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Robert Brijder, Joris J.M. Gillis?, Jan Van den Bussche

Hasselt University and transnational University of Limburg
Belgium

Abstract. Recently we have introduced a formal graph-based data mo-
del for DNA complexes geared towards database applications. The model
is accompanied by the programming language DNAQL for querying data-
bases in DNA. Due to natural restrictions on the implementability and
termination of operations on DNA, programs in DNAQL are not always
well defined on all possible inputs. Indeed, a problem left open by our
previous work has been to devise a type system for DNAQL, with a
soundness property to the effect that well-typed programs are well de-
fined on all inputs adhering to given input types. The contribution of the
present paper is to propose such a type system and to establish sound-
ness. Moreover, we show that the type system is flexible enough so that
any database manipulation expressible in the relational algebra is also
expressible in DNAQL in a well-typed manner.

1 Introduction

Since Adleman’s experiment [2], many different models for DNA computing have
been invented and investigated, as can be learned from the books [3,16] and more
recent developments [11,24,18]. At the same time, DNA computing has also high
potential for database applications [4,7,25,20]. In this spirit, in recent work [13,5],
we have defined the programming language DNAQL: a programming language
specifically designed for the querying of databases in DNA. The goal of the
present paper is to provide DNAQL with a sound type system.

DNAQL is a query language rather than a general-purpose programming
language. It includes basic operators on DNA complexes in solution. Apart from
the application of these operators, programs are formed using a let-construct and
an if-then-else construct based on the detection of DNA in a test tube. Last but
not least, the language includes a for-loop construct for iterating over the bits
of a data entry, encoded as a vector of DNA codewords. Indeed, the number of
operations performed during the execution of a DNAQL program, on any input,
is bounded by a polynomial that depends solely on the dimension of the data,
i.e., the number of bits needed to represent a single data entry. This makes that
the execution time of programs scales well with the size of the input database.

A difficulty with DNAQL, and with DNA computing in general, however,
is that various manipulations of DNA must make certain assumptions on their
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input so as to be effectively implementable and produce a well-defined output.
Even when these assumptions are well understood for each operation in isola-
tion, the problem is exacerbated in an applicative programming language like
DNAQL, where the output of one operation serves as input for another. Indeed
the problem of deciding whether a given program will have well-defined behavior
on all possible intended inputs is typically undecidable. While this undecidabil-
ity is well known for Turing-complete programming languages, it remains so for
database languages that are typically not Turing-complete [6].

The standard solution to ensure well-definedness of programs is to use a type
system and check programs syntactically so as to allow only well-typed programs.
Well-devised type systems have a soundness property to the effect that, once a
program has been checked to be well-typed for a given input type, the behavior
of the program is then guaranteed to be well defined on all inputs of the given
type [17,14]. In the present paper, we propose a type system for DNAQL and
establish a soundness theorem. Moreover, we show that the type system is flexible
enough so that arbitrary relational databases can be represented as typed DNA
complexes, and so that arbitrary relational algebra expressions on these data
can be expressed by well-typed DNAQL programs. The relational algebra is the
applicative language at the core of standard database query languages such as
SQL [9,12,1].

We would like to make clear in what sense the present paper enhances previ-
ous work. That the relational algebra can be simulated in DNAQL has already
been shown [13], but only insofar as the dynamic behavior at run-time is con-
cerned. Here we show that the simulation can be syntactically guaranteed to be
possible with well-typed DNAQL programs only. Also in recent work [5] we for-
mulated a syntactic test on the well-definedness of hybridization, similar to weak
satisfiability [15]. This syntactic test is but one component of the type system
presented here, and here it is also extended to account for components of DNA
complexes that are immobilized on separation surfaces such as magnetic beads.

Most importantly, a crucial feature of the type system presented here is a
wildcard mechanism to account for the fact that the length (in bits), as well as
the actual values, of data entries are unknown at compile time. This mechanism is
integrated in a type-checking system that keeps track of mandatory components
in DNA complexes, as well as their hybridization status. The result is a type
system that allows a natural and flexible representation of structured data in
DNA, in a way so that a significant class of data manipulations can be typed as
programs in DNAQL.

