
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Using Collaborative Interactive Objects and Animation to Enable

Dynamic Interactions in Collaborative Virtual Environments

Peer-reviewed author version

JORISSEN, Pieter; WIJNANTS, Maarten & LAMOTTE, Wim (2004) Using

Collaborative Interactive Objects and Animation to Enable Dynamic Interactions in

Collaborative Virtual Environments. In: Proceedings of the Conference on Computer

Animation and Social Agents (CASA 2004), p. 223-230.

Handle: http://hdl.handle.net/1942/13766



Using Collaborative Interactive Objects and Animation to Enable
Dynamic Interactions in Collaborative Virtual Environments

Pieter Jorissen Maarten Wijnants Wim Lamotte

Expertise Centre for Digital Media
Limburgs Universitair Centrum

Universitaire Campus, B-3590 Diepenbeek, Belgium
{pieter.jorissen, maarten.wijnants, wim.lamotte }@luc.ac.be

Abstract
This work introduces a new general object inter-
action scheme for dynamic collaborative virtual
environments. The idea is to construct a world
using only collaborative interactive objects that
contain their own interaction information. As
a result, the object interactions are application
independent and only a single scheme is required
to handle all interactions in the virtual world.
Furthermore, we present a new and efficient
way for human users to dynamically interact
in the virtual world through their avatar. In
particular, we show how inverse kinematics can
be used to increase the interaction possibilities
and realism in collaborative virtual environments.
This will normally also result in a higher feeling
of immersion for connected users. For both the
collaborative interaction objects approach and the
distribution of the dynamic avatar interactions,
we try to keep the network load as low as possi-
ble. Finally, we demonstrate our techniques by
incorporating them into the ALVIC framework.

Keywords: interaction, distributed virtual
environment, collaboration, animation, inverse
kinematics

1 Introduction
Creating immersive environments has been a re-
search topic for several years now. Experienc-
ing totally immersive and realistic virtual worlds
in which we can interact like in the real world is
still not possible. Mixing navigation and meaning-
ful interaction within these Virtual Environments
(VE) remains a difficult problem in research. One
of the most important parts of computer simu-
lation applications are the actual 3D interactions
with objects within these synthetic worlds. A

subject closely related to this is the representa-
tion of the interactions. Allowing multiple partic-
ipants, connected through a computer network, to
inhabit the virtual world and to interact with the
objects herein, makes the interaction mechanism
even more complex. After all, the state of such a
Collaborative Virtual Environment (CVE) should
be synchronized and distributed to all participating
sites in order to give the users the illusion of being
located in the same place at the same time [1]. As
a special case, to be able to see what other partic-
ipants are doing in the VE, their state (especially
their positions and actions) should be distributed
among all users as well.

In contrast to managing and distributing the
state of the virtual world, animation is not an es-
sential enabler of interaction in CVEs. However,
proper use of animation can dramatically increase
the user’s feeling of immersion while interacting
in these worlds [2]. This is especially true for
the animation of avatars, since they are the user’s
means of interaction in the VE [3]. It is through
his avatar that a user can, for example pick up ob-
jects or point at locations in the virtual world. In
order to achieve even the slightest level of realism,
such actions clearly have to be accompanied by ap-
propriate animations. However, since CVEs are
real-time applications, no appeal can be made to
off-line techniques to take care of the animation in
these virtual worlds. Fortunately, real-time char-
acter animation has improved drastically over the
past few years. Thanks to recent advances in com-
puter hardware, it is currently possible to produce
results in real-time that were formerly only achiev-
able in off-line animation [4].

In the context of CVEs however, animation has
received relatively little attention. This is mani-
fested in the fact that advanced animation tech-
niques are only slowly finding their way into

1



CVEs. A possible explanation of this could be
the computational complexity of these more ad-
vanced techniques. Another possible explanation
could be the inherent networking aspect of CVEs.
Since avatars are a part of the shared world offered
by a CVE, their state has to be distributed to other
connected users. Advanced animation techniques
tend to produce relatively large quantities of data
that need to be transmitted over the network, which
is often considered unacceptable by CVE design-
ers. In this work we show a solution to at least a
part of that problem.

