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Summary 

 

 

The transportation of goods and people is a key element of the economy. With the ever 

increasing intensity of road traffic, several issues arise that need to be addressed. Policy 

makers require reliable forecasts of traffic behaviour in order to develop an effective 

policy. Activity-based models are best suited to make the predictions used for these 

policies. 

This master thesis will investigate the performance of one such activity-based 

transportation model, FEATHERS, when presented with decreasing amounts of training 

data. This study will attempt to do this by methods of progressive sampling, evaluating 

both the value of parameters derived from the output and the performance of the 

decision trees, which form the fundaments of the decision process in the activity-based 

model. The goal is to be able to report on a minimum amount of training data required 

for the model to function at an acceptable level. 

 Chapter one forms the introduction to this master thesis. The background of the 

research is given and the research objectives are formulated. One central research 

questions and several more specific questions will guide the research. The central 

research question is as follows: “How is the performance of the FEATHERS model affected 

by a decrease in training data?”  

Chapter two is the first of several chapters that form the literature study. This chapter 

gives a brief introduction to microsimulation models. First, a general overview of 

microsimulation models is given. Next, a more specific look is taken at activity-based 

models. It becomes clear that they have distinct advantages over other types of models 

and therefore are best suited to make predictions concerning travel behaviour. Chapter 

three gives an overview of the ALBATROSS model, which is an activity-based model 
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used for transportation research. It forms the basis of the FEATHERS model that forms 

the basis of this research. The conceptual framework and scheduling model are described 

and the process model is discussed.  

Chapter four gives more information on the ‘Onderzoek VerplaatsingsGedrag 

Vlaanderen’ (OVG). The training data analyzed in this master thesis was derived from the 

OVG research. The concept and methodology of the OVG research are explained in this 

chapter. The FEATHERS framework, which is analyzed in this study, is described in 

chapter five. This section describes how the ALBATROSS model was incorporated in the 

FEATHERS framework, and which adjustments had to be made to allow for this. The 

statistical instruments used in the analysis are described in chapter six. The instruments 

used are the box plot, the ‘Sequence Alignment Method’ (SAM) and the ‘Confusion Matrix 

Accuracy’ (CMA).  

Chapter seven is the actual analysis performed in this master thesis. First, the method 

used and process followed is extensively explained. Next, the analysis is performed in 3 

major steps: an analysis by parameter, a SAM analysis and the analysis of the decision 

trees using CMA.  

The discussion of the results of this study follows in chapter eight, where conclusions 

are drawn. It is concluded that the model suffers quickly from a decrease in training 

data, and it is recommended that the full training set be used for optimal model 

performance. The use of the model with 50% or less of the training data set used is 

strongly discouraged.  
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Chapter 1: Introduction 

 

 

1.1 Background 

The transport of people and goods is a key part of the economy. With the strong increase 

in road traffic, several issues arise, which can impose substantial costs on the economy. 

These issues range from traffic congestions to infrastructure and road maintenance, 

ecological problems concerning CO2 emissions and even health issues due to fine particles 

in the air (Proost et al., 2011). In order to deal with these issues, two elements are key: 

reducing traffic volume to a level where conditions do not vary much from day to day, 

and providing alternatives to reduce the intensity of use of sparse road space in 

congested conditions (Goodwin, 2004). In order for policy makers to address the 

concerns they have about traffic congestions, emissions and infrastructure, they need to 

have reliable forecasts of travel behaviour. This means understanding the transportation 

mode people choose to use, but also the reasons behind that choice. With that 

understanding, policy makers can effectively influence travel behaviour with the various 

instruments they have at their disposal, while also getting a better idea of possible 

secondary effects their decisions might have.   

Activity-based models are best suited to predict travel behaviour, because of their ability 

to answer “what if” questions. However, they require different data than more 

conventional models. In order to build an activity-based model, data on activity patterns 

are required. For conventional models, there are several types of travel surveys that 

could be employed to estimate the necessary data. Given the specific needs of the 

activity-based modeling approach, however, the travel survey to be used has to include 

measurements of activities at the end of trips and how and when the respondents chose 

to do them. This implies that the data needed has to be collected on an individual basis. 

It is an extensive and expensive procedure. It is thus important to keep the amount of 
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data required to a minimum, while making sure that the model remains adequately 

accurate in its predictions. This thesis will investigate the effects of a reduced amount of 

data on the accuracy and will try to determine the minimum amount of data needed for 

the model to remain at an acceptable level of accuracy. 

 

1.2 Research objective 

As explained above, microsimulation models are an important tool for policy makers in 

the decision making process concerning transportation. One of the main models for this 

in Flanders is the FEATHERS model.  

The FEATHERS model operates with input data derived from a Flemish study called 

‘Onderzoek VerplaatsingsGedrag Vlaanderen’ (OVG). This survey is a trip-based survey 

method, with additional information on trip purposes, providing information on activities 

in between the trips. This makes it particularly suitable to be used as input data for the 

FEATHERS model. 8800 persons were selected based on a random sample of the 

population and were interviewed face-to-face. Clearly, this procedure requires a lot of 

time and effort, which could be well spent elsewhere. 

This master thesis will investigate the possibility of training the model with less data, and 

will analyze the performance of the model when trained with smaller data sets. 

Additionally, the minimum amount of training data needed for the model to function 

properly will be investigated. This will be done in the first place by running the model 

with progressively smaller fractions of the training data set. The distribution and average 

values of several important output parameters will be analyzed for each of the data sets. 

In a next step, the performance of the model in predicting both seen and unseen data 

sets will be analyzed. We will check whether the model suffers significantly in this regard 

from a decreased amount of training data, and if so, at which stage this happens. For a 

more in-depth analysis, we will look at the performance of the decision trees underlying 

the prediction process. This analysis should show whether specific parts of the prediction 



- 13 - 
 

process suffer more than others. If this is the case, these different areas will be 

identified.   

First, however, a literature review will give some more information on microsimulation 

models in general, and the ALBATROSS model & FEATHERS framework in more detail. 

The statistical instruments used in the analysis will also be discussed.  

The research objective of this master thesis can be summarized by the following central 

research question: 

How is the performance of the Feathers model affected by a decrease in 

training data? 

 

 

Additionally, following specific research questions will further guide the research process: 

 What does the architecture of the FEATHERS framework look like and how does 

the prediction process work? 

 Which statistical instruments can be used to analyze the model performance? 

 What is the minimum amount of training data required for the FEATHERS model 

to function properly? 

 Are there certain aspects of the model that suffer more than others from the 

decreased amount of training data? 

 

  



- 14 - 
 

  



- 15 - 
 

 

Chapter 2: Microsimulation models 

 

 

2.1 General 

Microsimulation has been in existence since the 1950s, but it wasn’t used widespread 

until much later, due to several reasons, such as limited computing power. 

Microsimulation models generate data on social or economic units. Often, these units are 

drawn from data based on surveys. Because the individual level is used as the basis of 

the model, microsimulation allows for the analysis of the distribution of resources across 

different groups. This distinguishes microsimulation models from other models that try to 

simulate systems as a whole. Additionally, microsimulation enables the exploration of 

heterogeneity and diversity within the simulated population (Zaidi et al., 2001). 

Microsimulation models have proven to be particularly useful as tools for policy analysis. 

This is mainly due to their potency in answering “what if?” questions. Furthermore, they 

allow analyzing the impact of prospective models on the individual level. Microsimulation 

models are dynamic in nature. Aside from simulating a policy environment, like static 

models, they also incorporate behavioural response to these policies. 

The dynamic component of a microsimulation model exists in the changes in behaviour 

that are applied to individual cases or groups. This is called the “ageing” of a case. There 

are 2 approaches for such ageing: static and dynamic ageing. Static ageing involves the 

re-weighting of the data after every period, based on an external data source. Dynamic 

ageing simulates new attributes for each person, using the attributes of the previous 

period. The key difference is that static ageing adapts a sample to external estimates at 

one point in time, essentially ignoring the processes that generated the individual 

observations in this sample. This implies that external estimates exist (which isn’t the 

case for prospective models) and that they are accurate. Dynamic ageing generates 
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underlying social processes, which opens up greater opportunities for research, in 

addition to addressing policy concerns. In reality, however, most models use a 

combination of both types of ageing in their procedures.  

