Reward table of WORK activity
1":'3._...-__..;-._..-.._.:....

durationfh]

starting time [h]

Allocating Time and Location Information to
Activity-Travel Patterns through Reinforcement
Learning

Janssens Davy, Transportation Research Institute
Lan Yu, Tsinghua University

Wets Geert, Transportation Research Institute
Chen Guoqing, Tsinghua University

Allocating Time and L ocation Infor mation to Activity-Travel
Patter nsthrough Reinforcement L earning

Janssens Davy

Transportation Research Institute
Hasselt University

Belgium

Phone: 0032-11 26 91 28

Fax: 0032-11 26 91 99

E-mail: davy.janssens@uhasselt.be

Yu Lan

School of Economics and Management
Tsinghua University

China

Geert Wets

Transportation Research Institute
Hasselt University

Belgium

Guoqing Chen

School of Economics and Management
Tsinghua University

China

Abstract

Given a sequence of activities and transport mddesyhich a framework has been provided
in previous work, this paper evaluates the use dReanforcement Machine Learning
technique. The technique simulates time and logatlmcation for these predicted sequences
and enables the prediction of a more complete amistent activity pattern. The main
contributions of the paper to the current stat¢hef-art are the allocation of location
information in the simulation of activity-travel fp@rns as well as the application towards
realistic empirical data, the non-restriction to gaven number of activities and the
incorporation of realistic travel times. Furthermothe time and location allocation problem
were treated and integrated simultaneously, whielama that the respondents’ reward is not
only maximized in terms of minimum travel duratidsyt also simultaneously in terms of
optimal time allocation. A computer code has bestaldished to automate the process and
has been validated on empirical data.

Keywords
Reinforcement Learning, Q-learning, Activity-basedodelling, Agent-based micro-
simulation systems, Location allocation, Time &ditban

Preferred Citation

Janssens, Davy, Yu Lan, Geert Wets and Guoqing @@96) Allocating Time and Location
Information to Activity-Travel Patterns through R&rcement Learning, paper presented at
the 11" International Conference on Travel Behaviour Reseayoto, August 2006.

1. Introduction

In the transportation research area, activity aravel modes are critically important
information, based on which the transportation deifgtatus are simulated or predicted.
Once the sequential activity-travel combination kmown, such as for instance
Sleep-Eatar-Work-Eat-Workear-Eat-bike-Shopbike-Leisurebike-Sleep, it is meaningful to
observe how a learning agent can allocate time lkmgdtion information for given
activity-travel pattern combinations in a reasoeabby. Also interesting to observe is how it
reacts when it is thrown off its optimal arrangemieecause of some unforeseeable events,
such as for instance a traffic jam. Given a comstichenvironment, we simulate and look into
a learning agent’s behavior under the frameworR@eihforcement Learning (Mitchell, 1997,
Sutton and Barto, 1998), which is in fact a synorfgmlearning by interaction (Kaelblingt

al., 1996). More specifically, the vector <activityaging time, duration, location> denotes
the agent’s current state, where duration indicates long the agent has spent on the current
activity. There are two actions available for eathte: Stay (continue current activity for
another time slot at the same locationMmve (travel to a possible location where the agent
starts to perform the next activity in the pattedt)each state, the agent will receive a reward
from the environment when any possible action ieseh. By accumulating this reward
information that it obtained from its trial and @risearch in the state space, the agent finally
gets the optimal/satisfactory time and locatioraagement. Previous research work in this
area generally deals with only one of these twocalion problems: they either focus on the
time planning of the activity patterns (Charygaral, 2004), or search the shortest path in a
dynamic programming way (Dijkstra, 1959). In realihowever, a rational person will
consider the time and location arrangements simedtasly in order to achieve a total
maximal reward. To the best of our knowledge, ithe first time that both problems are
integrated and solved using Reinforcement Learning.

Reinforcement Learning goes back to the very fatstges of Artificial Intelligence and

Machine Learning. As a result of this, the applmag of reinforcement learning are situated
in the basic roots of artificial intelligence, suas for instance game playing (Littman, 1994;
Tesauro, 1992, 1994, Thrun, 1995) and robotics @datian and Connell, 1992; Schaal,
1994). However, there are also numerous other @fin domains such as for instance in
elevator dispatching (Crites and Barto, 1996), ratsystems (Barto and Sutton, 1981),
production scheduling (Schneidet al, 1998), but also in a transportation-related cdnte
such as in intelligent lane selection (Moriarty9&9for achieving a higher traffic throughput.
Within an activity-based framework, the reinforcemédearning technique has been first
applied by Arentze and Timmermans (2003) in thetexdnof learning and adaptation, and
only very recently by Charypat al (2004; 2005) in a time allocation problem.

1

The remainder of this paper has been organizedobewE. The basic conceptions of
reinforcement learning are elaborated in sectioal@g with the introduction tQ-learning,
one of the popular algorithms to realize reinforeatrlearning. In section 3, we will detail by
means of artificial examples ha@+learning can be applied to the time and locatitotation
problem respectively, which will help us improve thnderstanding of reinforcement learning.
Section 4 illustrates characteristics and resulectvity-travel patterns being optimized in a
more realistic environment. Finally, concluding eeks are given in section 5.

