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Abstract. We consider the Schur complement operation for symmetric matrices over GF(2), which
we identify with graphs through the adjacency matrix representation. It is known that Schur com-
plementation for such a matrix (i.e., for a graph) can be decomposed into a sequence of two types of
elementary Schur complement operations: (1) local complementation on a looped vertex followed
by deletion of that vertex and (2) edge complementation on anedge without looped vertices followed
by deletion of that edge. We characterize the symmetric matrices over GF(2) that can be transformed
into the empty matrix using only operations of (1). As a consequence, we find that these matrices
can be inverted using local complementation. The result is applied to the theory of gene assembly in
ciliates.

1. Introduction

Principal pivot transform (calledpivot for short) is an operation on matrices that partially, for a subset
of the components, inverts a given matrix [12]. The operation ofSchur complementation[13] is pivot
followed by the deletion of the rows and columns involved in this pivot. Pivot and Schur complemen-
tation are defined on matrices over arbitrary fields, but here we considersymmetric matrices over the
two-element fieldF2, which we identify with undirected graphs (where loops are allowed) through the
adjacency matrix representation. In this case, a pivot operation can be decomposed into a sequence
of two types of pivot operations, calledlocal complementationandedge complementation[9]. Local
complementation is applied to a looped vertex, and edge complementation is applied toan unlooped
edge. Both graph operations toggle particular edges in the neighbourhood of the vertex/edge involved.
The Schur complementations corresponding to the pivot operations of local complementation and edge
complementation are calledvertex reductionandedge reduction, respectively.
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The process of unscrambling of genes in ciliates can be modelled using graphs and three (types of)
graph rewriting rules, recalled here briefly in Chapter 4, but covered extensively in the book [6]. It is
observed by Harju et al. [3] that vertex and edge reduction happen to correspond to two of these graph
operations. The third operation of this model simply deletes remaining isolated unlooped vertices. In this
model, the graphs have been characterized that can be transformed to theempty graph using this third
operationandany subset of the remaining two graph operations [7, 6]. It remained an open question to
obtain a characterization when allowing only the first two operations (each alone, or in combination).

In this paper, we characterize the graphs that can be transformed to the empty graph using vertex or
edge reduction. Since a transformation using Schur complementation to the emptygraph corresponds to
a (full) matrix inversion using pivot, we characterize in this way the graphs that can be transformed to
the empty graph by applying local or edge complementation on each vertex exactly once. Also, in this
way we extend the result of [7, 6] to obtain a characterization of the graphs that can be transformed to the
empty graph using any subset of the three graph operations. Although weneed an algebraic background
to understand the interplay between the separate operations, it is quite surprising that the proof of the
main result instead uses combinatorial techniques.

2. Pivots

The principal pivot transform, or pivot for short, is defined for matrices over arbitrary fields, see, e.g.,
[11] for an overview. We start by giving the general definition, and then we consider symmetric matrices
over the two-element fieldF2. In this case, pivot can be seen as a particular graph operation.

We considerV ×V -matrices, i.e., matrices where the rows and columns are indexed by a finite setV
(formally, aV ×V -matrix is a functionV 2 → F whereF is some field). Since we do not fix an ordering
of V , the rows and columns of the matrices are not ordered. Observe that determinant of such a matrix
is well defined, since one may choose the linear ordering ofV , i.e., the bijectionV → {1, . . . , |V |},
arbitrarily.

Matrices. LetA be aV × V -matrix (over an arbitrary field), and letX ⊆ V be such that the principal
submatrixA[X] induced byX is nonsingular, i.e.,detA[X] 6= 0. Thepivot of A on X, denoted by
A ∗X, is defined as follows [12]. IfP = A[X] and we decomposeA accordingly asA =

(

P Q
R S

)

, then

A ∗X =

(

P−1 −P−1Q

RP−1 S −RP−1Q

)

(1)

The pivot can be considered a partial inverse, asA andA ∗X satisfy the following relation, where
the vectorsx1 andx2 correspond to the elements ofX (see [11]).

