
Made available by Hasselt University Library in https://documentserver.uhasselt.be

A two-dimensional extension of Allen's temporal logic as an intelligent

support for the solution of packing problems

Peer-reviewed author version

JANSSENS, Gerrit K. (2006) A two-dimensional extension of Allen's temporal logic

as an intelligent support for the solution of packing problems. In: ISKE 2006

International Conference on Intelligent Systems and Knowledge Engineering,

Shangai, China..

Handle: http://hdl.handle.net/1942/1370



A two-dimensional extension of Allen’s temporal logic 
as an intelligent support for the solution of packing 

problems 
Gerrit K. JANSSENS1   

1Operations Management and Logistics 
Hasselt University  

Campus Diepenbeek - Agoralaan 
B-3590 Diepenbeek,  Belgium 

e-mail: gerrit.janssens@uhasselt.be 
 
 

Abstract  
Inland vessels move goods along canals and rivers and 
they visit ports. Due to tides on the rivers, the vessels 
make use of locks to enter ports or canals. From a port 
management point of view, a fast access to and from 
the port and high utilisation of a lock are important 
objectives. The policy to access the lock works as 
follows. Vessels wait in front of the lock. A port 
administrator assigns a place in the lock based on the 
knowledge of the vessels’ dimensions. As such, there 
is no FIFO-discipline, but a ‘group-FIFO’-discipline, 
i.e. if n vessels are allowed to the lock, they are the 
first n vessels in the arrival queue. A heuristic 
algorithm is formulated for the placement of vessels in 
the lock. This algorithm supports the decision where to 
place the vessel in the lock, aiming to place as many 
as possible vessels from the arrival queue. The paper 
describes the implementation of the heuristic which is 
based on a two-dimensional extension of Allen’s 
temporal logic.  

Keywords: packing problem, heuristic, temporal logic. 

1. Introduction 
A port is a complex industrial system, which 

consists of different entities and services of which the 
components continuously are in change. The changes 
are caused by internal factors (e.g. harbour policy rules) 
and by external factors (e.g. evolution in types of 
trade), which influence the entities. Examples of such 
entities are: vessels, canals, space, quays, companies, 
locks, warehouses, and financial entities as costs and 
revenues. Each entity has its own characteristics, 
making the whole a complex world (Hassan 1993). 
From an organisational point of view many entities in 

the harbour are involved making the harbour activities 
that intensive that they are hard to manage. The 
demand for decision support is large. The complexity 
makes that the study of a harbour system is difficult 
without a computer simulation program (Bruzzone et 
al. 1999). 

 When river traffic is involved, also the use of 
locks comes in to the dynamics of shipping. The 
application under study also considers a river system 
and a river port. The port of Antwerp is one of the 
major ports in the world. It is an upstream urban port 
on the river Scheldt, nearly one hundred kilometers 
inland of Belgium. The access to the port goes through 
a number of locks. 
  A traffic simulation model for the river 
Scheldt has been developed and is described in Thiers 
and Janssens (1998). The simulation model is the 
object of a study, which has been ordered by the 
Belgian Waterways regarding the plans to build a 
second container quay on the river Scheldt just 
downstream (i.e. North of) the locks of Berendrecht-
Zandvliet. For the planned quay, these manoeuvres 
have to take place on an area with very dense traffic.  
This would result in hindrance for the other traffic on 
the river. Opinions amongst officials were divided 
about this hindrance, resulting from future increasing 
traffic.  

Inland shipping depends on the use of locks. 
They serve shipping operations by maintaining 
adequate depths on waterways. In some countries 
locks also serve water management purposes. 
Additionally, by maintaining water in canals at 
different desired levels, locks conserve large amounts 
of water that can be used for various purposes  (Bolten 
1980). 

 
 
 



2. Lock operations in a port model 
 
Vessels passing through a lock take more time 

than they would if the lock were not there. This delay 
consists both of the time waiting to enter the locks as 
well as the time spent within the lock during a cycle. 
Water management increases delays at locks. While 
vessel operators would like frequent lock cycles, water 
management requires the opposite. 

The design of a lock requires many different 
aspects, including construction and cost aspects, but 
also security, efficiency and reliability as well as 
influence on environment and society. For our 
purposes, we are more interested in the efficiency 
aspect, which can be translated into a fluent, 
uninterrupted traffic flow. Traffic should be organised 
in such a way they do not hinder each other too much. 
(Mc Cartney 1998). 

