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Abstract

Poisson data frequently exhibit overdispersion and, for univariate models, many
options exist to go around this problem. Nonetheless, in complex scenarios like, for
example, in longitudinal studies, accounting for overdispersion is a more challenging
task. Recently, [1] presented a model that accounts for overdispersion by combining
two sets of random effects. However, introducing a new set of random effects im-
plies additional distributional assumptions for intrinsically unobservable variables.
Using the combined model as a framework, we explored the impact of ignoring
overdispersion in complex longitudinal settings via simulations. Furthermore, we
also evaluated the effect of misspecifying the random effects distribution on both
the combined model and the classical Poisson hierarchical model. Our results in-
dicate that even though inferences may be affected by ignored overdispersion, the
combined model is a promising tool in this scenario.

Keywords: Poisson-normal model; Overdispersion; Hierachical; Combined model;
Type I error.

1 Introduction

The introduction of random effects to model correlated responses coming from the same
subject, was a milestone contribution to the analysis of complex data [2]. Over the last
decades, these hierarchical models have been applied in a multitude of areas like, item
response theory [3], toxicology [4], survival analysis [5] and non-linear mixed models [6].
Many of the models used in these fields fall under the umbrella of generalized linear
mixed models (GLMM) [7]. Basically, GLMMs are used to account for the heterogeneity
that arises from correlated measurements. However, in several applications, there may
be additional sources of heterogeneity that can affect our inferences if ignored. Poisson
longitudinal data are an archetypical example where heterogeneity may arise, not only
from the repeated measurements, but also from additional overdispersion[8].
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Several studies have explored the impact of misspecifying different aspects of GLMMs on
the inferential procedures emanating from them. For instance, [7] addressed the impact
of omitting important confounding factors, [9][10] investigated the effect of misspecifying
the random effects distribution and [11] assessed the impact of fitting an incomplete
multilevel structure. All the previous research has clearly shown that misspecification
may seriously affect our conclusions. Along these lines, in the present work we study the
effect of ignoring overdispersion in hierarchical loglinear models.

[1] presented a model that deals with overdispersion by introducing an additional set
of random effects in the classical Poisson loglinear mixed model. In the following, we
shall refer to this model as the combined model. We will use this combined model as a
framework to assess the impact of ignoring overdispersion via simulations. Essentially, we
will study the impact of the misspecification on the consistency of the maximum likelihood
estimators (MLE) and the Type I error rates.

Another important concern that arises when using this type of models, is the distribu-
tional assumptions one needs to make for the random effects. Indeed,[12] showed that
misspecfying the random effect distribution in a logistic model may result in estimates
that are asymptotically biased, though the bias is typically small. In a similar setting
[13] found that misspecification of the random effects distribution may produce a loss of
efficiency. Through extensive simulations [9] [10] investigated the impact of this misspec-
ification on the consistency of the MLE, the power and Type I error rate of commonly
used inferential procedures in GLMM. They observed that, although in most scenarios the
estimates of many fixed effects were little affected, the estimates of variance components
were severely biased and the power and Type I error rates were also gravely impacted.

Introducing an additional set of random effects obviously implies additional distributional
assumptions for intrinsically unobservable latent variables. Therefore, in the present work,
we will also explore the impact of misspecifying the random effects distribution on both
the classical Poisson loglinear mixed model and the combined model introduced by [1].

The paper is organized as follows, Section 2 will describe the case study. The combined
model is presented in Section 3. Section 4 and 5 explains the design and results of
simulation studies respectively. A re-analysis of the case studied is carried out in Section
6 and some final conclusions are given in Section 7.

2 Case study

The data come from a randomized, double-blind, parallel group and multi-center clinical
trial for the comparison of placebo with a new anti-epileptic drug (AED), in combination
with one or two other AED’s. The study is described in full detail in [14]. Randomization
took place after a 12-week baseline period that served as a stabilization time for the use
of AED’s, and during which the number of seizures were counted. After that period, 45
patients were assigned to the placebo group and 44 to the active (new) treatment group.
Patients were then measured weekly and after a followed up of 16 weeks (double-blind)
they were entered into a long-term open-extension study. Consequently, some patients
were followed for up to 27 weeks. The outcome of interest was the number of epileptic
seizures experienced during the most recent week. The research question was whether or
not the new treatment could reduce the number of epileptic seizures.

