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Abstract. We consider the Schur complement operation for symmetricicea over GF(2), which
we identify with graphs through the adjacency matrix reprgation. It is known that Schur com-
plementation for such a matrix (i.e., for a graph) can be dgrmmsed into a sequence of two types of
elementary Schur complement operations: (1) local comgigation on a looped vertex followed
by deletion of that vertex and (2) edge complementation cedge without looped vertices followed
by deletion of that edge. We characterize the symmetricioestover GF(2) that can be transformed
into the empty matrix using only operations of (1). As a causnce, we find that these matrices
can be inverted using local complementation. The resufijidied to the theory of gene assembly in
ciliates.

1. Introduction

Principal pivot transform (callegivot for short) is an operation on matrices that partially, for a subset
of the components, inverts a given matrix [12]. The operatio8afur complementatigd 3] is pivot
followed by the deletion of the rows and columns involved in this pivot. Piwot &chur complemen-
tation are defined on matrices over arbitrary fields, but here we corsydenetric matrices over the
two-element fieldFs, which we identify with undirected graphs (where loops are allowed) thralig
adjacency matrix representation. In this case, a pivot operation cardmngosed into a sequence
of two types of pivot operations, callddcal complementatioandedge complementatid®]. Local
complementation is applied to a looped vertex, and edge complementation is apmieditbooped
edge. Both graph operations toggle particular edges in the neighbaludfdioe vertex/edge involved.
The Schur complementations corresponding to the pivot operations ¢tlmoglementation and edge
complementation are callegtrtex reductiorandedge reductionrespectively.
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The process of unscrambling of genes in ciliates can be modelled usingsgaag three (types of)
graph rewriting rules, recalled here briefly in Chapter 4, but covexéhsively in the book [6]. It is
observed by Harju et al. [3] that vertex and edge reduction happesritespond to two of these graph
operations. The third operation of this model simply deletes remaining isolaleoj@d vertices. In this
model, the graphs have been characterized that can be transformedetogtyegraph using this third
operationand any subset of the remaining two graph operations [7, 6]. It remainegh@m guestion to
obtain a characterization when allowing only the first two operations (daok,zr in combination).

In this paper, we characterize the graphs that can be transformed tmpitye graph using vertex or
edge reduction. Since a transformation using Schur complementation to thegraqgtycorresponds to
a (full) matrix inversion using pivot, we characterize in this way the grapasdan be transformed to
the empty graph by applying local or edge complementation on each vertetlyexace. Also, in this
way we extend the result of [7, 6] to obtain a characterization of the gridnath can be transformed to the
empty graph using any subset of the three graph operations. Althougbedean algebraic background
to understand the interplay between the separate operations, it is quitisiagrghat the proof of the
main result instead uses combinatorial techniques.

2. Pivots

The principal pivot transform, or pivot for short, is defined for masiover arbitrary fields, see, e.g.,
[11] for an overview. We start by giving the general definition, anchtlve consider symmetric matrices
over the two-element fiellls. In this case, pivot can be seen as a particular graph operation.

We considelV x V-matrices, i.e., matrices where the rows and columns are indexed by a firlife set
(formally, aV’ x V-matrix is a function/? — F whereF is some field). Since we do not fix an ordering
of V, the rows and columns of the matrices are not ordered. Observe thahohetet of such a matrix
is well defined, since one may choose the linear ordering ofe., the bijectiont” — {1,...,|V|},
arbitrarily.

Matrices. Let A be alV x V-matrix (over an arbitrary field), and I&f C V' be such that the principal
submatrixA[X] induced byX is nonsingular, i.e.det A[X] # 0. Thepivot of A on X, denoted by
A x X, is defined as follows [12]. IP = A[X] and we decomposé accordingly asd = (Z ‘g) then

B P—l _P—IQ
ArX= <RP—1 S - RP‘1Q> .

The pivot can be considered a partial inversedaand A x X satisfy the following relation, where
the vectorse; andx, correspond to the elements &f (see [11]).