Lock operations are described shortly. Vessels 
approaching the lock moor while waiting to enter the 
lock. If the lock is open, they enter and tie up inside 
the lock until all waiting vessels are entered or the 
lock is full. Afterwards the doors are closed and the 
water level within the lock is raised or lowered up to 
the level with the waterway on the opposite side.  
When the levels are equal, the doors open again and 
the vessels leave the lock. The lock can be cycled back 
in the other direction. 

A lock complex can consist of one or more locks 
arranged in parallel. A lock operator will direct the 
vessels to a specific lock. The choice depends on: 
vessel and lock dimensions, lock availability, weather 
conditions, safety considerations and queue lengths. 
Normally vessels enter locks in their order of arrival. 
Exceptions can exist in order to pack the lock for 
maximum capacity. 

The port of Antwerp is an inland port and is 
vulnerable to tide differences of on average 4.35 
metres. These differences hinder efficient goods 
handling. Lots of harbour activities take place at 
constant water level within a set of docks, within 
which the constant water level is secured by a complex 
of locks. In the port of Antwerp six locks offer access 
to the docks. 

The locking operations are briefly explained using 
Figure 1. The text in the figure should be understood 
as: ‘SCHELDE’ = the name of the river Scheldt in 
Dutch; ‘SAS’ means lock; ‘DOKKEN’ means docks. 

Assume a vessel arrives at low tide at the lock 
doors from the river Scheldt side (part A). For the 
vessel to enter the lock, the lock doors at the riverside 
should be opened. This can only be done if both water 
levels are equal. In this case openings are made so that 
the water in the lock chamber runs into the river. 
When levels are equal, the doors are opened and the 
vessel can enter the lock (part B). After the doors on 

the riverside are closed and the vessel is tightened to 
the lock walls, openings are made along the doors on 
the dock’s side, allowing the water to flow from the 
docks into the lock (part C). When levels are equal the 
doors at the dock’s side can be opened and the vessel 
can enter the port through the dock (part D) (Dehousse 
1991). 

In many practical cases it happens that more than 
one vessel is waiting to enter the port and that a lock 
can harbour more than one vessel. The location of 
more than one vessel during one set of lock operations 
is directly linked to efficiency. The more vessels are 
allowed to enter at once, the shorter the waiting times 
(Bolten 1981, pp.97-99). 

Lock capacity is not an easy concept to define. 
Capacity could be thought of as the case when, in 
subsequent locking cycles, no waiting times occur and 
the lock is completely filled. But the number of 
vessels, which can take place in the lock, depends on 
the distribution of vessel types, which arrive and their 
arrival pattern. Both aspects are of random nature. The 
randomness can be thought of in two ways: either it 
relates to the number of vessels which can pass the 
lock in a fixed time period (e.g. a week), or it relates 
to the static chamber capacity, i.e. the maximum 
number of vessels in the chamber. 

 
 
 
 
 
 
 
 
 
 

 
Figure 1: A sequence of locking operations 

3. Placement of vessels in a lock 
 
The placement of vessels in a lock resembles a 

classical OR problem, called the packing problem 
(Janssens 1998, 2002). It is an optimisation problem 
concerned with finding a best arrangement of multiple 
items in larger containing regions. The usual objective 
is to maximise material utilisation and hence to 
minimise the ‘waste’ area. In our case, the items are 
vessels. The containing region represents the lock. The 
waste area represents the surface of water not covered 
by vessels. Implicitly, we assume by minimising the 
waste area the same objective as putting a maximum 
number of vehicles in the lock. A review on packing 
problems can be found in Dowsland and Dowsland 
(1992).  



The placement of vessels is a two-dimensional 
(2D)-rectangular packing problem. A set of vessels has 
to be placed in a rectangular object, the lock. The lock 
is modelled as a rectangle with length L and width W 
where L > W. A vessel is also modelled as a rectangle 
with length lv and width wv where lv > wv. The 
placement process ensures there is no overlap between 
the items. In Figure 2 the placement with knowledge 
of the real shape of the vessels would be acceptable. 
With the rectangular assumption this placement is not 
acceptable.  

There are many variants of the 2D-rectangular 
packing problem. Dyckhoff (1990) has given a 
topology of packing problems in terms of: dimension 
of the problem, the type of assignment, the type of 
items, the region (single object) in which the objects 
have to be placed, the rotation of items and the 
guillotine feature. 
 

