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Abstract

In this study we will focus on piece-wise linear state space models for gene-protein interaction
networks. We will follow the dynamical systems approach with special interest for partitioned state
spaces. From the observation that the dynamics in natural systems tends to punctuated equilibria, we
will focus on piecewise linear models and sparse and hierarchic interactions, as for instance described
by Glass, Kauffman, and de Jong. Next, the paper is concerned with the identification (a.k.a. reverse
engineering and reconstruction) of dynamic genetic networks from microarray data. We will describe
exact and robust methods for computing the interaction matrix in the special case of piecewise linear
models with sparse and hierarchic interactions from partial observations. Finally, we will analyze and
evaluate this approach with regard to its performance and robustness towards intrinsic and extrinsic
noise.
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1 Introduction

This paper is concerned with the identification of dy-
namic gene-protein interaction networks with intrin-
sic and extrinsic noise from empirical data, such as a
set of microarray time series.

Prerequisite for the successful reconstruction of
these networks is the way in which the dynamics of
their interactions is modeled. The formal mathemati-
cal modeling of these interactions is an emerging field
where an array of approaches are being attempted,
all with their own problems and short-comings. The
underlying physical and chemical processes involved
are multifarious and hugely complex. This condition
contrasts sharply with the modeling of inanimate Na-
ture by physics. While in physics huge quantities of
but a small amount of basic types of elementary parti-
cles interact in a uniform and deterministic way pro-
vided by the fundamental laws of nature, the situation

in gene-protein interactions deals with tens of thou-
sands of genes and possibly some million proteins.
The quantities thereby involved in the actual inter-
actions are normally very small, as one single pro-
tein may be able to (in)activate a specific gene, and
thereby change the global state of the system. For
this reason, gene regulatory systems are much more
prone to stochastic fluctuations than the interactions
involved in normal anorganic reactions. Moreover,
each of these interactions is different and involves
its own peculiar geometrical and electrostatic details.
There are different processes involved like transcrip-
tion, translation and subsequent folding. Therefore,
the emergent complexity resulting from gene regula-
tory networks is much more difficult to comprehend.

In the past few decades a number of different for-
malisms for modeling the interactions amongst genes
and proteins have been presented. Some authors fo-
cus on specific detailed processes such as the cir-



cadian rhythms in Drosophila and Neurospora (10),
(11), or the cell cycle in Schizosaccharomyces (Fis-
sion yeast) (14). Others try to provide a general plat-
form for modeling the interactions between genes and
proteins. For a thorough overview consult de Jong
(2002) in (2), Bower (2001) in (1), and others (6),
(13).

We will focus on dynamical models, and not dis-
cuss static models where the relations between genes
are considered fixed in time. In discrete event simula-
tion models the detailed biochemical interactions are
studied. Considering a large number of constituents,
the approach aims to derive macroscopic quantities.
More information on discrete event modeling can be
found in (1).

2 Modeling gene-protein interac-
tions as a piecewise linear sys-
tem

The traditional approach to modeling the dynamical
interactions amongst genes and proteins is by con-
sidering them as biochemical reactions, and thus rep-
resenting them as ’rate equations’. The concept of
chemical rate equations consists of a set of differen-
tial equations, expressing the time derivative of the
concentration of each constituent of the reaction as
some rational function of the concentrations of all the
constituents involved. Though the truth of the un-
derlying biochemical interactions between the con-
stituents is generally accepted, a rate equation is not
a fundamental law of Nature, but a statistical average
over the entire ensemble of molecular collisions that
contribute to an actual chemical reaction (22). So,
rate equations are statistical approximations that – un-
der certain conditions – predict the average number of
reactive collisions. The actual observed number will
fluctuate around this number, depending on the de-
tails of the microscopic processes involved. In case
of biochemical interactions between genes and pro-
teins the applicability of the concept of rate equations
is valid only for genes with sufficient high transcrip-
tion rates. This is confirmed by recent experimental
findings by Swain and Elowitz (5), (16), (18), (19).

From the above, we may conclude that modeling
can only be successful for genes with sufficiently
high transcription rates. Even in the optimal case, we
would obtain a high-dimensional (reflecting the num-
ber of genes, RNAs, and proteins involved – so tens
of thousands), non-linear, differential equation, that
is subject to substantial stochastic fluctuations. Much
more problematic is the fact that the precise details

of most reactions are unknown, and therefore cannot
be modeled as rate equation. This could be compen-
sated by a well-defined parametrized generic form of
the interactions, such that the parameters could be
estimated from sufficient empirical data. A generic
form based on rational positive functions is proposed
by J. van Schuppen (23). However, in the few cases
where parts of such interaction networks have been
described from experimental analysis, like the circa-
dian rhythms in certain amoeba (10), or the cell cycle
in fission yeast (14), it is clear that such forms have a
too extensive syntax to be of any practical use.