2 Related Work
2.1 Dynamic Virtual Environments
Current research of interactivity within VEs is pri-
marily concentrated on user navigation and actor-
object interaction using direct interaction tech-
niques [5] [6] [7]. As a result, many of the current
VEs limit their interactive behavior to executing
predefined animations when a particular event oc-
curs, or allowing translations and rotations of ob-
jects using direct interaction techniques [7]. More
advanced actor-object interactions are commonly
handled by programming each possibility specifi-
cally for each case [8]. This approach is far from
general and definitely not runtime adjustable.

Modelling virtual world objects is a very impor-
tant part of the VE development process. Although
many mechanisms for describing the visual ele-
ments of objects exist, only a few systems permit
the dynamics or interaction properties of the ob-
jects to be described as well [9]. A first step into
the description of application independent actor-
object interaction was taken in [10] where Levin-
son used an object specific reasoning module, cre-
ating a relational table to inform actors on object
purpose and functionality and used it mainly for
simulating the task of grasping. The first time all
functional and behavioral information of objects
was described at object level was in the Smart Ob-
ject approach presented in [11] [12]. Here, Kall-
mann et al. propose a framework for general in-
teractions between virtual actors and objects in the
virtual world. The idea is that all information nec-
essary for a virtual actor to interact with an ob-
ject is included in the object’s description. This
is achieved by using a combination of predefined
plans specified through scripted commands.

2.2 User Embodiment
Many of the first CVEs used very simple avatars to
represent connected users in the virtual world [13].
For example, RING [14] used yellow spheres with
green orientation vectors as user embodiments,
and early versions of MASSIVE and DIVE used

(a) (b) (c)

Figure 1: avatars: (a) Blockie; (b) Virtual humans;
(c) Avatar customizability (Second Life).

avatars that were composed only of a few basic
geometric shapes (so-called blockies [15], see fig-
ure 1(a)). Articulated human-like avatars were in-
troduced a few years later in the NPSNET system
[16]. It soon became clear that integrating these
so-called virtual humans (see figure 1(b) for an ex-
ample) in CVEs increased the natural interaction
within these environments and generally also re-
sulted in a higher feeling of immersion for con-
nected users [17]. Futhermore, [2] demonstrates
that when these virtual humans are able to per-
form animations, the feeling of immersion is in-
creased even further. As a result, it should not
come as a surprise that almost all recent CVEs use
animated human-like avatars. Examples include
SPLINE [18], later versions of the DIVE platform
[15], the Virtual Life Network (VLNET) system
[3] and most current Massively Multiplayer Online
Games (MMOGs). Finally, the last few years we
are witnessing the emergence of CVEs which fo-
cus on virtual community building. These CVEs,
like for example Second Life [19] and There [20],
attach great importance to user embodiment and
thus offer their users very advanced avatars that are
often also very customizable (see figure 1(c)).

2.3 Real-time Character Animation
Until recently, VE designers had to rely on sim-
ple representations like 3D hierarchic articulated
objects or single mesh characters to create avatars
that are able to perform animations [21]. There
are major disadvantages associated with both tech-
niques [4]. When animating 3D hierarchic articu-
lated objects, unrealistic gaps can appear between
the seperate parts of the model. Single mesh char-
acters on the other hand require very large anima-
tion files. Furthermore, this representation lacks
flexibility since on the fly creation of new anima-
tions is impossible. Thanks to recent advances
in computer hardware however, skeletal animation
has found its way into real-time applications [4]
[21]. Skeletal animation combines the advantages

2



of both 3D hierarchic articulated objects and sin-
gle mesh characters without inheriting any of their
drawbacks. As a result, it has become a standard
in the field of real-time character animation which
has been adopted by almost all recent CVEs.