 
 
 
 
 
 
Figure 2: Placement of two vessels with perfect 

information on shapes and their rectangular 
approximations 

 
The dimensionality equals the minimal number of 

dimensions to characterise the problem. As our case 
deals with vessels of specific length and width to be 
placed in a lock with a specified length and width, we 
deal with a two-dimensional problem. The type of 
assignment describes whether all objects have to be 
assigned to a container. In our case, all vessels waiting 
in front of the lock have to be assigned to one or the 
other locking operation. The type of items relates in 
our case to the vessels, which are represented as 
rectangular objects.  The region is also a rectangle 
with finite length and width. The aspect of rotation 
relates to the possibility of rotating items by 90°. In 
the lock the vessels cannot be rotated and as the length 
is assumed to be larger than the width of the vessel, 
the larger part of the vessel is placed parallel to the 
length of the lock 

Baker, Coffman and Rivest (1980) consider 
packings, which are orthogonal and oriented. An 
orthogonal packing is one in which every edge of 
every rectangle is parallel to either the bottom edge or 
the vertical edges of the region. An orthogonal 
packing is also oriented if the rectangles are regarded 
strictly as ordered pairs; i.e. a rectangle (xi, yi) must be 
packed in such a way that the edges of length xi are 
parallel to the bottom edge of the region. Thus 
rotations to a degree of 90° are not allowed. This 

feature is certainly applicable to our case. Another 
type of constraint considered in packing is the 
guillotine packing. The guillotine feature relates to a 
restriction of the partitioning of the lock area into 
rectangles. Guillotine cuts are cuts from one edge of a 
previously cut rectangle to the opposite edge. Cuts are 
assumed to be orthogonal.  

Dowsland (1992) makes a difference between the 
problems where the complete list of objects is known 
or not known at the moment of decision. If the 
complete list is known, the problem is called an off-
line problem. If it is not the case, it is called an on-line 
problem. In our case we deal with an off-line problem. 

Looking only at two-dimensional rectangular 
orthogonal bin packing problems (2BP), Lodi, 
Martello and Vigo (1999) characterise according to the 
orientation and guillotine patterns. Four classes are 
described: 

- 2BP/O/G: the objects are oriented (O) and 
guillotine cuts (G) are required; 

- 2BP/R/G: the objects can be rotated (R) and 
guillotine cuts (G) are required; 

- 2BP/O/F: the objects are oriented (O) and the 
cutting patterns are free (F) 

- 2BP/R/F: the objects can be rotated (R) and 
the patterns are free. 

Our planning problem falls within the class: 2BP/O/F. 
As expected, the two-dimensional rectangular bin 

packing problem is NP-complete, so we have to rely 
on heuristic methods to solve the problem. A 
classification of heuristic algorithms for this problem 
can be made as (Lodi et al. 2002): 
- one-phase algorithms: they place the objects 
immediately in a finite set of containers; 
- two-phase algorithms: they place the objects 
in a strip (i.e. a container with finite width but infinite 
length). In a second phase the strip solution is used to 
place the objects in to a set of finite-length containers. 

Our interest goes to the class of one-phase 
algorithms, in which in some way the sequence of 
arriving vessels has to be respected. In a two-phase 
algorithm this can also happen, but we must take care 
that the last arrived vessel is not taken in the packing if 
another one is excluded. One-phase algorithms can be 
sub-divided into two classes: level algorithms or non-
level algorithms. In level algorithms the objects are 
assigned within the container into different levels. For 
our application a non-level algorithm is most 
applicable. 

Within the class of non-level algorithms we 
mention three heuristics, of which one will be 
implemented afterwards. Within this idea, a first 
heuristic has been formulated called the bottom-up 
left-justified (BL) algorithm (Baker et al. 1980, Liu 
and Teng 1999). Such an algorithm puts the vessels 
one at a time as they are drawn in sequence from the 
list of arriving vessels.  



When a vessel is placed in to the lock it is first 
placed into the lowest possible location (along the 
lock’s walls, closest to the lock doors at the port side), 
and then left-justified at this vertical location in the 
lock (along the lock doors, closest to the left wall). A 
second heuristic is called the alternative directions 
algorithm (Lodi et al. 1999, pp. 345-350). Based on 
the length and width information of the vessels, a 
lower bound on the required number of locks is 
computed. At the front side of the locks a number of 
vessels are placed using the Best Fit Decreasing 
Height-principle. A vessel is placed, most to the left, 
where it fits and where the unused length is minimal. 
If, after this left-to-right placement, the right wall is 
reached, the procedure is continued but now from right 
to left. A third heuristic is called the less-flexibility-
first heuristic, which will be dealt with in detail. 