()= (e ()= (1)
1 Y2 Y1 Y2

This relation can in fact be used to defide: X given A and X, and many important properties can be
obtained elegantly using this characteristic relation. Observedhal’ = A~! whendet A # 0. Also
note that a pivot operation is an involution (operation of oiJeand more generally, ifA « X) « Y is
defined, them « (X @ Y) is defined and they are equal.
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Figure 1. Pivot on an edggu, v} in a graph. Adjacency between verticesindy is toggled iffx € V; and

y € V; with ¢ # j. Note thatu andv are adjacent to all vertices ¥ — these edges are omitted in the diagram.
The operation does not affect edges adjacent to verticaideuhe setd’, V5, V3, nor does it change any of the
loops.

Schur complement. Removing the columns and rows of the matrix corresponding to the elements to
which pivot was applied, corresponds to retaining the lower-right bleick X)[V \ X] = S — RP~'Q

in the definition of pivot, see equation (1). This block is known asSkbur complemeniof X in

A), which we denote byl/X. It arises in the context of many matrix applications, e.g., solving linear
equations, probability theory and statistics. It enjoys many surprisingepiep, see [13] for an extensive
background.

We highlight now two of these properties for further use. The rank adlglifiormula rank(A) =
rank(A[X]) + rank(A/X) implies that the nullity of the Schur complemeAy X equals that of the
original matrix A (sincerank(A[X]) = |X|). In particular, this implies thatl/ X is nonsingular when
Ais. The sequential property of Schur complementation states that conseop#rations may be
composed. More specificallyd/X)/Y = A/(X UY), for disjoint X, Y C V such that the operations
are defined, i.e A[X]| andA[X U Y] are nonsingular.

Graphs. In this paper we restrict principal pivot transform and Schur compléatien to symmetric
matricesA overF,. In this setting,A may be identified with a grap@#, whereA is the adjacency matrix
representation of7, denoted byA(G). Thus, graphs in this paper are undirected with loops allowed. As
we identify G with A(G), notions and notation regarding matrices are carried over to graphs@nd v
versa. For example, by thank of G we mean the rank afi(G), and forX C V, the subgrapltz[ X]
induced byX is the graph with adjacency matrik(G)[X].

Geelen [9] observes (by extending an observation of Bouchet fidaraing simple graphs) that any
pivot on a graphG can be decomposed into a sequencelementarypivots that are either of the form
G = {u} whereu is a looped vertex, or of the for = {u, v} where{u, v} is an edge and verticesand
v are both non-looped vertices. Thus, for a general pivot operatigmaphs it suffices to consider these
two cases.

The elementary pivat « {u} on aloop{u} is calledlocal complementatiarit is the graph obtained
from G by “toggling” the edges in the neighbourhod&; (u) = {v € V | {u,v} € E(G),u # v} of u
in G: for eachv,w € Ng(u), {v,w} € E(G) iff {v,w} &€ E(G * {u}) (allowingv = w). The other
edges are left unchanged.
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Figure 2. An orbit of graphs under pivot. Only the elementaivpts are shown.

We now recalledge complementatiai « {u, v} on an edgdqu, v} between non-loop vertices. For
a vertexz consider its closed neighbourhodd,(z) = Ng(z) U {z}. The edge{u,v} partitions
the vertices ofG adjacent tou or v into three setd’; = N[, (u) \ N;(v), Va = Ng(v) \ NG(u),
Vz = N{(u) N N/ (v). Note thatu,v € V3. The graphG = {u,v} is constructed by “toggling” all
edges between differeff andV;: for {z,y} with z € V; andy € V; (i # j): {z,y} € E(G) iff
{z,y} ¢ E(G * {u,v}), see Figure 1. The other edges remain unchanged. Note that, as afésislt
operation, the neighbourhoodswandv are interchanged.