Skeletal animation requires that models consist
of seperate layers which each have their own phys-
ical and geometric properties. After appropriate
constraints are enforced between the different lay-
ers, animating the model comes down to control-
ling its skeleton (the undermost layer of the model)
[22]. This can be done in several ways. Exam-
ples include motion capturing, keyframing, for-
ward and inverse kinematics and dynamics ([22]
[23]) . Almost all current CVE systems rely solely
on keyframing to take care of the animation in the
virtual world. Examples include all the CVEs al-
ready cited in this section, except for the VLNET
system. VLNET’s main focus is on the integra-
tion of virtual humans in VEs, and it therefore has
a very advanced animation engine which supports
among other things inverse kinematics and facial
animation [3].

2.4 Interactive Object Approach
In this work we present a totally dynamic VE
where every object can be interacted with by hu-
man users. Also, in contrast to the Smart Object
approach, where only avatar-object interactions
are described, we would likeall objects within the
virtual world to be able to interact with every other
object. We therefore propose a new general object
interaction scheme for dynamic VEs in section 3
that uses a similar object functionality description
as does the Smart Object approach, but extends it
to all objects in the VE. Furthermore, we make no
distinction on what kind of objects (agents, human
users or world objects) are interacting, resulting in
more dynamic VEs which also allow object-object
and object-actor interactions. Section 4 presents a
new and efficient way for human users to dynam-
ically interact in the virtual world through their
avatar. For both the collaborative interaction ob-
jects approach and the distribution of the dynamic
avatar interactions, we try to keep the network load
as low as possible. Finally, we describe the re-
sults of integrating our work into the ALVIC CVE
framework which was first introduced in [24] in
section 5, and we present our conclusions and fu-
ture work in section 6.

3 Creating a Collaborative
Interaction World

3.1 Interactive Objects
The starting point of our interactive object frame-
work was given in [25]: “How different interaction

Figure 2: basic interaction scheme.

requests are processed, as well as how many par-
ticipants may interact with an object concurrently,
is highly dependent on the object itself”. Gener-
alizing the principles used in the Smart Object ap-
proach, we created a general object description ca-
pable of describing all interaction information nec-
essary for objects to interact with all other actors
in the virtual environment (object or interactor). A
full description of the object format is beyond the
scope of this paper, however the main structure is:

Object properties consisting of a full part de-
scription (id, file, parent part, and transfor-
mation information), part constraints, object
constraints, actions and variables.

Interaction properties describing commands
that can be handled by the object, a specifi-
cation of the interaction zones and triggers.

Object behaviors containing all the scripts de-
scribing the object’s behavior and all trigger-
command pairs showing what command to be
called when triggered, or what scripts to be
executed.

Each object part can have its own animations, ac-
tions and constraints. Object constraints define
constraints that are dependant on more than one
part. Object variables can be defined to store data
or state information. The triggering occurs for
example when something collides with a defined
interaction zone of an object (collision trigger),
when a condition on an object variable is met (state
trigger) or when a certain time is reached (time
trigger). How an object reacts to a trigger or a
called command is described in the behavior part
of its description. Triggers can be used to invoke
actions as well as behaviors. Actions are defined as
combinations of object part movements or move-
ments of the object itself, over a certain time. Be-
haviors on the other hand are described in a script-
ing language and can be used to initiate more ad-
vanced interaction behavior such as collision han-
dling or the triggering of other objects’ behavior.
Scripts can access object variables and can initi-
ate actions, animations and other behaviors. The

3



entire object description is done in XML which
makes it easy to construct, check for errors and
to parse. Furthermore it is easy read and easy to
understand.

The main advantage of this approach is that all
the information needed to interact with an object is
located at the object level instead of at the applica-
tion level. As a result, the objects or their parts and
their behavior are easy to modify, even at runtime.
Secondly, the objects are easy to reuse in other
applications or just partly for the construction of
other interactive objects. The scripts for opening
a door can for example also be used for a closet.
Furthermore, new or objects can be introduced in
the application at any time. High-level planners
could easily use the object information for plan-
ning how an AI actor can perform tasks with the
objects. At the networking level, we can use the in-
formation, for example a part’s constraints, to see
if it can move or rotate, hereby concluding if fre-
quent updates should be sent.