Let us for the moment forsake these problems,
and consider the dynamics of gene-RNA-protein net-
works. When we assume a stochastic differential
equation as model for the dynamics of the interaction
network, the relation can be expressed as:

ẋ = f(x, u|θ) + ξ(t) (1)

Here x(t), called the state-vector, denotes the N gene
expressions and M RNA/protein densities at time t
– possibly involving higher order time derivatives.
u(t) denotes the P controlled inputs to the system,
such as the timing and concentrations of toxic agents
administered to the system observed. ξ(t) denotes
a stochastic Gaussian white noise term. This ex-
pression involves a parameter vector θ, that contains
the coupling constants between gene expressions and
protein densities. We can consider this system as be-
ing represented by the state vector x(t) that wanders
through the (at least) (N + M)-dimensional space of
all possible configurations. In the formalism of dy-
namic systems theory, eventually x will enter an area
of attraction, and become subject to the influence of
an attractor. An attractor here can be an uniform con-
vergent attractor, a limit cycle, or a ’strange attrac-
tor’. We can understand the entire space as being
partitioned into cells, where such attractors – or their
antagonists so-called repellers – reign. Thus, the be-
havior of x can be described by motion through this
collection of cells, swiftly moving through cells of
repellers, until they enter the basin of attraction of
an attractor. Under the effects of external agents via
the vector u(t) or by stochastic fluctuations via ξ(t)
they can leave this cell, and start wandering again,
thereby repeating the process. Now, a vital assump-
tion is that in each cell the behavior is governed by
specific (un)stable equilibrium points, and therefore
it is possible to make a linear approximation of equa-
tion 1 in the cell with index l as:

ẋ(t) = Flx(t) + Glu(t) (2)

In case of a uniform attractor the largest eigen-value



of Fl will be negative, and in case of a uniform re-
peller the smallest eigen-value will be positive. We
can now formalize the qualitative behavioral dynam-
ics of gene-protein interactions as predominantly lin-
ear behavior near the stable equilibria – called the
steady states, interrupted by abrupt transitions where
the system quickly relaxes to a new steady state, ei-
ther externally induced or by process noise.

In biology such behavior is frequently observed,
as for instance in embryonic growth where the or-
ganism develops by transitions through a number of
well-defined ’check points’. Within each such check-
point the system is in relative equilibrium. There
is an ongoing debate on mathematical modeling of
cell division as checkpoint mechanisms versus limit-
cycle oscillators, see (20). We will follow the view of
piecewise linear behavior (PWL, also known more
appropriately as piecewise affine behavior). This ap-
proach corresponds to the piecewise linear models in-
troduced by Glass and Kauffman (9), and the qualita-
tive piecewise linear models described by de Jong et
al. (2), (3).

3 The identification of piece-
wise linear networks by L1-
minimization

Next, we will be concerned with the identification
(a.k.a. reverse engineering or reconstruction) of
piecewise linear gene regulatory systems from mi-
croarray data. The nature of our problem – few mi-
croarray experiments and lots of genes – implies that
we are dealing with poor data (as opposed to rich
data), where the number of measurements is a pri-
ori insufficient to identify all parameters of the sys-
tem. One standard approach to circumvent this prob-
lem is by dimension reduction through the clustering
of related genes. We consider the case where time
series of genome-wide expression data is available.
The case of the identification of a simple linear sys-
tem is discussed in Peeters and Westra (15), (26), and
Yeung et al. in (27). In the following, we will be con-
cerned with the identification of piecewise linear sys-
tems. Our aim is to obtain the gene-gene interaction
matrix. This matrix can be interpreted as a connectiv-
ity matrix, and so directly relates to the graph of the
gene regulatory network. With this network we are
able to make statements like: ’the expression of this
gene causes that and that cluster of genes to alter their
expression in this and this way’.