A second important distinction exists between deterministic and stochastic processes 

within dynamic modeling. In a deterministic model, the relationships are determined by 

parameters defined within the model. A stochastic model incorporates random processes 

to either reflect the random nature of the relationship or to account for random 

influences. Most dynamic microsimulation models use a combination of stochastic and 

deterministic simulation processes.  

Many microsimulation models have been constructed and modified over the years, such 

as DYNASIM, CORSIM, DYNAMOD & MOSART. Some important lessons have been learned 

from the use of these models: 

 A successful model requires clear objectives.  

 Model builders need to be sensitive to the shortcomings of data used in 

estimating model parameters. Sensitivity analysis is essential in gauging 

the impact of particular parameters on the output of the model. 

 The model should be flexible enough to incorporate the most recent and robust 

data. 

 Innovation in model building may be desirable, but it involves taking risks. 

 There may be questions about the feasibility and costs of running a 

microsimulation model. Sometimes simpler solutions may be preferable. 

 Producing output that covers the short and medium term, as well as the 

longer term, ensures that the model remains credible. 

 The choice of base data is an early but very important decision in the model 

building process. 
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2.2 Activity-based modeling 

Before activity-based modeling became popular, trip-based models were the conventional 

method of travel demand forecasting. The trip-based models, however, always lacked a 

valid representation of underlying travel behaviour. For a period these models were 

sufficient to assess the relative performance of transportation alternatives, but due to 

fundamental changes in urban, environmental and energy policy in the 1970s, a different 

approach to travel forecasting was needed. Many theories and frameworks were 

developed, but they all shared a common philosophy: travel was now analyzed as “daily 

or multi-day patterns of behaviour, related to and derived from differences in lifestyles 

and activity participation among the population” (Jones et al, 1990). This common 

philosophy is known as “the activity-based approach”. The fundamental idea is that travel 

behaviour is a consequence of activity behaviour, and thus the understanding of travel 

behaviour is secondary to the understanding of activity behaviour. Travel becomes a 

derived demand, based on the need to pursue activities distributed in space (Recker, 

1995).  

The activity-based models have an important advantage over other types of models. 

They are better at understanding the direct impact of transportation policies on travelers, 

allowing them to better predict the effect of these policies. Furthermore, activity-based 

models are also able to take secondary effects of transportation policies into account, 

which is impossible for many other models.  
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Chapter 3: The ALBATROSS model 

 

 

ALBATROSS stands for ‘A Learning Based Transportation Oriented Simulation System’. It 

is an activity-based model that predicts which activities are conducted, when, where, for 

how long, with whom, and the transport mode involved. It was originally developed for 

the Dutch Ministry of Transportation, Public Works and Water Management, to explore 

possibilities of a rule-based approach and develop a travel demand model for policies 

impact analysis. 

 

3.1 Conceptual framework 

It is postulated that activity participation, allocation and implementation fundamentally 

take place at the household level. At that level, activities are performed and decisions are 

made regarding what activities to conduct. The generation of activity calendars covers 

several time frames.  

Some long term decisions at the household level will strongly influence the composition 

of the activity calendars. Decisions regarding marriage and children are irreversible in the 

short term and thus have a strong impact on the kinds of activities that can and need to 

be performed within a household. Other decisions, like choice of work and the purchase 

of a car, can theoretically be changed in the short term, but in general these represent 

big choices that are only made after a longer period of consideration. Hence, these 

decisions have a major influence on the possible activity patterns, since the location of 

the residence and the workplace are the main locations for activities, and along with the 

transportation system available, they form the cornerstones of the decision process. It is 

up to the household to allocate activities to household members. The allocation 
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mechanism will depend on several factors, such as time and gender-specific roles 

(Arentze et al., 2000).  

An individual activity program is then derived from the household activity calendar. This 

process depends on the nature of the activity, the urgency of the activity and the desire 

to meet activity and time-related objectives. Once this individual program is generated, 

the next step is to schedule the activities.  

Albatross uses a sequential decision process to produce the daily activity schedules of 

individuals in a household. A priority-based scheduling process is applied, where 

mandatory activities are scheduled first and discretionary activities are scheduled next. 

Additionally, timing and trip-chaining decisions have priority over location decisions, 

which in turn have priority over decisions regarding transport mode. The result is an 

activity schedule, which describes for a given day which activities are conducted, when, 

for how long, where, with whom and the transport mode involved. The model does take 

interactions between individuals into account. The scheduling processes run parallel and 

decisions are alternated, with each individual taking the current state of the schedule of 

the other into account when making a decision. This implies that scheduling decisions of 

one individual may put constraints on choice options of the other. This happens, for 

example, when there are more driving licenses than cars available in the household.  

The actual process of scheduling activities can be conceptualized as a process in which an 

individual attempts to realize particular goals, given a variety of constraints that limit the 

number of feasible activity patterns. 
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Several types of constraints can be identified (Arentze et al., 2000): 

 Situational: A person and transport mode (and perhaps other resources) cannot 

be at different locations at the same time. 

 Institutional: Opening hours influence the possible times some activities can be 

implemented. 

 Household: Children have to be brought to school, so other activities cannot be 

performed at that time. 

 Spatial: Some activities cannot be performed at particular locations. Also, 

individuals may have incomplete information about the opportunities that certain 

locations offer. 

 Time: Limits the number of activities because there is a minimum duration to 

some activities, and total time is limited. 

 Spatial-temporal: The specific interaction between an individual’s activity 

program, the individual’s cognitive space, the institutional context and the 

transportation environment may imply that a person cannot be at a particular 

location at the right time to conduct a certain activity 

The next question is how individuals choose between feasible activity patterns. Unlike 

other models, the ALBATROSS model assumes that continuous interaction with the 

environment results in choice heuristics that individuals and households apply when 

faced with a choice. These choice rules are continuously adapted through learning. The 

actual execution of activity programs is monitored on a real-time basis. This means that 

individuals are constantly faced with the decision whether or not to reschedule activities 

during execution, when activities cannot be performed as expected. This could happen 

when the use and speed of transportation networks is not as envisioned. Overall, the 

learning theory on which Albatross is based implies that rules governing choice behavior 

are heuristic, context-dependent and adaptive in nature.  
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3.2 Scheduling model 

The decision trees used in Albatross are derived from observations in activity diaries, 

using a CHAID-based induction method. This method aims to find the smallest tree that 

best explains a sample of observations by recursively splitting the sample based on 

attribute variables. This allows taking a large set of attribute variables into account in 

each scheduling decision. In the decision tree induction process, segmentation and 

derivation of decision rules are done simultaneously. Because all earlier decisions are 

considered as attribute variables consistent for a current decision, the model is able to 

take interactions between activity-travel choices into account, both within and between 

individuals (Arentze et al, 2000). 

The sensitivity to small changes in price variables and travel time variables of the 

decision trees over a continuous range is a concern. For that reason, the Parametric 

Action Decision Tree (PADT) is introduced. A conventional decision tree is replaced by a 

PADT for each decision that has travel-costs and travel-time implications. This allows 

Albatross to reproduce price and time elasticities for many choice facets of an activity 

pattern. 

Decision trees offer the advantage of being able to take discontinuous, non-linear effects 

on choice behavior into account. A disadvantage of decision trees is that they tend to be 

very extensive and complex when derived from empirical data, which makes the analysis 

harder.  

 

3.3 Process model (scheduler) 

Two major components define the schedules for each individual and each day. One 

component generates an activity skeleton containing fixed activities, along with their 

duration and starting time. The second component handles the flexible activities, along 
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with duration, time-of-day and other travel characteristics. Both components use the 

same location model and assume a sequential decision process. 

Figures 1, 2 and 3 schematically present the structure of each of the main components of 

the process model. Each numbered rectangle represents a decision tree derived from 

activity diary data. The indices used in the figure are defined as follows:  

i  =  index of activity in order of priority, i=1…I 

j = index of episode of activity i in order of start time, j = 1…J 

k =  index of tour in order of start time, k = 1…K 

 

Decisions 1 to 13 comprise the skeleton components, decisions 14-20 are used for the 

location component for both types of activities and decisions 21-27 represent the flexible 

activity component. 