3.2 Interactive Worlds

To create totally dynamic virtual worlds, we con-
struct our world only from the interactive objects
described in the previous subsection. Objects are
interconnected by links that create a structure for
the world and provide a means of communication.
An interaction layer is responsible for creating and
maintaining the objects in the virtual environment.
It is the central control unit for all object interac-
tion in the VE. First of all it creates necessary links
between objects and maintains these for as long as
they are required. The most important links the
interaction layer can create are contact links, at-
tach links, controller links and parent/child links.
Secondly the interaction layer is responsible for
checking all object triggers. Furthermore it is re-
sponsible for the actual execution of object func-
tionality (scripts and actions). Figure 2 shows the
basic interaction scheme. As an example, consider
the case where an object hits another object while
moving. When the collision occurs, a contact link
between the objects is set up by the interaction
layer. The object then sends a move message con-
taining the movement parameters through the link.
Subsequently, the interaction layer checks the con-
tact and movement behavior and constraints of all
objects that are connected through contact and at-
tach links. Finally the interaction layer calculates
what behavior is possible for all the objects in-
volved, calculates the parameters and triggers all
necessary behavior. If in the next step, after move-
ment and the first step of the triggered behavior of
all the objects, the objects are no longer in touch,
the contact link is removed.

All interactions in the VE are handled in a sim-

ilar way. To manipulate an object in a VE, a con-
troller can be attached to it. A controller is a
higher-level part of the application, which takes for
example user input or output from an AI module
and converts it into commands that are sent to the
object. A controller is connected to an object by
a controller link, which makes it possible to send
commands to the objects via the interaction layer.
This approach is very different from the Smart Ob-
ject approach where actors (human or AI) are not
subjected to the same interaction rules as the ob-
jects they manipulate. As a result, our interaction
scheme is a lot more general and the only one nec-
essary for an entire interactive VE. Of course more
work is necessary in the modelling stage, but the
reusability and flexibility of designed objects by
far outweighs this disadvantage.

3.3 Distributing the Collaborative World

To allow remote users to simultaneously interact
and collaborate within a VE, they must be in-
formed by network messages whenever the state of
the VE changes. We decided to use a client/server
architecture where the server runs the simulation
of the interactive world. This means that the exe-
cution of scripts and all the other simulation data is
calculated at the centralized server. Furthermore,
the server continuously checks for interaction re-
quests from clients and processes them as they ar-
rive. After processing an interaction request, the
server uses information from the interaction layer
(which uses object interaction information) to see
which object parts have changed state and must
therefore be communicated to clients.

Tests have been performed with both TCP and
UDP to check which network protocol was best
suited for transmitting the state updates. Although
TCP provided a reliable stream, the delays it in-
troduced were too great to make it of any use
for direct interaction in a VE. On the other hand,
the delays introduced by sending updates with
UDP were practically imperceptible. Unfortu-
nately, UDP is an unreliable protocol that gives no
guaranties whatsoever about the actual delivery of
sent packets. In the case of non-essential updates
however, this has proven to be acceptable. We
have therefore chosen to use a hybrid approach.
At startup, clients connect to the server with TCP
to receive the current state of the virtual. The sys-
tem thereafter falls back on UDP to keep the dif-
ferent clients synchronized. Furthermore, to place
less load on the network, the server uses multicas-
ting to send state updates to all interested clients at
once.

