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ABSTRACT 
 
In road safety, macroscopic models are developed to support the quantitative targets in safety 
programmes.  Targets are based on estimated numbers of fatalities and crashes that are 
typically derived from models.  When constructing these models, typical problems are the 
lack of relevant data, the limited time horizon and the availability of future values for 
explanatory variables.   
As a solution to these restrictions, we suggest the use of calendar data.  These include a trend, 
a trading day pattern, dummy variables for the months and a heavy traffic measure.  In this 
paper, we test the relevance of calendar data for the explanation and prediction of road safety.  
ARIMA models and regression models with ARMA errors and calendar variables are built.  
Predictions are made by both models and the quality of the predictions is compared.   
We use Belgian monthly crash data (1990-2002) to develop models for the number of persons 
killed or seriously injured, the number of persons lightly injured and the corresponding 
number of crashes.   
The regression models fit better than the pure ARIMA models.  The trend and trading day 
variables are significant for the outcomes related to killed or seriously injured persons, while 
the heavy traffic measure is significant in all models.  The predictions made by the regression 
models are better than those from the ARIMA models, especially for the lightly injured 
outcomes. 
 



Van den Bossche, Wets and Brijs 3

INTRODUCTION 
For many years, traffic growth and the increasing importance of efficient road transportation 
led to a large number of road crashes.  Crashes are the result of various influences at a certain 
location and time.  In an OECD report (1), some broad categories of factors influencing road 
crashes are listed.  The number of crashes depends on autonomous factors that cannot be 
influenced on a short-term (e.g. weather and technology), economic conditions (e.g. 
unemployment and income), the size and the structure of the transportation sector (exposure, 
infrastructure, vehicle park,…), the accident countermeasures, the data collection system and 
the random variation in crash counts.  Although it is intuitively appealing to assume that these 
factors have an influence on the number of road crashes, it would be instructive to get a 
confirmation of this influence.   Given the large number of possible factors, however, this is 
not an easy task.  The main condition to develop these explanatory models is the availability 
of data.  In many countries, data are rarely available in a format that can be used for this 
purpose.  Especially exposure measures are sometimes very hard to find, and the data quality 
is often very low.  Moreover, if traffic safety is to be predicted with an explanatory model, 
future values of the explanatory factors are necessary.  This implies another set of predictions 
that must be made beforehand.  Therefore, descriptive models are often used to investigate the 
evolution in road safety and to make predictions.  These models describe a time series in 
terms of the general trend and a possible seasonal pattern, without providing any explanatory 
power.  However, some simple variables can be found that provide insight in the series and 
that are always available, for the past, the present and the future.  These are variables that are 
related to the seasons and to the calendar.  It is not unrealistic to assume that these variables 
can help in understanding road safety time series.   

The objective of this study is threefold.  First, we develop an ARIMA (Auto-
Regressive Integrated Moving Average) model for four road safety outcomes, namely the 
number of persons killed and seriously injured (NPERKSI), the number of persons lightly 
injured (NPERLI) and the corresponding counts of crashes (NACCKSI and NACCLI).  We 
use monthly Belgian data for a period from January 1990 to December 2000.  Second, we 
develop multiple regression models with ARMA errors to test whether calendar variables can 
provide an added value to the pure ARIMA models for road crashes and victims.  We include 
seasonal dummy variables, a trend indicator, a trading day pattern and a measure of heavy 
traffic.  Third, we will verify whether the calendar variables included in the model improve 
the statistical fit and the forecasting accuracy of the regression models, compared to the 
classical ARIMA models.  We make forecasts with both models for the years 2001 and 2002, 
and compare their performance.  If predictions are better in a model with calendar variables, 
then policy makers have an easy-to-use means to improve their prediction models for traffic 
safety. 

This text is organized as follows.  First, some background information is given on the 
application of the kind of models used in the paper.  Next, the main ideas of regression 
models with ARIMA errors are discussed.  Then, an overview of the data is given.  In the 
results section, the model outcomes and the forecasts are presented and discussed.  Also some 
general conclusions and topics for model improvement are provided. 
 