2. Reinforcement Learning

Under a constrained environment, the learning agantperceive a s& of distinct states,
which are normally characterized by a number ofetisions, and has a s&tof actions to
perform at each state. Reinforcement learning taskgenerally treated in discrete time steps.
At each time step, the agent observes the current stat@nd chooses a possible action to
perform, which leads to its succeeding state=d (s, a). The environment responds by
giving the agent a rewards, &). These rewards can be positive, zero or negalivis.
probable that these preferable rewards come wdblay. In other words, some actions and
their consequential state transitions may bring fewards in short term, while it will lead to
state-action pairs later with a much higher rew@u.the contrary, an action in a given state
may receive an immediate high reward, whereas kes¢he agent enter into a path where a
series of actions followed, have very low or evegative rewards.

Therefore, the task of the agent is to learn acpali S> A, according to which the agent will
achieve the maximal accumulative reward over tiGeen an arbitrary policyr from an
arbitrary states, the accumulative reward can be formulated asvial

V”(St) = rt +Vt+1 +y2rt+2 *ee :Zyirni
i=0

wherery; represents the scalar reward receivsteps into the future. The constant number
yd[0,1] is the discount factor and it also determities relative value of immediate versus
delayed reward, which indicates how far the agenkd into the future. The agent only

consider the immediate reward yfis set at zero. A paramatgrclose to one means that

rewards in the far future are given greater emphasative to the immediate rewards.

Now the agent is required to learn the optimal gyolir that maximizes the accumulative
reward:

' =argmaxVv "(s),(0s)

m

We refer to the optimal value functiaif*(s) asV (s) for the sake of simplicity. Given a state

s, the formula above can be extended with the imatedieward explicitly displayed, which
indicates that the optimal acti@mat current state should maximize the immediate reward
r(s, a) plus the valu&/* of the succeeding state, discounted/by

7T (s) = arg Znax{r (s,a)+ W (d(s, a))]

whered (s, a) denotes the resulting state after achds performed at state

2.1 Q-learning algorithm

It is natural to choos®¥* as the evaluation function in order to learn tipginoal function.
Unfortunately, it is required that the perfect kieslge of immediate reward functionand
state transition functiod are known in advance. When the agent has obsémeegward and
state transition functions responded by its envirent at any state, it is able to calculate the
optimal actiora at any state.

In reality, however, it is usually impossible fdret agent to predict in advance the exact
outcome of applying an arbitrary action to an adyt state. In other words, the domain
knowledge is probably not perfe€-learning (Watkins, 1989; Watkins and Dayan, 1982)
then devised to select optimal actions even whenatent has no knowledge about the
reward and state transition functions. It empldys hovel evaluation functioQ(s, a) as
follows:

Qls.a)=r(s,a)+ W’ (d(s a))
Then77(s) andV*(s) in terms ofQ (s, a) can be revised as:

7T (s) = argmaxQ(s, a)
V' (9)=maxals.a)
Thus

Qls.a)=r(s.a)+ ymas(s.a) a)

The recursive definition (s, a) enablesQ-learning algorithm to iteratively approximafe
values. Q is referred as the agent’s estimate of the achuattion Q. The Q-learning
algorithm maintains a large table with entries &xle state-action pair. For each entry, the
value of Q (s,a) is stored and initially fulfilled with a randonumber. The agent repeatedly
observes its current stadechooses a possible actiarto perform, and senses its immediate

rewardr(s, @) and resulting new stafie(s, a). The Q(s,a) value is then updated according to
the following rule:

Qls.a) - r+ymaxQ(s,a)

That is to say, the)-value of current state-action pair is refined lblasa its immediate
reward and theQ -value of its next state. After th®@-values of state-action pairs are well
estimated byQ-learning algorithm, the agent can choose globaymal action sequence by
repeatedly selecting the action that maximize theall values ofQ for current state. The
actual learning process can be described as fol{Gwarypar and Nagel, 2004):

1. Initialize theQ-values.

2. Select a random starting stathich has at least one possible action to setent.f

3. Select one of the possible actions. This adéads to the next stase

4. Update th&-value of the state action pas; &) according to the update rule above.

5. Lets = s and continue with step 3 if the new state haeast one possible action. If it has
none go to step 2.

2.2 Explore Vs Exploit

The 29 step in the learning process does not specify &ctions are chosen by the learning
agent. In each state the agent basically can choasetwo kinds of behavior: either it can
explore the state space or it can exploit the médron already present in tl@@values. By
choosing to exploit, the agent usually gets toestélhat are close to the best solution so far.
Because of this, it can refine its knowledge aliiat solution and collect relatively high
rewards. On the other hand, by choosing to expitages that are further apart from the
current best solution, it is possible that it disas a solution that yields higher rewards than
the one already known. The strategy above is girtilahe local and global search in most
known optimization algorithms.

It is common inQ-learning to use a probabilistic approach to salgctactions. One
straightforward strategy isgreedy method, where the probability of makinguadom choice

is handled by the parameterin every step, with a probability of&l-the agent exploits the
information stored in th&-values, and with probability the agent chooses a random action
in order to explore the state space.