There are 2 key principles to the process model. The first is that qualitative decisions are 

preferred and made as much as possible. Decisions such as selecting an activity or trip 

linkages between activities are made separately for this reason. Second, the sequencing 

of identified key choices is based on assumptions regarding priority of decisions. This is 

why the skeleton is determined before the flexible parts of the schedule, and start time 

decisions are made before location and transport mode decisions. 

The skeleton 

The skeleton component determines activity patterns on a continuous scale. The 

subprocesses are as follows: 

1. Determining the sleep activities pattern 

2. Determining the primary work/school activity pattern 

3. Determining the secondary fixed activities pattern 

4. Determining the location of each fixed activity 
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The model chooses a start and end time for the sleep activity. For simplification, it 

ignores the cases where there is no sleep activity (e.g. night shift). Sleep activities 

during the day are not considered separately but are considered within the in-home 

activities category. 

The primary work/school activity has a maximum of 2 episodes, with a minimum 

duration of 1 hour each. Activities with a shorter duration are not ignored but considered 

separately as a category of secondary fixed activities. The location component chooses 

locations in descending order of priority of fixed activities. The model chooses by 

increasingly narrowing down the choice set. The first tree determines whether or not the 

activity is conducted within the home municipality of the individual. In case of the latter 

option, the choice of municipality depends on a choice of an order and distance band. 

There are five orders based on population size. First-order municipalities have an above 

regional function, second-order municipalities have a regional function, third-order 

municipalities have a local core function and fourth and fifth-order municipalities 

correspond to small towns. Once the order is chosen, the choice of a distance band 

follows. The combination of order and distance band reduces the choice set sharply. 

However, if there are still multiple alternatives left, the model chooses semi-randomly. 

Less distant locations have a higher chance of being selected. For the selection of a zone 

within a municipality, the same process is followed. The model thus takes into account 

that location selection has a random component, but also correlates the choice with 

distance and order.  

Flexible part  

Figure 3 represents the second part of the model, handling the flexible part of the 

schedules. The subprocesses go as follows: 

1. Determining selection, travel party and duration of flexible activities 

2. Determining start time and trip chaining 

3. Determining the location of each flexible activity 



- 25 - 
 

4. Determining the transport mode of each tour in the schedule 

Compared to the process in the previous component, the order of mode and location 

decisions has been switched. Modeling location before order greatly simplified 

computational procedures in this section. An exception is made for the transport mode 

for work/school trips, because it is assumed that the order of decisions is dependent on 

motive. The same location model that was used for the skeleton, is used for the flexible 

activities. 

 

Figure 1: Process model for fixed activity patterns 
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Figure 2: Process model for predicting locations of fixed and flexible activities 
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Figure 3: Process model for flexible activity patterns 
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Chapter 4: ‘Onderzoek VerplaatsingsGedrag Vlaanderen’ (OVG) 

 

 

Since the analysis of training data for the FEATHERS framework is an essential part of 

this master thesis, some information concerning the source of this data is warranted. 

 

4.1 Concept 

‘Onderzoek VerplaatsingsGedrag Vlaanderen’ (OVG) is a Flemish study carried out by the 

‘Transportation Research Institute’ (IMOB), part of the University Hasselt. There currently 

are 3 versions of the OVG. The first one was carried out between 1994 and 1995, the 

second between 2000 and 2001, and the third between 2007 and 2008. Data from this 

third version are used in the FEATHERS framework. The 3 parts were carried out at 3 

specific intervals, meaning they are a form of discontinuous research. Currently, a 4th 

OVG is being carried out. Contrary to the previous parts, the 4th OVG is a continuous 

research that started in 2008 and will be finished by 2013. All surveys were carried out in 

the whole Flemish region (Janssens et al, 2009). 

The goal of the OVG research is to get a comprehensive view of several attributes of 

households and individuals concerning mobility. On the household level, this mainly 

concerns the attributes of transport modes the household possesses. On the individual 

level, it mostly concerns the actual trips people make in their daily lives. Additionally, 

several sociologic and demographic attributes of households and individuals are 

investigated, to allow for a meaningful and comprehensive analysis. 
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4.2 Methodology 

The research was carried out through a survey of 8800 individuals, starting at the age of 

6 years old. They were selected through a sample of the national register. The 

participants were questioned through a face-to-face interview. Questions were asked 

concerning family, mobility and personal attributes.  

Additionally, each person was asked to keep a travel diary, where they made note of 

every trip they made on a randomly chosen day. In a next step, these data were entered 

in the computer during another face-to-face interview. It is important to note that the 

behaviour of people is not investigated through objective observation in this study. 

Rather, people are asked to comment on their own mobility behaviour. This gives a more 

in-depth set of data but also adds uncertainty: the behaviour of people may not actually 

be the same as the behaviour they report from themselves.  

Note that the methodology described concerns the 3rd OVG. Some fundamental changes 

were made compared to the first 2 OVGs. The most important difference is the change 

from surveys through telephone and post to face-to-face interviews. This was necessary 

to guarantee the quality of the survey. The main factors that determine the quality of 

social surveys are 1) being able to contact the participants and 2) getting their 

cooperation. Because fewer and fewer people possess telephone connected to a fixed 

line, more surveys would have to be done by post. However, the response rate for postal 

surveys is much lower than for telephone surveys. Additionally, this accessibility (or lack 

of it) is very selective: some social groups are overrepresented while others are missing 

almost entirely. This would have negative implications for the quality of the research. For 

this reason, the decision was made to opt fully for face-to-face interviews, which resulted 

in a higher quality of data than was the case for the previous OVGs (Janssens et al, 

2009). 
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Chapter 5: The FEATHERS framework 

 

 

FEATHERS is a modular activity-based model of transport demand framework. The 

activity-based scheduling model present within FEATHERS is the ALBATROSS scheduling 

model, discussed in the previous chapter. The framework provides the tools needed for 

models to be created, maintained and updated. It has both tailored memory structures 

and a database structure allowing activity-based models to be developed, assimilated 

and modified inside FEATHERS. A number of steps were needed to incorporate the 

ALBATROSS model into the FEATHERS framework: 

I. Tailoring the ALBATROSS model to the Flemish situation 

The original ALBATROSS model was specifically designed for the Netherlands, so 

naturally several changes have to be made for the model to be usable in Flanders.  

Firstly, each of the 26 decision trees have to be replaced by new trees, derived from 

corresponding activity diary data gathered in Flanders.  

Secondly, because the model inside FEATHERS uses a lot of continuous condition 

variables that are discretized into nominal attributes before training the trees, a list of 

discretizing bins has to be defined. 

Finally, the variables related to the transport system deserve special attention. One of 

the most important changes is the re-implementation of the calculation of travel costs by 

particular modes. Since these were based on the Netherlands, some of the assumptions 

were invalid for Flanders. Therefore, some of these costs have to be recalculated. 
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II. Preparing input data for the ALBATROSS model 

Several data layers inside the FEATHERS database system have to be prepared in order 

to run the ALBATROSS activity-based scheduler. Schedule information, a synthetic 

population data set and environment information about the study area in terms of zoning 

system, land use and transportation system have to be processed. 

 Schedule data: Given the needs of the activity-based modeling approach, specific 

data is required. The “Onderzoek Verplaatsingsgedrag Vlaanderen (OVG)” travel 

survey contains all that data needed in the model. It is essentially a trip-based 

survey, but information about the trip purposes and thus about the activities in 

between the trips, is also available. This makes it particularly suitable to be used 

in the FEATHERS framework. 

 Synthetic population data: An important element in activity-based models is 

detailed information on household and person demographics. In Flanders, the 

gathering of personal data from administrative registers is prohibited for privacy 

reasons. A synthetic population data set has to be generated to compensate for 

the missing data. This synthetic population is a statistical duplicate of the actual 

population. For each household and person, important attributes are generated.  

 Environment data: The zoning system represents the geographical component in 

the model. FEATHERS uses a hierarchy of three geographical layers: Superzones, 

Zones and Subzones. Superzones correspond with municipalities, Zones 

correspond with administrative units and Subzones consist of virtual areas 

constructed based on homogeneous characteristics. The land use system 

provides sector-specific data on the availability and attractiveness of locations for 

conducting specific activities. These data are available at different levels of the 

zoning system. The transportation system contains information about 

distances, travel times and access times through Level OF Service (LOS) matrices. 