Example 2.1. Consider the grapt¥ overV = {p, ¢, r, s} with adjacency matrix

p g r s
p/0 1 0 O
g1l 1 11
A_r0111
s\0 1 1 O

ThenG is depicted in Figure 2, top-row second column, together with its orbit unigiet. POnly ele-
mentary pivots are given. All other pivots can be found by followingth rathe diagram and taking the
symmetric difference over the labels. As an example, the graph i¢leguals=+{q}+{p} = Gx{p, ¢},
but the pivot« {p, ¢} of G is not elementary: it is not on an unlooped edge.

The initial graphG can be inverted using successive local complement operations, watkingec-
clockwise, leading to the invergg—! given on the bottom-row fourth column.

The orbit of G does not change (in this case) if we restrict to local complementation onhgvad
of the edge pivots results in a connected diagram. Hence, each of tae@agplement operations can
be replaced (in this case) by a sequence of local complementations, eygezedions may be repeated.
For example, the middle two graphs in the top and bottom row of the figiire{r} andG * {p, ¢, 7},
are related by the edge pivet{p, ¢}, but also by the sequence{r} x {q} = {p} * {r}.

It is instructive to observe that nonsingularity of a graph is not maintairreshvapplying pivot (thus
neither are rank nor nullity). The graghunder consideration can be inverted, wi@ile {¢} is singular;
this can be seen by observing that the columngfandg in the adjacency matrix fo& * {¢} are equal.
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3. Schur complement through local complementation

We will now consider pivot7 x X for graphs, followed by deletion of the verticesi i.e., the Schur
complementi/X. In particular we study Schur complementat@p{«} on looped vertices and Schur
complementatiorz /{u, v} on edges with unlooped vertices. These operations are cadléek reduc-
tion andedge reductionrespectively.

In general, a sequence of Schur complementations is callediation A reductionyp is successful
for a graphG if Gy is the empty graph (i.e., the graph with empty vertex set). We say that a §régph
successfully reducibl@using vertex/edge reduction) if there is a successful redugtiohG (wherep
consists of only vertex/edge reductions, resp.). It follows from theudson on elementary graph pivot
that a graphG is successfully reducible iffr is nonsingular. If we allow either only vertex reduction or
only edge reduction, then we can reduce only a proper subset ofralingular graphs.

Theorem 3.1. Let A be a symmetric matrix ovéf,. ThenA is successfully reducible using edge reduc-
tion iff A is nonsingular and has rioon the diagonal. Equivalently, a graphis successfully reducible
using edge reduction ifff is nonsingular and has no loops.

Proof:

As we have seen, the condition of nonsingularity is requirediftm be successfully reducible. Accord-

ing to Geelen [9] the pivo# x V' can be decomposed into a sequence of local complement and edge
complement operations. The characterization now follows from the cdtsemthat edge complementa-
tion can only be applied to unlooped vertices and never introduces lotjis, lacal complementation
requires a looped vertex. O

Obviously, if a graph is successfully reducible using edge reductionjthaumber of vertices must
be even. Curiously, this is implicit in the nonsingularity condition of Theorem Bideed, nonsingular
loop-free graphs must have at least one (actually an odd number-ofllsed perfect matching (i.e., a
complete pairing of vertices via a subset of edges), so the requirementiisdmipor an explanation of
the relationship between the determinant dvgand perfect matchings see, e.g., [3].

A nonempty principal submatrid[X | of a matrixA is called acomponenof A if A = ( A[OX] A[VO\X} ) ,
where the blocks indicated liyare null matrices of suitable size. CompondfX | is called aconnected
componenif X is minimal with this property (w.r.t. inclusion), i.e., £[Y] is a component with™ C X,
thenY = X. Again, we may carry this notation over to graphs. Conseque®ily,) is a component of
G iff there are no edges betweéhandV \ X in G, and the notion of a connected componeng:ok

the usual graph-theoretic notion of a connected component of a gfaph

Theorem 3.2. Let A be a symmetric matrix ovefF,. Then A is successfully reducible using vertex
reduction iff A is nonsingular and each componentdohas at least oneon the diagonal. Equivalently,
a graphG is successfully reducible using vertex reductiondGffis nonsingular and each connected
component of5 has at least one loop.

Proof:
We follow a similar line of reasoning as in the proof of [7, Lemma 7] (see alsbdfma 13.8]).

