

2004). Currently, the framework is fully operational at the level of Flanders. The real-life 

representation of Flanders is embedded in an agent-based simulation model which consists of 

over six million agents, each agent representing one member of the Flemish population. A 

sequence of 26 decision trees, derived by means of the CHi-

squared Automatic Interaction Detector (CHAID) algorithm, is used in the scheduling process 

and decisions are based on a number of attributes of the individual (e.g. age, gender), of the 

household (e.g. number of cars) and of the geographical zone (e.g. population density, number of 

shops). For each agent with its specific attributes, the model simulates whether an activity (e.g. 

shopping, working, leisure activity …) is going to be carried out or not. Subsequently, amongst 

others, the location, transport mode and duration of the activity are determined, taking into 

account the attributes of the individual (Kochan et al. 2008). Traffic demand is subsequently 

assigned to the road network in such a way that an equilibrium is established between 

transportation demand and supply (Bellemans et al. 2010), which results in a time-dependent 

traffic state on the road network. In order to run, calibrate and validate the activity-based model, 

three major types of data are required (Kochan et al. 2011); data describing the environment (e.g. 

population density, level of service of the transportation networks), a synthetic population which 

is simulated and activity-travel data originating from a representative sample of the population 

from which the human behavior is derived. Screen line counts on the road network can also be 

used to validate the model. 
 

3.2. Implementation of fuel-cost increase scenario in FEATHERS 

An important asset of activity-based models in this context is their integrated approach 

towards activities and travel. Due to this approach, it can be taken into account that certain trips, 

which are linked to activities that are not so flexible (such as e.g. work activities) are less likely 

to be altered under changing traffic system conditions than others (such as e.g. leisure activities). 

In addition, activity-based models are not only able to predict a change in the demand for travel, 

but they also predict shifts between different modes of transport and the reallocation of activities 

due to the imposed measures. Providing a structured approach to agent-based modeling of 

activities and travel for individuals, the FEATHERS framework is able to account for TDM 

strategies. For instance, when applying a fuel cost increase scenario, FEATHERS can predict the 

impact on the NOTs, modal shift and changes in trip time and length. 

However, price changes can have an impact on different facets of travel, affecting the 

NOTs people undertake, their destination, route, mode, travel time, type of vehicle (including 

size, fuel efficiency and fuel type) and parking location and duration. Therefore, in order to 

predict the impact of price changes like fuel price, the scheduling engine has to be structured to 

account for those changes. In this scheduling engine, price and cost parameters are incorporated 

in the decision trees related to activity selection, timing, trip-chaining, location and mode 

choices. The extended decision trees or Parametric Action Decision Trees combine conventional 

decision trees and parametric action assignment rules yielding a model that is sensitive for travel-

costs scenarios (Arentze and Timmermans 2005). 

In this study, fuel-related cost is assumed to increase by 20% as a result of an increase in 

fuel price. We consider the short term effect and can as such neglect the rebound effect caused 

by a changing fuel economy of the fleet (i.e. the fuel economy is considered to remain constant, 

which results in the reduction of fuel consumption to be equal to the reduction of the VKT). One 
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might question how the impact of this global fuel price increase will be sensible at zonal level. 

As mentioned earlier, each zone has its own characteristics: the level of income, availability of 

public transportation, major activity types, etc. are different from zone to zone. These differences 

result in different travel behavior and more specifically different mode choice by the inhabitants 

of each zone. Therefore, despite the fact that the fuel price increase is applied globally, its impact 

is dissimilar from zone to zone. 

 

4. Data preparation 

The study area in this research is the Dutch-speaking region in northern Belgium, 

Flanders. Flanders has over 6 million inhabitants, or about 60% of the population of Belgium. As 

already mentioned before, an activity-based model within the FEATHERS framework is applied 

on the Flemish population to derive the in-depth information of Flemish peoples’ travel behavior 

and travel demand for a null-scenario (current situation) and some TDM scenarios like 

increasing fuel price, teleworking, etc. FEATHERS produces traffic demand by means of Origin-

Destination (OD) matrices. These OD matrices include the number of trips for each traffic mode 

at different disaggregation levels (i.e. age, gender, day of the week, time of day and motive). 