2 Sticker Complexes

We recall [13,5] the data model of DNA sticker complexes, a graph-theoretically
defined formalization of DNA complexes of a limited format geared towards data
representation. Due to space limitations, we must be brief.

From the outset we assume a finite alphabet Σ. As customary in formal
models of DNA computing [16], each letter represents a string over the DNA
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alphabet {A,C,G, T}, such that the resulting set of sequences forms a set of
DNA codewords [8,22,23]. This should always be kept in mind. The alphabet Σ
is matched with its negative version Σ̄ = {ā | a ∈ Σ}, disjoint fromΣ. Thus there
is a bijection between Σ and Σ̄, which is called complementarity and is denoted
by overlining; we also set ¯̄a = a so complementarity is symmetric. Obviously, ā
stands for the Watson-Crick complement of the DNA sequence represented by a.
The elements of Σ are called positive symbols and the elements of Σ̄ are called
negative symbols.

For the purpose of data formatting we further assume that Σ = Λ∪Ω ∪Θ is
composed of three disjoint parts: the set Λ of atomic value symbols; the set Ω of
attribute names; and the set Θ = {#1,#2,#3,#4,#5,#6,#7,#8,#9} of tags.

The overall structure of a DNA complex is abstracted in the notion of pre-
complex. Formally, a pre-complex is a 6-tuple (V,L, λ, µ, ι, β), where

1. V is a finite set of nodes;

2. L ⊆ V × V is a set of directed edges without self-loops;

3. λ : V → Σ ∪ Σ is a total function labeling the nodes with positive and
negative alphabet symbols;

4. µ ⊆ [V ]2 = {{u, v} | u, v ∈ V and u 6= v} is a partial matching on the nodes,
i.e., each node occurs in at most one pair µ. Note that the pairs in µ are
unordered.

5. ι ⊆ V is the set of immobilized nodes; and

6. β ⊆ V is the set of blocked nodes.

Let C be a pre-complex as above. A strand of C is simply a connected
component of the directed graph (V,L), so ignoring µ. The length of a strand
is its number of nodes. A sticker complex (or complex for short) now is a pre-
complex satisfying the following restrictions:

1. Each node has at most one incoming and at most one outgoing edge. Thus,
each strand has the form of a chain or a cycle.

2. Strands are homogeneously labeled, in the sense that either all nodes are
labeled with positive symbols, or all with negative symbols. Naturally, a
strand with positive (negative) symbols is called a positive (negative) strand.

3. Every negative strand has length one or two; if it has length two, then it
must have a single edge (i.e., it cannot be a 2-cycle). Negative strands are
also referred to as “stickers”.

4. Matchings by µ only occur between complementarily labeled nodes: formally,
if {x, y} ∈ µ then λ(y) = λ(x).

5. A node can be immobilized only if it is the sole node of a negative strand.

6. Each component can contain at most one immobilized node.

7. Nodes in β do not occur in µ.

We see that the edges of a sticker complex indicate the sequence order within
strands, and the matching µ makes explicit where stickers have annealed to pos-
itive strands. The predicate β represents longer stretches of double strands and
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is used to restrict the places where hybridization can still occur [21]. Immobi-
lized nodes represent probes attached to magnetic beads or surfaces that can be
separated from the rest of the solution.

Components and redundancy. Two strands s and s′ are bonded if there
is a node v in s and some node v′ in s′ with {v, v′} ∈ µ. When two strands
are connected (possibly indirectly) by this bonding relation, we say they belong
to the same component. Thus a component of a pre-complex is a substructure
formed by a maximal set of strands connected by the bonding relation. Note
that a component of a pre-complex is in itself a pre-complex. We use comp(C)
to denote the set of components of pre-complex C. Conversely, we can view a set
of sticker complex components as a single sticker complex, basically by taking
the union.

The intention of our model is that a complex defines the structural content
of a test tube, which, however, will hold copies in surplus quantity of each com-
ponent. Thus, each component of a complex stands for multiple occurrences. We
formalize this using the notions of subsumption, equivalence, and minimality.

A pre-complex C1 is subsumed by pre-complex C2 if for each componentD1 in
C1 there is an isomorphic component D2 in C2. Two pre-complexes are equivalent
if they subsume each other. A component D in pre-complex C is redundant if
there exists a component D′ in C such that D and D′ are isomorphic. Note
that removing D from C yields an equivalent sticker complex. A pre-complex is
minimal if there are no redundant components.