These are divided by transport mode. The different modes considered are car 
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(driver & passenger), public transport and slow mode (on foot or by bicycle). 

Additionally, different travel times are calculated to account for peak traffic.  
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Chapter 6: Statistical instruments 

 

 

6.1 The box plot 

The box plot has become the standard technique to present the so-called 5-number 

summary, consisting of the minimum and maximum values, the upper and lower 

quartiles and the median. It is seen as a good way to summarize the distribution of a 

dataset and is a straightforward way to compare different datasets (Potter, 2006). 

The typical construction of a box plot divides the data distribution into quartiles, four 

subsets with equal size. The box indicates the lower and upper quartiles, the interior of 

the box consists of the innerquartile range, which is the area between the upper and 

lower quartiles and consists of 50% of the distribution. The box is intersected by a 

crossbar, which is drawn at the median of the dataset. Whiskers on both sides of the box 

represent minimum and maximum values in the dataset. Sometimes the whiskers 

represent a multiple of the innerquartile range to remove extreme outliers, which are 

then presented separately through other symbols. In this case, the plot is referred to as 

a schematic plot rather than a box plot. Figure 4 summarizes the anatomy of a box plot 

(Potter, 2006). 
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6.2 ‘Sequence Alignment Method’ (SAM) 

Another important way to evaluate the model performance is assessing the goodness-of-

fit. Because FEATHERS predicts activity patterns, it is important that a goodness-of-fit 

measure can capture the multi-faceted aspect of activity patterns. Additionally, it is 

crucial that the measure is also flexible in allowing the inclusion of categorical and 

sequential information. Most of the facets of activity patterns have a categorical nature, 

but the facet of activity scheduling implies sequential information. 

Most similarity measures in transport science are insensitive to sequential information 

and are insensitive to activity patterns of unequal length. This makes them not well 

suited to evaluate the performance of our model. The ‘Sequence Alignment Method’ 

(SAM), introduced by Wilson (1998), can overcome these shortcomings. The method 

originally stems from molecular biology, where it measured biological distance between 

DNA & RNA strings (Arentze et al, 2000). 

 

 

Figure 4: Anatomy of a box plot 
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Background 

It is assumed that activity patterns can be represented as a string of information, for 

example by letters representing activity types. Such a string is called a sequence, 

because the order of the letters has a meaning. The SAM method compares two 

sequences by defining a source sequence and a target sequence, and calculating the total 

amount of effort required to equalize the source sequence with the target sequence. For 

this, SAM distinguishes several operations: identity, substitution, insertion and deletion. 

Each operation requires a certain amount of effort. The substitution operation can be 

taught of as the sum of the deletion and insertion operations.  

There are many ways of applying operations in order to change a sequence into another 

sequence. These ways all lead to different computational costs. It is thus important to 

define an additional operational decision to define the similarity measure. SAM is based 

on the Levenshtein distance, which is defined as the smallest number of substitutions, 

insertions and deletions required to change the source sequence into the target sequence 

(Doran et al, 2010). When there are several choice alternatives, the smallest cost 

alternative is always chosen. By employing the Levenshtein distance to SAM, similarity is 

defined as the smallest sum of operation weighting values required to change the source 

sequence into the target sequence. 

As mentioned, an important feature of SAM is that it captures sequential similarities, 

which methods based on Euclidian distance are incapable of. This is because SAM 

distinguishes between “wrong position but same order” and “wrong position and different 

order” cases. For example, consider sequences “ABCDE” (target) and “AFBCDE” (source). 

The conventional method counts the number of elements that are different. This would 

give a distance of 4 units in this case (B ≠ F, C ≠ B, D ≠ C and E ≠ D). SAM would give a 

distance of one, deleting F from the source sequence, putting a high value on the order 

of elements.  
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Additionally, SAM also captures dissimilarity by different length. For example, consider 

sequences “ABC” (target) and “ABCDEF” (source). The conventional method would give a 

distance of zero units, because A = A, B = B and C = C. SAM, however, would give a 

distance of 3 units, deleting D, E and F from the source sequence.  

 

6.3  ‘Confusion Matrix Accuracy’ (CMA) 

A more in-depth analysis of the model performance means taking a look at the 

performance of the individual decision trees that form the basis of the scheduling 

process. This requires an accuracy indicator for the performance of the decision trees in 

the model. A confusion matrix summarizes the results of the testing of an algorithm of a 

decision tree. Table 1 gives an example of a confusion matrix. Assume the decision tree 

in the example predicts the transport mode of a trip. The possible transport modes here 

are car, public transport and bike. The rows give the actual transport mode that was 

used, while the columns give the mode predicted by the decision tree. All correct 

predictions are in the diagonal of the table, making it easy to spot errors.  

 

   

predicted class 
 

 

  
car public transport Bike 

 
Car 5 3 0 

actual class 

public 

transport 2 3 1 

 
Bike 0 2 11 

 

Table 1: Example of a confusion matrix 

 

In this example, 8 cars were actually used. The decision tree predicted 5 cars correctly, 

while it assigned 3 trips incorrectly to public transport. Of the 6 actual public transports, 

3 were correctly assigned. The bike was correctly predicted as transport mode 11 out of 
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13 times. It is clear that this decision tree has problems distinguishing between cars and 

public transport, while it can predict the choice for a bike fairly well.  

The Confusion Matrix Accuracy (CMA) summarizes the information in the confusion 

matrix into one value that gives the accuracy of the decision tree. It is determined by 

calculating the ratio of correct predictions, which is given by a fraction where the 

denominator is the sum over all cells in the confusion matrix of the decision tree, and the 

numerator is the sum over all diagonal cells of the confusion matrix. For this decision 

tree, the CMA equals 70,3% (19/27) (Kohavi et al, 1998). 
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Chapter 7: Analysis 

 

 

This chapter will discuss the actual research performed for this master thesis. In the first 

part, the method will be outlined. In the second part, the results will be analyzed and 

results will be presented. 

 

7.1 Method 

The goal of the research is to determine how much input data FEATHERS need in order to 

make accurate predictions. To do this, we need to gather data by training and running 

the model for different training sets decreasing in size. 

Preparing training data sets 

The first step is creating the training data sets to be used as input for the model. 

FEATHERS uses a series of 5 text files as input data:  

 Activities 

 Households 

 Journeys 

 Lags 

 Persons 

Together, these 5 files contain all the information of the activities of a household, as they 

are kept in an activity diary. Each line of code in these files represents a separate 

activity, household, journey, lag or person. Every line starts with a unique ID number, 

along with other information. The files are semicolon delimited, which means that the 

different numbers in one line are separated by semicolons, effectively dividing them into 
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columns. Below a few lines of code are shown for one of the activities files. Table 1 gives 

an overview of the information contained in the different files. 

0;0;7;0;300;1440;2055 

1;1;4;0;300;300;-1204 

2;1;4;6;835;95;953 

3;1;4;0;1042;978;-1204 

 

 

activities Households Journeys Lags Persons 

Activity ID Household ID Journey ID Lag ID Person ID 

Person ID PDA? Person ID Journey ID Household ID 

Day Location Day Car Age 

Type Composition Begin time Lag number Work status 

Begin time Income Duration Waiting time Gender 

Duration Age 
Transport 
mode Duration 

Driving 
license? 

Location ID Children Start location 
Transport 
mode Postcode 

 
#cars End location 

  

 
#people 

   

 
Type 

   

 
Weight 

   Table 2: Attributes of the FEATHERS input files 

 

As we can see, the files are interlinked. For example: an activity entry contains a Person 

ID that refers to the person carrying out the activity. 

The research will use the household level as basis because FEATHERS operates on that 

level. We want to gradually decrease the amount of households in the training set by a 

factor 2, effectively dividing each set in half. We refer to the smaller data sets as a “frac” 

(fraction) of the original data set. Thus, a data set of frac 4 is half the size of a frac 2 

data set, and a quarter the size of the original data set, which is a frac 1. Naturally, when 

dividing a data set in half, we end up with 2 smaller data sets. We refer to these as 
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subsets of a frac. Because each subset has to be equal in size, a few entries might go 

unused in higher fracs. Table 2 gives an overview of the fracs, their subsets and the size.   

