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Abstract 
 
This paper aims at a better understanding in the impact of simplification in a sequential analysis of activity-
diary data using a feature selection method. To this effect, the predictive performance of the Albatross model, 
which incorporates nine different facets of activity-travel behaviour, based on the original full decision trees is 
compared with the performance of the model based on trimmed decision trees. The more parsimonious 
models are derived by first using a feature selection method to determine the irrelevant variables which are 
then left out of the further model building process. The results indicate that significantly smaller decision 
trees can be used for modelling the different choice facets of the sequential system without loosing much too 
much in predictive power. The performance of the models is compared at two levels: the choice facet level, at 
which we compare the performance of each facet separately and the trip level, comparing the correlation 
coefficients that determine the strength of the associations between the observed and the predicted origin-
destination matrices. The results indicate that the model based on the trimmed decision trees predicts activity 
diary schedules with a minimum loss of accuracy at the choice facet level. Moreover, the results show a 
slightly better performance at the trip matrix level. 
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1. Introduction 
In the past few years, activity-based forecasting of travel demand has become a major field of interest in 
transportation research. The aim of activity-based models is to predict which activities will be conducted 
where, when, for how long, with whom and with which transport mode. Rule-based models have  proven to 
be very flexible when compared to utility-maximising models (Arentze et al., 2001) and they also perform well 
in predicting transport choice behaviour if an induction technique is used (Wets et al., 2000). Although these 
rule-based models perform very well, they also show some limitations. Most of them are based on quite 
complex rule sets. However, already in the Middle Ages, there was a call for simplicity: William of Occam's 
razor states that `Nunquam ponenda est pluralitas sin necesitate', meaning `Entities should not be multiplied 
beyond necessity' (Tornay, 1938). It was born in the Middle Ages as a criticism of scholastic philosophy, 
whose theories grew ever more elaborate without any corresponding improvement in predictive power. In the 
intervening centuries it has come to be seen as one of the fundamental tenets of modern science and today it 
is often invoked by learning theorists as a justification for preferring simpler models over more complex ones. 
However, Domingos (1998) learned us that it is tricky to interpret Occam's razor in the right way. The 
interpretation "Simplicity is a goal in itself" is essentially correct, while "Simplicity leads to greater accuracy" is 
not. 
 
While a larger number of rules may be valuable when one wishes to better understand the data, from a 
predictive perspective a large number of rules may imply that the decision tree induction algorithm has over-
fitted the data. The obtained decision tree structure may then be very unstable and sensitive to highly 
correlated covariates. 
Feature selection offers a solution to reduce the number of irrelevant attributes and as a consequence often 
the size of the decision tree will also be reduced. The key notion underlying feature selection is that the 
number of decision rules is reduced by selecting and deleting irrelevant features, based on some statistical 
measure. The impact of feature selection on the predictive performance of rule-based models is however not 
a priori clear. On the one hand, because the irrelevant variables are deleted, feature selection may not have a 
substantial negative effect on predictive performance. However, a smaller decision tree may also result in a 
higher probability of misclassification, leading to worse predictive performance. It is against this background 
that this paper reports the findings of a methodological study that was conducted to gain a better 
understanding of the influence of a smaller set of decision rules on the predictive performance of a sequential 
models of activity scheduling behaviour, the Albatross model. Moons et al. (2002) investigated the influence 
of irrelevant attributes on the performance of the decision tree for the transport mode, the travel party, the 
activity duration and the location agent of the Albatross model system. We found that the use of considerable 
less decision rules did not result in a significant drop in predictive performance compared to the original 
larger set of rules that was derived from the activity-travel diaries. In this paper, the question `To what extent 
can this result be generalised to the complete Albatross model system (represented by nine different choice 
facets)?' is inspected. 
 
In order to be able to look at the results in the right context, we will first shortly describe the Albatross 
system in the next section, followed by a brief introduction to the different methods used to perform the 
analysis. Then, feature selection is applied to decision rule induction and the results will be discussed in 
Section 3. The predictive performance will be evaluated on each facet separately (by means of the accuracy) 
and at trip matrix level where the correlation coefficients that determine the strength of the associations 
between the observed and predicted origin-destination matrices are judged against each other. Conclusions 
are drawn in the final section. 
 