Saturated complexes. We call a complex C saturated if there do not exist any
two nodes v and w such that adding the pair {v, w} still results in a legal sticker
complex. Intuitively, when a complex is saturated, hybridization is finished in
the complex.

Representation of data entries. Dimension of a complex. The three dis-
joint parts of the alphabet Σ = Λ∪Ω∪Θ serve distinct roles. Nodes labeled with
tags from Θ indicate regions in the complex that have a function for data manip-
ulation, as cleavage sites, or sites where stickers can anneal so as to circularize
or concatenate strands. Nodes labeled with attribute names from Ω are used as
annotations to data entries. Finally, the data entries themselves are represented
using nodes labeled by atomic value symbols from Λ.

Atomic value symbols fulfill the same function as bits in a digital computer.
A sequence of atomic value symbols represent a value, much like 100 is the
binary representation of the number 8. Similar to the word size (number of bits)
used in a digital computer to represent single data elements (such as integers),
we will use sequences of atomic value symbols of a fixed length `, called the
dimension. Let s = s1 . . . s` be a sequence of ` consecutive nodes of a strand of
a sticker complex. If all nodes are labeled with atomic value symbols, s is called
an `-core. Let s = s0 . . . s`+1 be a sequence of `+2 consecutive nodes of a strand
of a sticker complex. Such a sequence is called an `-vector if s0 is labeled with
#3, s`+1 is labeled with #4 and s1 . . . s` is an `-core.
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The dimension is now defined as follows. For a fixed value of `, we say that
sticker complex C has dimension `, if all nodes labeled with an atomic value
symbol occur in an `-vector. We then call C an `-complex.

3 DNAQL

DNAQL [13] is an applicative programming language for expressing functions
from `-complexes to `-complexes. A crucial feature of DNAQL is that the same
program can be applied uniformly to complexes of any dimension `. DNAQL
is not computationally complete, as it is meant as a query language and not a
general-purpose programming language. The language is based on a basic set
of operations on complexes, some distinguished constants, an emptiness test (if-
then-else), let-variable binding, counters that can count up to the dimension of
the complex, and a limited for-loop for iterating over a counter. The syntax of
DNAQL is given in Figure 1. Note that expressions can contain two kinds of
variables: variables standing for complexes, and counters, ranging from 1 to the
dimension. Complex variables can be bound by let-constructs, and counters can
be bound by for-constructs. The free (unbound) complex variables of a DNAQL
expression stand for its inputs. A DNAQL program is a DNAQL expression
without free counters. So, in a program, all counters are introduced by for-loops.

〈expression〉 ::= 〈complexvar〉 | 〈foreach〉 | 〈if 〉 | 〈let〉 | 〈operator〉 | 〈constant〉
〈foreach〉 ::= for 〈complexvar〉 := 〈expression〉 iter 〈counter〉 do 〈expression〉

〈if 〉 ::= if empty(〈complexvar〉) then 〈expression〉 else 〈expression〉
〈let〉 ::= let x := 〈expression〉 in 〈expression〉

〈operator〉 ::= ((〈expression〉) ∪ (〈expression〉)) | ((〈expression〉)− (〈expression〉))
| hybridize(〈expression〉) | ligate(〈expression〉) | flush(〈expression〉)
| split(〈expression〉, 〈splitpoint〉) | block(〈expression〉, Σ − Λ)
| blockfrom(〈expression〉, Σ − Λ) | blockexcept(〈expression〉, 〈counter〉)
| cleanup(〈expression〉)

〈constant〉 ::= Σ+ |
(
Σ − Λ

) (
Σ − Λ

)
| immob(Σ) | empty

〈splitpoint〉 ::= #2 | #3 | #4 | #6 | #8

Fig. 1. Syntax of DNAQL.