Let Yij represent the number of epileptic seizures patient i experienced during week j
of the follow-up period. Further, let tij be the time-point at which Yij is measured,
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tij = 1, 2, . . . until at most 27. Following [4] the next model was used to analyze the data

Yij ∼ Poisson(κij),

ln(κij) =

{
(ξ0 + bi) + ξ1tij if placebo

(ξ2 + bi) + ξ3tij if treated

where bi is assumed to follow N(0, σ2
b ). The first part of Table 1 summarizes the main

findings. The results indicate that the expected number of seizures significantly decreases
over time in both the placebo and experimental group with p-values 0.0017 and 0.0067
respectively . Importantly, the rate of decrease was the same for both groups, i.e., no
significant difference between the placebo and the new treatment was detected with a
p-value of 0.7115. Obviously, the preceding results are conditional on the validity of the
model used for the analysis. In that line, one relevant question is if the previous model
suffices to account for all the variability present in the data and the impact of ignoring
extra sources of variability on the inferences previously described. We will address this
important issue at the end of the manuscript.

3 Combining conjugate and normal random effects

In this section we will briefly introduce the model proposed by [1]. To that effect, let us
denote by Yij the jth outcome in cluster i = 1, . . . , N with j = 1, . . . , ni. Furthermore, it
will be assumed that, conditionally upon two q-ni-dimensional vectors of random effects
bi and θi, the outcomes Yij are independent with density function of the form

fi(yij|bi, ξ, θij, φ) = exp
{
φ−1[yijλij − ψ(λij)] + c(yij, φ)

}
, (1)

where the conditional mean µcij is further modeled as

E(Yij|bi, ξ, θij) = µcij = θijκij. (2)

In the preceding expression the random variable θij ∼ Gij(ϑij, σ2
ij) with ϑij and σ2

ij denot-
ing the mean and the variance of θij respectively and κij = g(x′ijξ + z′ijbi). Moreover, it
will be typically assumed that bi ∼ N(0,D).

It is convenient, but not strictly necessary, to consider that the two sets of random effects
θi and bi are independent of each other. Regarding the components θij of θi, three useful
special cases result from assuming that: (1) they are independent; (2) they are correlated,
implying that the collection of univariate distributions Gij(ϑij, σ2

ij) needs to be replaced
with a multivariate one; and (3) they are equal to each other, useful in applications with
exchangeable outcomes Yij.

Obviously, parameterization (2) allows for random effects θij capturing overdispersion,
and formulated directly at the mean scale, whereas κij could be considered the GLMM
component. The relationship between the mean and natural parameter is

λij = h(µcij) = h(θijκij). (3)

We can still apply standard GLM ideas, in particular, to derive the mean and variance,
combined with iterated-expectation-based calculations. For the mean, it follows that

E(Yij) = E(θij)E(κij) = E[h−1(λij)]. (4)
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3.1 Combined poisson model for count data

From the general developments above, the Poisson model with gamma and normal random
effects naturally follows. By way of overview, let us assemble all model elements

Yij ∼ Poisson(θijκij),

κij = exp
(
x′ijξ + z′ijbi

)
,

bi ∼ N(0,D),

E(θi) = E[(θi1, . . . , θini
)′] = ϑi,

Var(θi) = Σi.

Essentially, this model has the same structure of the one by [15] The θij can be as-
sumed independent and following a gamma distribution, producing, what we could term,
a Poisson-gamma-normal model or, equivalently, a negative-binomial-normal model. This
is natural in many cases in the sense that the bi will induce association between repeated
measurements, with then the θij taking care of additional dispersion. In this case, Σi

reduces to a diagonal matrix. Nevertheless, it is perfectly possible to allow for general
covariance structures. When a fully distributional specification would be desired, then
one could choose, for example, multivariate extensions of the gamma distribution .