4. The Less-Flexibility-First-
Heuristic 
 
The less-flexibility-first heuristic is chosen for 

implementation as it generates dense packings with 
short computation time. The name of the algorithm 
refers to the fact that priority is given to placements 
with low flexibility either of the lock or of the vessels 
to be placed (Wu et al., 2002). 

The flexibility of the lock can be looked at in 
three ways: corners have the least flexibility, the sides 
(walls and doors) come next, and the open spaces have 
the most flexibility. The levels of flexibility can be 
intuitively interpreted as follows. A corner is defined 
by two sides and the object, which is placed in a 
corner, has only one place to be positioned, so there is 
no choice and by this no flexibility. An object, which 
is placed along one side, can move along that side 
provided it is not placed in a corner. The degree of 
freedom is of a one-dimensional type. If an object is 
placed in an open space, it can move in any direction 
as long as it is not placed along a wall side or in a 
corner. Its degree of freedom is of the two-
dimensional type. 

The flexibility of objects depends on the shape 
and the size. In our case only rectangles are used, so it 
can be stated that larger objects show less flexibility. 

From figure 3, it can be seen that object A can be 
placed anywhere in the free area whereas object B fits 
only in the central part. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3: Example of flexibility of objects A and B 
 

The heuristic makes use of a specific coordinate 
system (xb1, yb1, xb2, yb2) with (xb1, yb1), the 
coordinates of the lower-left corner of the lock, and 
(xb2, yb2), the coordinates of the right upper corner of 
the lock. The m vessels to be placed have width and 
length using the symbols (wi, li). 
The problem consist of finding a solution, which 
consists of m coordinate sets: (x11, y11, x12 y12), …, 
(xm1, ym1, xm2, ym2), where xi1 < xi2 and yi1 < yi2 for all 
1 ≤ i ≤ m and where (xi1, yi1) represent the coordinates 
of the lower left corner of the vessel placement and 
(xi2, yi2) represent the coordinates of the right upper 
corner of the vessel placement in the lock. The m 
coordinate sets satisfy the following constraints: 
 

1 (xi2 – xi1) = wi and (yi2 – yi1) = li, 
2 for all 1 ≤ i, j ≤ m, at least one of the 
constraints is satisfied: 

yj1 ≥  yi2, yi1 ≥ yj2, xj1 ≥ xi2, xi1 ≥ xj2, 
3 for all 1 ≤ i ≤ m,  

xb1 ≤ xi1, xi2 ≤ xb2 en yb1 ≤ yi1, yi2 ≤ yb2. 
 

The first constraint takes care that the surface 
taken by the vessel in the lock corresponds to the size 
of the vessel. The second constraint avoids that vessels 
overlap and the third constraint takes care that the 
vessels are placed with the boundaries of the lock. The 
left lower corner of the lock is defined as the zero 
point of the coordinate system. 

The algorithm works with corner-occupying 
decisions (COD). This means that a decision is taken 
to put the vessels in a free corner. Given the 4-tuple 
(wi, li, xi1, yi1) where xi1 and yi1 represent the 
placement coordinates of the lower left corner of the 
vessel, the complete occupied area can be determined. 
At each iteration the algorithm generates a list of all 
candidate COD, given the current situation of 
definitively placed vessels. One object can lead to 
several COD. 
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Figure 4 shows that for one vessel several (in this 
case eight) COD might be generated. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4: Candidate corner-occupying decisions for 
vessel A to be placed 

 
The list of COD candidates is sorted on 

decreasing length, and in case of ties, on decreasing 
width. For each candidate COD a function value is 
calculated. This is done by allocating the candidate 
COD in the lock, followed by locating all other COD 
(if feasible) in order of the COD-list (the so-called 
greedy candidates). This step in the heuristic is called 
the pseudo-packing of the candidate CODs. 

A pseudo-packing of an element of the list is 
defined by the packing of the element (the vessel in a 
specific place) and as many other vessels as possible, 
packed in a greedy way, i.e. by running down the list 
and provisionally packing as soon as it is feasible. For 
such a packing solution, a function value is calculated, 
defined by the sum of the surfaces occupied by the 
provisionally packed vessels. The candidate COD with 
highest function value is selected for definitive 
placement. Note that only the candidate COD is placed 
definitively and not all others, which were 
provisionally placed by the greedy procedure. Larger 
objects, with less flexibility, are prioritized by this 
procedure. The process is repeated until either all 
vessels are placed or no further vessels can be placed 
in the remaining space. It should be clear that, during 
the pseudo-packing procedure, objects cannot be 
placed in corners which are occupied by other objects 
during the same pseudo-packing run.  