Frac size subsets 

frac 1 6266 1 

frac 2 3133 2 

frac 4 1566 4 

frac 8 783 8 

frac 16 391 16 
 

Table 3: Size and subsets of the input data sets 

Since FEATHERS operates on the household level and all files are interlinked, it is not 

possible to simply cut the 5 input files in half. Instead, after creating the household file 

for a frac and subset, entries from the other files have to be selected based on the 

relevant IDs. A small program was written to automate this procedure. 

Unfortunately, all FEATHERS input files have to start with an ID of 0. This makes the 

procedure more complex, because once the base IDs in the first column are renamed, 

the IDs referring to it in other files have to be renamed as well. Because of the 

complexity, this was done manually. Every text file was imported in Microsoft Excel, 

using the semicolon delimiter to separate the data into columns. Then, the IDs were 

renamed manually and the file was saved as a comma delimited file (.csv). Finally, the 

commas were replaced by semicolons and the file was saved as a text file, now ready to 

be used in FEATHERS.  

Training FEATHERS 

With the training data sets ready, the next step is the actual training of the model. The 

training is a step-by-step process, selecting the right modules in the configuration file at 

each step and then running the executable file. 

 Step 1: The training data sets are put in the DatMod module. The ObservedFiles 

submodule is activated in the AlbExpMod module to create an observed file from 

the training data set. Figure 5 shows the configuration file for this step. 



- 44 - 
 

 

Figure 5: Step 1 of the training process in the FEATHERS configuration file: creating ObservedFiles 

 

 Step 2: The PADTdataBIN submodule is activated in the AlbExpMod module. The 

number of household files in the observed file is entered and A PADTdataBIN file is 

created, using the observed file as input. Figure 6 gives the configuration file for 

step 2. 

 

Figure 6: Step 2 of the training process in the FEATHERS configuration file: creating PADTdataBIN files 

 

 Step 3: New discretizator bins have to be created. This is done by activating 

“create bins” in the DT submodule of the AlbExpMod module.  

 

Figure 7: Step 3 of the training process in the FEATHERS configuration file: creating new bins 

 

 Step 4: The previous step has created 9 text files containing new bins for several 

parameters in the ClasMod module. These have to be copied manually into the 

ClasMod, overwriting the previous bins. Figure 8 gives an example of a text file 
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with new bins. Figure 9 shows where the bins have to be put in the configuration 

file. 

 

Figure 8: Step 4 of the training process in the FEATHERS configuration file: example of text file with new bins 
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Figure 9: Step 4 of the training process in the FEATHERS configuration file: putting the new bins in the clasmod module 

 

 Step 5: With the bins modified, the next step is to create the decision trees. This 

is done in the DT submodule of the AlbExpMod module. Figure 10 shows this 

process.  

 

Figure 10: Step 5 of the training process in the FEATHERS configuration file: creating the decision trees 

 

 The model is now trained and ready to make predictions. In the final step, the 

PredictedFile submodule is activated in the AlbExpMod module. The PADTdataBIN 

& decision trees files created in the previous steps are used as input here. The 

PopMod module is also activated, this provides the synthetic population. A frac 2 

of the synthetic population for Flanders and Brussels is used, containing 1449213 
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households. Figure 11 shows the configuration in the PopMod module; figure 12 

shows the AlbExpMod module.  

 

Figure 11: Configuring FEATHERS for predictions: PopMod module 

 

Figure 12: Configuring FEATHERS for predictions: PredictedFile submodule 

 

Because FEATHERS is a microsimulation model, more than one run is needed to assess 

the performance. To determine the required number of model runs, the following formula 

was used (US department of transportation, 2004):  

CI1-α% = 2 * t(1- α/2), N-1
 

   

Where: 

CI(1- α)% = (1-alpha%) confidence interval for the true mean, where alpha equals the 

probability of the true mean not lying within the confidence interval 
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t(1- α/2), N-1 = Student’s t-statistic for the probability of a two-sided error summing to 

alpha with N-1 degrees of freedom, where N equals the number of repetitions. 

s = standard deviation of the model results 

When solving this equation for N, it is necessary to iterate until the estimated number of 

repetitions matches the number of repetitions assumed when looking up the t statistic. It 

was found that the model required a minimum of 8 runs to obtain a statistically valid 

result. To provide a small extra margin, 10 model runs are performed for each subset. 

Statistics 

When a simulation is done, FEATHERS does not provide a readily readable file. FEATHERS 

generates a prediction in .prd format, from which we can draw statistics. The model 

provides a statistical module to do this. Using the statmod2 module, we can generate a 

“statisticsline”, which is a text file containing the following numbers: 

 Number of trips per person per day 

 Kilometres travelled per person per day 

 Number of trips by car as a driver per person per day 

 Number of trips on foot or by bicycle per person per day 

 Number of trips by public transport per person per day 

 Number of trips by car as a passenger per person per day 

 Kilometres travelled by car as a driver per person per day 

 Kilometres travelled on foot or by bicycle per person per day 

 Kilometres travelled by public transport per person per day 

 Kilometres travelled by car as a passenger per person per day 
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7.2 Analysis by parameter 

The first results we will analyze are the number of trips and kilometres per person per 

day for each transport mode. The main interest is on the distribution of the predictions 

within each frac. For a straightforward interpretation of the results, a box plot was 

selected as method of representation. In general, we would expect the spread and range 

to steadily increase, creating a broader peak in distribution as we move to higher fracs 

and thus smaller sets of training data. However, the distribution alone does not tell the 

entire story. The average values for each frac are analyzed for each frac, in comparison 

to the result for frac 1. A deviation below 5% of the frac 1 result is deemed acceptable, 

anything higher is seen as too strong a deviation. 

 

#trips 

Figure 13 gives the box plot for amount of trips per person per day, for fracs 1, 2, 4, 8 

and 16. With a full training data set, there is almost no spread in the results, they remain 

at 2,87 trips per person per day with no outliers. As the size of the training set is 

reduced, spread grows, as we would expect it to happen. The size of the box and the 

whiskers increase and the results become less reliable. There is a big increase in spread 

from frac 2 to frac 4. The box plots for fracs 4 & 8 indicate that the results are positively 

skewed. Frac 16 has, rather unexpectedly, a smaller spread and more symmetric 

distribution than frac 8. Figure 14 shows that the average values are all fairly close to 

frac 1’s reference value. Frac 16, however, just exceeds to 5% threshold that was set 

earlier. 
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Figure 13: Figure 5: Box plot of the amount of trips per person per day, fracs 1 to 16 

 

Figure 14:  Deviation (%) in average amount of trips per person per day compared to reference value, fracs 1 to 16 

 

kilometres travelled 

Figure 15 shows that the results are fairly consistent from fracs 1 to 4, with slight 

increases in variation. When frac 8 is reached, however, the results become very 

unreliable, but huge variation and outliers. We also note a positive skewedness of the 

data in frac 8. The distribution of frac 16 shows a smaller peak but has extreme outliers. 

2,6 

2,7 

2,8 

2,9 

3 

3,1 

3,2 

3,3 

1 2 4 8 16 

-0,2000 

-0,1500 

-0,1000 

-0,0500 

0,0000 

0,0500 

0,1000 

0,1500 

0,2000 

1 2 4 8 16 



- 51 - 
 

Figure 16 shows deviations above the threshold value for fracs 8 & 16, with the average 

from frac 8 showing over 10% deviation from the reference value. 

 

Figure 15: Box plot of the amount of kilometres travelled per person per day, fracs 1 to 16 

 

 

Figure 16: Deviation (%) in average amount of kilometres travelled per person per day compared to reference value, fracs 
1 to 16 

 

#trips by car (driver) 

For this parameter, the results become unreliable starting at frac 4. As we can see in 

figure 17, the range of the box plot increases almost tenfold from frac 2 to frac 4, the 
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box size triples indicating a much broader peak in the distribution, and the results are 

strongly positively skewed. These results stabilise for fracs 8 & 16. As we can see in 

figure 18, the average values are fairly stable, all staying within a 5% range from the 

reference value.  