The constant expressions provide particular complexes as constants. A word
w ∈ Σ+ stands for a single, linear, positive strand that spells the word w. A
two-letter word āb̄, for a, b ∈ Σ−Λ, stands for a single, linear, negative strand of
length two of the 1 → 2 with λ(1) = b̄ and λ(2) = ā. The expression immob(ā),
for a ∈ Σ, stands for a single, negative, immobilized node labeled ā: we call such
a node a probe. The expression empty stands for the empty complex. The split
operation is implemented by restriction enzymes. As the number of restriction
enzymes is limited, and to ensure biological feasability of DNAQL, we allow only
a limited number of split points.
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The operation ∪ takes the disjoint union of two complexes. The difference
C −D of complexes C and D, which may be implemented using a subtractive
hybridization technique [10], keeps only the strands of C that do not appear in
D, and is only well defined when C and D consist solely of positive, equal-length
strands. The operation hybridize performs hybridization as formalized [5] and
extended here to take immobilized components into account, and may be unde-
fined due to nonterminating behavior. Moreover, ligate behaves as ligase; flush
removes supernatant (keeps only immobilized components), and split cleaves
complexes. The blocking operations block a single node (block) or block a range
starting from a primer (blockfrom); blockexcept(C, i) blocks, in each `-vector
s0, s1, . . . , s`, s`+1 in the `-complex C, all nodes except si. For the blocking op-
erations to be well defined, the complex must be saturated. Finally, cleanup
undoes matchings and blockings and removes all strands except the longest pos-
itive ones.

The for-loop iterates its body with the counter running from 1 to `, thus
allowing access to specific bits in data entries with the aid of the blockexcept

construct.

Example 1. We give an example of a DNAQL program, over the input variables
x1 and x2, with a behavior similar to the selection operator and the cartesian
product operator from the relational algebra. Below, a and b are assumed to be
atomic value symbols.

let y1 := cleanup(flush(hybridize(x1 ∪ immob(ā)))) in

let y2 := cleanup(flush(hybridize(x2 ∪ immob(b̄)))) in

if empty(y1) then empty else

if empty(y2) then empty else

cleanup(ligate(hybridize(y1 ∪ y2 ∪#5#1)))

Assume complex C1 holds a set of strands of the form #3∗#4#5, where ∗ stands
for a data entry in the form of an `-core, and C2 similarly holds a set of strands
of the form #1#3∗#4. Then the program applied to C1 and C2 filters from C1

(C2) the strands whose data entry contains the letter a (b); if both intermediate
results are nonempty, the program then uses the stickers #5#1 to concatenate
each remaining strand from C1 with each remaining strand from C2.

4 Sticker Complex Types

Intuitively, a sticker complex type is an `-complex where all data entries have
been replaced by wildcards. What remains is a structural description of the
components that may appear in the complex, with attribute names and tags
explicit, but the dimension and actual values of data entries hidden. In order to
obtain a powerful type system for DNAQL, these “weak” types S are augmented
to “strong” types that have an indication � of the mandatory components,
which must occur, and a bit h indicating that the type is saturated. The former
is needed to type common DNAQL programs that use hybridization, and the
latter is needed to type blocking operators in a DNAQL program.
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Formally, we begin by introducing four symbols assumed not present in Σ∪Σ̄:

1. ∗ (free) represents an `-core with none of the nodes matched or blocked;
2. ∗ (blocked) represents an `-core with all nodes blocked;
3. ∗̂ (open) is the result of a block-except operator on an `-core;

Let N denote the set {∗, ∗, ∗̂}. The positive alphabet without atomic value sym-
bols, but with the above new symbols is denoted ΣN = Ω ∪Θ ∪N .

The fourth new symbol, denoted by ‘?’ will be used to represent a probe,
i.e., a single negative atomic value symbol that has been immobilized. The neg-
ative alphabet without the negative atomic value symbols, but with ? is denoted
ΣN = Ω ∪ Θ ∪ {?}. Note that ? is considered to be a negative symbol. The
complementarity relation is extended by ∗ =? and ∗̂ =?. Complementarity is
thus no longer a bijection, but a relation.

A sticker complex type is very similar to a sticker complex: it is a structure
S = (V,L, λ, µ, ι, β) that satisfies the same definition as that of a sticker complex
with the following exceptions:

− the range of the node labeling function λ is now ΣN ∪ΣN instead of Σ ∪Σ;
− β ⊆ V is not allowed to contain nodes labeled with a symbol from N ;
− a node can be labeled ‘?’ only if it is immobilized;
− there are no redundant components.