In the exploration mode, thegreedy method assumes equal selection probabiktteoss

possible actions, whereas the chance of selectingftar action may be increased by taking
the current value distribution across alternatirge account. A commonly used method
assumes a Boltzmann distribution and selects aatwith probability:

eQ(s,ai)it

Pr(al | S) = Zeé 5., i/l’
j

wherez is a parameter usually called the temperature.Hitjeer the temperature, the more
evenly probabilities are distributed across altevea and, hence, the higher the system’s
tendency to explore (Arentze and Timmermans, 2083)the temperature decreases, the
system assigns increasingly higher probabilityhe highest valued action, and, hence, the
lower the tendency to exploit. The value of thegemature parameter (as wellgsnight be

a function of time rather than a constant. Thea,system can simulate a tendency to increase
exploration in new environments and decrease ¢nideéncy as experience is accumulating.

There are two other possible ways of influencing siistem’s tendency to explore. First, the
choice of the initial value for the value functiemrelevant. When initial values are set to a
high level relative to what can be expected, th&tesy will, even fore = 0 (in the greedy
method) or low temperature (in the Boltzmann mejhdiplay a high rate of exploration in
an early stage. Second, the system may incremgniadlate an aspiration level (under each
state) and switch to an exploration mode each timeecurrently best alternative (under the
concerned state) drops below the aspiration level.

The reinforcement learning is a Markov decisioncgss (MDP), where the functiodds, a)
andr(s, a) depend only on current state and action-pair@umnapplication, we will restrict
ourselves to a deterministic MDP, for a discussafna continuous MDP and for more
examples, we refer to (Mitchell, 1997). TRelearning algorithm will converge under two
conditions. First, the immediate reward is bounded,there exist some positive constant
such that for all state action pan(s| a)< c. The second condition is that the agent selects
actions in such a fashion that it visits all pokesgiate-action pairs infinitely often.

3. Time and Location Allocation for Activity and Travel
Combinations

In this section, a hypothetical example has beesgnted to improve the understanding of
Q-learning. A similar example has been presented explained in Charypar and Nagel
(2004), but is repeated here for the sake of glarite behavior of th®-learning algorithm is

first explained with respect to the time allocatimmoblem; location allocation is dealt with
subsequently. The integration of time and locaatfacation in a more realistic environment
is treated in the next section.

3.1 Time Allocation by means of Q-learning

For this first application and for the sake of itlarthe presence of travel modes has been
ignored in the fixed sequence of activities. Thare a number of other simplifying
assumptions which are made to better understangetha@viour of the agent:

Fixed order of only 4 activities (1 sequence); Hlome — Work — Shop — Leisure

Time of the day is discretized with a course tirw sf 6 hours. The time structure is
assumed to be periodic, i.e. 24:00 P.M. is concetde):00 A.M.. The duration of each
activity is restricted to 12 hours in order to ké¢le@ number of state finite.

A states is characterized by the activity, starting time aaftivity and duration (time
already spent at activity), and denoted as a t(gls, d).

For a states, an action may be to Stay (‘S’) at the currenivétgtfor another time slot or
to Move (‘M’) on to perform the next activity.

No travel time between two activities (ignoranceraf’el modes)

Parameter setting: Learning rate= 1; Discounting factoy =0.8;¢ =1 (e-greedy method
applied).

In addition to these assumptions, reward tablesadiicial and extremely simple, as shown
in Table 1.

Table 1. An example of a simple reward table fdivaes

Home Work Shopping Leisure
Start time/Duration| Oh 6h 12h Oh 6h 12h 0Oh |6h 12hh |Bh | 12h
0:00 AM. 0| 6 0 o O 0 o O 0 Q 3 0
6:00 AM. 0 4 0 0 3 5 0 0 0 C 3 1
12:.00 A.M. 0 2 0 0 0 0 0 5 1 C 3 4
6:00 P.M. 0 1 0 0 0 0 0 (0 0 0 3 @

It can be seen from Table 1, that the reward okimgrO hours is 0 and is independent of the
starting-time of the work-activity. Arriving at wiorat 6:00 A.M. gives somebody a reward of
3 (units) at the moment he/she is working for 6redue. from 6:00 A.M. - 12:00 A.M.) or a

reward of 5 (units) at the moment the person iskimgrfor 12 hours (i.e. from 6:00 A.M. - 6
P.M.). Arriving at work later than 6 A.M. gives meward at all. The reward tables for home,
shop and leisure are similar.

Let us now reconsider th@-learning algorithm. Sinca = 1 andy = 0.8, the update rule for

our simple example is equal 1@ (s, a) — r(s, @) + 0.8 maxQ (s’,a). In the first step of the

learning process, all th@-values of every state-action pair are set equaet@. Next, a
random starting statewill be chosen, which has at least one possiltierato select from. In
our example, the starting state may be equal taKWa00 A.M., 6 hours). The third step
selects one of the possible actions, which wilhgrus to the next stat®. Because the
exploration probability was set maximal, ise=1, the agent will always randomly choose an
action in order to explore the state space in tengtt to find a new, better solution than the
one already known. (On the contrary, wher0, the agent will choose the action that has the
largestQ-value so far.) Suppose the agent randomly chdose®ve on the next activity. The
next state turns to be (Shopping, 6:00 A.M., 0 ho@iccording to the update rule in step 4,
the updated) (s, a) = Q (Work, 0:00 A.M., 6 hours; Move) is still equal @osince both the
immediate reward and the maxin@@value of its next state-action pairs are zeros.

Table 2 shows the states that have been visitethdyagent in every loop, while Table 3
illustrates the progress of tig@values for every state-action pair during the exiea of the
algorithm.