The Poisson-gamma-normal model can be fitted following a two step procedure. In fact,
integrating the previous conditional model over the gamma random effects, leaving the
normal random effects untouched, leads to

f(yij|bi) =

(
αj + yij − 1

αj − 1

)
·
(

βj
1 + κijβj

)yij
·
(

1

1 + κijβj

)αj

κ
yij
ij , (5)

where κij = exp(x′ijξ + z′ijbi). It is important to point out that in this approach the
gamma random effects are assumed to be independent. Model (5) can now be easily
fitted using maximization routines like the one implemented in PROC NLMIXED in
SAS.

4 Simulation studies

4.1 Impact of ignoring overdispersion

In this set of simulations, and using the Poisson-gamma-normal model as suitable frame-
work to generate the data, we explore the impact of ignoring overdispersion on the param-
eter estimates and their standard errors. Mimicking the case study, longitudinal poisson
responses Yij were generated with mean θijκij, where θij was randomly sampled from
Γ(α, β) and

κij = exp (ξ0 + bi + ξ1tj + ξ2zi + ξ3tjzi.) (6)

In the previous expression i = 1, ..., 500 and tj = 1, 2, 3, 4, 5, 6 denote the subject and the
time of measurement respectively. Moreover, bi ∼ N(0, σ2

b ) and zi is a treatment group
indicator variable taking values 0/1.

The data were generated using three sets of parameters, i) ξ0 = −2, ξ1 = −0.5, ξ2 = −3 ,
ξ3 = 1, α = 2, ii) ξ0 = 0.1, ξ1 = 0.2, ξ2 = 0.3 , ξ3 = 0.5, α = 4 and iii) like (ii) but with
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α = 0.5. In order to vary the amount of overdispersion in the data, the θijs were sampled
from three different gamma distributions: Γ(4, 0.25), Γ(2, 0.5) and Γ(0.5, 1) and in all the
cases σ2

b = 4. In total 500 data sets were generated in each setting and analyzed using
the correct model

E(Yij|θijbi) = θij exp(ξ0 + bi + ξ1tj + ξ2zi + ξ3tjzi) (7)

and a model that ignores the overdispersion, i.e., the misspecified model

E(Yij|bi) = exp(ξ0 + bi + ξ1tj + ξ2zi + ξ3tjzi) (8)

4.2 Impact on wrongly assuming overdispersion

In these simulations we studied the performance of model (7) when it is used to analyze
data with no additional overdispersion. Basically, and using ξ0 = 0.1, ξ1 = 0.2, ξ2 = 0.3
and ξ3 = 0.5, σ2

b = 4 as values for the parameters, the data were generated using model
(8) and latter analyzed using (7) and (8).

4.3 Impact of misspecification of random effects

In order to study the impact of misspecifying the random effects distribution a new set
of simulations was designed. Essentially, data were generated following the scheme pre-
sented in Section 4.1 using the following parameter values; ξ0 = 0.1, ξ1 = 0.2, ξ2 = 0.3
and ξ3 = 0.5, but three main variations were introduced: Firstly, the bis were generated
using five different distributions: N(0, 2), exp(

√
0.5), t4, Γ(2, 0.5) and χ2(1). Note that

the parameters for the distributions were chosen such that var(bi) = 2. The overdispersion
random effects θijs were always sampled from a Γ(4, 0.25). Secondly, the θijs were gen-
erated from Γ(4, 0.25) and χ2(2) and the bis were always sampled from N(0, 2). Finally
in the third scenario, the bis were sampled from the distributions aforementioned in the
first setting and the θijs were generated from χ2(2).

Eventually, Models 7 and 8 were fitted to the generated data with the distributional
assumptions described in Section 3.1. The goal is to explore the impact of misspecifying
every set of random effects separately or simultaneously on the inferences obtained from
these models.