BACKGROUND 
In economic time series, calendar adjustment methods are frequently used.  These methods 
take into account the seasonality of a series and the presence of specific influences that are 
caused by the structure of the calendar.  They mostly consist of a trend, seasonal variables and 
a trading pattern.  Trading day effects reflect variations in monthly time series due to the 
changing composition of months with respect to the number of times each day of the week 
occurs (2).  In each month, there are four weeks plus usually one, two or three more days.  
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Each weekday occurs at least 4 times in a month, but some days will occur 5 times.  The 
composition of the calendar will affect the data for the month.  If, for example, a shop is only 
open on weekdays, then sales will be higher if some weekdays occur five times in a month.  
Especially monthly time series that are totals of daily activities (like the records of road 
crashes), are often influenced by the weekday composition of the month.  Details on the 
construction of trading day models are given in Findley et al. (3), based on Young (4), 
Cleveland et al. (5) and Bell (6).  The technique was subsequently used in the Census X11-
ARIMA (7) and X12-ARIMA (3) seasonal adjustment methods for time series.  The 
combination of trading day regression analysis and ARIMA time series modeling is also 
presented in Bell et al. (8).  Trading day patterns can be included in different forms, as is 
shown in Soukup et al. (9).  In our study, we prefer a parsimonious form of the trading day 
pattern, as provided by Gómez et al. (10).  This form captures the trading day effect in one 
variable.  A whole series of applications of adjustment methods can be found, mainly in the 
field of economics.  For example, Rooijakkers et al. (11) use trading day variables to adjust 
monthly data on Dutch consumer spending, based on an X12-ARIMA time series 
decomposition.  In Cano et al. (12), regression analysis with ARMA errors is used to adjust 
employment time series for calendar effects.  The use of dummy variables to represent a 
deterministic seasonal pattern is widely explained in many textbooks (see for example Neter 
et al. (13), Makridakis et al. (14) and Pankratz (15)).   

In traffic safety research, the use of calendar data to improve road safety forecasts 
seems less widespread.  To our knowledge, the impact of trading day patterns on the 
evolution in traffic safety has never been investigated.  However, in many studies, time series 
of road crashes are analyzed, using a variety of models (16, 17).  More recently, Raeside et al. 
(18) used ARIMA models to analyze monthly time series on pedestrian casualties and 
fatalities in Great-Britain.  Applications of regression models with ARMA errors are found in 
Van den Bossche et al. (19, 20).  One class of explanatory time series models is known as the 
DRAG family (21).  These are structural models, including a relatively large number of 
explanatory variables, whose effects on exposure, the frequency and the severity of road 
crashes are estimated by econometric methods.  In the DRAG-2 model for Quebec (22) and 
the SNUS-2.5 model for Germany (23), some calendar variables like the number of working 
days, Saturdays, Sundays and holidays in a month are included.  Apart from these examples, 
calendar data are rarely used to enrich the models.   

However, there is a lot to be said for studying these variables.  First, there is a seasonal 
pattern present in accident data.  Some months always have a higher number of road crashes 
and victims than others.  This is also related to the length of the month.  It is to be expected 
that a 28-day month (February) will have a lower number of road crashes than a 31-day 
month, given the almost 10% difference in the length.  Indicator variables for the months can 
capture these patterns.  Also, it is known that the exposure to crashes is higher is some months 
than in others, like for example during holidays.  These peak moments in traffic can explain 
the number of crashes and victims during a given month.  By including variables that reflect 
peak exposure we can partly account for these effects.  Second, given the problem of weekend 
crashes in Belgium, it is to be expected that crash counts are higher in months with more 
weekend days.  Third, the planning of official holiday periods can influence the exposure in a 
month, and thus the number of crashes.  Easter holiday can shift between March and April, 
and starting weekends of holiday periods always lead to higher amounts of traffic.  Based on 
the planning of official holiday periods, it is possible to foresee the weekends of high travel in 
a year.  Fourth, the calendar variables (like the number of weekdays and weekend days in a 
month) are known for every year in the future.  These properties of calendar variables make 
them quite appealing to practitioners, because they enrich the model and allow predictions 
without a heavy effort of data collection and cleaning.   
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METHODOLOGY 
In this study, four traffic safety outcomes are expressed in terms of independent variables that 
are related to the calendar.  Multiple linear regression can be used to model a relationship 
between a dependent variable and one or more independent variables.  If the observations are 
measured over time, the model is called a time series regression.  The resulting statistical 
relationship can be used to predict future values of the target.  To reduce the presence of 
autocorrelation, the regression model will be extended with an ARIMA structure in the error 
term.  The construction of this kind of models is discussed here.  For an overview of 
regression models, the reader is referred to Neter et al. (13).  In Makridakis et al. (14), an 
introduction to time series analysis is given.  Regression models with ARMA errors are 
described in Pankratz (15). 
 