This traffic demand is then assigned to the road network to obtain detailed exposure metrics at 

network level. To carry out the assignment of car trips to the road network, the user equilibrium 

method was selected. The fundamental nature of equilibrium assignment is that travelers will 

strive to find the shortest path (e.g. minimum travel time) from origin to destination, and network 

equilibrium occurs when no traveler can decrease travel effort by shifting to a new path. This is 

an optimal condition, in which no user will gain from changing travel paths once the system is in 

equilibrium. Exposure metrics are then geographically aggregated to the TAZ level. This has 

been carried out at zonal level, comprising 2,200 TAZs in Flanders. The average size of TAZs is 

6.09 square kilometers with standard deviation of 4.78 square kilometers. In addition, for each 

TAZ a set of variables including socio-demographic and road network variables were derived to 

construct ZCPMs. The crash data used in this study consist of a geo-coded set of fatal and injury 

crashes that occurred during the period 2004 to 2007 which was provided by the Flemish 

Ministry of Mobility and Public Works. Table 1 shows a list of selected variables, together with 

their definition and descriptive statistics, which have been used in developing the ZCPMs 

presented in this paper. 
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TABLE 1 Selected Variables to Develop ZCPMs 

 

5. Fuel-cost increase scenario evaluation 

5.1. Model development 

Crash data consist of non-negative integers, so using ordinary least-squares regression 

which serves continuous dependent variables (e.g. time) is not an option (Lord and Mannering 

2010). Given the observed overdispersion in the crash data in this study, it was chosen to model 

the data using the Negative Binomial (NB) model which enables the modeling of overdispersed 

data. The NB model is the most commonly used model in crash data modeling (Lord and 

Mannering 2010). In this study, different Negative Binomial (NB) ZCPMs were constructed 

within the Generalized Linear Modeling (GLM) framework, using the explanatory variables 

listed in Table 1. The models can be categorized into three different groups based on the type of 

exposure metric that was utilized, i.e. 1) flow-based models, 2) trip-based models and 3) models 

based on a combination of the two. Flow-based models were constructed by associating the 

NOCs in each TAZ with VHT or VKT, as the exposure variables, and the road network and 

socio-demographic variables listed in Table 1. Trip-based models use the same road network and 

 Variable Definition Average Min Max SD 

D
ep

en
d

en
t 

 v
ar

ia
b

le
s CCFS 

total Car-Car/Fatal and Severe injury crashes observed in a TAZ 

(2004-2007) 
2.82 0 21 3.04 

CCSL 
total Car-Car/Slight injury crashes observed in a TAZ (2004-

2007) 
19.17 0 226 20.73 

CSFS 
total Car-Slow mode/Fatal and Severe injury crashes observed in 

a TAZ (2004-2007) 
1.32 0 15 2.04 

CSSL 
total Car-Slow mode/Slight injury crashes observed in a TAZ 

(2004-2007) 
10.09 0 192 17.94 

E
x

p
o

su
re

 v
ar

ia
b

le
s 

NOTs Car 
average daily number of car trips originating/arriving from/at a 

TAZ 
2765.8 0 18111.4 2869.8 

NOTs Slow 
average daily number of slow-mode trips originating/arriving 

from/at a TAZ 
1018.2 0 11587 1321.6 

Motorway VKT average daily vehicle kilometers traveled on motorways in a TAZ 27471.82 0 946152.8 84669.53 

Other Roads VKT average daily vehicle kilometers traveled on other roads in a TAZ 26662.85 0 303237.6 28133.04 

N
et

w
o

rk
 v

ar
ia

b
le

s 

Capacity hourly average capacity of links in a TAZ 1790.1 1200 7348.1 554.6 

Intersection total number of intersections in a TAZ 5.8 0 40 5.9 

Urban 

Is the TAZ in an urban area? 