2. Methods 
 

2.1 The Albatross system 
The Albatross model was developed for the Dutch Ministry of Transportation (Arentze and Timmermans, 
2000). In this study, we used the data that were used to find the set of rules for the original model. 



This rule-based model relies on a set of Boolean decision rules that are used to predict activity-travel patterns. 
These rules were extracted from activity-diary data. The activity scheduling process is sequential in nature. 
Figure 1 provides a schematic representation of the Albatross scheduling model. 

 
Figure 1: Albatross scheduling engine 

 
The activity scheduling agent of Albatross is based on an assumed sequential execution of decision trees to 
predict activity-travel patterns. Before the sequential execution starts, the main transport mode (i.e. mode for 
work, referred to as mode 1) will be predicted. The model next executes a set of decision rules to predict 
which activity will be inserted in the schedule. It then determines, based on another sets of rules, with whom 
the activity is conducted and the duration of the activity. The order in which activities are evaluated is pre-
defined as: daily shopping, services, non-daily shopping, social and leisure activities. The assignment of a 
scheduling position to each selected activity is the result of the next two steps. After a start time interval is 
selected for an activity, trip-chaining decisions determine for each activity whether the activity is to be 
connected with a previous and/or next activity. Those trip chaining decisions are not only important for 
timing activities but also for organizing trips into tours. The next step involves the choice of transport mode 
for other purposes (referred to as mode2) and the choice of location. Possible interactions between mode and 
location choices are taken into account by using location information as conditions of mode selection rules. 
 
2.2 Decision Tree Induction: C4.5 
Decision tree induction can be best understood as being similar to parameter estimation methods in 
econometric models. The goal of tree induction is to find the set of Boolean rules that best represents the 
empirical data. The original Albatross system was derived using a Chi-square based approach (Moons, 2005). 
In this paper, however, the trees were re-induced using the C4.5 method (Quinlan, 1993) because this method 
can be easily combined with the Relief-F feature selection. Arentze et al. (2000) found approximately equal 
performance in terms of goodness-of-fit of the two methods in a representative case study. The C4.5 
algorithm works as follows. Given a set of I observations taken from activity-travel diary data, consider their 
values on n different explanatory variables or attributes xi1, xi2, …, xin and on the response variable yi ∈ 
{1,2,…,p} for i = 1,…, I. Starting from the root node, each node will be split subsequently into internal or 
terminal nodes. A leaf node is terminal when it has no offspring nodes. An internal node is split by 
considering all allowable splits for all variables and the best split is the one with the most homogeneous 
daughter nodes. The C4.5 algorithm recursively splits the sample space on X into increasingly homogeneous 
partitions in terms of the response variable Y, until the leaf nodes contain only cases from a single response 
class. Increase in homogeneity achieved by a candidate split is measured in terms of an information gain ratio. 
After building the tree, pruning strategies are adopted. This means that the decision tree is simplified by 



discarding one or more sub-branches and replacing them with leaves. For a detailed description, we refer to 
Wets et al., 2000. 
 
2.3 Feature Selection: Relief-F 
Feature or variable selection strategies are often implied to explore the effect of irrelevant attributes on the 
performance of classifier systems. One can distinguish between two types of feature selection approaches: the 
filter and the wrapper approach. Both methods have been compared extensively (Hall, 1999a, 1999b; Koller 
and Sahami, 1996). In this analysis, the filter approach, more specifically the Relief-F feature selection 
method, is opted for since it can handle multiple classes of the dependent variable (the nine different choice 
facets that we are predicting range from two to seven classes) and above that it is easily combined with the 
C4.5 induction algorithm. 
 