Multiple Regression 
The multiple regression model can be written as Yt = β0 + β1X1,t + β2X2,t + … + βkXk,t + Nt, 
where Yt is the t-th observation of the dependent variable, and X1,t, …, Xk,t are the 
corresponding observations of the explanatory variables.  The parameters β0, β1, β2, …, βk are 
fixed but unknown, and Nt is the unknown random error term.  Using classical estimation 
techniques, estimates for the unknown parameters are obtained.  If the estimated values for 
β0, β1, β2, …, βk are given by b0, b1, b2, …, bk, then the dependent variable is estimated as 
Yest,t = b0 + b1X1,t + b2X2,t + … + bkXk,t, and the estimate Nest,t for the error term Nt is calculated 
as the difference between the observed and predicted value of the dependent variable: 
Nest,t = Yt − Yest,t.  

In the theoretical model, several assumptions are made about the explanatory variables 
and the error term.  These include absence of high multicollinearity, heteroscedasticity and 
autocorrelation.  Especially the latter assumption is likely to be violated in regression models 
with time series data.  In a regression with autocorrelated errors, the errors will probably 
contain information that is not captured by the explanatory variables, and it is necessary to 
extract this information to finally end up with uncorrelated (“white noise”) residuals.  
Typically, the Autocorrelation Function (ACF) and the Partial Autocorrelation Function 
(PACF) are used to detect autocorrelation among residuals (14).  Autocorrelation can be taken 
into account by adding more complex autoregressive (AR) or moving average (MA) 
structures to the regression equation, as will be explained further in this text.  When these 
assumptions are satisfied, the estimators are unbiased and have minimum variance among all 
linear unbiased estimators.   
 
ARMA Modeling 
The ARIMA modeling approach expresses a variable as a weighted average of its own past 
values.  The model is in most cases a combination of an autoregressive (AR) part and a 
moving average (MA) part.  Suppose a variable Nt is modeled as an autoregressive process, 
AR(p).  Then, Nt can be expressed as a regression in terms of its own passed values: 
Nt = C + φ1Nt-1 + φ2Nt-2 + … + φpNt-p + at, where C is a constant term, φi (i = 1, …, p) are the 
weights for the autoregressive terms and at is a new random term, which is assumed to be 
normally distributed “white noise”, containing no further information.  Using a backshift 
operator Bi on Nt, defined as BiNt = Nt-i (i = 1,2,…), this process can be written as 
Nt=C+φ1BNt+φ2B2Nt+…+φpBpNt+at, or (1–φ1B–φ2B2–…–φpBp)Nt=C+at.   

The series Nt can also be expressed in terms of the random errors of its past values, 
which is then a moving average MA(q) model: Nt=C– θ1at-1–θ2at-2–…– θqat-q+at, where θj 
(j=1,…,q) are the weights for the moving average terms.  Using the backshift operator, this 
equals Nt=C–θ1Bat–θ2B2at–…–θqBqat+at, or Nt=C+(1–θ1B–θ2B2–…–θqBq)at.  In a more 
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general setting, it is possible to include AR and MA terms in one equation, leading to an 
ARMA(p, q) model: (1–φ1B–φ2B2–…–φpBp)Nt=C+(1–θ1B–θ2B2–…–θqBq)at, where at is again 
assumed to be “white noise”.   

An ARMA model cannot, however, be applied in all circumstances.  It is required that 
the series be stationary.  For practical purposes, it is sufficient to have weak stationarity, 
which means that the data is in equilibrium around the mean and that the variance around the 
mean remains constant over time (14).  If a series is non-stationary because the variance is not 
constant, it often helps to log-transform the data, as is done in this text.  To have a series that 
is stationary in the mean, differencing is used.  Instead of working with the original series, 
successive changes in the series are modeled.  When an ARMA model is built on differenced 
data, it is called an ARIMA model, where “I” indicates the differencing. 
 