          “No” represented by 0 

          “Yes” represented by 1 

0 0 1 -a 

Suburban 

Is the TAZ in a suburban area? 

          “No” represented by 0 

          “Yes” represented by 1 

0 0 1 - 

S
o

ci
o

-

d
em

o
g

ra
p
h

ic
 

v
ar

ia
b

le
s 

 

Income Level  

 

average income of residents in a TAZ described as below: 

          “Monthly salary less than 2249 Euro” represented by 0 

          “Monthly salary more than 2250 Euro” represented by 1 

1 0 1 - 

a: Data not applicable. 
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socio-demographic variables but NOTs as the exposure variable. In the third type of model, both 

flow and trip-based variables are included simultaneously as metrics of exposure. Coefficients 

were estimated using a forward selection procedure where one of the exposure variables is taken 

as the starting point, subsequently selecting additional candidate variables. The analysis results 

revealed that the combination of exposure variables provides a better model fit; i.e. the models 

which simultaneously have both NOTs and VHT/VKT as the exposure variables overperform the 

flow-based or trip-based models (Pirdavani et al. 2012). Based on different statistical tests of 

goodness-of-fit, the final ZCPMs have been chosen. Table 2 provides the final models’ estimates 

of the different explanatory variables. These are the models by which the fuel-cost increase 

scenario is being evaluated. 
 

TABLE 2 Model Estimates for the Final Chosen ZCPMs 

 
Model #1 

(CCFS) 
Model #2 

(CCSL) 
Model #3 

(CSFS) 
Model #4 

(CS/SL) 

Coefficients Estimates Estimates Estimates Estimates 

(Intercept) -4.356e+00 -4.539e+00 -7.357e+00 -6.802e+00 

log(NOTs Car) 1.162e-01 3.990e-01 - - 

log(NOTs Slow) -a - 7.445e-01 9.005e-01 

log(Motorway VKT) 1.464e-02 1.784e-02 -2.528e-02 -1.267e-02 

log(Other Roads VKT) 3.693e-01 3.379e-01 2.144e-01 2.280e-01 

Income Level - -1.116e-01 -1.643e-01 -1.268e-01 

Capacity 3.342e-04 4.140e-04 2.018e-04 1.716e-04 

Intersection 3.128e-02 3.195e-02 1.959e-02 1.397e-02 

Urban -4.455e-01 - - 5.678e-01 

Suburban -2.194e-02 - - 2.673e-01 

PCCb 0.615 0.831 0.721 0.855 

a: Data not applicable. 

b: Pearson Correlation Coefficient  (PCC) between observed and predicted crash values 

 

For all models, most of the exposure variables were positively associated with the NOCs 

in each TAZ. As the NOTs and VKT increase, the total NOCs also tends to increase. Many 

studies found similar associations between VKT (e.g. Hadayeghi et al. 2010a, 2010b, Lovegrove 

2005) or NOTs (e.g. Abdel-Aty et al. 2011a, 2011b, Naderan and Shahi 2010) and NOCs per 

TAZ. The only exception was observed where VKT on motorways was negatively associated 

with “Car-Slowmode” crashes. This is in line with the fact that the more VKT carried out on 

motorways (where there is no “Slowmode” traffic) instead of other roads, less vulnerable road 

users are exposed to unsafe situations. 

A positive correlation of the number of intersections with the NOCs per TAZ is observed 

for all models. This positive relationship has also been reported in other studies (e.g. Hadayeghi 

et al. 2003, de Guevara et al.2004, An et al. 2011). In general, intersections have a higher risk of 

experiencing conflicts compared to road links because of their natural design, therefore there are 

more crashes expected to occur in TAZs that have a higher number of intersections. As can be 

observed in Table 2, all of the constructed models showed a negative association with “Income 
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Level”. This is similar to other studies’ findings that poverty has a positive relationship with the 

number of crashes that occurred in a TAZ (e.g. Quddus 2008, Wier et al. 2009, Huang et al. 

