
Electronic Journal of Statistics

Vol. 6 (2012) 1273–1306
ISSN: 1935-7524
DOI: 10.1214/12-EJS712

Multivariate and functional covariates

and conditional copulas

Irène Gijbels

Department of Mathematics and Leuven Statistics Research Center (LStat),
Katholieke Universiteit Leuven, Belgium
e-mail: Irene.Gijbels@wis.kuleuven.be

Marek Omelka

Department of Probability and Statistics, Faculty of Mathematics and Physics,
Charles University in Prague, Czech Republic

e-mail: omelka@karlin.mff.cuni.cz

and
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Abstract: In this paper the interest is to estimate the dependence between
two variables conditionally upon a covariate, through copula modelling. In
recent literature nonparametric estimators for conditional copula functions
in case of a univariate covariate have been proposed. The aim of this paper is
to nonparametrically estimate a conditional copula when the covariate takes
on values in more complex spaces. We consider multivariate covariates and
functional covariates. We establish weak convergence, and bias and variance
properties of the proposed nonparametric estimators. We also briefly discuss
nonparametric estimation of conditional association measures such as a
conditional Kendall’s tau. The case of functional covariates is of particular
interest and challenge, both from theoretical as well as practical point of
view. For this setting we provide an illustration with a real data example in
which the covariates are spectral curves. A simulation study investigating
the finite-sample performances of the discussed estimators is provided.
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1. Introduction

Assume that (X1, Y11, Y21), . . . , (Xn, Y1n, Y2n) is a sample of n independent and
identically distributed triples of random variables. The random variables Y1i
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and Y2i are real and the Xi’s are random elements with values in a space E that
will be specified later.

Researchers are often interested in the dependence structure of the bivariate
outcome (Y1, Y2)

T when the value of the covariate is fixed at a given level, say
X = χ. Consider the following example in the food industry. Spectral analysis
is used to obtain information on chemical components in a sample of food,
for example in meat. Apart from the spectral curves one also measures the
percentages of, for example, fat, protein and water. One of the points of interest
is to find out how the percentages of fat and protein relate to each other and
how strong they are related. The interest in this paper is to discover how this
dependency changes with the form of the spectral curve. This is an example of
a situation in which X is of a functional type. See Section 6 for a more detailed
description and for the analysis of a real data example using the methodology
developed in this paper.

Suppose that the conditional distribution of (Y1, Y2)
T given X = χ exists and

denote the corresponding conditional joint distribution function by

Hχ(y1, y2) = P
(
Y1 ≤ y1, Y2 ≤ y2

∣∣X = χ
)
.

If the marginals of Hχ denoted as

F1χ(y1) = P
(
Y1 ≤ y1

∣∣X = χ
)
, F2χ(y2) = P

(
Y2 ≤ y2

∣∣X = χ
)
,

are continuous, then according to Sklar’s theorem (see e.g. Nelsen, 2006 [15])
there exists a unique copula Cχ which equals

Cχ(u1, u2) = Hχ

(
F−1
1χ (u1), F

−1
2χ (u2)

)
,

where F−1
1χ (u) = inf{y : F1χ(y) ≥ u} is the conditional quantile function of Y1

given X = χ and F−1
2χ is the conditional quantile function of Y2 given X = χ.

The conditional copula Cχ fully describes the conditional dependence structure
of (Y1, Y2)

T given X = χ.
The estimation ofCχ is the subject of the current research. Gijbels et al. (2011)

[12] and Veraverbeke et al. (2011) [19] investigated nonparametric estimation
of Cχ when the covariate is real, that is E = R. Semiparametric estimation of
conditional copulas in this case has been studied in Hafner and Reznikova (2010)
[13], Acar et al. (2011) [2] and Abegaz et al. (2012) [1]. In this paper we introduce
a nonparametric estimator of Cχ when the covariate space is more complex.

The estimators are of a similar type as these in Gijbels et al. (2011) [12], but
their theoretical study and practical use can be quite different depending on the
complexity of the covariate space. See Sections 3—6. An estimator of the joint
conditional distribution function Hχ is

Hχh(y1, y2) =

n∑

i=1

wni(χ, hn) I{Y1i ≤ y1, Y2i ≤ y2},

where {wni(χ, hn)} is a sequence of weights that smooth over the covariate
space E and h = {hn > 0} is a bandwidth sequence tending to zero as the
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sample size increases. Then analogously as in Gijbels et al. (2011) [12] one can
suggest the following empirical estimator of the copula Cχ

Cχh(u1, u2) = Hχh

(
F−1
1χh(u1), F

−1
2χh(u2)

)
, 0 ≤ u1, u2 ≤ 1, (1)

where F1χh and F2χh are the corresponding marginal distribution functions of
Hχh, i.e., F1χh(y1) = Hχh(y1,+∞) and F2χh(y2) = Hχh(+∞, y2). As demon-
strated by Gijbels et al. (2011) [12] and Veraverbeke et al. (2011) [19] it is often
advisable to remove the influence of the covariate on the marginal distributions
before the estimation of Cχ. This can be done in various ways. One can for
instance assume a regression model linking the covariate X with the response
Y1 (Y2) and then replace the original observations (Y1i, Y2i) with the estimated
residuals.

Gijbels et al. (2011) [12] suggested a very general way of removing the influ-
ence of the covariate on the marginal distributions which can be described as fol-
lows. First, estimate the unobserved marginally uniform observations (U1i, U2i)

T

= (F1Xi
(Y1i), F2Xi

(Y2i))
T with

(Ũ1i, Ũ2i)
T =

(
F1Xig1(Y1i), F2Xig2(Y2i)

)T
, i = 1, . . . , n, (2)

where g1 = {g1n} ց 0 and g2 = {g2n} ց 0. Second, use the transformed obser-

vations (Ũ1i, Ũ2i)
T in a similar way as the original observations and construct

C̃χh(u1, u2) = G̃χh

(
G̃−1

1χh(u1), G̃
−1
2χh(u2)

)
, (3)

where

G̃χh(u1, u2) =

n∑

i=1

wni(χ, hn) I
{
Ũ1i ≤ u1, Ũ2i ≤ u2

}
,

and G̃1χh and G̃2χh are the corresponding marginals: G̃1χh(u1) = G̃χh(u1, 1)

and G̃2χh(u2) = G̃χh(1, u2).
In case of a univariate real-valued covariate a thorough study comparing the

performances of the two types of estimators Cχh and C̃χh, defined in respectively
(1) and (3), can be found in Gijbels et al. (2011) [12] revealing the following
practical recommendation: the estimator Cχh is generally preferable when the
covariate does not influence the marginal distributions; in the opposite situation,
it is safer to use the estimator C̃χh. None of the two estimators is however
uniformly (in all situations) outperforming the other one. Moreover, the effect
of the covariate on the marginal distributions and/or on the conditional copula
itself is often unknown. It is therefore worthwhile to study both estimators.

In this paper we establish weak convergence results of the processes associated
with the estimators Cχh and C̃χh, for a multivariate covariate (in Section 2) and
for a functional covariate (in Section 3). Nonparametric estimators of conditional
association measures are very briefly discussed in Section 4. In a simulation
study in Section 5 the finite-sample performances of the estimators, in both
the multivariate and functional covariate case, are investigated. In Section 6 the
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discussed methods are used to analyze a real dataset with a functional covariate.
Some further discussions are provided in Section 7. The proofs and technical
details are given in the Appendix.

2. Multivariate covariate – E = Rd

Assume that (Xi, Y1i, Y2i) is a sample of i.i.d. triples, whereXi = (Xi1, . . . , Xid)
T

is a d-dimensional continuous covariate with a density fX. Analogously as in Ve-
raverbeke et al. (2011) [19] one can consider also a fixed design, but then one
should think of fX as a design density.

As E = R
d the role of the χ is now played by x = (x1, . . . , xd)

T. A common
system of weights {wni} is based on the quantity |B|−1/2KB(Xi − x), where
K is a d-variate kernel, B is the bandwidth matrix with determinant |B|, and
KB(y) = K(B−1/2y). For simplicity of presentation we will suppose that B =
h2
n Id, where Id is the d-dimensional identity matrix. Then for example the

Nadaraya-Watson weights are defined as

wni(x, hn) =
KB(Xi − x)∑n
j=1 KB(Xj − x)

, i = 1, . . . , n. (4)

The definition of local linear weights can be found in e.g. Ruppert and Wand
(1994) [16].

In this paper we consider only pointwise convergence. Therefore, let χ = x
be a fixed element in E = R

d, and define the empirical copula processes

C
(E)
xn =

√
nhd

n

(
Cxh − Cx

)
, C̃

(E)
xn =

√
nhd

n

(
C̃xh − Cx

)
. (5)

Denote by C
(1)
x , C

(2)
x the partial derivatives of the copula function Cx with

respect to u1 and u2 respectively. In order to establish the weak convergence
results for the processes in (5) we need some regularity conditions, which we
discuss first.

2.1. Regularity assumptions

Regularity conditions needed for the following theorems can be formulated in
an analogous way as in Veraverbeke et al. (2011) [19]. Technically speaking,
the extension from the univariate to the multivariate covariate case is rather
straightforward, and therefore we only very briefly discuss this case. Generally
speaking, one has to replace hn with hd

n and take into consideration that the
covariate is now a vector. The complete list of conditions is to be found in
Appendix A.