A

(

x1

y1

)

=

(

x2

y2

)

iff A ∗X

(

x2

y1

)

=

(

x1

y2

)

(2)

This relation can in fact be used to defineA ∗X givenA andX, and many important properties can be
obtained elegantly using this characteristic relation. Observe thatA ∗ V = A−1 whendetA 6= 0. Also
note that a pivot operation is an involution (operation of order2), and more generally, if(A ∗X) ∗ Y is
defined, thenA ∗ (X ⊕ Y ) is defined and they are equal.
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Figure 1. Pivot on an edge{u, v} in a graph. Adjacency between verticesx andy is toggled iffx ∈ Vi and
y ∈ Vj with i 6= j. Note thatu andv are adjacent to all vertices inV3 — these edges are omitted in the diagram.
The operation does not affect edges adjacent to vertices outside the setsV1, V2, V3, nor does it change any of the
loops.

Schur complement. Removing the columns and rows of the matrix corresponding to the elements to
which pivot was applied, corresponds to retaining the lower-right block(A ∗X)[V \X] = S −RP−1Q
in the definition of pivot, see equation (1). This block is known as theSchur complement(of X in
A), which we denote byA/X. It arises in the context of many matrix applications, e.g., solving linear
equations, probability theory and statistics. It enjoys many surprising properties, see [13] for an extensive
background.

We highlight now two of these properties for further use. The rank additivity formula rank(A) =
rank(A[X]) + rank(A/X) implies that the nullity of the Schur complementA/X equals that of the
original matrixA (sincerank(A[X]) = |X|). In particular, this implies thatA/X is nonsingular when
A is. The sequential property of Schur complementation states that consecutive operations may be
composed. More specifically,(A/X)/Y = A/(X ∪ Y ), for disjointX,Y ⊆ V such that the operations
are defined, i.e.,A[X] andA[X ∪ Y ] are nonsingular.

Graphs. In this paper we restrict principal pivot transform and Schur complementation to symmetric
matricesA overF2. In this setting,A may be identified with a graphG, whereA is the adjacency matrix
representation ofG, denoted byA(G). Thus, graphs in this paper are undirected with loops allowed. As
we identifyG with A(G), notions and notation regarding matrices are carried over to graphs and vice
versa. For example, by therank of G we mean the rank ofA(G), and forX ⊆ V , the subgraphG[X]
induced byX is the graph with adjacency matrixA(G)[X].

Geelen [9] observes (by extending an observation of Bouchet [1] concerning simple graphs) that any
pivot on a graphG can be decomposed into a sequence ofelementarypivots that are either of the form
G ∗ {u} whereu is a looped vertex, or of the formG ∗ {u, v} where{u, v} is an edge and verticesu and
v are both non-looped vertices. Thus, for a general pivot operation on graphs it suffices to consider these
two cases.

The elementary pivotG∗{u} on a loop{u} is calledlocal complementation. It is the graph obtained
from G by “toggling” the edges in the neighbourhoodNG(u) = {v ∈ V | {u, v} ∈ E(G), u 6= v} of u
in G: for eachv, w ∈ NG(u), {v, w} ∈ E(G) iff {v, w} 6∈ E(G ∗ {u}) (allowing v = w). The other
edges are left unchanged.
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Figure 2. An orbit of graphs under pivot. Only the elementarypivots are shown.

We now recalledge complementationG ∗ {u, v} on an edge{u, v} between non-loop vertices. For
a vertexx consider its closed neighbourhoodN ′

G(x) = NG(x) ∪ {x}. The edge{u, v} partitions
the vertices ofG adjacent tou or v into three setsV1 = N ′

G(u) \ N ′
G(v), V2 = N ′

G(v) \ N ′
G(u),

V3 = N ′
G(u) ∩ N ′

G(v). Note thatu, v ∈ V3. The graphG ∗ {u, v} is constructed by “toggling” all
edges between differentVi andVj : for {x, y} with x ∈ Vi andy ∈ Vj (i 6= j): {x, y} ∈ E(G) iff
{x, y} /∈ E(G ∗ {u, v}), see Figure 1. The other edges remain unchanged. Note that, as a resultof this
operation, the neighbourhoods ofu andv are interchanged.

Example 2.1. Consider the graphG overV = {p, q, r, s} with adjacency matrix

A =









p q r s

p 0 1 0 0
q 1 1 1 1
r 0 1 1 1
s 0 1 1 0









.