2010). 

The degree of urbanization is categorized into three different levels and therefore 

represented by two dummy variables; “Urban” and “Suburban”. When “Urban” and “Suburban” 

metrics in a TAZ are both 0, then this TAZ is located in a rural area. In Model #1, the coefficient 

estimate for the variables “Urban” and “Suburban” have negative signs. This is in line with our 

expectations that CCFS crashes are expected to occur more frequently in rural areas where cars 

are driven at higher speeds. On the contrary, the positive association between “Urban” and 

“Suburban” variables and CSSL crashes reveals that the model correctly predicts more crashes of 

this type in more urbanized TAZs.   

 

5.2. Traffic safety evaluation process 

OD matrices for the fuel cost increase scenario will be derived for scenario evaluation by 

running the activity-based transportation model. After assigning this demand to the road 

network, all required variables become available to set up the evaluation task. Now, the final 

ZCPMs are applied and crashes are predicted for each TAZ. The traffic safety evaluation can 

then be conducted by comparing the NOCs predicted by the final ZCPMs for the null and the 

fuel-cost increase scenario. Fig. 1 depicts the conceptual framework of the traffic safety 

evaluation process. 

 

 
Fig. 1. Conceptual framework of the traffic safety evaluation process. 
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6. Results 

Before describing the traffic safety impact of the fuel-cost increase scenario, it would be 

beneficial to have a look at the changes made to the more traffic-related attributes playing a role 

in the whole chain. As described before, increasing fuel-related costs will affect and increase the 

total travel expenses of motor vehicle trips. As a result, people will start comparing the relative 

costs of travelling and may consider a shift to other available transportation modes. For instance, 

short-distance trips can be substituted by public transportation (e.g. bus or tram) or slow mode 

(i.e. biking or walking) or long-distance trips may shift towards public transportation (e.g. train) 

or be substituted by carpooling. Comparing OD matrices derived from the activity-based model 

for both the null and the fuel-cost increase scenario, will enable us to perceive any changes in 

NOTs for different modes and will also allow us to figure out if any mode shift will occur. The 

results of these comparisons revealed that the fuel-cost increase scenario reduces the average 

daily NOTs carried out by car (-4.068%) and in contrast, leads to an increase in the average daily 

NOTs by other modes (Car Passenger by +2.904%, Public transportation by +4.358% and Slow 

mode by +2.863%).  In addition to these changes observed at the global level, it is also 

interesting to describe these changes at the TAZ level. It was observed that more urbanized areas 

experience a higher reduction of car trips as well as a higher increase of other mode trips when 

compared to less urbanized areas. On the contrary and in some particular TAZs like the ones 

nearby the Flemish borders, fewer mode shifts occurred.  The reason might be that the cross-

border public transportation offer is not a convenient option or no cross-border public 

transportation service is available in these TAZs. Thus, many travelers who are travelling across 

borders prefer to take their car since they cannot easily find a substitution mode. 

Although the NOTs may represent an acceptable indication of exposure, it ignores the 

impact of transit traffic which is just passing through a TAZ. As already mentioned before, 

NOTs do not contain any information about trip time, trip length, route choice, intrazonal traffic 

and transit traffic. Therefore, investigating the impact of a fuel-cost increase scenario cannot be 

practically carried out by merely considering the changes in the NOTs starting or arriving in a 

TAZ. Thus, other exposure variables which can account for the impact of trip assignment should 

be taken into account. As a result, inclusion of the flow-related variables (e.g. VKT) in the 

prediction models is essential. 