Similarly as it was argued in Veraverbeke et al. (2011) [19] the assumptions
about the weights are satisfied for the Nadaraya-Watson weighting scheme pro-

vided that fX(x) > 0 and ∂fX(z)
∂z is continuous in the neighbourhood of the

point x. For local linear weights the latter assumption can even be omitted.
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When dealing with the d > 1 covariate case however, smoothing operations
are needed over the d-dimensional space. This implies that the estimation pro-
cedure suffers from the curse of dimensionality, as any nonparametric smoothing
technique would do in this case. For a further discussion, see Section 7.

2.2. Results for the estimator Cxh of type (1)

Suppose that

hn = O(n−1/(4+d)), n hd
n → ∞. (6)

Theorem 1. Assume (6), (R1)-(R2) and (W1). Then the following linear
asymptotic representation

C
(E)
xn(u1, u2) =

√
nhd

n

n∑

i=1

wni(x, hn) ξi(u1, u2) + oP (1), (7)

holds uniformly in (u1, u2) ∈ [0, 1]2, where

ξi(u1, u2) = I{Y1i ≤ F−1
1x (u1), Y2i ≤ F−1

2x (u2)} − Cx(u1, u2)

−C(1)
x (u1, u2)

[
I{Y1i ≤ F−1

1x (u1)} − u1

]
(8)

−C(2)
x (u1, u2)

[
I{Y2i ≤ F−1

2x (u2)} − u2

]
.

With the help of the asymptotic representation (7) it is usually possible to

describe the limiting process of C
(E)
xn.

The choice of the weights has some impact on the variance-covariance struc-
ture of the limiting process, through the asymptotic behaviour of the quantity
nhd

n

∑n
i=1 w

2
ni(x, hn). Thanks to assumptions (W1) there typically exists, in

commonly-used weight systems, a finite positive constant V such that

nhd
n

n∑

i=1

w2
ni(x, hn) = V 2 + oP (1). (9)

For example, for Nadaraya-Watson weights defined in (4), V 2 = µK/fX(x),
where µK =

∫
Rd K

2(u) du.
In order to derive the asymptotic bias of the normalized empirical process,

we need to study the expectation of the leading term in the linear asymptotic
representation in (7). Suppose that there exists H such that nh4+d

n → H2,
with H ≥ 0, using Taylor expansion and assumption (R1) one can find that
(uniformly in (u1, u2))

nhd
n

n∑

i=1

wni(x, hn)E ξi(u1, u2)

= H
[
DT

KĊx(u1, u2) + tr
{
EK

2 Bx(u1, u2)
}]

+ oP (1), (10)
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with DK being a vector and EK being a matrix of constants depending on
the chosen system of weights {wni} and on the type of the design (see the
Assumptions (W3) in the Appendix) and

Bx(u1, u2) = Ḧx

(
F−1
1x (u1

)
, F−1

2x

(
u2)

)
− C(1)

x
(u1, u2) F̈1x

(
F−1
1x (u1)

)

−C(2)
x (u1, u2) F̈2x

(
F−1
2x (u2)

)

= C̈x(u1, u2) + 2 Ċ(1)
x

(u1, u2) Ḟ1x

(
F−1
1x (u1)

)T

+2 Ċ(2)
x (u1, u2) Ḟ2x

(
F−1
2x (u2)

)T

+C(1,1)
x (u1, u2) Ḟ1x

(
F−1
1x (u1)

)
Ḟ1x

(
F−1
1x (u1)

)T
(11)

+C(2,2)
x

(u1, u2) Ḟ2x

(
F−1
2x (u2)

)
Ḟ2x

(
F−1
2x (u2)

)T

+C(1,2)
x (u1, u2) Ḟ1x

(
F−1
1x (u1)

)
Ḟ2x

(
F−1
2x (u2)

)T

+C(1,2)
x (u1, u2) Ḟ2x

(
F−1
2x (u2)

)
Ḟ1x

(
F−1
1x (u1)

)T
,

where a dot indicates a derivative with respect to the covariate x, e.g. Ḟz(u1) =
∂
∂zFz(u1), C̈z(u1, u2) = ∂2

∂z∂zTCz(u1, u2); the symbol (i) indicates a derivative

with respect to ui, e.g. C
(i,j)
x (u1, u2) =

∂2Cx(u1,u2)
∂ui∂uj

; and Ċ
(i)
z (u1, u2) =

∂2Cz(u1,u2)
∂z ∂ui

,

which is a mixture of the above notational rules. Finally, the product EKBx

in (10) is a matrix product.

We are now ready to state the weak convergence result for the process C
(E)
xn

in (5).

Corollary 1. If (9), nh4+d
n → H2, (W3) and the assumptions of Theorem 1

hold, then the process C
(E)
xn converges in distribution to a Gaussian process Zx

Zx(u1, u2) = V
{
Wx(u1, u2)− C(1)

x (u1, u2)Wx(u1, 1)− C(2)
x (u1, u2)Wx(1, u2)

}

+Rx(u1, u2), (12)

where V is a constant depending on the asymptotic properties of the weights {wni},
as defined in (9), Wx is a bivariate Brownian bridge on [0, 1]2 with covariance
function

E [Wx(u1, u2)Wx(v1, v2)] = Cx(u1 ∧ v1, u2 ∧ v2)− Cx(u1, u2)Cx(v1, v2),

and where Rx(u1, u2) is the (deterministic) mean function

Rx(u1, u2) = H
[
DT

KĊx(u1, u2) + tr
{

EK

2 Bx(u1, u2)
}]

. (13)

2.3. Results for the estimator C̃xh of type (3)

For this estimator we need to specify the relation of the three bandwidths that
are used. In the following we suppose that for j = 1, 2

√
nhd

n g
2
jn = O(1), hn

gjn
= O(1), n1/d min(hn, g1n, g2n) → ∞. (14)
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The next theorem establishes a linear asymptotic representation for the nor-
malized empirical copula process in (5) and subsequently the weak convergence

result for C̃
(E)
xn.

Theorem 2. Assume (14), (W1)–(W3) and (R̃1)–(R̃3), then uniformly in
(u1, u2) ∈ [0, 1]2

C̃
(E)
xn(u1, u2) =

√
nhd

n

n∑

i=1

wni(x, hn) ξ̃i(u1, u2) + oP (1),

where

ξ̃i(u1, u2) = I{U1i ≤ u1, U2i ≤ u2} − Cx(u1, u2)

−C(1)
x (u1, u2) [I{U1i ≤ u1} − u1] (15)

−C(2)
x

(u1, u2) [I{U2i ≤ u2} − u2]

and (U1i, U2i) = (F1Xi
(Y1i), F2Xi

(Y2i)).

Moreover, if (9) holds and (nh4+d
n ) → H2, then the process C̃

(E)
xn also converges

in distribution to a Gaussian process Zx, as in (12), but now with the (deter-
ministic) mean function equal to

Rx(u1, u2) = H
[
DT

K Ċx(u1, u2) + tr
{

EK

2 C̈x(u1, u2)
}]

. (16)

Similarly as in Veraverbeke et al. (2011) [19] one can see from Corollary 1
and Theorem 2 that both estimators of the conditional copula have the same
asymptotic variances (provided the same bandwidth hn is used), but that the

bias of the estimator C̃xh does not involve terms coming from the dependence
of the marginal distributions on the covariate. See expressions (11), (12), (13)
and (16).

3. Functional covariate X

In this section we study the weak convergence of the, properly normalized,
empirical copula processes in case of a functional covariate.

Assume now that (Xi, Y1i, Y2i) is a sample of i.i.d. triples, where the Xis are
random elements with values in a functional space E , equipped with a semi-
metric d. Very commonly E = L2([a, b]), where L2([a, b]) is the class of square-

integrable functions on the interval [a, b] with d(χ,χ′) =
√∫ b

a
(χ(t)− χ′(t))2 dt.

In the following we will take E to be a separable Banach space endowed with a
norm ‖ · ‖. As argued in Ferraty et al. (2007) [10] the space is still very general
and the separability avoids measurability problems.

Also here we first introduce some notations and state some primary regularity
conditions.
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3.1. Notations and regularity conditions

Let us consider the Nadaraya-Watson weights

wni(χ, hn) =
K
(‖Xi−χ‖

hn

)
∑n

j=1 K
(‖Xj−χ‖

hn

) , i = 1, . . . , n, (17)

where K is a given (univariate) kernel. Another system of weights that natu-
rally extends to the functional covariate case is that of the k-nearest neighbour
weights; see Burba et al. (2009) [7]. On the other hand there is no unique gen-
eralization of local linear weights to the functional covariate case. For possible
suggestions see e.g. Báıllo and Grané (2009) [3], Barrientos-Marin et al. (2010)
[4] and Berlinet et al. (2011) [5]. For simplicity we concentrate only on Nadaraya-
Watson weights in the following, but with some further effort it might be shown
that the results also hold for k-nearest neighbour weights as defined in Burba
et al. (2009) [7].

Analogously as in Ferraty et al. (2007) [10] define

φ
Fj

χ,y(s) = EX

[
FjX (y)− Fjχ(y)

∣∣ ‖X − χ‖ = s
]
,

Note that the function φ
Fj

χ,y quantifies the expected difference FjX (y)− Fjχ(y)
when X is forced to be at a distance s from the point χ.