Regression with ARMA errors 
The ARMA modeling approach can now be applied to the multiple regression equation to 
model the information that remains in the error terms.  Assume a regression model with one 
explanatory variable, denoted as Yt=β0+β1X1,t+Nt.  Suppose further that the error terms are 
autocorrelated, and that they can be appropriately described by an ARMA(1,1) process.  This 
model can then be written as: Yt=β0+β1X1,t+Nt, with (1–φ1B)Nt=(1–θ1B)at, and at is assumed to 
be white noise.  Substituting the correction for the error term into the regression equation 
gives: 
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Because of the specific form in the error terms, the classical least squares methods are 

not appropriate to estimate the parameters of this equation.  Instead, Maximum Likelihood 
estimation is done using Marquardt’s method via nonlinear least squares estimation (24). 

If differencing is applied to the errors in a multiple regression, all corresponding series 
(both of the dependent and the explanatory variables) should be differenced (15).  This can be 
seen from our small regression example.  Differencing the error terms results in the following 
expression, with the ARMA(1,1) model now in the differenced error terms: 
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Substituting back this expression into the regression equation gives: 
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The intercept is now possibly different, but the (theoretical) regression coefficient β1 is not 
affected by the differencing operation.  Its estimated value may differ slightly, since the 
estimation is done on different (although related) time series.   
 
Forecasting 
Regression models can easily be used for forecasting purposes.  After the model has been 
developed, estimated values for the dependent variable can be obtained.  In order to produce 
forecasts with a regression model with ARMA errors, the two parts of the equation need to be 
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predicted.  First, for the regression part, future values of the explanatory variables should be 
available.  Since we use calendar data in this study, the availability of future data is 
guaranteed.  Second, in the ARMA error part, the errors should be replaced by their estimated 
values.  To depict uncertainty in the predicted values, 95% confidence intervals are provided.   
 
DATA 
 
Dependent variables 
For this study, official monthly data on Belgian road crashes are available from January 1990 
up to December 2002.  The model is developed on data from 1990 to 2000, while the last two 
years are used for forecasting purposes.  Four dependent variables will be modeled: the 
number of crashes with lightly injured persons (LNACCLI), the number of crashes with 
persons killed or seriously injured (LNACCKSI) and the corresponding number of victims 
(LNPERLI and LNPERKSI).  Note that, in the models, log-transformations are used in order 
to achieve homoscedastic error variances.  The evolution in time of the dependent variables is 
shown in FIGURE1.   
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FIGURE1: Dependent Variables NACCLI, NPERLI, NACCKSI and NPERKSI. 

 
Independent variables 
All independent variables in this study are based on the calendar.  This offers the undeniable 
advantage of availability of the data.  First, a time variable Tt is included to reflect a linear 
trend, where t is an index for the time period.  This variable equals the time point of 
observation.   

Second, seasonal dummy variables are used to handle seasonality.  Since we have 
monthly data, the seasonal pattern is represented by the variables JANt, FEBt, …, NOVt, 
where each of these equals 1 in the given month, and zero otherwise.  To avoid 
multicollinearity problems, no variable is included for the month December.  The coefficients 
for the other months reflect the average difference in the dependent variable between the 
given month and the omitted month.  Note that by the use of seasonal dummy variables, it is 
implicitly assumed that the seasonal component is unchanging from year to year.   

A third variable is the trading day variable TDt.  The number of road crashes and the 
corresponding number of victims may vary according to the day of the week.  To correctly 
forecast the number of road crashes and victims, we take into account the number of 
Mondays, Tuesdays, etc. in each month.  Since we are primarily interested in the difference 
between weekdays and weekends, we propose a trading day variable TDt that is defined as 
follows (9): 
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where Djt indicates the number of times the j-th day occurs in month t.  This formula forces 
the weights of the different days of the week to sum up to one.  It also requires that the 
weights for all weekdays and all weekend days are the same.  If we have for example that 
TDt=-0.005, then each weekday is given a negative weight of -0.005, while each weekend day 
is weighted as (-2.5)*(-0.005)=0.0125, which indicates that months with more weekend days 
may be more dangerous than months with more weekdays.   