The analyses show that the average values of the VKT and VHT decrease after 

implementing the fuel-cost increase scenario. Not surprisingly, the reductions for motorways are 

higher than for other roads (i.e. reduction in motorway VHT by 16.85%, other roads VHT by 

10.34%, motorway VKT by 13.31% and other roads VKT by 9.78%). This can be explained by 

the fact that the majority of reduced long-distance trips are carried out on motorways. It also 

indicates that this scenario has a somewhat higher effect on long-distance trips compared to 

short-distance trips. It can also be noticed that the reduction in VHT is slightly higher than the 

reduction in VKT. A stronger decrease of travel time compared to travel distance can be 

explained by a decreased level of congestion on the roads. As the rebound effect of the vehicle 

fleet economy was not taken into account in this short-term analysis, we find that the reductions 

in VKT under the scenario are in line with the reductions in fuel consumption reported in 

literature (Goodwin et al. 2004; Litman 2010). 

Predictably, in the fuel-cost increase scenario the total number of predicted “Car-Car” 

crashes decreases compared to the null scenario. This is due to reduced exposure as the main 

predictor of crashes.  The results show that CCFS and CCSL crashes are predicted to decrease by 
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248.4 and 2082.9 respectively for a period of 4 years (-3.97% and -4.77%).  On the contrary, for 

“Car-Slowmode” crashes a slight increase is observed for both fatal-severe and slight injury 

crashes. Taken as a whole, CSFS and CSSL crashes are predicted to increase by 13.6 and 184.6 

respectively for the same period of 4 years (+0.46% and +0.82%). Fig. 2 represents the violin 

plots of changes in NOCs after the fuel-cost increase scenario implementation. The violin plot is 

a synergistic combination of the box plot and the density trace (Hintze and Nelson 1998). These 

plots retain much of the information of box plots (except for the individual outliers), besides 

providing information about the distributional characteristics of the data. In these plots, the wider 

the violin, the more data points are associated to that value. Moreover, the white dots indicate the 

median; black boxes show the upper and lower quartile and the vertical black lines denote the 

upper and lower whiskers.  

 
Fig. 2. Violin plots of changes in crash occurrence after the fuel-cost increase scenario 

implementation 
 

In the development of “Car-Slowmode” models, both car and Slowmode-related exposure 

variables were used. Following the implementation of the fuel-cost increase scenario and as a 

result of mode shift, the number of car trips decreased whereas the number of Slowmode trips 

increased. However, these mode shifts are not always similar in all TAZs; i.e. more urbanized 

areas have a higher number of mode shifts; consequently more Slowmode-related crashes are 

predicted for these areas. An illustration of changes in the NOCs for all TAZs may present a 

better pattern on how different TAZs are affected by the scenario. In Fig. 3, the changes in the 

predicted NOCs are displayed for each TAZ. Fig. 3 reveals that the reductions in CCFS and 

CCSL crashes are greater for urban areas and generally smaller for TAZs close to the Flemish 

borders. As explained earlier, CSFS and CSSL crashes are predicted to increase in more 
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urbanized areas; this is evident from the corresponding maps in Fig. 3 where concentrations of 

red dots stand for the major cities in Flanders. 

 

Fig.3. Changes in NOCs in each TAZ after the fuel-cost increase scenario implementation. 

 

7. Conclusions and discussion 

In this study, a zonal crash prediction modeling approach has been integrated into a fuel-

cost increase scenario to assess this TDM strategy’s impact on traffic safety. This assessment 

deals with the relatively short-term impact of fuel price changes and it has been carried out by 

applying an activity-based travel demand model to derive the exposure metrics. Based on the 

results of the analyses, the following conclusions can be drawn: 
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 Activity-based transportation models provide an adequate range of in-depth information about 

individuals’ travel behavior. The advantage of these models is that the impact of applying a 

TDM strategy will be accounted for, for each individual, throughout a decision making process. 

Activity-based models provide more reliable information since, unlike traditional models, TDM 

strategies are inherently accounted for in these models.     

 Unlike some prior studies where a reactive approach was generally used to evaluate the traffic 

safety impact of a TDM strategy, in this study a proactive methodology was applied. This was 

carried out in an assessment exercise by assuming a 20% increase in fuel price. 