ThenG is depicted in Figure 2, top-row second column, together with its orbit under pivot. Only ele-
mentary pivots are given. All other pivots can be found by following a path in the diagram and taking the
symmetric difference over the labels. As an example, the graph belowG equalsG∗{q}∗{p} = G∗{p, q},
but the pivot∗ {p, q} of G is not elementary: it is not on an unlooped edge.

The initial graphG can be inverted using successive local complement operations, walking counter-
clockwise, leading to the inverseG−1 given on the bottom-row fourth column.

The orbit ofG does not change (in this case) if we restrict to local complementation only; removal
of the edge pivots results in a connected diagram. Hence, each of the edge complement operations can
be replaced (in this case) by a sequence of local complementations, whereoperations may be repeated.
For example, the middle two graphs in the top and bottom row of the figure,G ∗ {r} andG ∗ {p, q, r},
are related by the edge pivot∗ {p, q}, but also by the sequence∗ {r} ∗ {q} ∗ {p} ∗ {r}.

It is instructive to observe that nonsingularity of a graph is not maintained when applying pivot (thus
neither are rank nor nullity). The graphG under consideration can be inverted, whileG∗{q} is singular;
this can be seen by observing that the columns forp andq in the adjacency matrix forG ∗ {q} are equal.
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3. Schur complement through local complementation

We will now consider pivotG ∗X for graphs, followed by deletion of the vertices inX, i.e., the Schur
complementG/X. In particular we study Schur complementationG/{u} on looped vertices and Schur
complementationG/{u, v} on edges with unlooped vertices. These operations are calledvertex reduc-
tion andedge reduction, respectively.

In general, a sequence of Schur complementations is called areduction. A reductionϕ is successful
for a graphG if Gϕ is the empty graph (i.e., the graph with empty vertex set). We say that a graphG is
successfully reducible(using vertex/edge reduction) if there is a successful reductionϕ of G (whereϕ
consists of only vertex/edge reductions, resp.). It follows from the discussion on elementary graph pivot
that a graphG is successfully reducible iffG is nonsingular. If we allow either only vertex reduction or
only edge reduction, then we can reduce only a proper subset of all nonsingular graphs.

Theorem 3.1. LetA be a symmetric matrix overF2. ThenA is successfully reducible using edge reduc-
tion iff A is nonsingular and has no1 on the diagonal. Equivalently, a graphG is successfully reducible
using edge reduction iffG is nonsingular and has no loops.

Proof:
As we have seen, the condition of nonsingularity is required forA to be successfully reducible. Accord-
ing to Geelen [9] the pivotA ∗ V can be decomposed into a sequence of local complement and edge
complement operations. The characterization now follows from the observation that edge complementa-
tion can only be applied to unlooped vertices and never introduces loops, while local complementation
requires a looped vertex. ⊓⊔

Obviously, if a graph is successfully reducible using edge reduction, then its number of vertices must
be even. Curiously, this is implicit in the nonsingularity condition of Theorem 3.1. Indeed, nonsingular
loop-free graphs must have at least one (actually an odd number of) so-called perfect matching (i.e., a
complete pairing of vertices via a subset of edges), so the requirement is implied. For an explanation of
the relationship between the determinant overF2 and perfect matchings see, e.g., [3].

A nonempty principal submatrixA[X] of a matrixA is called acomponentofA if A =
(

A[X] 0
0 A[V \X]

)

,

where the blocks indicated by0 are null matrices of suitable size. ComponentA[X] is called aconnected
componentif X is minimal with this property (w.r.t. inclusion), i.e., ifA[Y ] is a component withY ⊆ X,
thenY = X. Again, we may carry this notation over to graphs. Consequently,G[X] is a component of
G iff there are no edges betweenX andV \X in G, and the notion of a connected component ofG is
the usual graph-theoretic notion of a connected component of a graphG.

Theorem 3.2. Let A be a symmetric matrix overF2. ThenA is successfully reducible using vertex
reduction iffA is nonsingular and each component ofA has at least one1 on the diagonal. Equivalently,
a graphG is successfully reducible using vertex reduction iffG is nonsingular and each connected
component ofG has at least one loop.

Proof:
We follow a similar line of reasoning as in the proof of [7, Lemma 7] (see also [6, Lemma 13.8]).