In an analogous way define

φH
χ,y1,y2

(s) = EX

[
HX (y1, y2)−Hχ(y1, y2)

∣∣ ‖X − χ‖ = s
]
,

and similarly for φC
χ,u1,u2

.
A very important role is played by the so called small ball probability function

ϕχ(h) = P (‖X − χ‖ < h) .

Further, for s ∈ [0, 1] put

τχ,h(s) =
ϕχ(h s)

ϕχ(h)
= P

(
‖X − χ‖ < sh

∣∣ ‖X − χ‖ < h
)
. (18)

In this functional covariate case the appropriate normalization factor for the
empirical processes turns out to be

√
nϕχ(hn). We consider the normalized

empirical processes

C
(E)
χn =

√
nϕχ(hn)

(
Cχh − Cχ

)
, C̃

(E)
χn =

√
nϕχ(hn)

(
C̃χh − Cχ

)
, (19)

which is in analogy with (5). Indeed, note that this normalization factor is
consistent with that in Section 2 as for E = Rd one gets (see e.g. Ferraty and
Vieu, 2002 [9], Chapter 13).

ϕx(h) =
πd/2hd

Γ(d2 + 1)
fX(x) + o(hd), where Γ(·) is the gamma function,

and hence the order of the normalization factor
√
nϕχ(hn) in (19) coincides

with that of
√
nhd

n in (5).
We now state the weak convergence results for the processes in (19).
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3.2. Results for the estimator Cχh of type (1)

The following theorem is proved in Appendix B.

Theorem 3. Assume (F0)–(F4) and (R2) of Appendix B. Then C
(E)
χn has a

linear asymptotic representation

C
(E)
χn(u1, u2) =

√
nϕχ(hn)

n∑

i=1

wni(χ, hn) ξi(u1, u2) + oP (1),

with ξi(u1, u2) as defined in (8) (with χ replacing x).

Moreover if nϕχ(hn)h
2β
n → H2, then the process C

(E)
χn, defined in (19), con-

verges in distribution to a Gaussian process Zχ, as defined in (12) but now with
V =

√
M2/M1 and the mean function Rχ given by

Rχ(u1, u2) =
M̃β

M1

(
ϑH

(
F−1
1χ (u1), F

−1
2χ (u2)

)
− C(1)

χ
(u1, u2)ϑH

(
F−1
1χ (u1),∞

)

−C(2)
χ

(u1, u2)ϑH

(
∞, F−1

2χ (u2)
))

. (20)

The quantities M1,M2 and M̃β are defined in respectively (B2), (B6) and (B5)
in Appendix B.

If nϕχ(hn)h
2β
n → 0 then the asymptotic bias given by the function Rχ di-

minishes. On the other hand if nϕχ(hn)h
2β
n → ∞, then the bias dominates the

variance. Thus the assumption nϕχ(hn)h
2β
n = O(1) gives the optimal rate of

convergence. But it should be said that the practical impact of such a result
appears as rather limited given the current state-of-the-art of the research area.
The general problem is that a random element with values in a functional space
is generally a very complex object and it is not clear yet what are reasonable
assumptions about its distribution.

To be more explicit, it is already well-understood that the variability of kernel
estimators with functional covariate depends on the behaviour of the small ball
probability function ϕχ(h) near zero. For many standard processes, see e.g.
Ferraty and Vieu (2006) [11], Ferraty et al. (2007) [10], and Hall et al. (2009) [14],
one gets ϕχ(h) = o(hd), where dmight be arbitrarily high. Roughly speaking this
means that such a process is near χ more sparse than a continuous multivariate
covariate of arbitrarily high dimension near a point with a positive density.
This somehow violates the philosophy of functional data analysis, which states
that switching from multivariate to functional variables helps to deal with the
curse of dimensionality. In fact the small ball probability function ϕχ(h) is
directly linked with the concentration properties of a functional variable X .
Obviously this small ball probability depends on the choice of the semi-metric
(and consequently norm). Appropriate choices of semi-metrics can thus lead to
an increase in the concentration properties of the functional variable X . The
co-called projection type semi-metrics are of this type, and a general procedure
for construction can be found in Lemma 13.6 of Ferraty and Vieu (2006) [11].
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Next, the lack of sense what is reasonable to assume about the distribution
of X also affects our ability to check assumption (F3) in Appendix B about the
behaviour of the function φH

χ,y1,y2
(s) near zero. Note that if E = R then

φH
χ,y1,y2

(s) ∼ 1
2 (Hx−s(y1, y2)−Hx(y1, y2)) +

1
2 (Hx+s(y1, y2)−Hx(y1, y2))

∼ s2

2 Ḧx(y1, y2),

thus one would expect that β = 2 is a reasonable assumption. On the other hand
in nonparametric regression with a functional covariate Ferraty et al. (2007) [10]
and (2010) [8] explicitly assume (when translating to the context of estimation
of distribution functions) that ∂φH

χ,y1,y2
(s)/∂s at s = 0 is non-vanishing and

finite, which corresponds to the case β = 1.

As it is usually rather difficult to find the highest possible β in (F3) even
if the model is specified, researchers often assume Lipschitz continuity in the
covariate of the quantity of interest. Let us suppose that there exists γ > 0 such
that

∃C<∞∀χ′∈E sup
y1,y2

|Hχ′ (y1, y2)−Hχ(y1, y2)| ≤ C [d(χ,χ′)]γ .

Then we can arrive at Theorem 3 with Rχ(u1, u2) = 0 provided that

nϕχ(hn)h
2 γ
n → 0, as n → ∞.

3.3. Results for the estimator C̃χh of type (3)

Similarly as in the case of a univariate covariate, it seems to be advisable to try
to remove the effect of the covariate on the marginal distributions.

To guarantee an analogous result as stated in Theorem 2 we need regular-
ity assumptions, listed in Appendix B. Most of them just guarantee that the
assumptions made in the previous section hold in some sense uniformly on a
neighbourhood of the point of interest.

Note that assumption (F̃5) in Appendix B is specific for a functional co-
variate, as for a univariate or multivariate covariate it is satisfied. Somebody
may find this assumption rather restrictive as the unit ball in a Banach space is
totally bounded if and only if the space has a finite dimension. But on the other
hand, there are many interesting sets of functions that satisfy this assumption.
For instance all the sets of functions for which we can find finite covering or
bracketing numbers (see e.g. van der Vaart and Wellner (1996) [18]) are to-
tally bounded. Note that a condition similar to (F̃5) is also assumed in Ferraty
et al. (2010) [8]. Their assumption (C7) (together with (C6)) implies that for
a given ε > 0 for all sufficiently large n there exists a finite cover such that
the diameter of each element of the cover is at most ε for each of the sets
B(χ/hn, 1) = {χ′ ∈ E , ‖χ′ − χ/hn‖ ≤ 1}.

The next theorem states the weak convergence result for the second normal-
ized empirical process in (19).
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Theorem 4. Assume (F0), (F̃1)–(F̃5) and (R̃2) of Appendix B. Then the
linear asymptotic representation

C̃
(E)
χn(u1, u2) =

√
nϕχ(hn)

n∑

i=1

wni(χ, hn) ξ̃i(u1, u2) + oP (1),

holds, with ξ̃i as in (15) (with χ replacing x).

If moreover nϕχ(hn)h
2β
n → H2, then the process C̃

(E)
χn, defined in (19), con-

verges in distribution to a Gaussian process Zχ, as defined in (12) with V =√
M2/M1 and the drift function Rχ given by

Rχ(u1, u2) =
M̃β

M1
ϑC(u1, u2).

Remark 1. Comparing Theorems 3 and Theorems 4 one can see that asymp-
totic variances of both estimators are the same. The comparison of the bi-
ases is less straightforward here than for a univariate or multivariate covari-

ate. To get some insight into the problem, recall that C
(j)
X = ∂CX /∂uj and

C
(i,j)
X = ∂2CX /∂ui∂uj. Further suppose that for j = 1, 2 uniformly in (u1, u2)

E
[(

C
(j)
X (u1, u2)− C(j)

χ
(u1, u2)

) (
FjX

(
F−1
jχ (uj)

)
− uj

) ∣∣ ‖X − χ‖ = s
]

= sβϑC(j)Fj
(u1, u2) + o(sβ),

E
[
C

(j,j)
X (u1, u2)

(
FjX

(
F−1
jχ (uj)

)
− uj

)2 ∣∣ ‖X − χ‖ = s
]

= sβϑC(j,j)F 2
j
(u1, u2) + o(sβ),

and finally

E
[
C

(1,2)
X (u1, u2)

(
F1X

(
F−1
1χ (u1)

)
− u1

) (
F2X

(
F−1
2χ (u2)

)
− u2

) ∣∣ ‖X − χ‖ = s
]

= sβϑC(1,2)F1F2
(u1, u2) + o(sβ),

where the functions ϑC(j)Fj
(u1, u2), ϑC(j,j)F 2

j
and ϑC(1,2)F1F2

are continuous.

Then one can derive that the function Rχ of (20) can be expressed as

Rχ =
M̃β

M1

(
ϑC + ϑC(1)F1

+ ϑC(2)F2
+ 1

2 ϑC(1,1)F 2
1
+ ϑC(1,2)F1F2

+ 1
2 ϑC(2,2)F 2

2

)
.