4.4 Type I error

With these simulations we seek to establish whether the Type I error is preserved in the
combined model and also when we have ignored the overdispersion. The data generation
is as in section 4.1 but using ξ0 = −2, ξ1 = −0.5, ξ2 = 0 and ξ3 = 1, σ2

b=4 α = 2 as
parameter values. The data were also fitted to both Models 7 and 8. For all situations,
500 datasets were generated and the sample size was 500.
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5 Simulation results

5.1 Ignoring overdispersion

Table 2 summarizes the main findings of this study. Even though ignoring overdispersion
may have a negative impact on the parameter estimates, particularly when the overdisper-
sion distribution is highly skewed (when α = 0.5), this impact was in general very mild.
Indeed, for the covariates effect the relative bias never surpassed 7% and was frequently
much smaller. Nevertheless, the intercept was severely affected by the misspecification in
some scenarios and the variance of the random effect was seriously biased in some settings
as well.

Importantly, the standard errors for the Poisson-normal model were always underesti-
mated, especially for the interaction parameter which, in many cases, provides the answer
to the main research question.

Much as it is harmful to ignore overdispersion, it was found (results not shown) that there
is no harm in fitting the combined model when there is no overdispersion. Actually, in
this scenario, the parameter estimates and standard errors for the two models (combined
and Poisson-normal) were very close. When fitting the combined model, the estimate of
α was very large in all cases, implying a very flat overdispersion distribution. Basically,
the combined model converges to the Poisson-normal model when it is fitted to data that
is not overdispersed.

5.2 Misspecification of random effects distribution

The intangible nature of random effects makes the selection of their distributional assump-
tions quite arbitrary. In Table 3 we show the impact of misspecifying the distribution of
bi on inferences based on both, the combine and the Poisson-normal model. In the com-
bined model the covariate effects were rather robust with respect to the misspecification.
Indeed, the relative bias was always smaller than 3% and the associated standard errors
were close to those obtained when the random effect distribution was not misspecified.
Nevertheless, like before, the intercept and the estimates of σ2

b were seriously affected in
some scenarios.

We also studied the impact of misspecifying the distribution of θij on inferences emanating
from the combined model. The main results are presented in Table 4. Clearly, the impact
of this misspecification is almost negligible and the estimates and the standard errors
of all covariate effects are very close to the those obtained under the correctly specified
model.

Turning to the Poisson-normal model, it is important to point out that in this setting
this model misses two important features of the data: the presence of overdispersion and
the real distribution of the random effect bi. When bi was sampled from a gamma and
chisquare distribution, the Poisson-normal model never converged. For the t-distribution
with 4 degrees of freedom (t4) the parameter estimates for ξ2 had a relative bias as large
as 20%. This is considerable larger than the bias found when the model only missed the
overdispersion in the data. Here again severe underestimation of the standard errors was
observed as well.

Another important issue that emerged in this study was the low rate of convergence
observed for both models. In fact, the rates of convergence for the rows of Table 3 from
top to bottom were: 100%, 55.8%, 36.6%, 75.6% and 31.6% respectively.

Perhaps the most relevant situation for practical purposes is when both distributions are
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misspecified. Table 5 illustrates our findings in this scenario. In this situation, estimates
associated to the variance components of both distributions are largely biased. Nonethe-
less, apart from the intercept, the other effects estimates are generally close to the true
values. Therefore, even when the distributions associated with both sets of random effects
are misspecified, the covariate effects can be reliably estimated.

5.3 Type I error

In section 5.1 we discussed the impact of ignoring overdispersion on parameter estimates
and standard errors, in which we saw that there is a large impact on standard errors
which can possibly lead to erroneous conclusions. In this section we studied the impact of
ignoring overdispersion on the Type I error by simulating data with no treatment effect
and fitting both the combined model and the Poisson-normal model with treatment effect.
The pre-specified Type I error was 5%. For the combined mode, out of the 500 datasets,
the treatment effect was found to be significant in 27, which translates into 5.4% Type I
error. On the other hand, out of the 331 datasets which converged for the Poisson-normal
model, 61 found a significant treatment effect which represents 18.4% Type I error. In
the best case scenario, if we assume that the models that failed to converge would not
have detected a treatment effect, 61 out of 500 would translate into 12.2% which is still
highly inflated. This finding is inline with the underestimation of standard errors by the
Poisson-normal model as discussed in section 5.1.