The condition of nonsingularity is required forA to be successfully reducible. Also, in order to apply
vertex reduction we need a looped vertex, hence the condition is necessary.
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We now show that the condition is sufficient. As this proof is graph theoretical in nature, we consider
the graphG with A = A(G). We introduce some additional notation. The neighbourhoodNG(u) of u
in G is split into two sets,N1

G(u) andN0
G(u), of vertices with and without loop, respectively.

Assume thatA is nonsingular, and that each component ofG has a looped vertex. Consider the setS
of looped vertices inG that maximizes|N0

G(w)| among all looped verticesw ∈ V , i.e., with a maximal
number of unlooped neighbours. Choose a vertexu in S that minimizes|N1

G(w)| among allw ∈ S, i.e.,
has a minimal number of looped neighbours.

We claim that vertex reduction onu does not introduce a component that consists completely of
unlooped vertices inG/{u}. Assume that it does. As the component does not yet exist inG, it must be
introduced by local complementation and it must include a looped neighbourv ∈ N1

G(u) of u. After
local complementation onu, vertexv cannot have looped neighbours, so inG the unlooped neighbours
of u are also connected tov. ThusN0

G(u) ⊆ N0
G(v). By the definition ofS this must be an equality

N0
G(u) = N0

G(v), and consequently alsov belongs toS.
Assume thatv has a looped neighbour inG. That neighbour must also be connected tou, as otherwise

v would have a looped neighbour inG/{u}. ThusN1
G(v) ⊆ N1

G(u), and by minimality in the choice of
u this must be an equalityN1

G(v) = N1
G(u). Hence,NG(v) = NG(u).

Consideru andv. They are adjacent and both looped, and have the same neighbourhood. Thus they
have equal columns in the adjacency matrixA of G. ThusA is singular — a contradiction. Hence the
claim holds.

Since each component ofA/{u} has at least one1 on the diagonal andA/{u} is nonsingular, the
argument can be applied iteratively. ⊓⊔

The proof of Theorem 3.2 shows that a “greedy” method is available to finda sequence of vertex
reductions to successfully reduce a graph. This greedy method chooses in each step a vertex with a
minimal number of looped neighbours among the looped vertices with a maximal number of unlooped
neighbours, and applies a reduction to this vertex. It is easy to see that, bysymmetry, the proof of Theo-
rem 3.2 also holds if one chooses in each step a vertex with a maximal number ofunlooped neighbours
among the looped vertices with a minimal number of looped neighbours. In this way, we obtain an
alternative greedy method to successfully reduce a graph.

Example 3.1. GraphG from Example 2.1 contains exactly two looped vertices. Of these,q has most
unlooped neighbours. GraphG/{q} contains also exactly two looped vertices, of whichp has most
unlooped neighbours. Continuing in this way we find the successful vertex reduction/{q}/{p}/{r}/{s}
of G in four steps. Note that, in this case, other strategies do not work, i.e., eventually lead to a nonempty
graph without looped vertices.

Inversion through local complementation. If G/X1 · · · /Xk is a successful reduction of graphG,
thenX1, . . . , Xk is a partition ofV . As applicability of pivot ∗ X on a graphG (i.e., whether or not
G ∗ X is defined) depends only onG[X], we conclude thatG ∗ X1 ∗ · · · ∗ Xk is defined, and equal to
the inverseG ∗ V = G−1. Hence, ifG satisfies the conditions of Theorem 3.2, then the inverse of graph
G is obtainable using only local complementation. The converse does not hold:in caseG consists of
a single edge on a pair of unlooped vertices, corresponding with the matrix( 0 1

1 0 ), no local complement
operation is defined, while the inverse is trivially obtained (we haveG = G−1).
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Let ϕ = ∗X1 · · · ∗Xk be a sequence of local complementations defined on a graphG whereX1 ⊕
. . . ⊕ Xk = V . ThenGϕ = G ∗ V = G−1 and each connected component ofG has at least one
loop. Hence, by Theorem 3.2,G is successfully reducible using vertex reduction iff suchϕ exists.
Consequently, by the above,ϕ may be chosen such thatX1, . . . , Xk are mutually disjoint (recall that,
unlike the Schur complement, vertices may be used several times in a sequenceof pivots). We have
a similar characterization for edge complementation: a graphG is successfully reducible using edge
reduction iffϕ = ∗X1 · · · ∗ Xk be a sequence of edge complementations defined on a graphG where
X1 ⊕ · · · ⊕Xk = V .