 

Figure 17: Box plot of the amount of trips per person per day by car (as driver), fracs 1 to 16 

 

Figure 18: Deviation (%) in average amount of trips per person per day by car (as driver) compared to reference value, 
fracs 1 to 16 
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#trips on foot or by bicycle 

The results for this parameter remain fairly reliable up until frac 4, with a small increase 

in spread in frac 2 and even a decrease in frac 4. However, as figure 19 shows, in frac 8 

we see a huge increase in spread and a major skewedness in the results. The median is 

almost located at the bottom of the box, indicating that the results are strongly positively 

skewed. The results for frac 16 are similar, with less extreme outliers but also a strong 

positive skewedness. Additionally, figure 20 shows that the average values for fracs 8 & 

16 strongly deviate from the average found in frac 1, with both straying over 10% from 

the reference value. It is also interesting to note that the average found for frac 8 is over 

10% higher than that found for frac 1, while the average for frac 16 is almost 15% lower. 

This indicates that the model is not reliable predicting this parameter with an 8th (or less) 

of training data.  

 

Figure 19: Box plot of the amount of trips per person per day on foot or by bicycle, fracs 1 to 16 
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Figure 20: Deviation (%) in average amount of trips per person per day on foot or by bicycle compared to reference value, 
fracs 1 to 16 

 

#trips by public transport 

Figure 21 shows a symmetric distribution with limited spread only until frac 2. From frac 

4 on, the spread increases strongly and the distribution becomes asymmetric, showing a 

strong negative skewedness for frac 4. Frac 8 on the other hand is positively skewed, 

while frac 16 is again negatively skewed. However, figure 22 shows that the values 

deviate strongly from the reference value. Even for frac 2, the average value is already 

over 10% lower than the average for frac 1. Fracs 8 & 16 show results over 15% below 

the reference value. 
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Figure 21: Box plot of the amount of trips per person per day by public transport, fracs 1 to 16 

 

 

Figure 22: Deviation (%) in average amount of trips per person per day by public transport compared to reference value, 
fracs 1 to 16 

 

#trips by car (passenger) 

Figure 23 shows a fairly large spread for frac 2, but the distribution is very symmetric. 
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but the data here is negatively skewed. Figure 24 shows only frac 8 just crossing the 

threshold value, with an average that deviates just over 5% from the frac 1 average. 

 

Figure 23: Box plot of the amount of trips per person per day by car as a passenger, fracs 1 to 16 

 

 

Figure 24: Deviation (%) in average amount of trips per person per day by car as a passenger compared to reference 
value, fracs 1 to 16 
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ever increasing spread going towards frac 16, combined with a positive skewedness in 

results. Frac 16 also displays major outliers. Figure 26 shows a high deviation in average 

value for frac 8, clearly above the threshold value. 

 

Figure 25: Box plot of the amount of kilometres travelled by car as a driver, fracs 1 to 16 

 

 

Figure 26: Deviation (%) in average amount of kilometres travelled by car as a driver per person per day compared to 
reference value, fracs 1 to 16 

 

 

 

19,0000 

21,0000 

23,0000 

25,0000 

27,0000 

29,0000 

31,0000 

33,0000 

35,0000 

1 2 4 8 16 

-0,2 

-0,15 

-0,1 

-0,05 

0 

0,05 

0,1 

0,15 

0,2 

1 2 4 8 16 



- 58 - 
 

kilometres travelled on foot or by bicycle 

Figure 27 shows a rather large but symmetric spread for frac 2. The range actually 

decreases in frac 4, but frac 8 displays a major increase in its spread and is positively 

skewed. Frac 16 has a similar spread as frac 8. The average values are unreliable 

starting from frac 4, as we can see in figure 28. Only frac 2 shows an average that is 

close to that of frac 1, the others are clearly above the threshold value, with the average 

of frac 16 deviating almost 15% from the reference value. 

 

Figure 27: Box plot of the amount of kilometres travelled on foot or by bicycle, fracs 1 to 16 
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Figure 28: Deviation (%) in average amount of kilometres travelled per person per day on foot or by bicycle compared to 
reference value, fracs 1 to 16 

 

kilometres travelled by public transport 

As figure 29 shows, the spread increases sharply with frac 4. Furthermore, the results 

are asymmetric and show a negative skewedness. The distribution is comparable for frac 

8, while frac 16 shows a broader peak and stronger outliers. While the distributions for 

frac 4 and 8 are comparable, figure 30 shows that the average value is quite reliable for 

frac 4, while that of frac 8 is extremely unreliable, deviating over 30% from the reference 

value. The average values of fracs 2 and 16 exceed the threshold as well.  

 

Figure 29: Box plot of the amount of kilometres travelled by public transport, fracs 1 to 16 
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Figure 30: Deviation (%) in average amount of kilometres travelled per person per day by public transport compared to 
reference value, fracs 1 to 16 

 

kilometres travelled by car (as passenger) 

The predictions for this parameter remain fairly accurate up until frac 4, with a limited 

spread and a symmetric box plot, as figure 31 shows. With a frac 8, however, extreme 

outliers appear, and frac 16 shows a distribution with an extremely broad peak and has a 

strong negative skewedness. Furthermore, figure 32 shows that both frac 8 and 16 have 

unacceptable average values that deviate over 20% from the frac 1 average. The 

average value of frac 4 also falls just above the threshold value. 

-0,4 

-0,3 

-0,2 

-0,1 

0 

0,1 

0,2 

1 2 4 8 16 



- 61 - 
 

 

Figure 31: Box plot of the amount of kilometres travelled by car as a passenger, fracs 1 to 16 

 

 

Figure 32: Deviation (%) in average amount of kilometres travelled per person per day by car as a passenger compared to 
reference value, fracs 1 to 16 
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that the car would be present in the training data set much more than public or slow 

transport. It is logical that predicting public and slow transport use, both already with 

only a limited presence in the original data set, would suffer more from a decrease in 

training data than predicting car use. 

 

7.3 SAM analysis 

The statistics module in FEATHERS allows us to easily calculate the SAM statistic, by 

activating the SAM submodule. However, the input data needed to calculate SAM requires 

some preparation.  

First, the input data sets (already divided into fracs and subsets) are split 75-25 into 

training data sets and validation data sets. ObservedFile (.obs) files are then created, 

using the training and validation data sets, respectively. Next, predictions are made 

using the PADTdataBIN & decision tree files that were created when training the model 

with the full subsets. These predictions are made with the training and validation data 

sets as synthetic population in the popmod module. We set the amount of iterations to 

100 here, so FEATHERS repeats this process a 100 times. Finally, the ObservedFile is 

used as input in the statistics module, along with the predicted file, and the SAM 

submodule calculates how well the model was able to reproduce the observed files in the 

prediction. This is done for both training and validation data sets for each frac and 

subset. Because the SAM module analyses how well the model can reproduce the 

observed data, it is important that the observed and predicted data sets are of identical 

size. FEATHERS controls this by asking for the number of households in every step of the 

process. Table 4 shows the number of households for each data set and frac used. 

Because we used 100 iterations when making the predictions, these numbers need to be 

multiplied by 100 when entered in the statistical module. 
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    # of households 

 Frac Training Validation 

1 4698 1566 

2 2348 783 

4 1173 391 

8 586 195 

16 293 97 

 

Table 4: Number of households in the training and validation data sets for fracs 1 to 16 

The SAM submodule renders a text file with 3 values. The first value gives the length of 

the activity sequence averaged over all entries. The second value is the SAM value 

averaged over all entries. The third value gives a normalised SAM value, dividing the 

second value by the first value. We will use this normalised SAM value for our analysis. 

We will analyze both the absolute SAM values and the difference between training and 

validation results. We would expect the SAM values to increase as the size of the data 

sets decreases. By comparing the SAM values of the training data with the validation 

data for each subset, we can analyze how good the model is predicting data it has never 

seen, compared to its performance predicting data that was used in training the model. 

We would also expect this difference to increase as smaller data sets are used. 

Figure 33 shows the average SAM values per frac for both training and validation data 

sets. The SAM values of the validation data behave more or less as expected, clearly 

increasing when confronted with small input data sets in fracs 8 and 16. The average 

values for the training data are more erratic, decreasing and increasing in turn, but not 

showing major differences. 

Figure 34 shows the average difference per frac between the validation and training SAM 

values (validation value – training value). One interesting observation is that the 

difference in SAM values in frac 2 is significantly lower than in frac 1. The SAM values for 

the validation data in frac 2 are actually lower than the SAM values for the training data, 

meaning that the model performs better predicting unseen data than when reproducing 

data that was used for training. The results for fracs 8 and 16 are more in line with 
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expectations: a strong increase is noted in the discrepancy between validation and 

training values, indicating that the models ability to predict unseen data suffers 

significantly when the data sets become very small. 