4



4 Using Animation to Support
Interaction

4.1 Real-time Inverse Kinematics

Most current animation engines for CVEs use
skeletal animation but are limited to displaying a
restricted set of predefined animations since they
rely solely on keyframing to animate their mod-
els. The main advantage of displaying anima-
tions this way is that it is computationally inex-
pensive. The major drawback of the keyframing
approach however is its lack of flexibility. Al-
though real-time adjustment of basic animation pa-
rameters (like for example the speed at which an
animation is to be displayed) can be supported,
it is impossible to create new animations on the
fly. This makes this approach suitable for display-
ing animations which can be predefined easily and
which require very little real-time tweaking, like
for example running or jumping. It is however not
flexible enough to enable more complex interac-
tions in the VE, like for example grabbing objects
or pointing with the hand. Such interactions re-
quire animations that can be tailored in real-time
to the current interaction situation. Consider the
case of object grabbing as an example. If the ani-
mation engine relies solely on keyframing, allow-
ing users to grab objects at different heights in the
VE requires the availability of multiple predefined
grabbing animations, which can cost an animator a
lot of time to create. This problem can be circum-
vented by placing objects at one or possibly a few
fixed heights in the VE and predefining very spe-
cific and detailed animations for grabbing at these
heights, but this approach clearly limits the free-
dom of the VE designer. Furthermore, even when
such interaction restrictions are applied, the results
are still not always satisfactory. Imagine a user
who is not perfectly aligned with the object he is
picking up for example. So in order to create truly
dynamic and interactive virtual worlds, more ad-
vanced animation techniques have to be introduced
in CVEs. We believe real-time inverse kinematics
is a good candidate.

Inverse kinematics (IK) allows an animator to
directly specify the desired position and orienta-
tion of the loose end of a joint chain (the so-called
end-effector). The animation system will subse-
quently compute how the different joints in the
chain have to be translated and rotated so that the
end-effector will reach the specified position and
orientation [23]. A possible example of an IK
chain could be the arm of a virtual human, with the
hand of that arm being the end-effector. It should
be apparent however that performing IK has a rel-
atively high computational cost associated with it.
While this limited its use to off-line applications in

the past, todays computers are capable of doing IK
in real-time [4].

Integrating IK in CVE animation engines can
compensate for their current lack of flexibility,
since it enables on the fly creation of new ani-
mations while the user is interacting in the virtual
world. As an example, reconsider the case of ob-
ject grabbing. By using IK, a grabbing animation
for the arm can be created on the fly that takes
the height at which the object is located into ac-
count. It suffices to feed the position of the object
to the IK algorithm and to save the current pose
of the model and the pose calculated by the algo-
rithm as respectively the first and second keyframe
of a new animation. This new animation can then
be displayed by the animation engine as if it were
a predefined animation. If appropriate constraints
are applied to the different parts of the IK chain
[23], this approach generally yields more realis-
tic results than displaying a predefined grabbing
animation. Furthermore, no grabbing animations
need to be predefined, and no restrictions need to
be applied to the height at which objects can be lo-
cated in the VE. Another advantage of IK is that
it allows direct control over the end-effector of the
IK chain of an animated object (typically the hand
of an avatar’s right arm). We hereby note that we
do not focus on simulating humans realistically,
but in contrast try to make an interaction scheme
for all kinds of animated avatars.

In order to be as general as possible, we propose
seperating the IK related information of a model
from the actual model data and its keyframes. We
therefore accompany our model files with XML
files that contain information about their IK possi-
bilities. These XML files first of all indicate which
joints of the model form an IK chain. Secondly,
these files contain a description of a bounding box
which the IK chain will never leave while it is be-
ing animated through inverse kinematics. And fi-
nally, degree of freedom (DOF) constraints can be
specified for all the joints in the IK chain which
will be taken into account by the IK algorithm.
This way we can prevent joints from rotating into
positions that are physically impossible to achieve.
The main advantage of using such seperate IK files
is that the IK algorithm is not restricted to avatars
but can be applied to any object in the VE. Further-
more, the separation of IK information from actual
model data increases model reusability. For exam-
ple, if we would like both a left- and right-handed
avatar, we would need to create two (very small)
XML files, but we could use the same animated
model file.

It should be noted that the results presented in
this section can also be achieved by using other
animation techniques like for example inverse dy-

5



namics. Some of these techniques are even capable
of producing visually more realistic interaction an-
imations than IK. Unfortunately, these techniques
also have a much larger computational cost asso-
ciated with them. Since processor time is still a
scarce resource, we believe that at the moment IK
is the most suitable animation technique to enable
complex, dynamic interactions for all animated
models in a virtual world.