The condition of nonsingularity is required fdrto be successfully reducible. Also, in order to apply
vertex reduction we need a looped vertex, hence the condition is necessa
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We now show that the condition is sufficient. As this proof is graph theotéticeature, we consider
the graphG with A = A(G). We introduce some additional notation. The neighbourhSeadu) of u
in G is splitinto two setsN/,(u) and N (u), of vertices with and without loop, respectively.

Assume thatd is nonsingular, and that each component:dias a looped vertex. Consider the Set
of looped vertices i that maximizeg N2 (w)| among all looped vertices € V, i.e., with a maximal
number of unlooped neighbours. Choose a veatéx.S that minimizeg§ N} (w)| among alkw € S, i.e.,
has a minimal number of looped neighbours.

We claim that vertex reduction om does not introduce a component that consists completely of
unlooped vertices - /{u}. Assume that it does. As the component does not yet exist ihmust be
introduced by local complementation and it must include a looped neighbeurV/;(u) of u. After
local complementation on, vertexv cannot have looped neighbours, sddrthe unlooped neighbours
of u are also connected ta ThusNZ(u) C N2(v). By the definition ofS this must be an equality
N2 (u) = N2(v), and consequently alsobelongs taS.

Assume that has alooped neighbour @i. That neighbour must also be connected,tas otherwise
v would have a looped neighbour @/{u}. ThusN} (v) € N (u), and by minimality in the choice of
u this must be an equality¥,(v) = N} (u). Hence N (v) = Ng(u).

Consideru andv. They are adjacent and both looped, and have the same neighbouftuscthey
have equal columns in the adjacency mattixf G. ThusA is singular — a contradiction. Hence the
claim holds.

Since each component df/{u} has at least oné on the diagonal andl/{«} is nonsingular, the
argument can be applied iteratively. O

The proof of Theorem 3.2 shows that a “greedy” method is available toafiselquence of vertex
reductions to successfully reduce a graph. This greedy method chmosach step a vertex with a
minimal number of looped neighbours among the looped vertices with a maximalenwhbnlooped
neighbours, and applies a reduction to this vertex. It is easy to see ttatygetry, the proof of Theo-
rem 3.2 also holds if one chooses in each step a vertex with a maximal numiodooped neighbours
among the looped vertices with a minimal number of looped neighbours. In tlyisweaobtain an
alternative greedy method to successfully reduce a graph.

Example3.1. GraphG from Example 2.1 contains exactly two looped vertices. Of thedgs most
unlooped neighbours. Graph/{q} contains also exactly two looped vertices, of whjchas most
unlooped neighbours. Continuing in this way we find the successfubwetieiction/{q} /{p}/{r}/{s}
of G in four steps. Note that, in this case, other strategies do not work, i.etpellgriead to a nonempty
graph without looped vertices.

Inversion through local complementation. If G/X; --- /X is a successful reduction of gragh

then Xy, ..., X} is a partition ofl/. As applicability of pivot x« X on a graph( (i.e., whether or not

G * X is defined) depends only a#[X], we conclude that « X « - - - ¥ X}, is defined, and equal to
the inverseG « V. = G~1. Hence, ifG satisfies the conditions of Theorem 3.2, then the inverse of graph
G is obtainable using only local complementation. The converse does notihatdseG consists of

a single edge on a pair of unlooped vertices, corresponding with the ni&fix no local complement
operation is defined, while the inverse is trivially obtained (we have G~1).
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Letp = %X --- x X}, be a sequence of local complementations defined on a graphereX; ®
...® Xy = V. ThenGyp = G+ V = G~ ! and each connected component(®fas at least one
loop. Hence, by Theorem 3.Z; is successfully reducible using vertex reduction iff sychexists.
Consequently, by the above,may be chosen such tha, . .., X; are mutually disjoint (recall that,
unlike the Schur complement, vertices may be used several times in a segfigrnvets). We have
a similar characterization for edge complementation: a gi@Eph successfully reducible using edge
reduction iffp = x X7 --- x X be a sequence of edge complementations defined on a Graytere
X1 ---pX,=V.