6 Re-analyzing the case study

We also fitted the combined model to the data introduced in Section 2. The main findings
are presented in the second part of Table 1. A number of remarks come into place here.
Note first that, informally assessing the estimates of the parameters for the overdispersion
random effects distribution, one can conclude that the overdispersion in these data should
not be ignored. Complementing our findings is the observation that, the standard errors of
the Poisson-normal model, especially the slope parameters are generally underestimated in
the Poisson-normal. However, like before, the difference in the expected number of seizures
between the experimental and placebo groups was not significant (p-value=0.2260) when
the data were analyzed with the combined model. Note finally that, comparing the
likelihood values, the combined model achieves a much better fitting of the observable
data than the Poisson-normal model.

7 Concluding Remarks

Blindly assuming that unobserved heterogeneity in repeated measurements data only
comes from the correlation in the responses can be too restrictive and sometimes can lead
to invalid conclusions. We have shown through simulations that ignoring overdispersion
in count data can have dire consequences on estimation of some covariate effects and
their standard errors, as well as, on the variance components and the Type I error rates.
Importantly, we found that the Type I error rates were considerably inflated when overdis-
persion was ignored, implying that the probability of detecting a spurious effect increases.
Remarkably, our findings are strikingly similar to those reported by [9] [10] when study-
ing the impact of misspecifying the random effect distribution in a logistic model with a
random intercept. It is interesting to see that two related but different types of misspec-
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ification, i.e., ignoring overdispersions and misspecifying the random effect distribution,
may have very similar consequences.

Our simulations also indicate that the combined model may be a reasonable alternative
in this situation. In fact, this model can be easily fitted using standard software packages
like PROC NLMIXED in SAS. As discussed in section 4.1 when the combined model is
fitted to data that has no overdispersion, it converges to the Poisson-normal model so
no numerical issues emerge in this situation. Furthermore, the model is rather robust to
misspecification of the random effects distributions. All the previous characteristics seem
to indicate that the combined model is a useful tool for the analysis of Poisson data with
overdispersion.
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Table 1: Epilepsy Study. Parameter estimates and standard errors for the regression
coefficients in the Poisson-normal model, and the combined model. Estimation was done
by maximum likelihood using numerical integration over the normal random effect, if
present.

Poisson-normal Combined

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept placebo ξ0 0.8179 (0.1677) 0.9112 (0.1755)

Slope placebo ξ1 −0.0143 (0.0044) −0.0248 (0.0077)

Intercept treatment ξ2 0.6475 (0.1701) 0.6555 (0.1782)

Slope treatment ξ3 −0.0120 (0.0043) −0.0118 (0.0074)

overdispersion parameter α — 2.4640 (0.2113)

overdispersion parameter β = 1/α1 — 0.4059 (0.0348)

Variance of random intercepts σ2
b 1.1568 (0.1844) 1.1289 (0.1850)

−2log-likelihood −6810 −7664
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Table 2: Median of Parameter Estimates, {relative bias in %} and (standard errors) for
simulations studying the impact of ignoring overdispersion. Data were generated from
combined model with normal (bi) and gamma (θij) random effects using different levels
of skewness (α). The data were analyzed with Comb=combined model, PN=Poisson-
normal. TV denotes the true values.

Parameter Estimates

ξ0 ξ1 ξ2 ξ3 σ2
b α

TV 0.1 0.2 0.3 0.5 4 4

Comb 0.102{2} 0.200{0} 0.288{4} 0.500{0} 3.990{0.25} 4.020{0.5}
(0.139) (0.012) (0.1926) (0.0155) (0.0694) (0.176)

PN 0.112{12} 0.192{4} 0.315{5.1} 0.488{2.4} 3.974{0.65}
(0.1315) (0.0040) (0.1828) (0.0044) (0.0684)

TV -2 -0.5 -3 1 4 2

Comb -2.004{0.2} -0.499{0.2} -2.982{0.6} 1.003{0.3} 4.149{3.7} 2.002{0.1}
(0.2450) (0.0520) (0.3404) (0.0679) (0.1365) (0.4438)

PN -2.074{3.7} -0.496{0.8} -2.964{1.2} 0.995{0.6} 4.140{3.5}
(0.2312) (0.0395) (0.2989) (0.0498) (0.1343)