4. Gene Assembly in Ciliates and Schur Complementation

Ciliates are a large group of single-cell organisms, the name of which comes from their characteristic
hair-like organelles, typically used for movement and sensation. Curiously, ciliates have two very dif-
ferent kinds of nuclei, the micronucleus (MIC) and the macronucleus (MAC). During a complex process
called gene assembly the “scrambled” gene segments occurring in the MIC are recombined to obtain the
fully functional “sorted” genes in the MAC. This transformation of single genes from their MIC form to
their MAC form is formally modelled in a series of papers by Ehrenfeucht etal. (see, e.g., [10, 5, 7, 8]),
culminating in a book [6]. See [2] for a more recent overview of the “computational” aspects of gene
assembly.

For the transformation process, two (almost) equivalent models are proposed, string based and graph
based, each having three rewriting operations [5, 8]. It turns out thatan even more abstract viewpoint
can be taken, that of set systems, see [4]. Regarding the graph basedmodel, it has been noted in [3] that
two of the three operations are in fact the two elementary pivot operations (the so-called “positive rule”
gpr is local complementation and the so-called “double rule”gdr is edge complementation) followed
by the deletion of the vertices involved, i.e., the two elementary Schur complementations, vertex and
edge reduction. The third operation called the “negative rule”gnr simply removes isolated unlooped
vertices.

In [7] gene “patterns” are investigated, characterizing the structure ofthe strings that can be success-
fully reduced using the various subsets of the three types of reduction rules. In [6, Chapter 13] the same
question was posed, but now also for graphs, which could only be partially answered. The cases resolved
there, cited below as Corollary 4.2, all involvegnr, leaving open the three cases that do not involvegnr.

The results of the previous section can be trivially reformulated in terms of these graph rewriting
rules, and cover exactly the cases withoutgnr. Note that item (3) below has been obtained in [3].

Corollary 4.1. LetG be a graph. ThenG can be successfully reduced using

(1) gdr iff G is nonsingular and has no looped vertices,
(2) gpr iff G is nonsingular and each connected component ofG has at least one looped vertex, and
(3) gpr andgdr iff G is nonsingular.

Starting with a graphG, not necessarily nonsingular, a vertex reduction (gpr) or a edge reduction
(gdr) is applicable as long as the graph has at least one loop or at least one edge. When these operations
can no longer be performed, the resulting graph must consist of a numberof isolated unlooped vertices.
The number of these vertices is equal to the nullity of the original graph as Schur complement retains
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the nullity of the original matrix. The applicability of thegnr operation is exactly restricted to isolated
unlooped vertices. As a consequence, as observed in [4], the numberof gnr-operations in any successful
reduction of graphG is equal to the nullity ofG.

These new characterizations can be contrasted to those involvinggnr that were obtained before. We
formulate them here, originally shown in [6, Section 13.3] for so-called overlap graphs (also called circle
graphs) where loops are allowed. Although overlap graphs are a natural restriction in the context of gene
assembly, this restriction is not needed in the proof of the results quoted here.

A connected component is callednontrivial if it contains at least one edge.

Corollary 4.2. LetG be a graph. ThenG can be successfully reduced using

(4) gnr iff G has no edge (i.e., consists of only isolated unlooped vertices),
(5) gnr andgdr iff G has no looped vertices,
(6) gnr andgpr iff each nontrivial connected component ofG has at least one looped vertex, and
(7) gnr, gpr andgdr.

Reconsidering these previous results we see that adding thegnr operation essentially means omitting
the nonsingularity requirement in the characterizations of Corollary 4.1. Hence, even to formulate the
new results we are forced to move from graphs and their operations to the linear algebra of matrices and
determinants overF2. More importantly, within the domain of matrices the interplay ofgpr andgdr is
much better understood than their formulation as graph operations: imagine Figure 1 when extended to
cover two consecutive pivots. It is quite surprising that our arguments are nevertheless combinatorial in
nature, and not algebraic.

Acknowledgements. We thank three kind referees for sharing their comments on our paper.
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