Table 2. Visited states per loop (Numbers denaddbp number)

Home Work Shopping Leisure
Start time/
. Oh| 6h| 12h Oh 6h12h | Oh| 6h| 12h0Oh|6h 12 h
Duration
0:00 A.M. 7 8 1
9 |10
6:00 A.M. 2 3 4
25 | 26
11 12
13 14 15 16 | 21
12:00 A.M.
17 18 19 20 | 29
27 28
22
31 32 5
6:00 P.M. 30 | 23 | 24 6
34 35 (36) 33

In the final loop, the state s will be set equathe state (Shopping, 6:00 A.M., O hours). In
this artificial example, no travel time has bedgetainto account. It should be noted that in a
realistic scenario, the start time of state s’ #thdhus be augmented with the travel time
which is needed to get from state s to state g’.néw, the algorithm continues with loop 2,
which starts again at step 3 of the algorithm pdoce. The Q-values stay equal to zero until
the 5th loop. In this loop, the action is Stay, evhwill bring the agent to the state (Leisure,
6:00 P.M., 6 hours) and a 3-unit immediate rewdris. worth mentioning that the immediate
rewards are given as “utility per time slice”, whicorresponds to a coarse version of
marginal utility. Also interesting to observe isr fimstance the 2% loop, where the agent
chooses to stay for another 6 hours when it hasdyr been home for 6 hours (start from 6:00
P.M.). The immediate reward is calculated as 0= -1, which means that the agent feels
unworthy if continues to Stay. The ®4oop is the first where th€-values of its next
state-action pairs are non-zeros. The immediatanes equal to 0, but the second part of the
update rule looks at the latest upda@dalue for every state-action pair, takes the lstrge
Q-value over all the actions and multiplies thistbg discounting factor. In this case the latest
updatedQ-value for the state-action pair (Work, 6:00 A.M.,hours; Stay) is 3 (see loop
number 9) and for (Work, 6:00 A.M., 0 hours; Movejs 0O (initialization). For this reason,
the updated-value of the 2% loop is equal to = 0 + 0.8 * Max (3, 0) = 2.4. Té@mputation
for the other loops is similar (see Table 3).

Table 3.Q-values and state-action pairs

Loop |Action |Q-value | Loop | Action |Q-value | Loop | Action Q-value
1 Move 0 13 Move 0 25 Stay| 3
2 Stay 0 14 Move 0 26 Move O
3 Stay 0 15 Move 0 27 Move 0+0.8 max(3,0)=2/4
4 Move 0 16 Move 0 28 Stay| 3
5 Stay 3 17 Move 0 29 Move 0+0.8 max(1,0)=0,8
6 Move 0 18 Move 0 30 Move O
7 Stay 6 19 Move 0 31 Move O
8 Move 0 20 Stay 3 32 Move 0+0.8max(3,0)=2.4
9 Stay 3 21 Move 0 33 Move 0+0.8max(1,0)=0.8
10 Move 0 22 Stay 1 34 Move O
11 Move 0 23 Stay -1 35 Move 0+0.8max(0,2.4)
=1.92

12 |Move |0 24 |Move | 0+08 |

max(3,0)

=2.4

The learning procedure continues until each stetierapair has been visited for a sufficient
large number of times and until the correspondpagalue converges. Then at each state, the
agent chooses the action that achieves a max@nalue, which means that an optimal
policy chart can be constructed as shown in Tabl&tdrting from an arbitrary state, the
policy will finally guide the agent to its stablachoptimal time planning within a day:

Home : 0:00 A.M. -- 6:00 A.M.
Work 6:00 A.M. -- 12:00 A.M.
Shop 12:00 A.M. -- 6:00 P.M.
Leisure : 6:00 P.M. -- 0:00 A.M.

Table 4. Policy Chatrt for iterations going to infyn

Home Work Shop Leisure

Start time/
] Oh| 6h| 12h0h| 6h| 12h| Ohl 6h 120h|6h| 12h

Duration

0:00
S| M| M| M| S M M S M| M| M M

AM.

6:00
S| M| M| S| M M S M| M| M| M M

AM.

12:00
M M| M |M|M M S | M| M |S]| S M

AM.

6:00
PM M S M M| M M M M M |S | M M

For instance, the algorithm will first choose adam start state. Let's say (Shop, 0:00 A.M.,
6 hours). The corresponding action in the policartls Stay. As a result, the next state is
equal to (Shop, 0:00 A.M., 12 hours). Accordingttie policy chart, the agent chooses to
Move (since the maximal duration for each activéyl2 hours), and comes to the next states
(Leisure, 12:00 A.M., 0 hours). Carrying out thdippoin Table 4, the agent sequentially
arrives at (Leisure. 12:00 A.M., 6 hours), (Leisut2:00 A.M., 12 hours), (Home, 0:00 A.M.,
0 hours), (Home, 0:00 A.M., 6 hours), (Work, 6:00MA 0 hours), (Work, 6:00 A.M., 6
hours), (Shop, 12:00 A.M., 0 hours), (Shop, 12:081A6 hours), (Leisure, 6:00 PM, 0 hours)
and (Leisure, 6:00 PM, 6 hours). Next the agent Mibve again to the state (Home, 0:00
A.M., 0 hours), thus forming a cycle within a dayhich is the same as the optimal time
planning above. It can be seen from the policy tchizat an arbitrary start state, such as
(Leisure, 0:00 A.M., 6 hours) or (Home, 6:00 A.M2 hours), will ultimately lead to the
same optimal solution.