Thus similarly as for a univariate or multivariate covariate one can see that the
bias structure of the estimator C̃χh is much simpler as it does not include the
several terms coming from the effect of the covariate on the marginal distribu-
tions. That is why we generally recommend trying to reduce the effect of the
covariate on the marginal distributions.
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Remark 2. We can get rid of assumption (F̃4) if we slightly undersmooth.
More precisely instead of (F̃4) suppose that:

(F̃4’) There exists η > 0 such that the bandwidths hn, gn1 and gn2 satisfy

ϕχ(hn)(logn)1+η

ϕχ(gjn) → 0,
nϕχ(gjn) g2β

nj

(logn)1+η = O(1), n ϕχ(hn) → ∞. (21)

Then it can be proved that Theorem 4 holds with Rχ ≡ 0.

Note however that (21) implies nϕχ(hn)h
2β
n = o(1). Hence, this means that

no optimal bandwidth, as in (B3), can be used.

4. Conditional association measures derived from the conditional
copulas

Similar to the unconditional case, we can measure the association between Y1

and Y2, given X = χ by the conditional Kendall’s tau

τY1,Y2(χ) = 4

∫∫
Cχ(u1, u2) dCχ(u1, u2)− 1,

and the conditional Spearman’s rho

ρY1,Y2(χ) = 12

∫∫
Cχ(u1, u2) du1 du2 − 3,

expressed with the help of the conditional copula Cχ.

With the nonparametric estimators of the conditional copula as defined in
Section 1 we can estimate the conditional Kendall’s tau by

τ̂n(χ) =
4

A(χ)

n∑

i=1

n∑

j=1

wni(χ, hn)wnj(χ, hn) I{Y1i < Y1j , Y2i < Y2j} − 1, (22)

where A(χ) = 1 − ∑n
i=1 w

2
ni(χ, hn) and the (Y1i, Y2i) can be replaced with

(Ũ1i, Ũ2i) defined in (2) if the relationship could be blurred with the effect of the
covariate on the marginal distribution. We will denote this estimator as τ̃n(χ).
The use of the conditional Kendall’s tau estimators τ̂n(χ) and τ̃n(χ) will be
illustrated in the simulation section (Section 5) and in the real data application
(Section 6).

In a similar fashion a nonparametric estimator for the conditional Spearman’s
rho is

ρ̂n(χ) = 12

∫∫
Cχh(u1, u2) du1 du2−3 = 12

n∑

i=1

wni(χ, hn)(1− Û1i)(1− Û2i)−3,

with Û1i = F1χh(Y1i) and Û2i = F2χh(Y2i).
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5. Simulation study

To complement the theoretical results we provide here a simulation study to
illustrate the finite-sample performance of the estimator Cχh of (1) and the

estimator C̃χh of (3). We include also the ‘benchmark’ estimator that corre-
sponds to the estimator Cχh calculated from the (unobserved) (U1i, U2i)

T =
(F1Xi

(Y1i), F2Xi
(Y2i))

T. This estimator corresponds to the situations when con-
ditional marginal distributions are known and/or the covariate does not affect
the marginal distributions.

For brevity of presentation while addressing various aspects of the studied
problem, we focus on estimation of the conditional copula at some fixed covariate
value for the multivariate covariate case, and on estimation on the conditional
Kendall’s tau function for the functional covariate case.

5.1. Multivariate covariate

In this section we are interested in estimation of a conditional copula for a two- or
three-dimensional covariate at a given point x = (x1, . . . , xd)

T. The performance
of the estimators is evaluated using the average (over all simulations) of the
integrated squared error

∫ 1

0

∫ 1

0

[
Ĉxh(u1, u2)− Cx(u1, u2)

]2
du1 du2 ,

where Ĉxh stands for an estimator of a conditional copula.
The model for the marginals is given by Y1 = µ1(X) + ε1 and Y2 = µ2(X) +

ε2, where the covariates X = (X1, . . . , Xd)
T are supposed to be independent

standard normal variables, and with (for d = 2 of 3)

µ1(X) = X1−X2− (d−2)X3, µ2(X) = cos(X2−1)− sin(X1−1)+(d−2)X3.

Further, ε1 and ε2 are standard normal random variables with the joint condi-
tional distribution function for X = x (with x = (x1, . . . , xd)) given by

P
(
ε1 ≤ e1, ε2 ≤ e2

∣∣X = x
)
= Cθ(x)(Φ(e1),Φ(e2)),

where Φ is the distribution function of a standard normal random variable and
Cθ(x) is a Frank copula with the copula parameter depending on the point x
and given by

θ(x) = 5 + 7
(

1
1+exp{2 x2

1−4x1−x2+(d−2)(x3−1)2−1}
− 1

2

)
.

To calculate the estimators we use B = h2
n Id and a multiplicative kernel

K(y) =
∏d

i=1 k(yi) with k being a triweight kernel function k(z) = 35
32 (1 −

z2)3 I{|z| ≤ 1}. The local linear weights of Ruppert and Wand (1994) [16] are
used.
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Fig 1. Copula estimation for d = 2.
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Fig 2. Copula estimation for d = 3.

We estimate the conditional copula at the point x = (1, 1), for d = 2, and at
the point x = (1, 1, 1) for d = 3. Results based on 1 000 simulated samples of
size n = 300 are in Figures 1 and 2 respectively, where we present (from left to
right) the average of the integrated squared bias (AISB), the average of the in-
tegrated variance (AIV) and the average of the integrated squared error (AISE),
plotted as functions of the bandwidth h. The dotted-dashed curve shows the re-
sult for the estimator Cxh of (1), the solid curve for the estimator C̃xh with g1 =
g2 = 2 h and finally the dashed curve stands for the benchmark estimator (where
we use the information on the marginals to transform these). Using the same
line types we depict as horizontal lines the values of AISB, AIV and AISE when
a plug-in bandwidth choice (mimicking the procedure described in Section 2.3
of Gijbels et al. (2011) [12]) is applied for each of the three displayed estimators.

Note that in the considered simulation models the marginals clearly depend
on the covariates (through regression models) and hence in this situation ad-
justing for the effect of the covariates on the marginals is quite crucial to obtain
a good performing estimator. Once the effect of the covariates is removed from
the marginals, the curves of the integrated squared error of the estimator C̃xh

and of the benchmark estimator become flat and even large bandwidths give
still very reasonable results. So by removing the effect of the covariates on the
marginals, the choice of the bandwidth seems to have a lesser impact for the
estimator C̃xh, as compared to the estimator Cxh.
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Note that the estimator C̃xh is quite close to the benchmark estimator. The
results of C̃xh could be further slightly improved when one uses more specific
models instead of the general approach given in (2) to adjust the marginals for
the effect of the covariate. For instance additive models would be completely
appropriate for this purpose in this setting. See also Section 7.

The results for d = 2 and d = 3 are similar, with somewhat larger errors for
the d = 3 case, and the estimator C̃xh that is not so close to the benchmark
estimator as for d = 2. With increasing dimension of the covariate it is more
difficult to adjust the marginals for the effect of the covariate.

5.2. Functional covariate

In this section we consider the following general model:

Y1 = µ1(X ) + ε1, Y2 = µ2(X ) + ε2,

where ε1 and ε2 are standard normal random variables with the joint conditional
distribution function of (ε1, ε2) for X = χ given by

P
(
ε1 ≤ e1, ε2 ≤ e2

∣∣X = χ
)
= Cθ(χ)(Φ(e1),Φ(e2)),

where Cθ(χ) is a Frank copula with the parameter θ(χ) depending on the func-
tional covariate X (t) that is observed at the equispaced points 0 = t0 < t1 <
· · · < t100 = π. Further elements of the different simulation models are listed
in Table 1. Herein, the random variables A1,A2, A3 and A4 are independent
random variables uniformly distributed on [0, 1].

The aim of this section is also to provide illustrations of various aspects of
the application in Section 6. We therefore focus on estimation of the conditional

Table 1

Simulation models for the functional covariate case

functional covariate X (t) = A1 cos(2 t) + A2 sin(4 t)

+A3(t2 − π t+ 2 π2

9
) + A4 π

A µ1(X ) and µ2(X ) µ1(X ) =
∫ π
0 t cos(t) [X ′(t)]2 dt

µ2(X ) =
∫ π
0

sin(t) [X ′(t)]2 dt

copula parameter function θ(X ) = 2
(∫ π

0 [χ′(t)]2 dt
)1/2

functional covariate as in Model A

B µ1(X ) and µ2(X ) as in Model A

real-valued covariates X1 =
∫ π
0 X (t)dt and X2 =

(∫ π
0 [X ′(t)]2 dt

)1/2

copula parameter function as in Model A

functional covariate as in Model A

C µ1(X ) and µ2(X ) µ1(X ) = 2 sin( 1
2
X2) and µ2(X ) = 0

real-valued covariates X1 and X2 as in Model B

copula parameter function as in Model A

functional covariate X (t) = A1 cos(2 t) + A2 sin(2 t) + A3 π

D µ1(X ) and µ2(X ) µ1(X ) = 2 sin( 1
2
X2) and µ2(X ) = 2 cos( 1

2
X2)

real-valued covariates X1 and X2 as in Model B

copula parameter function θ(X ) = 4
(∫ π

0 [χ′(t)]2 dt
)1/2
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Kendall’s tau at all points of the sample. We measure the performance of an
estimator τ̂(χ) of τ(χ) via the ‘integrated squared error’

ISE =

∫

E

[τ̂ (χ)− τ(χ)]2 dFn(χ) =
1

n

n∑

i=1

[τ̂ (χi)− τ(χi)]
2 , (23)

where Fn stands for the empirical distribution of the functional covariate in a
given sample. The quantity ISE in (23) is then further averaged across all 1 000
simulations. Note that ISE can be decomposed into the ‘squared integrated bias’

SIB =

[∫

E

(τ̂ (χ)− τ(χ)) dFn(χ)

]2
=

[
1

n

n∑

i=1

τ̂ (χi)−
1

n

n∑

i=1

τ(χi)

]2

=
[
¯̂τ − τ̄

]2

and the ‘integrated variance’

IV =

∫

E

[
τ̂ (χ)− τ(χ)− (¯̂τ − τ̄ )

]2
dFn(χ) =

1

n

n∑

i=1

[
τ̂ (χi)− τ(χi)− (¯̂τ − τ̄ )

]2
.