A last variable, Ht, is the a measure for heavy traffic.  Some periods of the year are 
characterized by more traffic than other periods.  The traditional holiday periods often cause 
days of holiday rush, especially on the highways to the tourist locations in Belgium and the 
neighboring countries.  Also holidays related to Christmas and Easter and the public holidays 
cause a very specific traffic pattern.  It is to be expected that periods with heavy traffic have a 
different road safety profile than other periods.  To account for these differences, we include a 
variable that is based on the “density indicator” developed by the VAB (Flemish Automobile 
Association).  This measure classifies each day of the month as “normal traffic” or “heavy 
traffic”, and then sums up the days with heavy traffic.  These days are determined based on 
experience of the VAB road experts and the spread of public holidays, religious feasts and 
school holidays over the months.   
 
RESULTS 
In TABLE 1, the results of the different models are presented.  All models are estimated using 
the SAS statistical software package (25).  For both the ARIMA and the regression models, 
the parameter estimations are shown.  The significance of the coefficients is given between 
brackets.  If a coefficient is not significant at the 95% level, the corresponding variable is 
dropped from the model, except for the seasonal dummies, that are kept together.  If 
differencing is done, the order is indicated.  First we discuss the model fit for the ARIMA and 
regression models.  Then the interpretation of the parameter estimates is given.  Finally, the 
forecasting accuracy of the various models is compared.  
 
Evaluation of model fit 
Both the ARIMA models and the regression models are acceptable from a statistical point of 
view.  That is, all necessary conditions are fulfilled to end up with valid models.  Therefore, 
we need additional criteria to choose the best from these models.  To evaluate the fit of the 
models for each dependent variable, we compute two information criteria, Akaike’s 
Information Criterion or AIC (26) and Bayesian Information Criterion or BIC (27).  They can 
be used to compare models that fit the same series (25).  The AIC is computed as -
2log(L)+2k, where L is the likelihood function and k is the number of free parameters.  The 
BIC is computed as -2log(L)+ln(n)k, where n is the number of residuals that can be computed 
from the model.  Both criteria are likelihood-based and represent a trade-off between model 
fit and parsimony.  The BIC tends to favor more parsimonious models compared to the AIC 
(28).  For both criteria, the model is said to fit the data better when the AIC and BIC are 
lower.   

From the AIC and BIC values in TABLE 1, we see that the regression models fit 
better for all dependent variables.  It seems that including the months as deterministic 
variables, together with trading day patterns and a heavy traffic measure, captures more 
variability in road safety outcomes than do ARIMA models.  This is especially interesting, 
since the ARIMA models allow to filter away seasonal patterns.  However, they cannot 
distinguish between months with more or less weekend days, nor can they account for periods 
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with heavy traffic.  It seems that the seasonal pattern is regular enough to be represented by 
seasonal dummies, and that other fluctuations can be captured by the extra calendar variables. 
 
Interpretation of parameter estimates 
 
Estimates of the ARIMA structures 
Since the ARIMA model is not explanatory, it is difficult to give an interpretation for the 
estimated coefficients.  Each outcome is a weighted average of past observations, expressed 
in terms of autoregressive and/or moving average components.  The weights of observations 
further in the past on the current observation decline, which is in line with common sense.  
The past observations that produce a weight for the current one is determined by the order of 
the moving average terms in the model.   
 

TABLE 1: Estimation Results for ARIMA and Regression Models. 