The procedure is illustrated by means of an 
example, inspired by Wu et al. (2002), but adapted to 
our special case, shown in Figure 5. Assume that the 
vessels A (width=2, length=5), B(width=4,length=4) 
and C (width=4,length=6) are to be placed in a lock of 
length 8 and width 8. In a previous step of the 
algorithm the vessel P (3,6) has been placed. The 
candidate COD list can have at maximum 3 * 5 = 15 
elements, i.e. the number of remaining vessels times 
the number of corners. The number of elements in the 

list will mostly be lower due to infeasibilities in 
location, e.g. vessel A cannot be placed in corners 4 
and 5., or due to identical placements, e.g. the 
placements of a vessel with length 2 and width 2 in 
corners 4 and 5 are identical. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 5 : Example of the calculation of a function 
value  

Let us define the coordinate of the left-lower 
corner to be (0,0). Feasible placements, sorted on 
decreasing vessel length and, if required, on 
decreasing vessel width are shown in Table 1. For 
each candidate a function value is calculated. 
According to the earlier described procedure we work 
this out for the first COD candidate in the list with 
coordinate system (4,6,4,2). The pseudo-packing starts 
from a situation as shown in figure 5. From this 
situation it is checked whether remaining elements on 
the list can be place in a feasible way. By excluding 
the candidates, which have their placement in corner 1, 
four candidates remain, but none of them can be 
placed in a feasible way. The function value of this 
pseudo-packing equals 42, which is the sum of the 
surfaces of the vessels P and C. The procedure is 
repeated for the remaining eight elements on the COD 
list. The solution with the highest function value is 
chosen. This example is simple as only one object can 
be placed. The fitness function values obtained are 
shown in the third column of table 1. 

Vessel C is chosen to be placed in corner 1. In a 
next iteration it has to be decided which element from 
the new COD list of vessels A and B has the higher 
function value.  In this example, it can be seen that 
neither A nor B can be placed and by this, the 
algorithm stops. A description of our heuristic, 
adapted from Wu et al. (2002), is listed below: 
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Action 
Coor-
dinate 
system 

Fitness 
Function 
Value 

Vessel C placed in corner 1 (4,6,4,2) 42 
Vessel C placed in corner 2 (4,6,4,0) 42 
Vessel C placed in corner 3 (4,6,3,2) 42 
Vessel A placed in corner 1 (2,5,6,3) 28 
Vessel A placed in corner 2 (2,5,6,0) 28 
Vessel A placed in corner 3 (2,5,3,3) 28 
Vessel B placed in corner 1 (4,4,4,4) 34 
Vessel B placed in corner 2 (4,4,4,0) 34 
Vessel B placed in corner 3 (4,4,3,4) 34 

 
Table 1: Function values for the example of the 

heuristic 
 
Start with an empty workspace. 

1. Based on the current placing information, 
find all possible CODs for each vessel 
remaining to be placed. Represent each COD 
by a quadruple <length, width, x1, y1>. 

2. Sort all these quadruples in lexicographical 
order, i.e. in decreasing length, and if 
required by ties, in decreasing width. 

3. For each of these COD, do 3.1 till 3.3 to 
calculate its fitness function value (FFV). 
3.1. Pseudo-place this COD. 
3.2. Pseudo-place all the remaining vessels 

based on the current COD list and with a 
greedy approach, until no more COD can 
be packed. 

3.3. Calculate FFV of this candidate COD as 
the occupied area. 

Note: before the pseudo-packing for 
the next candidate COD is tried, one 
needs to remove the previous 
pseudo-packed CODs. 