An estimator for the conditional Kendall’s tau is given in (22).

5.2.1. Simulation results for Model A

Simulation model A is inspired by the data generation process used in Ferraty
et al. (2010) [8]. In a typical sample from this model the conditional Kendall’s
tau ranges from 0.1 to 0.6 with the average value of 0.4.

We consider the following four estimators:

• orig.: The original observations (Y1i, Y2i) are used in (22);

• unif.: The pseudo-observations (Ũ1i, Ũ2i) of (2) are used in (22);
• nonp.regr.: The residuals from the nonparametric regression of Y1 and Y2

on X are used in (22);
• bench.: The unobserved (ε1, ε2) are used in (22).

To calculate the estimators, a triweight kernel function given by k(z) =
35
32 (1 − z2)3 I{|z| ≤ 1} and Nadaraya-Watson weights (17) as well as k-nearest
neighbour weights, as in Burba et al. (2009) [7], are used.

As distance function we consider the L2-norm of a difference of observed
functions (denoted by d2) and the L2-norm of a difference of the first derivatives

of observed functions (denoted by d
(1)
2 ). Note that the latter seems to be more

appropriate here taking into account the structure of Model A.
For the nonparametric regression fit needed for the estimator nonp.regr.

we use the R software functions funopare.kernel.cv (for the NW-weight system)
and funopare.knn.gcv (for the k-nearest neighbour weights) that are available at
the website http://www.math.univ-toulouse.fr/staph/npfda/. Finally, the band-
widths returned by the function funopare.kernel.cv are used as gn1 and gn2 in
the calculation of the estimator unif. based on (Ũ1i, Ũ2i).

http://www.math.univ-toulouse.fr/staph/npfda/
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Fig 3. Conditional Kendall’s tau estimators for a functional covariate when the L2-norm of
the first derivative is used.

In the top (respectively bottom) panel of Figure 3, the simulation results
for sample size n = 200 using the distance function based on the first deriva-

tive (d
(1)
2 ), are presented for the NW-weights (respectively the k-nearest neigh-

bour weights; where α = k
n ). The results for the two type of weights are very

similar. Note also the similarity with the results for a multivariate covariate.
The estimators unif. and nonp.regr. are both very close to the benchmark
estimator. The estimator nonp.regr. is doing slightly better than the estimator
unif., as nonparametric regression is, for this model, the appropriate method
to adjust the marginals for the effect of the covariate.

The results for the standard L2-distance d2 are summarized in Figure 4. In
this case, both estimators unif. and nonp.regr. are doing considerable worse
than the benchmark estimator. The reason is that the distance d2 is not so
well suited as d

(1)
2 for adjusting the marginals for the effect of the covariate.

A closer inspection of the results also reveals that the benchmark estimator is

doing worse for the distance d2 than for the (more appropriate) d
(1)
2 .

5.2.2. Conditioning on a functional covariate or on a summarizing real-valued
covariate

When dealing with a complex covariate one might wonder whether it is not pos-
sible to replace the covariate with a simpler quantity that is easier to handle. The
success of this strategy depends on how well this simpler quantity substitutes
the complex covariate.
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Fig 4. Conditional Kendall’s tau estimators for a functional covariate when the L2-norm is
used.

To illustrate this we consider Models B and C, which go back to Model A,
but where now we define two scalar summaries X1 and X2 of the functional
covariate X (from Model A). For a real-valued covariate, one can simply use the
approach of Gijbels et al. (2011) [12] and Veraverbeke et al. (2011) [19].

When calculating the estimator of the conditional Kendall’s tau based either
on X1 or X2 we take Nadaraya-Watson (or k-nearest neighbour) weights based
on the same kernel as for the other estimators. For brevity we only present
results for the C̃-type estimators, and for nearest neighbour weights.

Note that in Models A and B the dependence of the copula parameter on the
functional covariate is fully described through X2 (but not at all through X1),
but that this is not the case for the dependence of the marginals on the functional
covariate. This is in contrast with Models C and D where the dependence of the
marginals and the copula parameter is fully captured through the real-valued
covariate X2. These models can thus be used to investigate how much we loose
if the conditioning is done upon a functional covariate whereas it could have
been done simply via a real-valued covariate. Also for Model D the conditional
Kendall’s tau ranges from 0.1 to 0.6 with the average value of 0.4.

The results for Model B are presented in Figure 5. The dotted-dashed curve is
the result for the estimator based on X1 and the dotted curve for the estimator
based on X2. As in Figures 3 and 4 the solid curve represents the estimator C̃χh

and the dashed curve stands for the benchmark estimator (both based on d
(1)
2 ).

From Figure 5 it is seen that the X1-based estimator is performing very bad,



Complex covariates and conditional copulas 1291

0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Averaged SIB

α

X1−based
X2−based
unif.
bench.

0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Average IV

α

X1−based
X2−based
unif.
bench.

0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Averaged ISE

α

X1−based
X2−based
unif.
bench.

Fig 5. Conditional Kendall’s tau estimators for Model B, when conditioning on the scalars
X1 or X2, or on the functional covariate.
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Fig 6. Conditional Kendall’s tau estimators, for Model C, when conditioning on the scalars
X1 or X2, or on the functional covariate.

due to the enormous bias of the estimator. The X2-based estimator is doing
much better, but also does not really have a satisfactory performance. In this
model none of the two real-valued covariates can fully describe the dependence
structure.

Figure 6 shows the results for Model C. Note that the X2-based estimator is
slightly preferable to the unif. estimator (as well as to the benchmark estima-
tor) only for small α. With increasing α the differences between the estimators
diminishes. The reason behind this is that for larger values of α, the covariates

with similar values of X2 are also close when the distance is measured by d
(1)
2

for the functional covariate.
In contrast to this, for Model D, similar values ofX2 can be given by curves of

the functional covariate that are far away when measured by the distance d
(1)
2 .

The results for Model D are in Figure 7. Note that the X2-based estimator is
doing even slightly better than the benchmark estimator. Although in this case,
conditioning on the functional covariate is not necessary, we see that by doing
so the conditional Kendall’s tau estimator still behaves reasonably well, and
little harm has been done by considering the functional covariate instead of the
real-valued covariate X2.
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Fig 7. Conditional Kendall’s tau estimators, for Model D, when conditioning on the scalars
X1 or X2, or on the functional covariate.

6. Application to real data

The tecator dataset contains 215 spectra of light absorbance as functions of
the wavelength, observed on finely chopped pieces of meat. These data were first
studied by Borggaard and Thodberg (1992) [6]. The original data come from
a quality control problem in the food industry and can be found at website
http://lib.stat.cmu.edu/datasets/tecator. For each finely chopped pure meat
sample a 100 channel spectrum of absorbances (− log 10 of the transmittance
measured by a spectrometer) and the contents of moisture (water), fat and pro-
tein were measured. The 215 spectral curves (100 discretely observed values
each; over a common grid of wavelength points) are presented in Figure 8(a).
To each spectral curve corresponds a three-dimensional vector – percentage of
(fat, protein, water) in each piece of meat. In this analysis we concentrate on
the relationship between fat and protein.

For simplicity we summarize the degree of dependence by the conditional
Kendall’s tau (see Section 4). To calculate the estimator in (22) we use Nadaraya-
Watson weights defined by (17). The kernel function is chosen to be K(u) =
1−u2 for u ∈ [0, 1] and zero otherwise. For a given χ the bandwidth hn is taken
to be such that the ball of radius hn contains 60 observations (note that this
corresponds to a k-nearest neighbour type of bandwidth; see Burba et al. (2009)

[7]). For calculating (Ũ1i, Ũ2i) defined in (2) we set gn1 = gn2 such that ball of
radius gn1 contains 30 observations.

We consider two distance functions on the covariate space, denoted by d2
and d

(2)
2 . While, the first one is the standard L2-norm of a difference between

two spectral curves, the second one is the L2-norm based on a difference of the

second derivatives of two spectral curves. We include the distance function d
(2)
2

as it is often used in the functional data framework analysis of this data set, see
e.g. Ferraty and Vieu (2002) [9], (2006) [11], Ferraty et al. (2007) [10], (2010)
[8] and Burba et al. (2009) [7] among others.

In Figure 9(a) a scatterplot of the percentages of fat and of protein for the 215
meat samples are plotted. This reveals that there is a strong negative relation-
ship between protein and fat percentage with Kendall’s tau equal to −0.69. In

http://lib.stat.cmu.edu/datasets/tecator
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Fig 8. The spectrometric curves data (a), and the second derivatives of these curves (b),
with indication of two particular curves: with the smallest (respectively largest) estimated
conditional Kendall’s tau: dotted-dashed (respectively solid) curves.