Finally, some remarks need to be made with redpeitte use of th&-learning algorithm to
solve the time allocation problem. First, cycles a&so be multiples of 24 hours. For example,
an agent can have one full day where it gets uly ead goes to bed late, alternated with a
less full day where it gets up later and goes thdmlier. Second, an interesting side-effect of
the structure oQ-learning is that the result of the computationas only the optimal “cycle”
through state space, but also the optimal “pathie agent is pushed away from the optimal
cycle. For example, if an activity takes considgrdtnger than expected, tligvalues at the
arrival state will still point the way to the besbntinuation of the plan, as shown in the
example above. Third, it is possible that somehefQ@-values do not converge when their
state-action pairs have not been sufficiently gitThen the agent will nevertheless find a
cycle, albeit possibly not the optimal one. In itgait may be time consuming to visit each
state-action pair infinitely in a huge state spadé many possible actions, which pushes the
agent to a tradeoff between the learning time ahdaisn quality.

3.2 Location Allocation by means of Q-learning

Consistent with the time allocation problem, locatallocation can also be solved by means
of Q-learning. For this purpose, it is assumed thatpf@gdry to maximize/minimize the
reward/cost of its travel in total.

Travel distance may not be an optimal measuredterchining the burden of travel because it
is plausible in a realistic situation that the aiste between location A and location B is
shorter than the distance between location A andt@e the travel time may be longer (for
instance because of a better road network). Fumihie, it is possible that there is a difference
in the transport mode that is used.

Translated into a context @¥-learning, the agent learns to find a travel policgt achieves

maximal reward/minimal cost. It is assumed thatitheediate reward of traveling between

two locations depends upon the travel mode, ané megative correlation with travel time.

Again, consider a simple example with the followisgnplifying assumptions to better

understand the behaviour of the decision agent:

« One activity-travel sequence: Homeublic transport— work —walk — leisure -walk —
shop —public transport- Home.

+ Astate is characterized by the activity and curlecation, and is denoted as [).

+ For a state, an action is to choose the locatiorravithe agent can perform the next
activity in sequence. Activities can be carried iow limited number of locations:

10

Home : Location A

Work : Location B
Leisure : Location C or D
Shop : Location E or F

« Only the rewards that come from travel are leatodae maximized.

« Parameter setting: Learning rate= 1; Discounting factoy = 0.9;e=1 (g-greedy method
applied).

In addition to these assumptions, reward tablesadiicial and extremely simple, as shown

in Table 5.

Table 5. An example of a simple reward table favét

Public transport Walk

A B C D E F A B C D E F
A / 12|/ / -14 | -16 | / / / / / /
B 12 |/ / / / / / / -8 -5 / /
C / / - / / / / -8 / / -10 | -4
D / / / - / / / -5 / / -6 -6
E 14 |/ / / - / / / -10 | -6 / /
F -16 |/ / / / - / / -4 -6 / /

Taking these simplifying assumptions into accotiatime and Work can only be carried out at
location A and B. It is obvious that the agent om#s to decide about the location of Leisure
and Shop activities, and each of them has two plesshoices. The remainder of this section
illustrates the learning procedure of the agent.

After all state-action pairs are initialized asara random statewill be chosen. It should

be recalled that the state is defined by an agtiaitd an origin location. Assume that the
agent first visits state (Work, B). In the thireégtof the learning procedure, the agent chooses
a random action in order to explore the state spae@ attempt to find a better solution than
the one already know. Let us assume that actiosti(dd¢ion) C has been chosen to perform
the next activity Leisure. The travel mode liestiba sequence and here is walk. The updated
Q (Work, B; C) thereby equals -8 + 0.9 * maQ (Leisure, C; E)Q (Leisure, C; F) = -8.

11

Assume that the agent selects to walk to E for Stiogn it is at the new state (Leisure, Q),
(Leisure, C; E) turns to be -10 + 0.9 * m& (Shop, E; A)) = -10. As shown in Table 6, the
agent visited these states sequentially. Theseractat each state and their corresponding
updatedQ-values are demonstrated in Table 6.

Table 6. Visited states per loop

Origin/Activity | Home Work Leisure | Shop
A 4,8,12

B 1,5,9, 13

C 2,10

D 6, 14

E 3,15...
F 7,11

Table 7. Q-values and State-action pairs

Loop Action Q-value Loop Action Q-value

1 C Q(Work, B; C) =-8 9 C Q(Work, B; C) =-8

2 E Q(Leisure, C; E) =-10 10 F Q(Leisure, C; Fp8.12

3 A Q(Shop, E; A) =-14 11 A Q(Shop, F; A) =-30.85

4 B Q(Home, A; B) =-12 12 B Q(Home, A; B) =-16.5

5 D Q(Work, B; D) =-5 13 D Q(Work, B; D) =-5

6 F Q(Leisure, D; F) = -6 14 E Q(Leisure, D; E)18:6
Q(Shop, F; A) =-26.8 15 A Q(Shop, E; A) = 28B.

B Q(Home, A; B) =-16.5

The Q-values tend to converge when each state-actianhpai been visited for a sufficient
large number of times. Then at each state, thetadp@mses the optimal action that achieves
maximalQ-value, thus constructing a policy (chart), as smawTable 8.