 Using only NOTs originating/destinating from/in a TAZ for crash prediction and consequently 

evaluating the safety impact of a TDM strategy will lead to a lack of some important information 

about the characteristics of reduced trips; i.e. NOTs, as an exposure variable, is not sensitive to 

trip time, trip length and route choice. For this reason, other exposure variables which are 

sensitive to the impact of trip assignment should also be taken into account. This was done by 

assigning traffic demand to the road network adopting the user equilibrium assignment method. 

 The results of the comparison analysis revealed that the fuel-cost increase scenario has many 

impacts such as a reduction of total travel demand, total crash occurrence, VKT and VHT and 

mode shift. On the whole, there is a reduction of on average 105,485 daily trips (all types of 

modes) as a result of the fuel-cost increase scenario. This scenario also causes a reduction of 5.02 

billion VKT per year, almost 11.57% of the total annual VKT in Flanders. 

 The total NOCs is predicted to decrease by 2,133 for a period of 4 years.  However, changes in 

the NOCs for different crash-type/severity-levels are not identical. As a result of an increase in 

the NOTs for the “Slowmode” category, crashes which involve vulnerable road users are 

predicted to increase; i.e. CSFS and CSSL crashes increased by 0.46% and 0.82% respectively. 

On the other hand, CCFS and CCSL crashes are predicted to decrease by 3.97% and 4.77% 

respectively. This reveals that the fuel-cost increase scenario affects different road users 

differently. The traffic safety situation slightly deteriorates for vulnerable road users; 

nevertheless, there are noticeable safety benefits for “Car-Car” crashes and for the overall traffic 

safety situation. 

 When considering the changes in the NOCs at the TAZ level, it was found that the maximum 

reduction of “Car-Car” crashes and the maximum increase of “Car-Slowmode” crashes were 

both observed in urban areas (cities). It can be concluded that in cities, in contrast to other areas, 

there is a higher likelihood of finding an alternative mode for cars. In contrast, the TAZs in less 

urbanized regions and the TAZs nearby the borders usually lack good public transportation 

services. Therefore it is expected that we will not see many trips shift from cars to other modes 

in less urbanized areas and consequently there is a more stable traffic safety situation in these 

TAZs despite conducting the fuel-cost increase scenario. 

This paper presents a new extension to the application of ZCPMs incorporated into TDM 

strategies. The results show the ability of ZCPMs as a reliable predictive tool which can be used 

during the planning level of transportation projects. 

The fuel-cost increase scenario studied in this research investigated the relatively short-

term effects of an increased fuel price. In other words, the model is a short-term model in the 

sense that neither a shift in the composition of the vehicle fleet, nor changes in the location of 

businesses and/or the location choice for living as a result of the change in fuel cost are assumed. 

Crashes are known to be a function of two components; exposure and risk. It is therefore 

likely that a fuel price increase will impact people’s driving behavior and their speed choice; i.e. 

drivers might try to reduce their fuel consumption by driving more slowly. As a result, it can be 
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assumed that the risk component will also decrease after the fuel-cost increase scenario 

implementation. In this study however, only the changes in the exposure component were taken 

into account, whereas the risk component was assumed to be constant. This might be a limitation 

of this study.  If we were to include the risk component in this study as well, however, the traffic 

safety benefits might be expected to be even larger than predicted in this study. 

Although some clear benefits (e.g. global traffic safety improvement or VKT reduction) 

are noticeable from the fuel-cost increase scenario, it would be beneficial to extend this study by 

including other TDM strategies in order to present a comprehensive traffic safety evaluation 

package. 

In this study, as a first attempt, the methodology relied on the aggregate daily traffic 

information. Activity-based models are capable of providing disaggregate travel characteristics. 

Hence, different types of disaggregation based on time of day, day of the week, age, gender, 

motive, etc are in the list of potential future research in order to take full advantage of the output 

of activity-based models. 
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