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ABSTRACT 
The time slot assignment problem (TSAP) is considered 
in a cluster of satellite-switched time-division multiple-
access (SS/TDMA) satellite systems with inter-satellite 
links. The TSAP is formulated as a graph coloring 
problem and leads to an integer programming 
formulation. Efforts are made to solve the problem by 
solving continuous linear programming methods and by 
rounding continuous values as integer optimal values. The 
interactive solution approach is satisfactory for real world 
problems. 
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1.  Introduction 
 
The utilisation of natural resources in satellite 
communication is optimized by using of multi-beam 
antennas and satellite-switched time-division multiple-
access (SS/TDMA) [1]. SS/TDMA system consists of a 
satellite with a multi-beam antenna covering several 
geographical zones and an on-board switch to provide 
connections between the uplink and downlink beams 
according to the  TDMA frame. As usual in TDM systems 
communication takes place in a synchronous way and is 
organised in frames. The frame is composed of time slots. 
Packet scheduling is usually called time slot assignment 
(TSA for short). Each time slot represents a particular 
switching matrix configuration, which transmits a certain 
number of packets between the connected uplink and 
downlink beams without conflict [2]. 
 

Sometimes stations that need to communicate are in zones 
not covered by the same satellite. In such a case an 
SS/TDMA system with more than satellite is required. 
The satellites are linked by inter-satellite links (ISL) 
forming a satellite network. Stations in zones covered by 
the same satellite need a transponder at the satellite. 
 
The proper assignment of traffic to time slots to avoid 
conflicts is very important. The whole idea of  the time 
slot assignment problem (TSAP) is to schedule all the 
traffic in time slots with minimum duration. It can be 
stated simply as: Given a traffic matrix, find an 
assignment of minimum duration which minimizes the 
number of switching modes. A first algorithm for the 
SS/TDMA-TSAP has been formulated in [3]. Some of 
later developed algorithms are discussed in [4], for 
example [5,6]. This problem has been shown to be NP-
complete even for quite restricted ISL patterns and 
simplified models [7]. For small switching times, the goal 
is to find the assignments which minimises the delay of 
packets in the traffic matrix [8]. 
 
2.  Problem Description 
 
It is conclusive from combinatorial mathematics [8] that, 
any traffic matrix with maximum line sum m can be 
represented as the sum of m switching matrices. Any 
matrix has an associated bipartite graph (called by the 
same name as the matrix) which is constructed as follows. 
Let one set of nodes correspond to rows of the matrix and 
the other set of nodes correspond to columns. Let there be 
an edge between any two nodes where the corresponding 
matrix position has a non-zero element. 



Consider a set S = {1,2....,s}, from a cluster consisting of 
s satellites. Let satellite p cover a set of disjoint zones Zp 
and the set of all zones is denoted by Z. The zones are 
partitioned into s groups, one for each satellite in the 
cluster. Traffic requirements among zones are given as an 
ISL matrix D, which is a |Z| x |Z| matrix with nonnegative 
integer entries.  An entry dij of D represents the amount of 
traffic that must be transmitted from zone i to zone j, 
which are measured in time slot units. 
 
A switching matrix is a traffic matrix with at most one 
non-zero entry in any line. A line of a matrix is one 
column or row of that matrix.  Thus a switching matrix 
represents traffic that can be transmitted without conflict. 
A time slot assignment (or schedule) for traffic matrix D 
is a decomposition of D into switching matrices D = S1 + 
S2 +.......+Sn.   The length of a switching matrix Si is the 
magnitude Li of the largest entry in Si. The transmission of  
a schedule S1,S2,..,Sn takes L consecutive time slots, where 
L = L1+L2+.....+Ln. A schedule for D is optimal if its 
length is minimal. 
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(a) An ISL traffic matrix D 
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(b) Switching matrix S1 
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(c) Switching matrix S2 
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(d) Switching matrix S3 
 
Fig. 1: Example of an ISL traffic matrix and its three 
switching matrices  
 
In Figure 1, an example, taken from [1, figure 1] is 
shown, which has two satellites, each covering four 
disjoint zones. The traffic requirements among the zones 
are represented by an 8x8 ISL traffic matrix D. The traffic 
matrix is then decomposed into three switching matrices 
S1, S2 and S3, and the length of the schedule is 9. 
 
3.  Formulation as a graph towards an 
optimisation problem 
 
Lee and Park [1] interpret the TSAP as a coloring 
problem on  a bipartite multigraph G, which is con-
structed from the ISL traffic matrix D as follows: 
1. Let zone i be represented by two nodes. One is called 
the source node i and the other the destination node i.  
2. If there are traffic requirements from zone i  to zone 
j, source node i and destination node j are joined by 
edges. The number of edges (multiplicity) between two 
nodes represent the number of traffic requirements from 
node i to node j ( denoted as dij ).  
 
The resulting graph G=(V,E)  is a bipartite multigraph, 
where V is the node set and E is the edge set of G. As both 
satellites cover four disjoint zones, there are eight source 
nodes and eight destination nodes. The first and third zone 
of satellite A show only intra-zonal requirements. All 
other zones show inter-zonal requirements. The fourth 
zone of satellite B has only requirements for a zone 
covered by satellite A (its first zone). The other zones 
show requirements for or from zones from the other 
satellite.  
 