Next, we define the important notion of when a sticker complex C = (V,L, λ,
µ, ι, β) of some dimension ` is said to be well typed. Thereto, recall the intuitive
meaning of the new symbols {∗, ∗, ∗̂, ?}. Formally, consider an `-core r occurring
in C. We say that r is of type ∗ if no node of r is involved in µ nor in β; r is of
type ∗ if all nodes of r belong to β; and r is of type ∗̂ if all but one node of r
belong to β. Now we call C well typed if every `-core occurring in C is of type ∗,
∗ or ∗̂. Moreover, if C is well typed, we define stype(C) as the sticker complex
type obtained by replacing every `-core occurring in C by a single node labeled
by the type of the `-core (∗, ∗ or ∗̂), and replacing the label of any probe by ?.

The subsumption relation among sticker complexes (Section 2) can be adapted
naturally to sticker complex types. We finally say that a well-typed sticker com-
plex C is of some sticker complex type S, denoted by C : S, if stype(C) is
subsumed by S. For sticker complex C, stype(C) is the “smallest” type, in the
sense that there is no sticker complex type S′ such that C : S′ and S′ is strictly
subsumed by S.

A sticker complex type is weak, in the sense that any well-typed sticker com-
plex having as stype a subset of the components of a sticker complex type is of
that type. In particular, the empty sticker complex is of every sticker complex
type. This is too weak to type common DNAQL programs involving hybridiza-
tion, where we need to know about components that are sure to be present.
Thereto, we define a strong sticker complex type as a triple τ = (S,�, h), where
S is a sticker complex type, � is a sticker complex type subsumed in S, h is a
boolean, and moreover if h = true, then C ∪� is saturated for all every compo-
nent C of S. Sticker complex type S is called the weak type of τ , the components
of � are called mandatory in τ , and h is called the h-bit of τ .
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A type τ is called saturated if all complexes having type τ are saturated.

For a well-typed complex C and a strong sticker complex type τ = (S,�, h),
we now say that C has type τ if C is of type S; the complex � is subsumed by
stype(C); and C is saturated if h = true.

From now on, we will refer to sticker complex types as weak types and to
strong sticker complex types as types.

5 A Type System for DNAQL

Given a DNAQL program e(x1, . . . , xk) with free complex variables x1, . . . , xk,
and given types τ1, . . . , τk for the respective input variables, we would like to
determine whether e is safe under these input types, meaning that for any di-
mension ` and for any input complexes C1, . . . , Ck of dimension ` and of the
given types τ1, . . . , τk, the result e(C1, . . . , Ck) on these inputs is well defined.
Since types do not restrict the dimension of complexes, if a type involves wild-
cards, there are infinitely many complexes of that type. Hence safety is not easy
to guarantee, indeed safety is undecidable: this will follow from our later Theo-
rem 2 and an easy reduction from satisfiability of well-typed relational algebra
expressions, which is undecidable [1].

The best we can do is to come up with a type system that tries to infer the
output types from given input types. We have developed a type system that,
given e and Γ = τ1, . . . , τk as above, determines whether e is well-typed under
Γ , and, if so, infers an output type τ , this is denoted by Γ ` e : τ . The DNAQL
type system enjoys the following soundness property:

Theorem 1. If Γ ` e : τ then e is safe under Γ , and the resulting complex of e
applied to any inputs of type Γ will be of type τ .

The full type-checking system and soundness proof are omitted from this
conference paper. Here we give some intuitions and examples.

Obviously devising a sound type-checking system in itself is no challenge, as it
suffices to judge every program ill typed so that soundness becomes trivial! The
challenge is to have a sound type-checking system that still judges most useful
DNAQL programs to be typed. Our type system checks DNAQL expressions
bottom-up by applying the DNAQL operations on complexes symbolically, on
the type level. The operations may fail on the type level, in case we cannot
deduce from the type that the operation will be well-defined on all inputs of
the given type. If we can deduce well-definedness, we output a tight result type
and the type-checking continues. Furthermore, the typing inference made for if-
then-else constructs, shown in Figure 2, are designed so as to maximally benefit
from knowledge that complexes are nonempty. These rules maximally infer the
presence of mandatory components, which allows later hybridization operations
to be typed.
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Γ ` e1 : τ1 Γ [x := τ1] ` e2 : τ1