Feature selection strategies can be regarded as one way of coping with the correlation between the attributes. 
This is relevant because the structure of trees is sensitive to the problem of multi-collinearity, which implies 
that some variables would be redundant (given the presence of other variables). Redundant variables do not 
affect the impacts of the remaining variables in the tree model, but it would simply be better if they were not 
used for splitting. Therefore, a good feature selection method for this analysis would search for a subset of 
relevant features that are highly correlated with the class variable that the tree-induction algorithm is trying to 
predict, while mutually having the lowest possible correlations. 
 
Relief (Kira and Rendall, 1992), the predecessor of Relief-F, is a distance-based feature weighting algorithm. 
It imposes a ranking on features by assigning each a weight. Features with the highest weights are considered 
to be the most relevant, while those with values close to zero or with negative values are judged irrelevant. 
The weight for a particular feature reflects its relevance in distinguishing the classes. In determining the 
weights, the concepts of  near-hit and near-miss are central. A near-hit of instance i is defined as the instance that 
is closest to i (based on Euclidean distance between two instances in the n-dimensional variable space) and 
which is of the same class (concerning the output variable), while a near-miss of i is defined as the instance that 
is closest to i  and which is of a different class. The algorithm initially assigns the value zero to each attribute, 
and this will be adapted with each run through the instances of the data set. It attempts to approximate the 
following difference of probabilities for the weight of a feature X:  
 

WX   =P(different value of X | nearest instance of different class) 
-    P(different value of X | nearest instance of same class). 

 
So, Relief works by random sampling an instance and locating its nearest neighbour from the same and 
opposite response class. By removing the context sensitivity provided by the "nearest instance" condition, 
attributes are treated as mutually independent, and the previous equation becomes:  
 

ReliefX = P(different value of X | different class) 
- P(different value of X | same class). 

 
Relief-F (Kononenko, 1994) is an extension of Relief that can handle multiple classes and noise caused by 
missing values, outliers, etc. To increase the reliability of Relief's weight estimation, Relief-F finds the k 
nearest hits and misses for a given instance, where k is a parameter that can be specified by the user. For 
multiple class problems, Relief-F searches for nearest misses from each different class (with respect to the 
given instance) and averages their contribution. The average is weighted by the prior probability of each class. 
 
3. Analysis and Results 
The overall aim of this study is to investigate whether a simplification of the rule sets underlying the Albatross 
model leads to a significant loss in predictive power. This simplification will be obtained by reducing the set 
of decision rules through the application of a feature selection method. The original Albatross model consists 



of nine choice facets. For each of these choice facets, a set of decision rules was extracted from activity-travel 
diaries. To predict activity-travel patterns, these decision trees are executed sequentially in the Albatross 
system according to some scheduling process model (Arentze and Timmermans, 2000). We will investigate 
the effect of simpler rules for each choice facet. 
 
3.1 The Data 
The analyses are based on the activity diary data used to derive the original Albatross system. The data were 
collected in February 1997 for a random sample of 1649 respondents in the municipalities of Hendrik-Ido-
Ambacht and Zwijndrecht (South Rotterdam region) in the Netherlands. 
The activity diary asked respondents, for each successive activity, to provide information about the nature of 
the activity, the day, start and end time, the location where the activity took place, the transport mode (chain) 
and the travel time per mode, if relevant, accompanying individuals, and whether the activity was planned. 
Open time intervals were used to report the start and end times of activities. A pre-coded scheme was used 
for activity reporting. More details can be found in Arentze and Timmermans (2000). 
 
3.2 Study Design 
The original data set is split into two subsets. A training set, containing the first 75% of the cases, on which 
the different models will be built and optimised. The remaining 25% of the cases make up the validation or 
test set that can be used to compute the accuracies (percentage of correctly classified instances), etc. These 
percentages are arbitrary but are common practice in validation studies (see e.g. Wets et al., 2000). 
 