4.2 Distributing Animation Related
Information

Animating articulated objects in CVEs introduces
new network traffic in these systems since anima-
tion related information will need to be distributed
among connected users. There are several ways
animation data can be represented for transmission
[3]. Some of these representations place a large
load on the network but do not require a lot of pro-
cessor time to encode/decode. Others are compu-
tationally expensive to encode/decode, but require
only small update messages.

We tried to keep the new network traffic intro-
duced by animation as low as possible by using
compact update messages. When keyframing is
used to animate a model, only a high-level descrip-
tion of the currently active animations is sent over
the network. When receiving such a message, re-
mote sites must start interpolating locally to be
able to display these animations. Similarly, instead
of transmitting the transformations of all the joints
in the IK chain when animating using inverse kine-
matics, only the position of the end-effector of the
chain is sent. Upon arrival of such messages, re-
mote hosts will need to calculate the transforma-
tions of the intermediate joints in the chain them-
selves by feeding the received end-effector posi-
tion to their local IK algoritm. It should be appar-
ent that this approach minimizes the network load
but increases the necessary processor time in the
decoding phase. Note that there is also a small ac-
curacy loss associated with distributing animation
data this way, but this normally will be acceptable
for most multi-user applications. For example, the
currently displayed frame of an active animation
(such as running) might not be identical at all par-
ticipating sites. We believe that showing the fact
that the avatar is running is more than enough to
see what he is doing, and that exact synchroniza-
tion of the animations is not a necessity.

5 Test Results
For testing our interactive avatars in a dynamic
CVE, we coupled our collaborative interaction
world to the ALVIC multi-user framework de-
scribed in [24]. All objects present in the VE are

defined as interactive objects. We have added two
different interactive objects to the avatars, one for
the avatar’s body and one for its interactive IK
chain, which in this setup was the avatar’s right
arm. Instead of moving the avatars immediately,
we use the information of the collaborative inter-
action object for moving and manipulation. This
way, the two objects are always synchronized.

By combining our interactive objects frame-
work with our animation engine which supports
both keyframing and IK, meaningful and realistic
interaction became possible in the virtual world.
One example is opening a door by pressing a but-
ton in the VE. Since IK allows direct control over
the end-effector of an IK chain, users can move
their avatar’s hand to the button. When the interac-
tive object associated with the hand and the button
(which itself is coupled to an interactive object)
collide, the behaviour of the button is triggered.
This behaviour in turn triggers the script control-
ling the door, which starts a keyframed animation
to open the door. It is however also possible to
open the door manually by moving our avatar’s
hand against it.

At first we used keyboard input to directly con-
trol the right hand of the avatar. However, this ap-
proach soon proved to be far from intuitive and
efficient. A possible explanation could be that in
this approach the user has, except for visual in-
formation, no reference of where his avatar’s hand
is positioned. Also, the context switch between
controlling the arm and avatar navigation was not
very clear since we also used the keyboard to move
around in the virtual world. Users explicitly had to
press a keyboard button to switch between direct
control mode and navigation mode, which often
resulted in situations where users tried to move for-
ward while they were actually controlling the arm
and vice versa. We therefore provided support for
the MicroScribe-3D input device [26] (see figure
3) to control the IK chain. Based on the observa-
tion that the MicroScribe-3D is constrained in its
movements, we automatically map the movement
space of the MicroScribe-3D onto the IK bound-
ing box of the model (see figure 3). This mapping
is dependant of the model used, which ensures that
input from the MicroScribe-3D is always correctly
transformed to the corresponding position in the
IK bounding box. This position is subsequently
fed to the IK algorithm which will try to move the
end-effector as close to this target position as pos-
sible.

Thanks to this mapping, the pose of the avatar’s
arm approximately corresponds to the pose of the
user’s real arm when he is using the device (see
figure 4). This turned out to allow more intuitive
control over the IK chain, which confirms the view

6



Figure 3: The MicroScribe-3D range is mapped
onto the model’s IK bounding.

given in [27] and [28] stating that the inclusion of
motion relative to a spatial reference or the user’s
own body in interaction techniques decreases the
cognitive load of the user. Furthermore, the con-
text switch between controlling the arm and navi-
gation also became much more clear by introduc-
ing the MicroScribe-3D. One disadvantage of the
Microscribe-3D is that it has no force-feedback,
making it possible for the user to keep its hand
moving while the avatar’s hand is stopped by for
example a collision. We believe in this case how-
ever that the visual feedback given to the user suf-
fices.