Figure 9(b) we plot ( n
n+1Fn1(Y1i),

n
n+1Fn2(Y2i)), where F1n (F2n) are the (un-

conditional) empirical distribution functions of the Yi1’s (Yi2’s) observations, i.e.
the original data transformed in an unconditional way to uniform margins. Fig-
ures 9(a) and (b) reveal a similar strong negative relationship between protein
and fat percentage. A question that rises is: How different is this relationship for
different (types of) spectral curves? Or also: How does this relationship change
when conditioning on spectral curves that are close in the sense of one of the
two considered semi-metrics? Answering these questions can help in identifying
clusters of food with a similar dependence between fat and protein.

We first consider the distance function d2 (based on the standard L2-norm).
For each of the spectral curves Xi we estimate the conditional Kendall’s tau
τ̂n(Xi) (τ̃n(Xi)) by formula (22). Further, we take the minimal envelope (that is
the pointwise minimum) of the spectral curves as the reference curve. This seems
to be an appropriate reference curve in this example given the somewhat layered
appearance of the spectral curves. In Figure 10(a) the conditional Kendall’s tau
estimates (τ̂n(χi) and τ̃n(χi)) are depicted, as a function of the distance from the
minimal envelope (reference) curve. The dashed horizontal line represents the
standard (unconditional) Kendall’s tau (−0.69) measuring the global association
between fat and protein.

Note that both estimates τ̂n and τ̃n are very close (although τ̃n is for most
of the data points slightly more negative) which indicates that the marginal
distributions are almost unaffected by the covariate when the L2-norm is con-
sidered. This is also confirmed by Figure 9(c) where the adjusted observations

(Ũ1i, Ũ2i) (defined in (2)) are plotted. The relationships of the original observa-
tions (Figures 9(a) and (b)) and of the adjusted data (conditionally transformed
margins) in Figure 9(c), seem to follow a very similar pattern. Finally, the main
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Fig 9. Protein vs. Fat: (a) Original observations; (b) Original data (unconditionally) trans-

formed to uniform margins; Transformed data (Ũ1i, Ũ2i), defined in (2), when d2 is used –

(c); when d
(2)
2 is used – (d).

message of this analysis is that (see Figure 10(a)) the conditional Kendall’s tau
drops (from about −0.6 to about −0.8) when moving from the minimal envelope
to the curves with distances slightly above one and then comes back to about
−0.65. When focusing for example on the τ̂n estimated values one can see that
the conditional Kendall’s tau ranges from −0.80 to −0.55, where the curves that
correspond to these extreme values are indicated in Figure 8(a) as bold solid
and dotted-dashed curves. One can think of these as spectra for meat in which
the (negative) relationship between fat and protein is most (respectively less)
pronounced.

Now, let us switch to the distance function d
(2)
2 that is based on the L2-norm

of the second derivatives. The zero function is used here as a reference function.
Thus in Figure 10(b) the estimates of the conditional Kendall’s tau (τ̂n and
τ̃n) are plotted against the L2-norm of the second derivative of a given spectral
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Fig 10. Conditional Kendall’s tau when d2 is used – (a); when d
(2)
2 is used – (b).

curve. Although the message of Figure 10(b) is not so clear as the message
of Figure 10(a) there are several interesting things to note. First, the estimates

of the conditional Kendall’s tau are much closer to zero for d
(2)
2 than for d2. This

indicates that the second derivative of a spectral curve explains a significant part
of the dependence of protein and fat. In Figure 8(b) we depict the (discrete)
second-order derivatives of the original spectra. In this figure we indicate the
two curves for which the estimator τ̃n achieves the minimal and maximal value
(respectively −0.51 and 0.12). One can think of these as (derivative) spectra
for meat in which the relationship between fat and protein is largest negative,
respectively largest positive.

Further analysis reveals that the adjusted estimator τ̃n is for approximately
74 percent of the observations higher than τ̂n, with the difference being as high
as 0.45. It is also interesting to look at Figure 9(d) that depicts the adjusted

observations (Ũ1i, Ũ2i) (based on the distance function d
(2)
2 ). When comparing

Figures 9(c) and (d) one can see that when adjusting for the effect of the covari-

ate on the marginal distributions using d
(2)
2 , there is no longer such an obvious

pattern of negative relationship between fat and protein as in the case when
d2 is used. This finding points in the same direction: the second derivative of a
spectral curve explains a significant part of the dependence of protein and fat.

In conclusion, the L2-distance based on the second derivative of the spectral
curves proves to be more informative than the standard L2-distance not only
when fitting marginal distributions of either fat or protein (cfr previous analyses
in the literature), but also when one is interested in the relationship between fat
and protein. Focusing on the spectral curves that are close in d2-sense, results
in estimates of the conditional Kendall’s tau ranging from −0.5 to −0.8 with
the average value 1

n

∑n
i=1 τ̂n(χi)

.
= −0.69 (or 1

n

∑n
i=1 τ̃n(χi)

.
= −0.62). When

focusing on the spectral curves that are close in d
(2)
2 -sense estimates of the
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Fig 11. For each given spectral curve Xi, estimates of τ̂n(Xi) based on the distance function

d2 plotted versus τ̂n(Xi) based on the distance function d
(2)
2 . right panel: similar plot but for

the estimator τ̃n(·).

conditional Kendall’s tau range for τ̂n from −0.61 to 0 (with the average value
−0.33) and for τ̃n from −0.51 to 0.12 (with the average value −0.23).

A referee pointed out that the need for having to choose a reference (spec-
tral) curve in the above analysis might, in other examples, be less evident. One
can avoid the choice of reference curves, by simply presenting estimates of the
conditional Kendall’s tau for given X = Xi (for each of the i = 215 spectral

curves). For the two distance functions (d2 and d
(2)
2 ) this leads to two estimated

values for each given spectral curve. Plotting these two numbers against each
other for all spectral curves results into Figure 11. The left panel shows the
results for the estimator τ̂n and the right one for the estimator τ̃n. For a visual
impression we also include the Lowess smoother on each scatter plot.

7. Further discussion

In this paper we introduced estimators of a conditional copula function when the
covariate is either a multivariate vector or a functional covariate. From these,
estimators of conditional association measures can then be easily obtained.

The proposed estimators are defined in terms of kernel weights, requiring
the choice of a bandwidth parameter. A study of theoretical optimal choices
of bandwidths would start from the theoretical bias and variance properties
of the estimators. These would then induce a discussion on practical choices
of bandwidth parameters, such as plug-in type of bandwidths. In Section 5 we
illustrate the impact of the choice of a bandwidth parameter on the performance
of the estimators in the current context. We also implemented a plug-in type of
bandwidth selector. However, a detailed study on optimal choices of bandwidth
parameters in (conditional) copula estimation, is mostly lacking so far.
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When dealing with multivariate covariates of dimension d, one needs to
smooth in d dimensions. This involves working with local neighbourhoods in
higher dimensions, and hence one cannot avoid to face the problem of curse
of dimensionality (large sample sizes are needed in high dimensions). The pre-
sented methods lead to good results for moderate sample sizes (a few hundred)
for dimensions up to 3. In multivariate nonparametric regression the curse of
dimensionality problem is dealt with by restricting the class of models to for
example additive models or single-index models. This could be done in the cur-
rent setting by assuming that the multivariate covariate influences Y1 as well as
Y2 through an additive regression model, or via a single-index model. Modeling
the conditional copula function could then be done in a semiparametric way
(see e.g. Abegaz et al. (2012) [1]), restricting the copula parameter function to
be modelled also in an additive way. This is the subject of future research.

In case of a functional covariate, there is also the issue of the choice of dis-
tance function (or norm) to measure the distance between two curves. In the
application in Section 6 we worked out analysis for two different distance func-
tions, revealing that: (i) a comparison between the analyses based on different
distances can lead to interesting findings; and (ii) some distance functions might
appear more natural than others in a given study.
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Appendix A: Multivariate covariate

Regularity assumptions for Theorems 1 and 2

The regularity assumptions needed in Theorems 1 and 2 are as follows.

Let us denote bn = max{hn, g1n, g2n}, I(n)x = {i : wni(x, bn) 6= 0} and J
(n)
x =

Conv{Xi, i ∈ I
(n)
x } where Conv stands for the convex hull. Let cn stand for a

sequence of positive constants such that n cn → ∞ and cn = O(n−1/(4+d)). The
following is a listing of assumptions on the system of weights {wni; i = 1, . . . , n}
in random design. The conditions for a fixed design, may be derived easily by
replacing Xi by xi and omitting the symbol P in the index.
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Assumptions (W1)

Let λd be the d-dimensional Lebesgue measure. Assume that λd(J
(n)
x ) = oP (1)

and

max
1≤i≤n

|wni(x, hn)| = oP

(
1√
nhd

n

)
,

n∑

i=1

wni(x, hn)− 1 = oP

(
1√
nhd

n

)
,

n∑

i=1

w2
ni(x, hn) = OP

(
1

nhd
n

)
,

n∑

i=1

wni(x, hn)(Xi − x) = OP

(
1√
nhd

n

)
.