 

Figure 33: Average SAM values for training and validation data sets 

 

 

Figure 34: Average difference in SAM values between validation and training sets 
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Analysis of the individual difference between validation and training SAM values for each 

subset again shows the inconsistent and unreliable performance of the model at fracs 8 

and 16. Figures 34 and 35 show the difference between validation and training SAM 

values for fracs 1 to 8 and frac 16, respectively.  

 

 

Figure 35: Difference in SAM values between validation and training sets for each subset, fracs 1 to 8 

 

Figure 36: Difference in SAM values between validation and training sets for each subset, frac 16 
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As we can see, for fracs 1 to 4, the difference nowhere even comes close to 0,02. When 

only an 8th of the data is used, we see that the range of the results sharply increases, 

with outliers to 0,04 and even 0,06. Frac 16 shows major outliers in positive and 

negative direction, with a range from -0,04 to 0,11 SAM.  

The SAM analysis further confirms the inconsistent and unreliable performance of 

FEATHERS when trained with an 8th or less of the regular input data set. 

 

7.4 CMA analysis 

After focusing on the output of the model in the previous sections, it is useful to take a 

deeper look at the scheduling process. This means taking analyzing the performance of 

the decision trees, which form the core of the scheduling process. Some of the trends we 

discovered in the previous sections should also be visible in analysis of the decision trees.  

A method of progressive sampling is applied, meaning that progressively larger samples 

of the original training data set are used until no more improvement is seen. The 

relationship between sample size and model accuracy is depicted by a learning curve. 

Figure 37 gives an example of a learning curve. The horizontal axis represents the 

sample size, varying from 0 to N. The vertical axis gives the accuracy of the decision tree 

algorithm for a given training set size. 
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Figure 37: Learning curve 

 

Learning curves typically have a steep section early in the curve, a decreasing slope in 

the middle portion and a plateau in the last part. The middle part can be missing in some 

curves or extremely large in others. When the plateau is reached, the accuracy does not 

improve further. It is possible that the plateau is never reached when the sample size is 

too small. For a very large sample size, it is possible that the plateau is reached very 

early in the curve. It is generally assumed that learning curves behave consistently and 

that the slope does not increase (Catlett, 1991).  

When a learning curve reaches its plateau, it has converged. At this point, a smaller data 

set would result in lower accuracy, while a bigger data set would not result in an 

increased accuracy. We label this size of data set, nmin , as the smallest sufficient training 

set. By applying progressive sampling, we will attempt to determine nmin empirically.  

Different kinds of progressive sampling are possible. Arithmetic sampling uses the 

following sequence: 

Sa = n0 + (i.nδ) = {n0, n0 + nδ, n0 + 2. nδ, …, n0 + k.nδ}  

An example of arithmetic sampling is {100, 200, 300, …, nk}.  
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An alternative sampling sequence is called geometric sampling. It uses the following 

sequence: 

Sg = ai.n0 = {n0, a.n0, a
2.n0, …, ak.n0} 

Arithmetic sampling is chosen because it is more straightforward and because we are not 

dealing with very large data sets. 

Because we will not be working with subsets here, a different method of sampling is 

required, as one can obtain many samples of the same size by randomly selecting 

instances of the original data set. Therefore, 30 different samples of the same size are 

compiled for each step of the sampling procedure.  

The ‘Confusion Matrix Accuracy’ (CMA), explained in section 5.3, will be used to evaluate 

the performance of the decision trees. Using 30 samples per step means that each 

sample size will generate 30 different decision trees and thus 30 different CMAs. A 

learning curve will be created by chaining the averages of the normalized values of these 

30 CMAs. The normalization is necessary to compare learning curves. Table 4 gives a 

summary of all normalized average CMA values. The points on the learning curve are 

used to estimate a tangent line for each of the 30 samples. The slope of this tangent line 

will be compared to zero, because the tangent line of a learning curve is approximately 

zero when the plateau is reached. 

The following criterion is set to determine where convergence is reached: convergence is 

reached when more than 90% of the 30 sample CMA values at a given point on the 

learning curve have a tangent smaller than or equal to 0.25 degrees. Table 5 gives the 

convergence percentage of the learning curves for all discrete decision trees. 
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nr decision tree 10% 20% 30% 40% 50% 60% 70% 80% 90% 

1 Inclusion work 100,1 100,3 100,0 100,0 100,0 100,1 100,1 100,1 100,0 

2 Number of episodes 97,0 97,7 97,3 97,8 98,4 98,3 98,5 99,1 99,6 

3 Location, same as previous 84,3 86,5 92,4 93,8 95,5 97,1 97,8 98,9 99,5 

4 Location, in/out home 92,9 94,6 96,2 96,5 97,6 98,2 98,4 99,1 99,6 

5 Location, order (1) 87,0 90,7 91,7 93,5 95,2 96,0 97,5 97,9 98,6 

6 Location, nearest of order 92,2 95,0 95,7 96,6 96,5 97,5 98,1 98,5 99,1 

7 Location, distance band (1) 77,1 79,4 85,1 87,5 89,7 92,4 94,4 96,1 96,5 

8 Location, order (2) 85,5 89,2 92,0 93,1 94,0 96,2 97,6 98,6 99,7 

9 Location, distance band (2) 78,1 84,6 89,0 93,3 95,3 96,6 97,8 98,4 99,5 

10 Transport mode (1) 90,6 93,3 93,8 94,8 95,3 96,8 97,1 97,7 99,3 

11 Inclusion fixed 99,2 99,7 99,7 99,8 99,8 99,8 99,9 99,9 100,0 

12 number of episodes 94,4 96,7 98,3 98,2 98,3 98,9 99,4 100,0 100,5 

13 Chaining, work 92,5 94,4 95,5 96,8 98,1 98,9 99,6 100,0 100,9 

14 Location, same as previous 96,9 97,0 99,2 99,9 100,1 100,2 100,3 100,3 100,4 

15 Location, distance-size class 75,7 83,0 89,5 93,8 97,5 100,4 100,6 101,2 101,6 

16 Inclusion flexible 99,2 99,3 99,4 99,5 99,6 99,7 99,8 99,8 99,9 

17 Duration 93,8 95,9 97,3 98,3 99,2 99,7 99,8 100,0 100,3 

18 Timing 85,7 93,3 96,4 98,3 99,3 99,6 99,5 99,7 99,7 

19 Chaining 94,2 98,7 99,3 99,7 100,2 100,1 100,1 100,2 100,1 

20 Transport mode (2) 88,5 93,1 95,8 97,5 98,6 99,7 99,7 99,7 99,7 

Table 5: Normalised average CMA values, for each progressive sampling step from 10% till 90% (in %) 
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nr decision tree 10% 20% 30% 40% 50% 60% 70% 80% 90% 

1 Inclusion work 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 

2 Number of episodes 90,0 100,0 97,0 97,7 100,0 100,0 97,7 100,0 100,0 

3 Location, same as previous 60,0 13,3 53,3 70,0 63,3 77,7 86,7 96,7 100,0 

4 Location, in/out home 73,3 80,0 100,0 96,7 93,3 100,0 100,0 100,0 100,0 

5 Location, order (1) 40,0 60,0 63,3 63,3 80,0 70,0 93,3 86,7 76,7 

6 Location, nearest of order 50,0 86,7 93,3 100,0 100,0 100,0 100,0 100,0 100,0 

7 Location, distance band (1) 60,0 10,0 50,0 56,7 50,0 56,7 53,3 76,7 30,0 

8 Location, order (2) 36,7 43,3 80,0 83,3 63,3 63,3 96,7 96,7 100,0 

9 Location, distance band (2) 20,0 16,7 23,3 73,3 73,3 90,0 100,0 86,7 100,0 

10 Transport mode (1) 50,0 86,7 90,0 100,0 76,7 100,0 96,7 93,3 100,0 

11 Inclusion fixed 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 

12 number of episodes 53,3 56,7 96,7 96,7 90,0 93,3 96,7 93,3 100,0 

13 Chaining, work 53,3 66,7 70,0 76,7 76,7 96,7 96,7 86,7 100,0 

14 Location, same as previous 90,0 63,3 100,0 100,0 100,0 100,0 100,0 100,0 100,0 

15 Location, distance-size class 6,7 16,7 23,3 26,7 40,0 93,3 86,7 83,3 100,0 

16 Inclusion flexible 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 

17 Duration 60,0 90,0 93,3 96,7 100,0 96,7 100,0 100,0 100,0 

18 Timing 3,3 26,7 76,7 96,7 100,0 100,0 100,0 100,0 100,0 

19 Chaining 10,0 93,3 100,0 100,0 100,0 100,0 100,0 100,0 100,0 

20 Transport mode (2) 16,7 40,0 63,3 90,0 90,0 100,0 100,0 100,0 100,0 

 

Table 6: Percentage of the number of samples with a tangent smaller than 0.25 degrees, for progressive sampling step 
from 10% till 90% 

 

Some interesting things stand out when looking at table 5. Firstly, 3 decision trees reach 

convergence immediately at only 10% of the total training data set. Apparently, these 

decision trees need very little data in order to accurately make predictions. These 3 trees 

constitute the inclusion decision trees (inclusion work, inclusion fixed, inclusion flexible). 