On a LAN, the network delays introduced by the
deployed client/server architecture are practically
unnoticeable. This is mainly due to the efficiency
of UDP and the decision to keep interaction update
messages as small as possible. Furthermore, only
distributing the animation identifiers and the posi-
tion of the end-effector of the IK chain to commu-
nicate the avatar’s current state and actions works
very well. The exact pose of the avatar may not be
completely identical at all participating sites, but
we do not believe that this is necessary in this kind
of application.

6 Conclusions and Future work
We have presented a new general object interac-
tion scheme capable of handling all interactions in
a CVE. The scheme uses objects that contain their
own interaction information and behaviour. Links
between the objects are used to structure the world
and to allow for communication. A special inter-
action layer controls all objects and is responsible
for creating and destroying the links between them
and the handling and the triggering of all their be-
haviour. Furthermore, this layer is also responsible
for determining the update rate of every part of the
objects. By treating all parts of VEs (actors, ob-
jects and the world itself) equally, our interaction
scheme is far more general than the Smart Object
Approach. Furthermore, we have shown how the
proper use of animation, and in particular inverse
kinematics, can increase the interaction possibili-

Figure 4: Images of a user who is controlling his
avatar’s arm with the MicroScribe-3D.

ties in these VEs. Inverse kinematics enables on
the fly creation of new animations that are tailored
to the current interaction situation. This results
in more realistic animations and allows for more
heterogeneous virtual worlds, which usually also
enhances the feeling of immersion for connected
users. We have shown that our approach works by
integrating and testing them in the ALVIC frame-
work.

In the future we would first of all extend our
interaction framework to support more kinds of
models and extend our script engine to support
more functionality. Furthermore we shall create a
modeler for creating our collaborative interactive
objects making it easier to create dynamic worlds.
Thirdly we want to add force feedback support
to our framework and replace the Microscribe-3D
input device by a force feedback device and see
if user interactions are improved. Finally, some
tests on scalability and network traffic will be per-
formed.

Acknowledgments
Part of this research was funded by the IWT
project number 020339 and the Flemish Govern-
ment.

7



References
[1] S. Singhal and M. Zyda.Networked Virtual Envi-

ronments: Design and Implementation. Addison-
Wesley Pub Co, 1999.

[2] J. Casanueva and E. Blake. The Effects of Avatars
on Co-presence in a Collaborative Virtual Environ-
ment. Technical Report CS01-02-00, Department
of Computer Science, University of Cape Town,
South Africa, 2001.

[3] T. Capin, I. Pandzic, D. Thalmann, and N. Thal-
mann. Realistic Avatars and Autonomous Virtual
Humans in VLNET Networked Virtual Environ-
ments. Virtual Worlds on the Internet (J. Vince
and R. Earnshaw, eds.) IEEE Computer Society,
Los Alamitos, pages 157–173, 1998.

[4] E. Anderson. Real-Time Character Animation for
Computer Games.National Centre for Computer
Animation, Bournemouth University, 2001.

[5] C. Hand. A Survey of 3D Interaction Techniques.
Computer Graphics Forum 16(5), pages 269–281,
1997.

[6] M. Mine, F. Brooks Jr., and C. Sequin. Moving
Objects in Space Exploiting Proprioception in Vir-
tual Environment Interaction. InProceedings of
SIGGRAPH’97, Los Angeles, 1997.

[7] D. Bowman. Interaction Techniques for Common
Tasks in Immersive Virtual Environments: Design,
Evaluation and Application. PhD thesis, Georgia
Institute of Technology, 1999.

[8] S. Smith, D. Duke, and J. Willans. Designing
World Objects for Usable Virtual Environments.
In Workshop on Design, Specification and Veri-
fication of Interactive Systems (DSVIS’00), pages
309–319, 2000.