Assumptions (W2)

Let w′
ni(z, gjn) denote the derivative with respect to z, ‖ · ‖ stands for the

Euclidean norm and ⊗2 stands for the outer product (that is x⊗2 = xxT).
Assume that

n∑

i=1

|wni(x, hn)| = OP (1), sup
z∈J

(n)
x

∣∣∣∣∣

n∑

i=1

wni(z, gjn)− 1

∣∣∣∣∣ = oP
(
g2jn

)
,

n∑

i=1

wni(x, hn)(Xi − x)⊗2 = OP

(
1√
nhd

n

)
,

sup
z∈J

(n)
x

n∑

i=1

[wni(z, gjn)]
2 = OP

(
1

n gd
jn

)
, sup
z∈J

(n)
x

n∑

i=1

‖w′
ni(z, gjn)‖2 = OP

(
1

ng2+d
jn

)
.

Assumptions (W3)

∃C<∞ P

[
sup

z∈J
(n)
x

max
1≤i≤n

∣∣wni(z, hn) I
{
‖Xi − z‖ > C hn

}∣∣ > 0

]
= o(1),

∃DK∈Rd,‖DK‖<∞ ∀cn sup
z∈J

(n)
x

∣∣∣∣∣

n∑

i=1

wni(z, cn)(Xi − z)− c2n DK

∣∣∣∣∣ = oP
(
c2n
)
,

∃
EK∈R

d×d,‖EK‖<∞ ∀cn sup
z∈J

(n)
x

∣∣∣∣∣

n∑

i=1

wni(z, cn)(Xi − z)⊗2 − c2n EK

∣∣∣∣∣ = oP
(
c2n
)
.

Assumptions about conditional distributions

We require the conditional copula Cz and the conditional marginal distribution
functions F1z and F2z to satisfy:

(R1) The functions Ḣz(F
−1
1x (u1), F

−1
2x (u2)) and Ḧz(F

−1
1x (u1), F

−1
2x (u2)) are uni-

formly continuous in (z, u1, u2), where z takes value in a neighbourhood
of x.
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(R2) For j = 1, 2, the jth first-order partial derivative of Cx (i.e. derivative
with respect to uj) exists and is continuous on the set {(u1, u2) ∈ [0, 1]2 :
0 < uj < 1}.

(R̃1) Ċz(u1, u2) = ∂
∂zCz(u1, u2), C̈z(u1, u2) = ∂2

∂z∂zTCz(u1, u2) exist and are
continuous as functions of (z, u1, u2), where z takes value in a neighbour-
hood of x.

(R̃2) For j = 1, 2, the j-th first-order partial derivative of Cz exists and is
continuous on the set U(x)×{(u1, u2) ∈ [0, 1]2 : 0 < uj < 1}, where U(x)
is a neighbourhood of the point x.

(R̃3) For j = 1, 2: Fjz(F
−1
jz (u)), Ḟjz(F

−1
jz (u)), F̈jz(F

−1
jz (u)) are continuous

as functions of (z, u) for z in a neighbourhood of x, where Ḟjz(y) =
∂
∂z Fjz(y), F̈jz(y) =

∂2

∂z∂zT
Fjz(y).

Appendix B: Functional covariate

We first state the regularity assumptions needed in Theorems 3 and 4 respec-
tively.

Regularity assumptions for Theorem 3

(F0) The functional Hz is continuous at the point χ uniformly in (y1, y2), that
is

sup
χ′∈E,‖χ′‖≤1

sup
y1,y2

∣∣Hχ+δ χ′(y1, y2)−Hχ(y1, y2)
∣∣ → 0, as δ → 0+.

(F1) It is assumed that

∀s ∈ [0, 1], τχ,h(s) → τχ,0(s), as h → 0+. (B1)

(F2) Suppose that the (univariate) kernel K is supported on [0, 1] and has a
continuous derivative on [0, 1), K ′(s) ≤ 0 and

M1 =

(
K(1)−

∫ 1

0

K ′(s)τχ,0(s)ds

)
> 0. (B2)

(F3) The function φH
χ,y1,y2

satisfies uniformly in (y1, y2)

φH
χ,y1,y2

(s) = sβ ϑH(y1, y2) + o(sβ), as s → 0+,

for some β > 0, where ϑH(F−1
1χ (u1), F

−1
2χ (u2)), viewed as a function of the

arguments (u1, u2), is continuous on [0, 1]2.
(F4) The bandwidth hn satisfies

nϕχ(hn) → ∞, n ϕχ(hn)h
2β
n = O(1). (B3)
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As K ′(s) ≤ 0, assumption (B2) might seem at first sight superfluous. But as
reviewed e.g. in Ferraty et al. (2007) [10] for a broad class of processes X the
small ball probability function is of order

ϕχ(h) ∼ C h−αe−C/hγ

, where α > 0, γ > 0. (B4)

This further implies that τχ,0 equals the Dirac mass at 1, which gives
∫ 1

0

K ′(s)τχ,0(s)ds = 0.

Thus in order to guarantee that M1 > 0 the assumption K(1) > 0 is usually
explicitly stated. As noted in Ferraty and Vieu (2006) [11] when the small ball
probability function is of order (B4), the rate of convergence of the nonpara-
metric estimator is only logarithmic which compromises the whole estimating
procedure.

Next to M1 it is useful to define the following constants

M̃β =

(
K(1)−

∫ 1

0

(
sβ K(s)

)′
τχ,0(s)ds

)
, (B5)

M2 =

(
K2(1)−

∫ 1

0

(
K2(s)

)′
τχ,0(s)ds

)
. (B6)

Regularity assumptions for Theorem 4

(F̃1) There exists an open neighbourhood U(χ) of χ such that sup
χ′∈U(χ)

ϕ
χ′(t)

ϕχ(t)

is a bounded function of t in a neighbourhood of 0. Moreover the func-
tions τχ,h(s) and τχ,0(s) defined in (18) and (B1) satisfy

sup
χ′∈U(χ)

sup
0≤s≤1

|τχ′,h(s)− τχ′,0(s)| = o(1), for h → 0+.

(F̃2) Suppose that the (univariate) kernel K is supported on [0, 1], has a con-
tinuous derivative on [0, 1), K ′(s) ≤ 0 and there exists an open neigh-
bourhood U(χ) of the point χ such that

inf
χ′∈U(χ)

M1χ′ > 0, where M1χ′ =

(
K(1)−

∫ 1

0

K ′(s)τχ′,0(s)ds

)
.

(F̃3) There exists an open neighbourhood U(χ) of the point χ such that the
functional φC

χ′,u1,u2
satisfies uniformly in (χ′, u1, u2)

φC
χ′,u1,u2

(s) = sβ ϑC(χ
′, u1, u2) + o(sβ), as s → 0+,

for some β > 0, where ϑC(χ
′, u1, u2), viewed as a function of (χ′, u1, u2),

is continuous on U(χ)× [0, 1]2. Analogously for j = 1, 2 uniformly in y

φ
Fj

χ′,y(s) = sβ ϑFj
(χ′, y) + o(sβ), as s → 0+,

where ϑFj
(χ′, F−1

jχ′ (u)), viewed as a function of (χ′, u), is continuous on
U(χ)× [0, 1].
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(F̃4) The bandwidths hn, gn1 and gn2 satisfy

nϕχ(hn) g
2β
jn = O(1), hn

gjn
= O(1), n ϕχ(min(hn, g1n, g2n)) → ∞.

(F̃5) The set B(0, 1) = {χ′ ∈ E , ‖χ′‖ ≤ 1} is totally bounded (that is, for
every ε > 0, there exists a finite cover such that the diameter of each
element of the cover is at most ε.).

Estimation of a conditional marginal distribution

It will be useful to summarize (and in some aspects slightly extend) some of the
results about nonparametric estimation of a conditional distributional function
in this functional covariate setting.

Assume for this purpose that (Xi, Yi) is a sample of i.i.d. pairs and Fχh(y) is
an estimator of the conditional distribution of Y given X = χ, defined as

Fχh(y) =
Rn1(y)

Rn2
,

with

Rn1(y) =
1

nϕχ(hn)

n∑

i=1

K
(

‖Xi−χ‖
hn

)
I{Yi ≤ y} (B7)

and

Rn2 = Rn1(∞) =
1

nϕχ(hn)

n∑

i=1

K
(

‖Xi−χ‖
hn

)
. (B8)

Then by a standard decomposition

Fχh(y)−
ERn1(y)

ERn2
=

1

ERn2

(
Rn1(y)− ERn1(y)

)

− Rn1(y)

Rn2 ERn2

(
Rn2 − ERn2

)
. (B9)

By the same arguments as will be given later in Step 1 one can show that
the following process

Rn1(y) =
√

nϕχ(hn)
[
Rn1(y)− ERn1(y)

]
, y ∈ R,

where

Rn1(y) =

n∑

i=1

K
(

‖Xi−χ‖
hn

)
I{Yi ≤ y},

is asymptotically tight. This tightness together with assumption (F0) also im-
plies

Rn2 = ERn2 + oP (1) =
1

ϕχ(hn)
EK

(
‖X1−χ‖

hn

)
+ oP (1) = M1 + oP (1), (B10)
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where M1 was defined in (B2). For the last equation see the calculations done in
the proofs of Lemma 1 and Lemma 2 of Ferraty et al. (2007) [10]. Analogously
one can derive with the help of an analogy to assumption (F3) that

1
ϕχ(hn)

E
[
K

(
‖X1−χ‖

hn

)
[I{Y1 ≤ y} − Fχ(y)]

]
= O(hβ

n). (B11)

Finally, the asymptotic tightness of Rn1, (B7), (B8), (B9), (B10) and (B11)
imply that

sup
y∈R

|Fχh(y)− Fχ(y)| = OP

(
1

nϕχ(hn)

)
+O

(
hβ
n

)
. (B12)

Thus by a similar argument as in Veraverbeke et al. (2011) [19] one can show
that for each ε > 0

lim
n→∞

P
[
F−1
χ

(u− ε) ≤ F−1
χh (u) ≤ F−1

χ
(u+ ε), u ∈ [0, 1]

]
= 1. (B13)

B.1. Proof of Theorem 3

Although the structure of the proof follows that of the proof of Theorem 1 in
Veraverbeke et al. (2011) [19], contrary to that proof it is no longer useful to
condition on the value of the covariate. The issue is that such conditioning would
require tools as a Taylor expansion in the neighbourhood of χ that is no longer
straightforwardly available in this functional context.