Figure 38 gives the learning curve of one of these 3 decision trees, the inclusion work 

tree. It is clear that the learning curve is nearly flat, indicating that the plateau is 

reached almost instantly, and additional training data does not result in an improved 

CMA. 

Most other learning curves reach their plateau somewhere between sample fractions of 

10% and 90%. Figure 39 shows an example of this with decision tree 18, which 

determines timing. Finally, there are two decision trees that do not reach convergence at 
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all. These decision trees need more data than available in order to reach their maximum 

accuracy. Figure 40 shows an example of this with decision tree 5. As we can see, the 

learning curve keeps on elevating and no plateau is reached. The two decision trees that 

do not reach are both decision trees that make location choices. This is not surprising, 

considering the difficult nature of location choices compared to other choices, such as 

inclusion. 

 

Figure 38: Learning curve of decision tree 1 (inclusion work) 

 

 

Figure 39: Learning curve of decision tree 18 (Timing) 
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Figure 40: Learning curve of decision tree 5 (location, order) 
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Chapter 8: Discussion 

 

 

8.1 Conclusion 

The goal of this master thesis was to investigate the performance of the FEATHERS 

model when trained with smaller amounts of training data. This was done by a form of 

progressive sampling where increasingly smaller fractions (fracs) of the original data set 

were used to train the model. Several important parameters were generated from the 

output and the distribution and goodness-of-fit were analyzed. A more in-depth analysis 

was performed on the performance of the decision trees. 

The analysis by parameter shows that the model performance gets progressively worse 

as the training data set gets smaller, as would be expected. This decrease in accuracy is 

moderate when a frac 2 (50% of the data set) is used. The distribution shows an 

increase in range but remains fairly symmetric, and the average values stay below 5% 

deviation for all but 2 of the 10 parameters. With this amount of training data, the model 

could be useful, depending on the purpose. At frac 4 (25% of the data set), however, the 

model performance starts to suffer heavily. The distributions become skewed, often show 

a broad peak and big outliers are no exception. The average value of the parameters 

remains acceptable however, with again only 2 parameters showing a deviation over 5%. 

The model performance really crashes from frac 8 (12,5% of the data set) onward. The 

distributions are strongly skewed, extreme outliers are observed for every parameter and 

the average values show major deviations, some even up to 30%. It is clear that the 

model is totally inconsistent and unreliable at this stage. 
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The SAM analysis further confirms the findings of the parameter analysis. At fracs 8 and 

16, the SAM values become very large, indicating that the model cannot reproduce the 

training data well. Additionally, the difference between the training and validation values 

becomes bigger and bigger, which shows that the model gets progressively worse at 

predicting data it has not yet seen before. Big differences are also observed between the 

different subsets of fracs 8 and 16, once again confirming the highly inconsistent 

performance of the model with such a limited amount of training data. 

The analysis of the decision trees clearly shows that some trees can function very well 

with a very limited amount of training data, while others struggle even with extensive 

amounts of data. The inclusion trees, responsible for deciding whether or not to include 

an activity in the schedule, appear to need very little training data and perform perfectly 

with only 10% of the training data. The opposite is true for the location trees, which 

decide on the location of activities and trips. Their performance is not satisfactory even 

when trained with a large amount of training data. The other investigated decision trees 

reach their maximum accuracy at various points between 10% and 90% of the training 

data set.  

In general, we would advise against the use of smaller data sets to train the FEATHERS 

model. The model accuracy suffers quite quickly from a decrease of training data. While 

the initial loss of accuracy is rather moderate for most parameters, the location model is 

the first to suffer. Since this location model is an essential part of most activity-based 

models, given their use in transportation research, this would not be acceptable. Many of 

these models are used by policy makers, and only the highest quality of performance is 

acceptable when important policy decisions are to be based upon the predictions of the 

model. For specific purposes that do not require accurate location estimates, the model 

performance could be deemed acceptable when trained with 50% of the training data. 

However, it is unlikely that many applications requiring such data exist. We would advise 

against any use of the model when trained with 25% or less of the training data set. The 

results indicate highly unstable and inconsistent performances at that stage. 



- 75 - 
 

 

References 

 

 

Proost, S. And K. Van Dender, 2011, What long-term road transport future? Trends and 

policy options, Review of Environmental Economics and Policy, Volume 5, issue 1 

Goodwin, P., 2004, The economic costs of road traffic congestion, UCL (University College 

London), The Rail Freight Group: London, UK. 

Zaidi, A. and K. Rake, 2001, Dynamic microsimulation models: a review and some 

lessons for SAGE, Department of social policy London school of economics 

Arentze, T.A. and H.J.P. Timmermans, 2000, Albatross: A learning-Based Transportation 

Oriented Simulation System, European Institute of Retailing and Services Studies, 2. 

conceptual considerations 

Arentze, T.A. and A. Schoemakers, 2004, Albatross: gevoeligheden van een nieuw 

activiteiten – verplaatsingsmodel in kaart gebracht, Colloquium Vervoersplanologisch 

Speurwerk 2004, 25th & 26th of November, Zeist, The Netherlands 

Potter, K., 2006, Methods of presenting statistical information: the box plot, University of 

Utah 

Joh, C-H., T. Arentze, H. J.P. Timmermans, 2001, Multidimensional Sequence Alignment 

Methods for Activity-Travel Pattern Analysis: a Comparison for Dynamic Programming 

and Genetic Algorithms, Geographical Analysis, Volume 33, Issue 3, p. 247-270,  July 

2001 

Arentze, T., F. Hofman, H. Van Mourik, H. Timmermans, 2000, ALBATROSS multiagent, 

rule-based model of activity pattern decisions, Transportation Research Record 1706, 

Volume 1706/2000, p. 136-144 

Doran, H.C. and P.B. Van Wamelen, 2010, Application of the Levenshtein distance metric 

for construction of longitudinal data files, Educational Measurement: Issues and practice, 

Volume 29, No. 2, p. 13-23 

Kohavi, R. and F. Provost, 1998, Glossary of terms: Machine Learning. Kluwer Academic 

Publishers, Boston 



- 76 - 
 

Catlett, J., 1991, Megainduction: Machine learning on very large databases, PhD thesis, 

School of Computer Science, University of Technology, Australia, Sydney 

Janssens,  D., E. Moons, E. Nuyts, G. Zwerts, 2009,  Onderzoek  verplaatsingsgedrag  

Vlaanderen 3 (2007 - 2008), Universiteit Hasselt: Instituut voor Mobiliteit (IMOB) 

 

Steg, L., 2003, Can public transport compete with the private car?, IATSS research, Vol. 

27, No. 2, p.27-35 



Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:

Sensitivity analysis of the Feathers activity-based model for Flanders

Richting: Master of Management-Management Information Systems

Jaar: 2012

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de 

Universiteit Hasselt. 

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt 

behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -, 

vrij te reproduceren, (her)publiceren of  distribueren zonder de toelating te moeten 

verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de 

rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat 

de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt 

door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de 

Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de 

eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen 

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze 

overeenkomst.

Voor akkoord,

Vanderheyden, Ward  

Datum: 21/08/2012