We will first build decision trees for each of the nine choice facets, using the C4.5 algorithm (Quinlan, 1993). 
This approach will be called the full approach. The C4.5 trees were induced based on one simple restriction: 
the final number of cases in a leaf node must meet a minimum. For eight out of the nine choice facets, this 
minimum was set to 15 (except for the very large data set of the `select'-dimension, where this number was 
set to 30). In a second approach, the feature selection approach, we will first identify the relevant attributes 
for each of the nine choice facets separately, based on the Relief-F feature selection method with the k 
parameter set equal to 10. Next, the C4.5 trees were built based on the same restriction as in the full 
approach, though only the remaining relevant attributes were used. To determine the selection of variables, 
the following procedure was adopted. Several decision trees were built, each time removing one more 
irrelevant attribute, as they appeared lowest in the ranking that has been provided by the FS method. For each 
of these decision trees, the accuracy was calculated and compared to the accuracy of the decision tree of the 
full approach. The smallest decision tree, which resulted in a maximum decrease of 2% in accuracy compared 
to the decision tree including all features, was chosen as the final model for a single choice facet in the feature 
selection approach. This strategy was applied to all nine dimensions of the Albatross model. 
 
3.3 Results 
At first, we will take a closer look at the average length of the observed and predicted sequences of activities. 
In the observed patterns, the average number of activities equals 5.160 for the training set and 5.155 for the 
test set. This average length offers room for 1-3 flexible activities complemented with 2-4 in-home activities. 
Considerable variation occurs, however, as indicated by the standard deviation of approximately 3 activities. 
 

Method Training set Test set 
Full approach 5.286 

(2.953) 
5.286 

(2.937) 
FS approach 5.014 

(3.033) 
4.907 

(2.921) 
Table 1: Average number of predicted activities in sequences (standard deviation between brackets) 

 
We observe in Table 1 that in general the full approach predicts activity sequences that are somewhat too 
long, while those of the feature selection approach are rather a little bit too short. 



The results of these different methods will now be compared at two levels of aggregation: the choice facet 
level and the trip matrix level. At the choice facet level, we will discuss the number of attributes that remained 
in the final decision tree model for each of the two approaches and the probability of a correct prediction for 
each decision tree. At the trip matrix level, correlation coefficients are calculated to measure the degree of 
correspondence between the observed and the predicted Origin-Destination matrices. 
 
3.3.1 Choice Facet Level 
Tables 2 and 3 provide the results of the analyses conducted to assess model performance at the choice facet 
level. The first column of these tables presents the nine choice facets of Albatross. The second column lists 
the levels of the Y-variable, while the third column gives the total number of attributes that were considered 
to build the final decision tree. The fourth column depicts the size of the decision tree. Column five reports 
the probability of a correct prediction and in the last column a measure of relative performance, where the 
probability of a correct prediction is compared to the probability of a correct prediction under a null model. 
This null model assigns a new case to a category of the Y-variable with a probability, equal to the number of 
observed cases in the category divided by the total number of cases in the data set. 
 
Decision tree # alts # attrs # leafs E eratio

Mode for work 4 32 8 0.598 0.155 
Selection 2 40 35 0.686 0.052 
With-whom 3 39 72 0.499 0.223 
Duration 3 41 148 0.431 0.145 
Start time 6 63 121 0.408 0.285 
Trip chain 4 53 8 0.802 0.576 
Mode other 4 35 63 0.524 0.222 
Location 1 7 28 30 0.540 0.264 
Location 2 6 28 47 0.372 0.214 

Table 2: Model performance: choice facet level (full approach) 
 
Decision tree # alts # attrs # leafs E eratio

Mode for work 4 2 6 0.595 0.147 
Selection 2 1 1 0.669 0.000 
With-whom 3 4 51 0.467 0.173 
Duration 3 4 38 0.368 0.051 
Start time 6 8 1 0.172 0.000 
Trip chain 4 10 13 0.811 0.596 
Mode other 4 11 60 0.508 0.196 
Location 1 7 6 15 0.513 0.222 
Location 2 6 8 14 0.312 0.141 

Table 3: Model performance: choice facet level (FS approach) 
 
The results of the previous analyses show that, in general, the full approach outperforms the FS approach on 
the dimensions separately. On the other hand, feature selection generally generates considerably less complex 
decision trees than the full approach. One exception is the 'trip chaining' choice facet, which more leafs in the 
final tree with FS than in the tree without feature selection. A logical consequence of this result is that the 
measure of relative performance of the models with FS is somewhat smaller. 
The most important variables for both approaches do not differ that much, but if differences can be 
discerned, they can then often be explained by high correlations between variables. 
 