TV 0.1 0.2 0.3 0.5 4 0.5

Comb 0.106{6} 0.202{1} 0.271{9.7} 0.502{0.4} 3.938{1.6} 0.500{0}
(0.1837) (0.0300) (0.2433) (0.0403) (0.0792) (0.0190)

PN -0.706{805} 0.186{7} 0.287{4.3} 0.476{4.8} 4.485{12.1}
(0.1441) (0.0057) (0.1976) (0.0061) (0.0763)
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Table 3: Median parameter estimate, {relative bias in %} and (standard errors) for simula-
tions studying the impact of misspecfying the distribution of bi. Data were generated using
the combined model in which bi was sample from RE-dist. Further the Comb=combined
and PN=Poisson-normal models were fitted assuming normality.

RE-dist. Parameter Estimates

ξ0 ξ1 ξ2 ξ3 σ2
b α

0.1 0.2 0.3 0.5 2 2

normal comb 0.105{5} 0.199{0.5} 0.291{3} 0.501{0.2} 1.989{0.55}4.027{0.68}
(0.1048) (0.0123) (0.1435) (0.0156) (0.0491) (0.1803)

gamma Comb 2.078{1978}0.201{0.5} 0.300{0} 0.501{0.2} 1.955{2.4} 4.016{0.4}
(0.0956) (0.0090) (0.1343) (0.0122) (0.0453) (0.1319)

chisquare Comb 1.038{938} 0.200{0} 0.307{2.3} 0.500{0} 1.797{10.5}3.992{0.2}
(0.0951) (0.0105) (0.1325) (0.0136) (0.0434) (0.1534)

t4 Comb 0.107{7} 0.200{0} 0.301{0.3} 0.500{0} 1.732{13.4}4.011{0.3}
(0.0996) (0.0124) (0.1360) (0.0157) (0.0460) (0.1824)

t4 PN 0.093{7} 0.196{2} 0.360{20} 0.481{3.8} 1.724{13.8}
(0.0896) (0.0060) (0.1228) (0.0064) (0.0447)
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Table 4: Median parameter estimates, {relative bias in %} and (standard errors) for
simulations studying the impact of misspecfying the distribution of θij. The θijs were
sampled from Re-dist. The combined model was fitted assuming gamma distributed
overdispersion random effects.

RE-dist. Parameter Estimates

ξ0 ξ1 ξ2 ξ3 σ2
b α

0.1 0.2 0.3 0.5 2 4

gamma 0.105{5} 0.199{0.5} 0.291{3} 0.501{0.2} 1.989{0.55} 4.027{0.68}
(0.1048) (0.0123) (0.1435) (0.0156) (0.0491) (0.1803)

chisquare 0.784{684} 0.201{0.5} 0.290{0.3} 0.501{0.2} 1.992{2} 1.002{75}
(0.1483) (0.0191) (0.2069) (0.0258) (0.0700) (0.0324)
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Table 5: Median parameter estimates, {relative bias in %} and (standard errors) for
simulations studying the impact of misspecfying both θij and bi distributions. Data were
generated from a combined model with bi sampled from Re-dist. and θij sampled from
a chisquare distribution. The data were analyzed with the combined model assuming
normal and gamma random effects.

RE dist. Parameter Estimates

ξ0 ξ1 ξ2 ξ3 σ2
b α

0.1 0.2 0.3 0.5 2 4

normal 0.105{5} 0.199{0.5} 0.291{3} 0.501{0.2} 1.989{0.55} 4.027{0.68}
(0.1048) (0.0123) (0.1435) (0.0156) (0.0491) (0.1803)

t4 0.804{704} 0.200{0} 0.276{8} 0.501{0.2} 1.714{14.3} 1.001{75}
(0.1112) (0.0184) (0.1546) (0.0251) (0.0485) (0.0320)

chisquare 1.751{1651} 0.192{4} 0.262{12.7} 0.504{8} 1.620{19} 1.002{75}
(0.009) (0.0171) (0.1438) (0.0238) (0.0418) (0.0285)
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