The TSAP is formulated as an optimisation problem on G. 
The TSAP is a decomposition of D into switching 
matrices, transmitting without conflicts, which means that 
traffic represented by two adjacent edges in G cannot take 
part in the same switching matrix. In graph-theoretical 
terminology, the decomposition of D is represented by a 
coloring on G. An edge coloring of a graph is an 
assignment of colors to the edges with the property that 
no adjacent edges have the same color. A minimum 
coloring is a coloring which uses as few colors as 
possible. The number of colors represents the number of 
needed time slots in the corresponding schedule for D. 



 
In an edge coloring solution, a set of edges can have the 
same color if and only if the set is a matching, with a 
matching of a graph G as a subset of edges such that no 
two edges in the subset are adjacent. 
 
Lee and Park [1] define a switching configuration on a 
graph G as a switching matrix such that all entries have 
the value 1 and has at most one non-zero entry in each 
row and column. A switching configuration can be 
represented as a matching on G, but not all matchings are 
feasible due to a limited number of transponders in ISL 
available. An acceptable matching is defined as a 
matching which represents a switching configuration. 
Therefore, TSAP is equivalent to finding a minimum 
coloring of G such that each color forms an acceptable 
marking. 
 
In [1] TSAP is formulated as an integer programming 
problem. They consider a weighted graph G’ = (V,E’) 
obtained from the multigraph G = (V,E) by representing 
multiple edges between two nodes in G as an aggregate 
edge. The weight we of an edge e in G’ is the multiplicity 
of the edges between two end nodes of e in G. A 
matching of G is also a matching of G’. 
 
Let xk be the decision variable denoting the number of 
colors to be assigned for the acceptable matching k. The 
decision variable has the meaning of the number of time 
slots which are required in the switching configuration, 
represented in the acceptable matching k in a schedule for 
D. Let the coefficient aek be 1 if and only if edge e is 
contained in the acceptable matching k; and let it be 0 
otherwise. With these definitions the TSAP can be 
formulated as: 
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where M is the set of all acceptable matchings.  
  
 
4.  Solution of the TSAP optimisation 
problem 
 
The programming problem (1) can be solved by a general 
integer linear programming algorithm or by a specific 
branch-and-bound method developed by Henderson and 
Berry [10]. One should be aware that in programming 
problem (1) the number of variables is growing very fast 

with increasing problem size, which means that the use of 
an integer linear programming algorithm might become 
prohibitive. Also, obviously, a restriction on the total 
number of time slots cannot be introduced. 
 
In the following paragraphs it is aimed to reformulate the 
optimisation problem in the case where the total number 
of time slots is fixed.  In case such a less complex 
formulation may be found, the optimisation program can 
be run by the user for several trial values of the total 
number of time slots, specified in advance by the expert 
user. Inspiration for the development of this section is 
based on [10]. So the key constraint, involving a fixed 
number p of  time slots, is: 
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The optimisation problem can be formulated as: 
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In this formulation some new variables have been 
introduced. The variable Ue has the meaning of the 
number of time slots which would need to be added in the 
matching e in order to meet the multiplicity we. The 
variable H denotes a very large positive number in order 
to force the variable Y to take value 0. The variable Y has 
been introduced to generate a suitable scheduling pattern 
for any value of the fixed number p of  time slots. The 
solution of this problem is not necessary a solution to the 
original problem, but a solution can be created from it. If 
Y = 0, the Boolean variable might take a 1-value, which 
means one (and only one) time slot needs to be added. In 
case Y = -1 in the optimal solution, more than one slot 
needs to be added, what we try to avoid. In case Y = +1 
too many time slots for whole schedule are not allowed. 
 
In terms of computational complexity, however, the 
model is not easy because of the extra 0-1 (Boolean) 
variables Ue which are added. If fast response is required 
to such an optimisation problem, it might be that an 
integer linear programming software (making use of 
branch-and-bound techniques) does not find the optimal 



solution in time. Therefore, a simpler, alternative model is 
suggested: 
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Problem (3) is a maximin problem as it maximises some 
smallest difference between a supply and a demand. 
When the optimal value of Y takes the value +1, all 
schedule requirements are met with at least one extra slot. 
The model is simple and contains hardly more variables 
to be decided upon then model (1). The variable Y which 
should take values either -1, 0 or 1 can be defined to be 
integer in problem (3). If, for some reason, this might be 
impossible or due to time constraints, the variable Y can 
be relaxed to be a continuous variable. If the value of the 
continuous variable is larger than 1, the number of time 
slots in most practical situations may be the one specified 
in advance.  
 
3.  Conclusion 
 
The time slot assignment problem can be formulated as an 
integer programming problem. By fixing the number of 
time slots the problem seems to become harder instead of 
simpler. An integer formulation is given for the case of a 
fixed number of time slots. This models however does not 
always determine the best switching pattern. Reallocation 
of surpluses or shortages is sometimes required, but this 
can be done quite easily making use of a continuous linear 
programming problem.  
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