3.3.2 Trip Matrix Level 
At trip matrix level, we compare the number of trips made from a certain origin to a certain destination. 
Correlations were calculated between observed and predicted matrix entries in general and for trip matrices 



that are disaggregated on transport mode. The variation of the correlation coefficient can be largely explained 
by the variation in the number of cells between matrices. The general OD matrix has 400 cells (20 origins and 
20 destinations) and the OD matrix by mode 2000. As could be expected, the fit decreases with an increasing 
number of cells. 
 
Matrix ρ (o, p) (Full approach) ρ (o, p) (FS approach) 
None (train) 0.962 0.957 
Mode (train) 0.885 0.887 
None (test) 0.942 0.947 
Mode (test) 0.856 0.849 

Table 4: Model performance: trip matrix level 
 
In Table 4 the performance of the different models on the training and the test data set is given. The results 
indicate that all correlation coefficients are similar. Both approaches perform equally well and if there is a 
difference it does not exceed the 1% level. 
 
4. Conclusion 
In the last decade, rule-based models that predict travel behaviour based on activity diary data have been 
suggested in the literature. These models usually perform very well, though, very often, they are based on a 
very complex set of rules. Moreover, research in the field of psychology (Gigerenzer et al. 1999) has learned 
us that simple models often predict human behaviour very well. In fact, the call for simplicity is a question of 
all ages. Occam's razor, that has to be situated already in the Middle Ages, being an important example. It is 
in this light that this paper should be regarded. We tried to simplify the complex set of rules used to 
determine the Albatross system by performing two similar analyses: one with and one without irrelevant 
variables, while in the second analyses, at same time we cut back in the number of variables. The results of 
the tree-induction algorithms can namely be heavily influenced by the inclusion of irrelevant attributes. On 
the one hand, this may lead to over-fitting, while one the other hand, it is not evident whether the inclusion 
of irrelevant attributes would lead to a substantial loss in accuracy and/or predictive performance. The aim of 
this study reported therefore was to further explore this issue in the context of the Albatross model system. 
 
The results show that the models that make up their decisions based on one or a few variables are not in any 
case second to the complex analysis. This comes as a welcome bonus. In fact, more or less the same results 
were obtained at the trip matrix level. At the choice facet level, one can observe that a strong reduction in the 
size of the trees as well as in the number of predictors is possible without adversely affecting predictive 
performance too much. Thus, at least in this study, there is no evidence of substantial loss in predictive power 
in the sequential use of decision trees to predict activity-travel patterns.  
The results indicate that using feature selection in a step prior to tree induction can improve the performance 
of the resulting model. It should be noted, however, that predictive performance and simplicity are not the 
only criteria. The most important criterion is that the model needs to be responsive to policy sensitive 
attributes and for that reason policy sensitive attributes, such as for example service level of the transport 
system, should have a high priority in the selection of attributes if the model is to be used for predicting the 
impact of policies. The feature selection method allows one to identify and next eliminate correlated factors 
that prevent the selection of the attributes of interest during the construction of the tree, so that the resulting 
model will be more robust to policy measures.  
 
These findings endorse the primary belief that people, because of their limitations in knowledge and time, rely 
for their choices on some simple heuristics. Since, in the Albatross system, we are trying to predict nine 
different choices on travel behaviour made by human beings, this might give an idea on why these simple 
models do not necessarily perform worse than the complex models. However, if simple models are able to 
predict the choices of a human being, this can mean two things: either the environment itself is perceived as 
simple, or the complex choice process can be described by simple models. Since activity-based transport 



modellers keep developing systems with an increasing complexity in order to try to understand the travel 
behaviour undertaken by humans, we acknowledge that the environment is not simple. However, whether it 
is perceived as simple by human beings, remains an open question. 
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