12

Table 8. Policy chart for iterations going to infyn

Origin/activity | Home | Work | Leisure | Shop
A B

B D

C F

D E

E A

F A

The optimal location allocation for this sample sence is thus equal to:
Home (A) —public transport— Work (B) —walk — Leisure (D) -walk — Shop (E) spublic
transport— Home (A)...

According to these store@-values of each state-action pair, the agent know to react
properly back to the optimal path when somethinipraseeable happens. For instance, when
location D for Leisure is not available today, thgent carries out Leisure at location C
instead. Making use of i®-values information about its two choices at lamatC, the agent
wisely selects F as the location for Shopping. Nexhoves back Home at location A and is
situated on the optimal path again.

4. Empirical Results

4.1 Optimizing Activity-Travel Pattern Allocations

The previous two sections have independently censditime and location allocation in an
artificial environment. In reality, however, thenard function will be more complex, there
may exist a more refined time granular; an abundantber of locations may be available for
a certain activity, and the distribution of thesedtions may be more disarrayed. Because of
this, it becomes not so straightforward in the plag of time or locations. Furthermore,
people will simultaneously take the time and lamatarrangements into account in order to
get a maximal reward in total. It is recalled tta reward of daily activities depends upon
the duration as well as start time, people will siotply endeavor to obtain an optimal route
for travel, since such a route design may not wéepiy suitable for the time arrangement of
daily activities. On the other hand, when peoplecalte time for activities, they have to
consider the flexible travel times since a numbdocations are available for the next activity.
The time and location arrangements are therefoteraoted. We will integrate the two
problems under the framework @Qklearning in a more realistic environment, whichn dze

13

described as follows:

+ The elements of sequences are limited to four kofdsctivities (i.e. Home, Work, Shop
and Leisure) and four kinds of travel modes (i.alkwbike, car and public transport).

« Time of the day is discretized with a refined tislet of 15 minutes, and the maximal
duration of each activity is 12 hours.

+ A states is characterized by activity, starting time of iaity, time already spent at
activity (duration) and the origin location whehe tactivity is performed.

+ For a states, an actiora may be to Stay: keep performing the activity atreot location
for another time slot, or to Move: move to a polkssibcation where it starts to perform
the next activity. The travel mode the agent usasach these locations is determined by
the sequence.

« The reward functions of these four activities #testrated in Figure 1-4.

Reward table of HOME activity

40,

20, .

duration[t] L

starting time [h)

Figure 1. Reward table of Home Activity

Reward table of WORK activity

100

duration[h] 10 15

starting time [h]
Figure 2. Reward table of Work Activity

14

Reward table of SHOP activity

25

duration(h] 10 15

starting time [h)

Figure 3. Reward table of Shop Activity

Reward table of LEISURE activity

20

20| e

40,
15 -

25
15

duration[h] 10

starting time [h]

Figure 4. Reward table of Leisure Activity

The rewards of these activities at each startinge tand duration combination derive from

several factors:

1. For each starting time, the immediate reward retifior a single time slot is determined.
For example, starting to work for 15 minutes atO2&M. brings a negative reward.
However, the agent has a much higher reward ifaitts to work at 8:00 A.M. for the
same duration. Additionally, assuming that the sisopnly available between 8:00 A.M.
— 8:00 P.M., the agent will acquire no reward Btérts to shop at 6:00 A.M. or continues

to shop at 11:00 P.M..

2. The law of diminishing marginal utility is consiggl. The marginal utility diminished
increases nonlinearly as time goes by. Howevergittent and trend of the diminishing
marginal utilities for each activity are differefiom each other. For example, the

15

marginal utility of Shop is decreased much morer@igahan that of work after 1 or 2
hours, which make the agent reluctant to keep shg@my longer.

3. The agent will receive a bonus if it keeps workiiog a reasonable duration, which
encourages it to work hard. The amount of bonus éépends on the starting time. The
bonus is low if the agent starts to work at 0:00Aeven if it works for 8 hours.

Obviously, this is only an experimental setting. &®other alternative, an elaborated stated
preference experiment can be developed that istabdgiantitatively assess the reward that
people experience per start time and per timethattwas spent per activity.

With respect to location allocation, 100 locatieveye collected in a city and we recorded the
distances among them. These locations are graphilbastrated in Figure 5, by applying the
multi-dimensional scaling (MDS) technique (Johnsamd Wichern, 1998). Of these 100
locations, 20 locations are available for Shopparg] 15 for Leisure. For each person, there
is only one location available, both for Home aodWork.

For each travel mode, the travel time among thesatibns are logged. It is assumed that the
reward/cost function in term of travel time is adws:

Reward § =-c *{ *t}
,where ¢ is identical for all travel modes and is applied dasily control the relative
importance of travel compared with daily activiti@he parameters anda are specifically

set for each travel mode in order to respectivedynichate the range of reward and its
evolution trend.

16

Locations distribution

2.0
1.5+ 579
P78
o 77
76
1.0 00
66 6 27 18
m] m] B]
68 51
54 670 02 g 2840 22
o oo o 23
§§6§4] 0
59 55 71 73 = s o
2 < 5877 8 - 31325 o m 17
0.0 o 60, “756 B3° 87 g a0 5 °
63 °h T WO30T sz |Uss 7 6 O o
o 47 886 8 o
Te 4T #g Tl
90 942 5
-.5 o m"” D3DD 4 llm
95 o o
> o 98
9% o
-1.0 o
_1.5,
97
m]
-2.0
-3 -2 -1 0 1 2 3

Figure 5. Location distribution

The setting of these parameters are shown in Tabénd their

depicted in Figure 6.