 LNPERLI LNPERKSI LNACCLI LNACCKSI 
ARIMA Models 
Differencing 1 12 1 12
Constant - -0.0559 (0.000) - -0.0521 (0.000)
AR(1) 0.6266 (0.000) - 0.6871 (0.000) -
MA(1) 0.8024 (0.000) -0.1766 (0.044) 0.8097 (0.000) -
MA(2) - -0.3546 (0.000) - -0.3190 (0.000)
MA(4) 0.3094 (0.000) - 0.3125 (0.000) -
MA(12) - 0.8007 (0.000) - 0.9136 (0.000)
AIC -290.79 -265.44 -295.75 -276.81
BIC -282.16 -254.29 -287.12 -268.44
MAPE 7.81% 6.33% 7.87% 5.98%
Theil’s U 87.69% 82.76% 78.65% 75.99%
Regression Models 
Differencing 1 0 1 0
Constant -0.0015 (0.141) 7.3985 (0.000) -0.0015 (0.141) 7.1701 (0.000)
JAN -0.0940 (0.001) -0.0674 (0.050) -0.0960 (0.000) -0.0707 (0.029)
FEB -0.1838 (0.000) -0.1803 (0.000) -0.1932 (0.000) -0.1851 (0.000)
MAR -0.0622 (0.045) -0.0572 (0.130) -0.0608 (0.041) -0.0562 (0.115)
APR 0.0110 (0.674) 0.0916 (0.004) 0.0162 (0.511) 0.0743 (0.013)
MAY 0.1090 (0.000) 0.1582 (0.000) 0.1254 (0.000) 0.1593 (0.000)
JUN 0.0924 (0.001) 0.1410 (0.000) 0.0953 (0.000) 0.1454 (0.000)
JUL 0.1032 (0.030) 0.2456 (0.000) 0.1093 (0.016) 0.2313 (0.000)
AUG 0.1116 (0.014) 0.2648 (0.000) 0.1334 (0.002) 0.2437 (0.000)
SEP 0.0720 (0.014) 0.1235 (0.001) 0.0776 (0.006) 0.1191 (0.000)
OCT 0.0925 (0.010) 0.1243 (0.002) 0.0839 (0.015) 0.1206 (0.002)
NOV 0.0295 (0.286) 0.0511 (0.136) 0.0240 (0.364) 0.0485 (0.133)
Tt n.s. -0.0047 (0.000) n.s. -0.0044 (0.000)
TDt n.s. -0.0057 (0.008) n.s. -0.0047 (0.023)
Ht -0.0101 (0.024) -0.0124 (0.017) -0.0131 (0.002) -0.0121 (0.015)
MA(1) 0.8203 (0.000) 0.8106 (0.000)
MA(2)  -0.3678 (0.000) -0.3281 (0.000)
AIC -337.94 -318.36 -348.81 -332.72
BIC -297.69 -272.24 -308.56 -286.60
MAPE 5.17% 6.46% 6.11% 6.11%
Theil’s U 69.50% 78.09% 65.13% 74.60%
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It is interesting to see how the ARMA part of the model changes when explanatory 

variables are added.  The ARMA structure tends to be much more simple, since only MA 
terms of order 1 or 2 are left.  This indicates that the explanatory variables added to the model 
capture some information that is present in the ARIMA structure and help in explaining the 
variation in the dependent variable.  Also the differencing that is necessary to get a stationary 
process changes when calendar regression variables are added (especially the months).  In the 
ARIMA models for LNPERKSI and LNACCKSI, a 12-period difference was included, while 
in the corresponding regression model no differencing was done.  For LNPERLI and 
LNACCLI, a first difference is still needed in the regression, because the seasonal dummies 
cannot capture the period-to-period changes.   

When differencing is done, the interpretation of the mean term is especially important.  
A mean term is estimated for the LNPERKSI and LNACCKSI models, where a 12-period 
difference was necessary in order to obtain a stationary series.  An intercept in the seasonally 
differenced data corresponds to a linear deterministic trend in the original series (15).  This is 
an acceptable assumption, as can be seen from the graphs.  For LNPERLI and LNACCLI, a 
1-period difference was taken.  Since no real trend can be observed for these series, the mean 
term turned out to be insignificant and was dropped from the differenced series.  The graphs 
show that a linear trend would, indeed, be inappropriate here.  Although the series LNPERLI 
and LNACCLI have a clear seasonal pattern, seasonal differences are not taken.  The reason is 
to be found in the stability of the estimates.  When we take seasonal differences, the estimated 
moving average parameter of order 12 approaches unity, leading to an uninvertible solution.  
It is as if this estimate wants to cancel the differencing.   
 