[9] S. Pettifer. An Operating Environment for Large
Scale Virtual Reality. PhD thesis, University of
Manchester, 1999.

[10] L. Levinson.Connecting Planning and Acting: To-
wards an Architecture for Object-Specific Reason-
ing. PhD thesis, University of Pennsylvania, 1996.

[11] M. Kallmann and D. Thalmann. Modeling Objects
for Interactive Tasks. InEGCAS’98 - 9th Euro-
graphics Workshop on Animation and Simulation,
Lisbon, 1998.

[12] M. Kallmann and D. Thalmann. Direct 3D Inter-
action with Smart Objects. InProceedings of ACM
VRST’99, London, 1999.

[13] N. Magnenat-Thalmann and C. Joslin. The
Evolution of Virtual Humans in NVE Systems.
ICAT2000, pages 2–9, Oct 2000.

[14] T. Funkhouser. RING: A Client-Server System for
Multi-User Virtual Environments. InProceedings
of the 1995 symposium on Interactive 3D graphics,
pages 85–92. ACM Press, 1995.

[15] S. Benford, J. Bowers, L. Fahlén, C. Greenhalgh,
and D. Snowdon. User embodiment in collabora-
tive virtual environments. InProceedings of the

SIGCHI conference on Human factors in comput-
ing systems, pages 242–249. ACM Press/Addison-
Wesley Publishing Co., 1995.

[16] M. Macedonia, M. Zyda, D. Pratt, D. Brutzman,
and P. Barham. Exploiting Reality with Multicast
Groups: A Network Architecture for Large-scale
Virtual Environments. InProceedings of IEEE
Virtual Reality Annual International Symposium,
pages 2–10, 1995.

[17] D. Thalmann. The Role of Virtual Humans in Vir-
tual Environment Technology and Interfaces. In
Proceedings of Joint EC-NSF Advanced Research
Workshop, 1999.

[18] R. Waters, D. Anderson, J. Barrus, D. Brogan,
M. Casey, S. McKeown, T. Nitta, I. Sterns, and
W. Yerazunis. Diamond Park and Spline: A So-
cial Virtual Reality System with 3D Animation,
Spoken Interaction, and Runtime Modifiability.
In Presence: Teleoperators and Virtual Environ-
ments, Vol. 6, No. 4, pages 461–480, August 1997.

[19] Second Life: Your World. Your Imagination.
World Wide Web, http://secondlife.
com/ , May 2004.

[20] Welcome to There!! World Wide Web,http://
www.there.com/index.html , May 2004.

[21] J. Lander. On Creating Cool Real-Time 3D.
Gamasutra, 1(8), October 1997.

[22] T. Giang, R. Mooney, C. Peters, and C. O’Sullivan.
Real-Time Character Animation Techniques.
Technical Report TCD-CS-2000-06, February
2000.

[23] C. Welman. Inverse Kinematics and Geometric
Constraints for Articulated Figure Manipulation.
PhD thesis, School of Computer Science, Simon
Fraser University, 1989.

[24] P. Quax, T. Jehaes, P. Jorissen, and W. Lam-
otte. A multi-user framework supporting video-
based avatars. InProceedings of the 2nd workshop
on Network and system support for games, pages
137–147. ACM Press, 2003.

[25] W. Broll. Interacting in Distributed Collaborative
Virtual Environments. InProceedings of the IEEE
Virtual Reality International Symposium, pages
148–155, Los Almitos, 1995.

[26] Immersion Website. World Wide Web,http:
//www.immersion.com/digitizer/
products/index.php , May 2004.

[27] K. Hinckley, R. Pausch, J. Goble, and N. Kassell.
Moving Objects in Space: Exploiting Propriocep-
tion in Virtual-Environment Interaction. InPro-
ceedings of the 7th annual ACM symposium on
User interface software and technology, 1994.

[28] M. Mine, F. Brooks Jr., and C. Sequin. A survey
of design issues in spatial input. InProceedings of
SIGGRAPH 97, 1997.

8