4. Gene Assembly in Ciliates and Schur Complementation

Ciliates are a large group of single-cell organisms, the name of which coorestlieir characteristic
hair-like organelles, typically used for movement and sensation. Curjatibites have two very dif-
ferent kinds of nuclei, the micronucleus (MIC) and the macronucleus@MBuring a complex process
called gene assembly the “scrambled” gene segments occurring in the #Mi€cambined to obtain the
fully functional “sorted” genes in the MAC. This transformation of singlaggfrom their MIC form to
their MAC form is formally modelled in a series of papers by Ehrenfeucht. gsee, e.g., [10, 5, 7, 8]),
culminating in a book [6]. See [2] for a more recent overview of the “comaenal” aspects of gene
assembly.

For the transformation process, two (almost) equivalent models areg@opstring based and graph
based, each having three rewriting operations [5, 8]. It turns oufatih@ven more abstract viewpoint
can be taken, that of set systems, see [4]. Regarding the graphrbaded it has been noted in [3] that
two of the three operations are in fact the two elementary pivot operatioasg-called “positive rule”
gpr is local complementation and the so-called “double ngdt is edge complementation) followed
by the deletion of the vertices involved, i.e., the two elementary Schur compleioesiavertex and
edge reduction. The third operation called the “negative rglef simply removes isolated unlooped
vertices.

In [7] gene “patterns” are investigated, characterizing the structutteedftrings that can be success-
fully reduced using the various subsets of the three types of reductem ta [6, Chapter 13] the same
guestion was posed, but now also for graphs, which could only be Ipasieswered. The cases resolved
there, cited below as Corollary 4.2, all involgar, leaving open the three cases that do not invgiwe.

The results of the previous section can be trivially reformulated in terms eétgeph rewriting
rules, and cover exactly the cases withgui. Note that item (3) below has been obtained in [3].

Corollary 4.1. LetG be a graph. Thet¥ can be successfully reduced using

(1) gdr iff G is nonsingular and has no looped vertices,
(2) gpr iff G is nonsingular and each connected component bés at least one looped vertex, and
(3) gpr andgdr iff G is nonsingular.

Starting with a graplts, not necessarily nonsingular, a vertex reductigpr() or a edge reduction
(gdr) is applicable as long as the graph has at least one loop or at leastgmé/@den these operations
can no longer be performed, the resulting graph must consist of a nurhisetated unlooped vertices.
The number of these vertices is equal to the nullity of the original graph lasr 8omplement retains
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the nullity of the original matrix. The applicability of thenr operation is exactly restricted to isolated
unlooped vertices. As a consequence, as observed in [4], the nofrgher-operations in any successful
reduction of grapliz is equal to the nullity of.

These new characterizations can be contrasted to those invgainthat were obtained before. We
formulate them here, originally shown in [6, Section 13.3] for so-calledlapayraphs (also called circle
graphs) where loops are allowed. Although overlap graphs are ahegstriction in the context of gene
assembly, this restriction is not needed in the proof of the results quoted her

A connected component is calledntrivial if it contains at least one edge.

Corollary 4.2. LetG be a graph. Thetr can be successfully reduced using

(4) gnr iff G has no edge (i.e., consists of only isolated unlooped vertices),

(5) gnr andgdr iff G has no looped vertices,

(6) gnr andgpr iff each nontrivial connected component@fhas at least one looped vertex, and
(7) gnr, gpr andgdr.

Reconsidering these previous results we see that addigmiheperation essentially means omitting
the nonsingularity requirement in the characterizations of Corollary 4.hcéjeeven to formulate the
new results we are forced to move from graphs and their operations to ¢lae dilgebra of matrices and
determinants ovdf,. More importantly, within the domain of matrices the interplaypi andgdr is
much better understood than their formulation as graph operations: imagime Bigvhen extended to
cover two consecutive pivots. It is quite surprising that our argumeataevertheless combinatorial in
nature, and not algebraic.
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