Γ ` for x := e1 iter i do e2 : τ1

Γ ` x : (Sx, ∅, hx) Sx = (∅, ∅, ∅, ∅, ∅, ∅) Γ ` e1 : τ1

Γ ` if empty(x) then e1 else e2 : τ1

Γ ` x : (Sx,�x, hx) �x 6= ∅ Γ ` e2 : τ2

Γ ` if empty(x) then e1 else e2 : τ2

Γ ` x : (Sx,�x, hx) �x = ∅ |comp(Sx)| = 1
Γ ` e1 : (S1,�1, h1) Γ [x := (Sx, comp(Sx), hx)] ` e2 : (S2,�2, h2)

Γ ` if empty(x) then e1 else e2 : (S1 ∪ S2,�1 ∩ �2, h)
h = (S1 ∪ S2 is saturated)

Γ ` x : (Sx,�x, hx)
�x = ∅ |comp(Sx)| > 1 Γ ` e1 : (S1,�1, h1) Γ ` e2 : (S2,�2, h2)

Γ ` if empty(x) then e1 else e2 : (S1 ∪ S2,�1 ∩ �2, h)
h = (S1 ∪ S2 is saturated)

Fig. 2. Typing relation for the control flow of DNAQL.

Example 2. Recall the program from Example 1 in Section 3. Consider the weak
types S1 = #3∗#4#5 and S2 = #1#3∗#4. The program is well-typed under
the types τ1 = (S1, S1, false) for x1 and τ2 = (S2, ∅, false) for x2. Since S1 is
mandatory in τ1, we know that input x1 will be nonempty. Note also that the
h-bit in τ1 is false, although complexes of type S1 are necessarily saturated. The
subexpression e1 = hybridize(x1 ∪ immob(ā)) is typed as (S?

1 , ∅, true), where
S?
1 consists of the following components: (i) S1 itself; (ii) immob(?); and the

complex formed by the union of (i) and (ii) and matching the node ∗ with
the node ?. Note that there are no mandatory components, since on inputs
without an a, only (i) and (ii) will occur, whereas on inputs where all strands
have an a, only (iii) will occur. The h-bit is now true since a complex resulting
from hybridization is always saturated. Applying flush to e1 yields output type
(S?

1
′
, ∅, true), where S?

1
′

consists of components (ii) and (iii) above. Finally the
variable y1 in the let-construct is assigned the type (S1, ∅, true). Similarly, y2
gets the type (S2, ∅, true). Yet, by the design of the if-then-else typing rules, the
subexpression on the last line of the program will be typed under the strong types
(S1, S1, true) for y1 and (S2, S2, true) for y2. Because all components are now
mandatory, the type inferred for subexpression hybridize(y1 ∪ y2 ∪#5#1) will
be (S12, S12, true), where S12 is the weak type obtained from the union of S1, S2

and #5#1 by matching the #5 and #5 and the #1 and #1 nodes, respectively.
After ligate and cleanup the output type is (S, S, true) where S consists of the
single strand #3∗#4#5#1#3∗#4. The final output type of the entire program,
combining the then- and else-branches, is (S, ∅, true).
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For another example, consider the program

hybridize(hybridize(x ∪
⋃
a∈Λ

immob(a)) ∪#3#4).

This program is ill typed under the type τ = (S, S, true) for x with S = #3∗#4.
Indeed, the nested hybridize subexpression is still well-typed, yielding the output
type (S?, ∅, true) without any mandatory components. Adding the component
#3#4 to S?, however, yields a complex with nonterminating hybridization [5],
so the type checker will reject the top-level hybridize.

Yet, this program will have a well-defined output on every input C of type τ .
Indeed, every strand in C contains some a ∈ Λ, so the minimal type of the result
of the nested hybridize will actually have a single complex component formed by
the union of S and immob(?) with ∗ and ? matched. Then the top-level hybridize
will terminate since each sticker complex can have at most immobilized node.

This example shows that well-defined programs may be ill typed; this is
unavoidable in general since safety is undecidable.

6 Relational Algebra Simulation

In this section we strengthen an earlier result [13] to the effect that relational
algebra expressions can be simulated by DNAQL programs: we show that the
simulation is already possible by well-typed programs. This illustrates the power
of our type system (cf. the comment made after Theorem 1).