4. Pick the COD candidate with the highest 
COD and really place the corresponding 
vessel according to the COD. 

5. Mark the vessel as ‘placed’. 
Return to Step 1 until no more placements can be 
made. 
 

5. Implementation Issues 
While the idea of the heuristic is straightforward 

and easy to understand, the major difficulty is found in 
the generation of free corners. The list of free corners 
needs to be updated after each definitive placement. 
To illustrate this, assume that in Figure 4, candidate 
COD number 6 is chosen to be the definitive one. The 
free corner in which the vessel is placed disappears 
from the list but two new free corners (which we call 
base corners) appear on the list. The new corners can 

be identified when the type of placement is known. A 
vessel can be placed right-above (RA), right-under 
(RU), left-under (LU) or left-above (LA) in the free 
corner (see figure 5). In the examples in figure 6 two 
new base corners are generated, but if the width of the 
vessel would be equal to the width of the free area, 
only one new corner appears. 
 
 
 
 
 
 
 

 
 

 
 

Figure 6:  Generation of new base corners after a 
placement in a free corner 

 
As an illustration we also show some other side 

effects, which can occur by placement of a vessel, 
especially when length, width or a corner of the placed 
vessel touches other vessels, which were placed before. 
Such an example is shown in Figure 7. After a first 
placement of vessel 4 in corner 1 with coordinates 
(0,0), two new base corners are generated: (4,0) and 
(0,6). Assume that in a second iteration vessel 1 is 
placed in corner 3. This placement generates new 
basic corners (8,5) and (4,10). But additionally two 
other corners should be generated: (4,5) and  (4,6). 
Many of those special cases may occur.  
 
 
 

 
 

 
 

 
 
 
 
 
 
 

 
 

Figure 7: Generation of extra corners after a 
placement 
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Therefore a formal framework needs to be 
developed to enumerate all special cases and their 
consequences in terms of corners to be generated or 
deleted. 

Such a logic can be based on a formal framework 
using relations between time intervals (Allen 1983). 
As, after placement, the length and width side of a 
vessel can be modelled as finite intervals, also this 
type of relations are exhaustive and can be enumerated, 
be it in two space-dimensions and not in one time 
dimension. If two intervals X and Y in one dimension 
are considered, Allen (1983) defines seven types of 
relations from X to Y. Six more relations can be 
defined from Y to X (one less because of the relation 
‘equals’ – see list). For the illustration, we focus on 
the length dimension, but the reader should be aware 
that all thirteen relations also exist on the width 
dimension. They are: 

- X before Y: X is placed before Y, i.e. some 
place is left between both vessels, 

- X meets Y: the end of X coincides with the 
beginning of Y, 

- X equals Y: both the beginnings en ends of X 
and Y coincide, 

- X overlaps Y: the beginning of X lies before 
the beginning of Y, but the end of X is not 
before the beginning of Y, 

- X during Y: the beginning of X lies after the 
beginning of Y and the end of X lies before 
the end of Y, 

- X starts Y: the beginnings of X and Y are the 
same but the end of X lies before the end of 
Y, 

- X finishes Y: the ends of X and Y are the 
same but the beginning of X lies before the 
beginning of Y.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Illustration of the test on existing and new 
corners 

This logic is illustrated by means of the case in Figure 
8. 

Assume vessels 1,2 and 4 have already been 
placed, and in a last step vessel 3 is placed in corner 2. 
The program logic, implementing Allen’s ideas in two 
dimensions, generates the following output, which can 
easily be checked on Figure 8. 
 
Potential basic corners 
----------------------- 
(  0,  6) 
(  4, 10) 
 
Check whether existing corners are 
made unavailable by placement 
------------------------------------
---------------------------- 
 
available corner (0,6) occupied by 
vessel 3 
available corner (4,6) occupied by 
vessel 3 
available corner (4,10) occupied by 
vessel 3 
 
Test of potential basic corners and 
of newly made corners 
------------------------------------
--------------------- 
4 meets    3 in length at left side 
3 equal    4 in width at upper side 
4 meets    3 in length at right side 
3 finishes 1 in length at left side 
new corner = (4,6) 
newcorner (4,6) is occupied by 
vessel 4 
3 meets    1 in width at upper side 
basic corner (0,6) is occupied by 
vessel 4 
basic corner (4,10) is occupied by 
vessel 1 

6. Conclusion 
 
The heuristic implements some human ideas in 
problem solving, which may ease the acceptance by 
the operators in the port. Furthermore the heuristic 
needs only very limited computer time, so it can 
advise the lock responsible even in very busy working 
environments. The heuristic shows its limitations in 
terms of shape of the vessel, using only rectangular 
shapes. It needs further integration in a higher level 
management system, helping the responsible to decide 
whether to wait for an extra vessel to have a better 
occupation of the lock or to go for less average 
waiting times for the vessels already moored in the 
lock. 
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