For (u1, u2) ∈ [0, 1]2 put

Rn3(u1, u2) =
1

nϕχ(hn)

n∑

i=1

K
(

‖Xi−χ‖
hn

)
I
{
Y1i ≤ F−1

1χh(u1), Y2i ≤ F−1
2χh(u2)

}
,

and note that

Cχh(u1, u2) =
Rn3(u1, u2)

Rn2
, (B14)

where Rn2 was defined in (B8).

Process Rn3

Let us decompose the process Rn3 as

√
nϕχ(hn) Rn3 = Ahn

n +Bhn
n + Chn

n , (B15)

where Ahn
n = Dhn

n − EDhn
n , with

Dhn
n (u1, u2) =

1√
nϕχ(hn)

n∑

i=1

K
(

‖Xi−χ‖
hn

) [
I
{
Y1i ≤ F−1

1χh(u1), Y2i ≤ F−1
2χh(u2)

}

− I{Y1i ≤ F−1
1χ (u1), Y2i ≤ F−1

2χ (u2)}
]
,
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and

Bhn
n (u1, u2) =

= 1√
nϕχ(hn)

n∑

i=1

K
(

‖Xi−χ‖
hn

)
I
{
Y1i ≤ F−1

1χ (u1), Y2i ≤ F−1
2χ (u2)

}
(B16)

Chn
n (u1, u2) = EDhn

n (u1, u2) (B17)

=
√

n
ϕχ(hn)

E
{
K

(
‖X1−χ‖

hn

) [
I
{
Y11 ≤ F−1

1χh(u1), Y21 ≤ F−1
2χh(u2)

}

−I
{
Y11 ≤ F−1

1χ (u1), Y21 ≤ F−1
2χ (u2)

}]}
.

In the following two steps: 1. We show that the term Ahn
n is asymptotically

negligible uniformly in (u1, u2); 2. We find the asymptotic representation of the
processes Chn

n . Together with (B16) this will give us the asymptotic represen-
tation for the process Rn3.

Step 1 – Asymptotic negligibility of Ahn

n

The process Ahn
n can be viewed as an empirical process Zn indexed by the family

of functions from E × R2 to R given by

Fn =

{
(χ′, w1, w2) 7→ 1√

ϕχ(hn)
K

(
‖χ′−χ‖

hn

)
I{w1 ≤ G−1

1 (u1), w2 ≤ G−1
2 (u2)};

(u1, u2) ∈ [0, 1]2, G1, G2 : R → [0, 1] nondecreasing
}
.

Thus each function f ∈ Fn may be formally identified by (u1, u2, G1, G2). The
introduction of the process Zn is motivated by the fact that

Dhn
n (u1, u2) = Zn(fn)− Zn(f),

where
fn = (u1, u2, F1χh, F2χh), f = (u1, u2, F1χ, F2χ).

Finally, let us equip the index set Fn with a semimetric ρ defined as

ρ2(f, f ′) =
∣∣∣F1χ(G

−1
1 (u1))− F1χ(G

′−1
1 (u′

1))
∣∣∣+

∣∣∣F2χ(G
−1
2 (u2))− F2χ(G

′−1
2 (u′

2))
∣∣∣

and note that the semimetric space (Fn, ρ) is totally bounded.
Note that by Lemma 2.6.18(vi) of van der Vaart and Wellner (1996) [18] the

set Fn is a VC-class (Vapnik–Chervonenkis class) of functions with VC-index

independent of n and the envelope Fn = 1√
ϕχ(hn)

K(‖χ
′−χ‖
hn

) which satisfies

EF 2
n = O(1), ∀η>0 E

[
F 2
n I

{
Fn > η

√
n
}]

→ 0, as n → ∞. (B18)
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Further with the help of (F0) and the identity EY = E {E [Y |X ]} one can for
a given sequence {δn} of positive numbers going to zero estimate

sup
ρ(f,f)<δn

E (f(X1, Y11, Y12)− f ′(X1, Y11, Y12))
2

≤ sup
ρ(f,f ′)<δn

1
ϕχ(hn)

EK2
(

‖X1−χ‖
hn

) [∣∣F1X1(G
−1
1 (u1))− F1X1(G

′−1
1 (u′

1))
∣∣

+
∣∣F2X1(G

−1
2 (u2))− F2X1(G

′−1
2 (u′

2))
∣∣
]

≤ O(1) sup
ρ(f,f ′)<δn

[∣∣F1χ(G
−1
1 (u1))− F1χ(G

′−1
1 (u′

1))
∣∣

+
∣∣F2χ(G

−1
2 (u2))− F2χ(G

′−1
2 (u′

2))
∣∣ + o(1)

]

= O(1)
(
o(1) + δ2n

)
→ 0, as n → ∞. (B19)

Now thanks to (B18) and (B19) one can apply Theorem 2.11.22 of van der Vaart
and Wellner (1996) [18] which yields the asymptotic uniform ρ-equicontinuity of
the empirical process indexed by the functions from Fn. Further with the help
of (B12) one can mimic the corresponding computation done in Veraverbeke
et al. (2011) [19] and show that uniformly in (u1, u2)

ρ2
(
(u1, u2, F1χh, F2χh), (u1, u2, F1χ, F2χ)

)
= oP (1),

which further implies the asymptotic negligibility of the process Ahn
n .

Step 2 – Asymptotic representation of Chn

n

Similarly as in the proofs of Lemma 1 and Lemma 2 of Ferraty et al. (2007) [10]
one can make use of (B13) and assumption (F3) and derive

Chn
n (u1, u2) =

√
n

ϕχ(hn)
EK

(
‖X1−χ‖

hn

) [
HX1

(
F−1
1χh(u1), F

−1
2χh(u2)

)

−HX1

(
F−1
1χ (u1), F

−1
2χ (u2)

)]

=
√

n
ϕχ(hn)

EK
(

‖X1−χ‖
hn

) [
Hχ

(
F−1
1χh(u1), F

−1
2χh(u2)

)

−Hχ

(
F−1
1χ (u1), F

−1
2χ (u2)

)]
+

√
nϕχ(hn) o(h

β). (B20)

With the help of (F4) the last term on the right-hand side of (B20) is of order
o(1). Further, thanks to the last equation in (B10) it is sufficient to dealt with
the process

√
nϕχ(hn)

[
Cχ

(
F1χ

(
F−1
1χh(u1)

)
, F2χ

(
F−1
2χh(u2)

))
− Cχ(u1, u2)

]
. (B21)

Substituting 1 for u1 (or u2) in decomposition (B15) together with the asymp-
totic negligibility of the process Ahn

n and (B21) yields (uniformly in uj for
j = 1, 2)
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M1

√
nϕχ(hn)

[
Fjχ(F

−1
jχh(uj))− uj

]

= − 1√
nϕχ(hn)

n∑

i=1

K
(

‖Xi−χ‖
hn

) [
I
{
Yji ≤ F−1

jχ (uj)
}
− uj

]
+ oP (1). (B22)

Denote by Yjn the process on the right-hand side of equation (B13). This process
is asymptotically ρ-equicontinuous with ρ2(u, v) = |u − v| and the expectation
of this process can be made arbitrarily small by taking u close to either 0 or
1 and n sufficiently large. Thus a straightforward application of the results of
Section 3 of Segers (2012) [17], (B20), (B21) and (B22) imply

Chn
n (u1, u2) = −C(1)

χ
(u1, u2)Y1n(u1)− C(2)

χ
(u1, u2)Y2n(u2) + oP (1). (B23)

Now, combining Step 1 and Step 2 yields the representation

√
nϕχ(hn) Rn3 = Bhn

n − C(1)
χ

Y1n − C(2)
χ

Y2n + oP (1) (B24)

Thus (B10), (B14), (B16), and (B24) implies

√
nϕχ(hn)

(
Cχh − Cχ

)
=

√
nϕχ(hn)Rn3

Rn2
− Cχ

√
nϕχ(hn)Rn2

= 1
Rn2

(
Bhn

n − C(1)
χ

Y1n − C(2)
χ

Y2n − Cχ

√
nϕχ(hn)Rn2

)
+ oP (1),

which together with (B8) finally gives the statement of Theorem 3 about the

asymptotic representation of the process C
(E)
χn.

Proof of Theorem 4

The proof differs from the proof of Theorem 2 in Veraverbeke et al. (2011) [19]
in an analogous way as the proof of Theorem 3 of this paper differs from the
proof of Theorem 1 in Veraverbeke et al. (2011) [19]. The details are omitted
for the reason of brevity of the paper.
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