Let us in the following assume a dynamical input-
output system Σ that switches irregularly between K

linear time-invariant subsystems {Σ1, Σ2, . . . , ΣK}.
Let S = {s1, s2, . . . , sK−1} denote the set of
– possibly unknown – switching times, i.e. the
time instants t = sl that the system switches
from subsystem Σl to Σl+1. Similarly as with
the simple linear networks, we assume Hankel ma-
trices X = (x[1], x[2], . . . , x[M ]), and U =
(u[1], u[2], . . . , u[M ]) at M sampling times T =
{t1, t2, . . . , tM}, representing full observations of the
N states and P inputs. The interval between two sam-
ple instants is denoted as τk = tk+1 − tk. In first in-
stance we assume that the system is sampled on reg-
ular time intervals, i.e. that the sample intervals are
equal to τ . Within one subsystem Σl the relation be-
tween the inputs u(t) and outputs y(t) is represented
as a state-space system of first-order differential (for
continuous time systems) or difference equations (for
discrete time systems), using an auxiliary vector x(t)
spanning the so-called subspace.

Continuous time:

ẋ(t) = Flx(t) + Glu(t), (3)

y(t) = Hlx(t) + Jlu(t). (4)

Discrete time:

x[k + 1] = Alx[k] + Blu[k], (5)

y[k] = Clx[k] + Dlu[k]. (6)

The relation between these is given by:

Al = eτFl , (7)

Bl = eτFlGl. (8)

with x[k] = x(tk) .

3.1 Determination of the new state equi-
librium points

Moreover, in each new state the new equilibrium
point µl ∈ R

N has also to be established. The lin-
earization near µl can be written as:

∂

∂t
(µl+(x−µl)) = Fl(x−µl)+Glu+O(‖x−µl‖2)

(9)
which can be rewritten as: ẋ = Flx + G̃lũ, with:

G̃l = (Gl| − Flµl) , (10)

ũ =
(

u
1

)
. (11)

The reasoning is similar in the discrete case, and we
obtain: x[k + 1] = Alx[k] + B̃lũ[k]. Therefore,



we can follow the original formulation and, using ũ
rather than u as input, estimate Al and B̃l, and using:

B̃l = (Bl| − Alµl) , (12)

to compute µl and B. We will follow this approach,
and from here on drop the tilde, and simple write B l

for (Bl| − Alµl), and u[k] for

(
u[k]
1

)
.

3.2 General dynamics of switching sub-
systems

In the context of piecewise linear systems of gene reg-
ulatory systems, the dynamics is slightly different to
the case of simple linear systems as in (15). In our
context we assume that we observe all N genes, and
that there is no direct through-put. This means that
Cl = I and Dl = 0 for all l. Therefore, we can
suffice with equation 5 corrected for the equilibrium
point:

x[k + 1] = Alx[k] + Blu[k]. (13)

We furthermore assume that the system matrices
in these equations are constant during intervals
[sl, sl+1 >, and abruptly change at the transition be-
tween the intervals at t = sl+1. We assume that
on the time scale τ the system has relaxed to its
new state. This means that we do not observe mixed
states, which would severely complicate the problem
of identification.

Finally, we define the weights wkl, as the mem-
bership functions of observation k to subsystem Σ l;
if observation {x[k], u[k]} belongs to system Σl then
wkl = 1, if {x[k], u[k]} does not belong to Σl then
wkl = 0. This definition allows for a fuzzy definition
of weight, such that wkl ∈ [0, 1]. A priori, we thus
can state two constraints on w:

∀k,lwkl ∈ [0, 1], (14)

∀l

∑
l

wkl = 1. (15)

The challenge in system identification is to esti-
mate the relevant model parameters in piecewise lin-
ear dynamics from empirical observations. The suc-
cess of this approach depends on the amounts of em-
pirical data available – rich or poor, the validity of the
mathematical model, the levels of process noise and
measuring noise, and the nature of the sampling pro-
cess. In case of regular sampling the discrete model
5 can be applied which leads to more straightforward
techniques than the continuous model 3 that should
be used in case of irregular sampling. In the following
sections we will study a number of these conditions
in more detail.

3.3 Identification of PWL models with
unknown switching and regular sam-
pling from poor data

The assumption that the switching times between the
linear subsystems are completely known suits var-
ious experimental conditions, as for instance when
toxic agents are administered. In many biological sit-
uations, however, the exact timing between subsys-
tems is not known, as during embryonic growth and
in many metabolical processes.