Estimates of the regression model 
In the regression part of the model, the explanatory variables can be tested for their influence 
on the road safety outcomes.  First, most of the monthly dummy variables are highly 
significant.  Each of the road safety outcomes shows a strong seasonal pattern that can be 
represented fairly well by globally constant (i.e. regardless of the year) seasonal elements.  
Recall that the December coefficient is not estimated.  The effect of the last month is given by 
the constant.  Although this constant is not significant for LNPERLI and LNACCLI, it is 
nevertheless included in the models to serve as the base for the seasonal dummies.  For all 
dependent variables, the first months of the year have a significantly lower value than the 
December value, while November is not significantly different.   

Second, the time trend variable Tt is only significant for the number of crashes with 
persons killed or seriously injured, and the corresponding number of victims.  This is in line 
with the results in the ARIMA models, where the constant was only significant for the 
differenced data in these models, indicating a deterministic linear trend in the original data.  
Also the graphs support this conclusion, as the lightly injured outcomes do not show a trend.   

A similar conclusion can be drawn for the trading day variables.  These also are only 
significant for LNPERKSI and LNACCKSI.  The composition of a month in terms of 
weekdays and weekend days therefore mainly influences the number of persons killed or 
seriously injured, which confirms our expectations for Belgium.  Weekend crashes are 
frequently observed, and mostly with fatal consequences.  The trading day variable can be 
used to quantify the number of fatalities that can be expected from an extra weekend day in 
the month.  As an example, compare the months of August in the years 1997 and 2000.  In the 
first year, we count 21 weekdays and 10 weekend days.  For this month, the variable TDAUG97 
equals -4.  The same month in 2000 has 23 weekdays and only 8 weekend days.  Therefore, 
TDAUG00 equals 3.  Given a parameter estimate of -0.0057 for the model LNPERKSI, we have 
an effect on the logarithm of 0.0228 for August 1997, and -0.0171 for August 2000.  
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Applying the exponential function results in an increase of persons killed and seriously 
injured of exp(0.0228)-1=2.3% for August 1997, and a decrease of 1-exp(-0.0171)=1.7% for 
August 2000.  Note that this is only the effect attributable to the trading day pattern.  
Comparing two months with 9 and 10 weekend days respectively, results in a global increase 
in victims of 2%, all other things being equal.  Given the high number of victims in Belgium 
(a monthly average of 1169 killed or seriously injured over the analysis period), this 
percentage is not negligible.  This is an interesting instrument for policy makers.  The models 
allow measuring the number of victims that can be expected based on calendar structure.  If 
we start a month with more weekend days, safety campaigns can be directed towards the 
group of people that is likely to be on the road on Saturdays or Sundays.   

The last variable in the model is the measure of “heavy traffic”.  This variable is 
significant for all road safety outcomes, with a negative sign.  For example, if a month counts 
one extra day with heavy traffic, the number of fatalities decreases by 1.23%, all other things 
being equal.  This may look counterintuitive at first sight, but can easily be explained.  In 
periods of heavy traffic, caused by public or national holidays and Christian holy days, large 
concentrations of traffic can be found in Belgium, mainly on the main roads.  Although many 
people travel, the road seems to be quite safe because of congestion or slow traffic.  Our 
variable therefore is not a real measure of traffic exposure, but an indication of the level of 
traffic concentration.  Clearly the months with less concentration are also less safe.   
 
Evaluation of forecast accuracy 
Next to the explanatory power of the models, we are interested in the foresting accuracy.  The 
best predictive model will not necessarily be the best in forecasting.  Model fit offers no 
guarantee for good predictions.  To test the forecasting accuracy of our models, we kept the 
years 2001 and 2002 out of the training set, and these years are only used for forecasting.   