Table 9. Parameter setting for reward functionsauh travel mode

Walk | Bike | Car | Public transport
a 1.6 1.1 0.6 0.8
b 1/12 1/10 1/6 1/8
c 5

17

corresponding curve is

The Reward of four travel modes wrt travel time
180) T T)

100

-Reward

50

0 20 40 50 BO 100
Travel Time

Figure 6. Reward function curves of each travel enod

In such a complicated environment, it is requiredthe learning agent to look far into the
future in order to find a good daily plan of timedalocations. The discounting factprs set

at 0.99, which is close to one and makes the legrprocedure harder to converge. The
e-greedy method that was explained before is adogteld is set as 1 in order to explore the
state space sufficiently.

Due to the use of discrete time intervals, thetisigrtime of activity is calculated as the
ending time of previous activity plus, instead eélrtravel time, the minimal number of time
slots that contains the travel time. It is expedteat this adaptation causes trivial influence
because of the small time granular.

Furthermore, the discount per time slot shouldhgesame during the learning procedure. As
a result, the discount factor is equalfbif it takes the agent time slots to travel to the next
location.

Three sequences were dealt with in this paper lansef example:

1. Home —car — Work —car — Shop -car — Leisure -car — Home

2. Home —public transport— Work —public transport- Home -bike— Leisure -bike—
Shop -bike— Home

3. Home —public transport- Work —walk — Leisure -walk — Shop —public transport-
Home

18

The optimal behaviour of three persons are preddntesach pattern by means of example.
The home and location pair for each person carsteslas follows:

Person A: Home — location 7; Work — location 82
Person B: Home — location 29; Work — location 9
Person C: Home — location 30; Work — location 54

The outputs are displayed in Table 10.

Table 10. Optimal output

Per.| Seq. Optimal Behavior

1 H(23:15 --07:15, 7), W(07:45 --18:00, 82), S(8:119:45, 87), L(20:00 --23:00, 0)
A 2 H(22:30 --06:45, 7), W(07:45 --17:30, 82), H(18:318:30, 7), L(18:45 --20:45, 0),
S(21:00 --22:00, 6)

3 H(23:15 --06:45, 7), W(07:45 --17:30, 82), L(18420:30, 33), S(21:00 --22:00, 36
H(23:30 --07:15, 29), W(07:45 --18:00, 9), S(8:1419:45, 11), L(20:00 --23:00, 10)
B 2 H(22:30 --06:15, 29), W(07:45 --17:15, 9), H(18:418:45, 29), L(19:15 --20:45, 0),
S(21:00 --22:00, 3)

3 H(23:15 --06:30, 29), W(08:00 --17:45, 9), L(18:320:15, 10), S(21:00 --22:00, 11
H(23:30 --07:30, 30), W(08:00 --18:00, 54), S(8:-19:45, 55), L(20:00 --23:00, 33)
C 2 H(22:30 --06:30, 30), W(07:45 --17:30, 54), HAB:-18:45, 30), L(19:00 --20:30,
27), S(21:00 —22:00, 25)

3 H(23:15 --06:45, 30), W(08:00 --18:00, 54), L@B--20:30, 39), S(21:00 --22:00, 38)
*H — Home, W — Work, L — Leisure, S — Shop.

*Each element in the optimal behavior is denoteAawity (Start time — End time, location).

For example, when person A chooses sequence Zdoyday life, he/she would like to stay

at home from 22:30 P.M. to 6:45 A.M., and then n®olg public transport to location 82. At

17:30 PM, he/she stops working and returns homesoReA does not spend in home time
(which means that the home activity that was asslutoeexist in the given sequence, is
skipped) and directly rides bicycle to locationod Eeisure. After two hours leisure, he heads
to location 6 for one hour’s shopping. Finally, $tarts to move by bike back home at 22:00
P.M.

4.2 Route optimization vs. activity-travel optimization

As mentioned above, the equation Rewald (c*(b*t)? is applied to calculate the travel
reward (cost). We also run our optimization prograhenc is set as infinite large, which

19

makes the agent arrange his route in a fashion dbhteves lowest travel cost. The
experiments revealed that for sequences 2 ana 3ptlie arrangements are the same as those
in Table 10, while the situation is probably di#at for sequence 1. For instance, wkes
infinite large and sequence 1 is adopted, persprefer location 83 than location 87 for Shop,
and person C prefer location 39 than location 33LfEsure. The output is the result of the
fact that in sequence 1, traveling by car suffeosnflow cost and the route arrangement is
often subject to the activity arrangement in orttelachieve highest reward in total, while
traveling by public transport, bike or walk is dgsand the route should also be carefully
designed to alleviate the travel cost as much asiple.

Another interesting output, whemis infinitely large, is that the agent will keeprfprming
each activity as long as possible (12 hours inemwironment) in order to avoid unnecessary
location transfers in everyday life, which is apdly reasonable.