Basically we assume a universe U of data elements. A relation schema R is a
finite set of attribute names. We can use the same alphabet Ω for these attribute
names. A tuple over R is a mapping from R to U . A relation instance over R is
a finite set of tuples over R.

The syntax of the relational algebra [9,12,1] is generated by the following
grammar:

e ::= x | (e ∪ e) | (e− e) | (e× e) | σA=B(e) | π̂A(e) | ρA/B(e)

Here, x stands for a relation variable, and A and B stand for attributes. Our
version of the relational algebra is slightly nonstandard in that our version of
projection (π̂) projects away some given attribute, as opposed to the standard
projection which projects on some given subset of the attributes.

The relational algebra obeys a simple type system where expressions are
typed by relation schemes [6]. Given a relational algebra expression e(x1, . . . , xk)
over the input relation variables x1, . . . , xk, and given input relation schemas
Γ = R1, . . . , Rk, we can determine whether e is well typed under Γ , and, if
so, infer a result relation schema R, denoted by Γ ` e : R or just e : R if Γ is
understood. The typing rules are simple. If e1 : R and e2 : R then (e1∪e2) : R and
(e1−e2) : R; if e1 : R1 and e2 : R2 for disjoint R1 and R2, then (e1×e2) : R1∪R2;
if e : R and A,B ∈ R then σA=B(e) : R; if e : R and A ∈ R then π̂A(e) : R\{A};
if e : R and A ∈ R and B /∈ R then ρA/B(e) : (R \ {A}) ∪ {B}.
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The semantics of the relational algebra is well known and we omit a formal
definition. Provided Γ ` e : R, on any input relation instances I1, . . . , Ik over
R1, . . . , Rk, the result e(I1, . . . , Ik) is well defined and is a relation instance over
R.

We want now to represent relation instances by complexes. We will store
data elements as vectors of atomic value symbols. So formally, we use the set of
strings Λ∗ as our universe U. Then a tuple t (relation instance I) is said to be of
dimension ` if all data elements appearing in t(I) are strings of length `. Let t
be a tuple of dimension ` over relation schema R. We may assume a fixed order
on all attribute names. Let the attributes of R in order be A, . . . , B. We then
represent t by the following `-complex:

complex (t) = #2A#3t(A)#4 . . .#2B#3t(B)#4.

A relation instance I of dimension ` is then represented by the `-complex

complex (I) =
⋃
{complex (t) | t ∈ I}.

This complex (I) is of strong type τR = (complex (R), ∅, true), where complex (R)
is #2A#3∗#4 . . .#2B#3∗#4.

We are now in a position to state our main theorem.

Theorem 2. Let e(x1, . . . , xk) be an arbitrary well-typed relational algebra ex-
pression, let Γ = R1, . . . , Rk be input relation schemas, and let R be an output
relation schema such that Γ : e ` R. Then e can be translated into a DNAQL
program eDNA(x1, . . . , xk), such that the following holds:

1. eDNA is well-typed, i.e., τR1
, . . . , τRk

` eDNA : τR.
2. eDNA simulates e uniformly over all dimensions `, i.e., for each natural

number ` and for any `-dimensional input relation instances I1, . . . , Ik over
R1, . . . , Rk respectively,

eDNA(complex (I1), . . . , complex (Ik)) = complex (e(I1, . . . , Ik))

(up to isomorphism).

The proof of the first statement is omitted in this conference paper. The
second statement has been proven in previous work [13].

7 Conclusion

An interesting problem is to understand the precise expressive power of well-
typed DNAQL programs. Theorem 2 provides a lower bound; a corresponding
upper bound, to the effect that every well-typed DNAQL program can be sim-
ulated in the relational algebra (on relational structures representing the typed
input complexes) would establish DNAQL as the DNA-computing equivalent of
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the relational algebra. We note that untyped operations, e.g., the difference oper-
ator applied to arbitrary complexes of unknown type, are strictly more powerful
than the relational algebra.

On the practical level, the obvious research direction is to verify some non-
trivial DNAQL programs experimentally, or simulate them in silico. Indeed, we
have gone to great efforts to design an abstraction that is as plausible as possi-
ble. A static analysis of the error rates of DNAQL programs on the type level is
another necessary topic for further research.
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