The forecasts of the models for the years 2001 and 2002 are shown in FIGURE 2.  
Although it is difficult to assess forecasting accuracy on the basis of a graphical 
representation, it can be seen that the confidence intervals for the predictions from the 
regression models are smaller than those from the ARIMA models.  To quantify the forecast 
accuracy, we computed two measures that can be used to compare the forecasts of different 
models on the same data set.  The first one is called the Mean Absolute Percentage Error or 
the MAPE (14).  It is calculated as follows: 
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where n is the number of observations for which the forecasts are made and PEt is the 
Percentage Error for the t-th observation, that is the relative difference between the observed 
value Yt and the forecasted value Ft.  The MAPE is an average of the absolute deviances 
between the observed and predicted values, and is expressed as a percentage.  The lower the 
MAPE, the better the predictions of the model are.   
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FIGURE 2: Comparison of ARIMA and Regression Forecasts. 
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A second measure is called Theil’s U (29).  It is based on the comparison between the 
forecasts of the model and the forecasts of a very simple, “naïve” forecast method, that takes 
the value of the current period as a forecast for next.  It is derived as follows: 
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with Ft, Yt and n as defined above.  Theil’s U compares the MAPE of a given forecasting 
method with the MAPE of the naïve forecast.  It gives more weight to larger errors, and 
provides a relative basis for comparison with naïve methods.  Also, the interpretation of the 
statistic is quite straightforward.  If U=1, then the predictions made by the model are as good 
as those made by a naïve forecast.  The model performs better than the naïve forecast if U<1.  
When U>1, there is no point in using the model, since the naïve model can even make better 
forecasts.   

In TABLE 1, the test statistics are shown for the different models.  Based on the 
MAPE, the regression models perform better than the corresponding ARIMA models for 
LNPERLI and LNACCLI.  For LNPERKSI and LNACCKSI, both models perform almost 
equally.  However, Theil’s U shows a small improvement over the ARIMA models, and 
shows that they still perform about 25% better than a naïve forecast.  For the other models, 
adding explanatory calendar variables substantially improves the predictions.  Next to the 
explanatory power these variables add to the model, they also improve the accuracy of the 
forecasts.  This is an attractive conclusion for road safety workers who have to predict 
monthly safety outcomes without having any data available.  Since calendar data are known 
for the future, no extra prediction efforts are needed and safety outcomes can be projected into 
the future.  Based on the accuracy measures, prediction quality can be monitored and models 
can be regularly updated.  
 
CONCLUSIONS AND FURTHER RESEARCH 
In this study, ARIMA models and regression models with calendar variables are built for four 
road safety outcomes.  The model fit and the accuracy of the produced forecasts are compared 
by means of some objective criteria.  All models produced were acceptable from a statistical 
point of view.  The comparison showed that the regression models performed better, both in 
terms of model fit and forecasting accuracy.  The improvement was especially clear for the 
models LNPERLI and LNACCLI, where the ARIMA models have problems with the highly 
regular seasonal pattern.  For the outcomes related to persons killed and seriously injured, the 
improvement was less pronounced, although still present.  The ARIMA models were also less 
easy to handle in the identification phase, since they have a more complex structure.  
Furthermore, the regression models offers the opportunity to measure the “impact” of some 
calendar variables on road safety outcomes.  For LNPERKSI and LNACCKSI, a clear trend 
could be modeled and a trading day pattern was present.  The “heavy traffic” measure was 
significant for all dependent variables.  Periods of high traffic concentration generally have 
lower crash counts.   

Although the calendar variables indeed have the power to improve the models, they 
should be treated cautiously.  First, including a linear trend is not always a natural 
assumption.  For short-term predictions, the fit improves by including the trend, but long-term 
predictions may suffer from systematic deviances.  Then a non-linear trend may be more 
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appropriate.  Second, by including deterministic dummy variables for the months, it is 
assumed that the effect of each month is always equally large, irrespective of the year of 
analysis.  If there is evidence for a changing seasonal pattern, this assumption should be 
relaxed.  The same goes for the trading day variables.  The effect of the calendar composition 
may change over time, as is shown for example in Bell et al. (2).  Third, the measure of heavy 
traffic is based on the scheduling of holidays and special days during the years.  Before 
projecting this measure into the future, one has to verify whether the holiday periods will 
remain the same.  For Belgium, we can be quite sure that this is the case, since holiday 
periods have been officially determined at the beginning of the nineties.   

In short, the regression model with calendar variables shows potential to improve road 
safety forecasts, without running into data availability problems.  Also the model fit improves 
and the calendar variables are intuitively appealing.  If the models are updated regularly, road 
safety workers are offered a tool to estimate calendar influences and to make short-term 
predictions that are superior to the ARIMA results, and that can be developed without 
problems of data availability.   
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