4.3 Back to optimal path gracefully

When unforeseeable events often happen in ourslifeh as traffic jam or overtime on work,
the agent is put off the optimal path. One extramany advantage of Q-learning is that the
agent, according to the Q-values accumulated itedo®ing procedure, can wisely choose the
appropriate action and move back to optimal patcefully as it was also mentioned in
Charypar and Gérling (2004). We illustrate thisrelteristic by means of the following two
examples.

Example 1Suppose person A takes sequence 1 as his déihtyatravel pattern. One day, he
has to deal with extra tasks and keeps workind’tM. 19:00, which is off his optimal daily
arrangement. He then chooses to go shopping &aidadd7 for 1 hour and 45 minutes. Then
he moves to location O for leisure and get backéatmA.M. 00:00. He will get up at A.M.
07:15 as usual and be on the optimal path agaie.abjustment process is as: Work (07:45
--19:00, 82), Shop (19:15 --21:00, 87), Leisure:181--23:45, 0), Home (00:00 --07:15, 7),
Work (07:45 --18:00, 82)...

Example 2 Assume person B adopts sequence 2. One morneng tielayed one hour by
traffic jam and starts to work at A.M. 08:45. Basedhis experience, he will wisely work for
9 hours. He then arrives at home at P.M. 19:15drattly moves to location O for leisure.
After one hour’s leisure, he starts to shop at RRMOO, thus returning to optimal path. The
process is stated as: Work (08:45 --17:45, 9), H¢t®15 --19:15, 29), Leisure (19:45
--20:45, 0), Shop (21:00 --22:00, 3), Home (22:8®:15, 29), Work (07:45 --17:15, 9)...

20

5. Conclusion

It is the first time that the activity and routéoghtions are integrated and optimized in order
to achieve maximal rewards in total for a givenidigttravel pattern. The reinforcement
learning is adopted to help the agent search thenappath in the huge number of states of
given environments.

It is revealed that the activity arrangement anatealesign are interacted. When the travel
cost is small compared with activity reward, thateosetting is often subjected to the activity
plans and they are not necessary designed by noédims shortest path. The time allocations
for activities will also be influenced when theuweacost changes.

Making use of the information obtained from therft@éag procedure, the agent can wisely
choose the optimal action at each possible statbetefore can gracefully move back to the
optimal path when it is thrown off from it by uneeqied events.

References

Arentze, T.A. and Timmermans, H.J.P., (2003). Mligllearning and adaptation processes
in activity-travel choice: A framework and numeti@xperiment.Transportation30,
37-62.

Barto, A.G. and Sutton, R.S. (1981). Associativarcle network: a reinforcement learning
associative memoriological Cyberneticg0, 201-211.

Charypar, D., Graf, P., and Nagel, K. (2004). Q+eg for flexible learning of daily activity
plans. In Proceedings of the Swiss Transport Reke@onference (STRC). Monte
Verita, Czechoslovakia.

Charypar, D. and Nagel, K. (2005). Q-learning flexible learning of daily activity plans.
Paper presented at the 84th Annual Meeting of trensportation Research Board.
Washington, D.C., USA.

Crites, R.H. and Barto, A.G. (199@)mproving elevator performance using reinforcement
learning,in Advances in Neural Information Processing SysteinS. Touretzky, M.C.
Mozer, and M.E. Hasselmo, Editors. The MIT Pre€4.7:1023.

Dijkstra, E. (1959). A note on two problems in ceantion with graphs.Numerical
Mathematicsl, 269-271.

Johnson, R.A. and Wichern, D.W. (1998pplied Multivariate Statistical Analysi®rentice
Hall.

Kaelbling, L.P., Littman, M.L., and Moore, A. (1996Reinforcement learning: a survey.
Journal of Artificial Intelligence Researeh 237-285.

21

Littman, M.L. (1994). Markov games as a framewark rhulti-agent reinforcement learning.
Proceedings of the Eleventh International Confezenon Machine Learning. San
Francisco, CA, USA.

Mahadevan, S. and Connell, J. (1992). Automatigmmmming of behavior-based robots
using reinforcement learningutificial Intelligence55, 311-365.

Mitchell, T. (1997)Machine LearningNew York: McGraw Hill.

Moriarty, D.a.L., P (1998). Learning cooperativendaselection strategies for highways.
Proceedings of the Fifteenth National ConferenceAdificial Intelligence. Madison,
Wisconsin, USA.

Schaal, S.a.A., C. (1994). Robot juggling: an impdatation of memory-based learning.
Control Systems Magaziid, 57-71.

Schneider, J., Boyan, J., and Moore, A. (1998)u¥dlnction based production scheduling.
Proceedings of the Fifteenth International Confeeean Machine Learning. Madison,
Wisconsin, USA.

Sutton, R.S. and Barto, A.G. (199&einforcement Learning: An IntroductioMIT Press,
Cambridge.

Tesauro, G. (1992). Practical issues in temporti¢rgince learningMachine Learnings,
257-277.

Tesauro, G. (1994). TD-Gammon, a self-teaching @acknon program, achieves
master-level playNeural Computatio®, 215-219.

Thrun, S. (1995)Learning to play to game of cheda Advances in Neural Information
Processing Systems, G. Tesauro, D. Touretzky, ah@dn, Editors. Morgan Kaufmann,
San Francisco.

Watkins, C. (1989).Learning from Delayed Rewardsin Psychology Department,
University of Cambridge, Cambridge.

Watkins, C. and Dayan, P. (1992). Technical notée@ning.Machine Learnind, 279-292.

22