3.3.1 As an extension to the simple linear systems
in case state derivatives are available

When a sufficiently accurate record of estimates of
the state derivatives Ẋ = {ẋ[1], ẋ[2], . . . , ẋ[M ]} is
available, we can simply rewrite this problem as a
special case of the method described in the case of
a simple linear problem as in (15). In fact, by ex-
ploiting the data D = {X, U, Ẋ}, the problem can be
stated as a linear equation in terms of new matrices
H1 and H2 as:

Ẋ = H1X + H2U. (16)

In this equation the matrices H1 and H2 relate to the –
unknown – system matrices {A1, B1, . . . , AK , BK}
and ditto unknown weights {wkl} as:

vec(H1) = W · vec(A), (17)

vec(H2) = W · vec(B). (18)

The matrices A, B, and W are composed as follows:

A =

⎛
⎝ A1

. . .
AK

⎞
⎠ , B =

⎛
⎝ B1

. . .
BK

⎞
⎠ , (19)

W = w ⊗ IN2 =

⎛
⎝ w1,1IN2 . . . w1,KIN2

. . . . . . . . .
wM,1IN2 . . . wM,KIN2

⎞
⎠

(20)
where ⊗ is the Kronecker-product, and IN2 is the
N2 × N2 identity matrix. Note that equation 16 is
not anymore a linear problem, as the unknown matri-
ces A, B, and W appear in a non-linear way in the
equation. This equation is exactly of the type of sim-
ple linear networks as in (15). Therefore, its solution
method is fully applicable, so that an efficient and ac-
curate algorithm is available for solving this problem
in terms of H1 and H2. However, now the problem
has shifted to solving two additional non-linear equa-
tions:

W � A = H1, (21)

W � B = H2. (22)



where A, B, and W have to be solved from the known
– i.e. computed – matrices H1 and H2. The operation
� makes the relations in equations 21 and 18 explicit.
This is an underdetermined system that can only be
solved by additional information, such as assuming
sparsity for A, and a block structure for W , such as
the two constraints in equations 14 and 15.

This non-linear problem can thus be solved in
terms of H1 and H2, but not in terms of A, B, and
W . It is a bilinear problem in terms of A and B for
fixed W , otherwise it is a quadratic problem. As a
quadratic programming problem this is not a a well-
posed problem, i.e. it has a nonsingular Jacobian at
optimality and is ill-conditioned as the iterates ap-
proach optimality. Therefore, we follow a different
approach and split the problem in two LP-problems
that are well-posed. The approach is as follows: (i)
initialize A, B, and W , (ii) perform the iteration:

1. Compute H1 and H2, using the approach from
Peeters and Westra (15) on equation 16,

2. Using fixed values for the weights W , compute
A and B using equations 21, and 22,

3. Using fixed values for matrices A and B, com-
pute the weights W using equations 14, 15, 21,
and 22,

until: (iii) a cumulative weighted error criterion E has
converged sufficiently – or a maximum number of it-
erations has passed. A proper choice for the criterion
function is:

E(A, B, W |D) =
∑
k,l

wkl‖Alx[k]+Blu[k]− ẋ[k]‖2
2

(23)
This problem can be solved by minimizing the
quadratic L2-criterion subject to mentioned con-
straints, for instance by a gradient descent method.
We can, however, formulate a different approach for
solving this problem by defining an alternative crite-
rion function E , namely as a linear L1-criterion:

E1(A, B, W |D) =
∑
k,l

wkl‖Alx[k]+Blu[k]−ẋ[k]‖1

(24)
This expression allows for an LP-formulation of the
problem, in which E1 serves as the objective function.
Thus, we can split the non-linear optimization prob-
lem as two separate LP-formulations that are suc-
cessively applied in the iteration; (i) an LP-problem
LP1 for obtaining the system matrices A and B from
minimizing objective function E1 with given weights
w, subject to the constraints in equations 21 and 22;
and (ii) an LP-problem LP2 for obtaining the weights

w from minimizing objective function E1 with given
system matrices A and B , subject to the constraints
in equations 14, 15, 21, and 22.

We will revisit this philosophy in the next Section,
when reviewing the more realistic case when the state
derivatives of the gene expressions are not available.

4 Numerical experiments and
performance of the approach.

This approach resulted in an efficient and fast algo-
rithm that is able to accurately estimate the gene-gene
coupling matrix for tens of thousands of genes based
on only several hundred genome wide measurements,
and that is robust towards measurement noise. With
increasing measurement noise or decreasing number
of measurements the approach retains the strongest
gene-gene coupling links - i.e. the largest modal
value of the coupling matrix A - longest, see Figure
1. A basic assumption in the approach is the sparsity
of the underlying gene-gene coupling matrix, repre-
sented by the number of non-zero entries per row.
If this number grows above a certain threshold the
performance of the approach is severely affected, see
Figure 2b. A number of numerical experiments were
performed with this approach. These controlled ex-
periments consist of the comparison of reconstructed
network with the - known - original network struc-
ture. They were all performed on a PC with an
PIV dual XEON processor of 3.2 GHz and 4096 MB
RAM memory under Linux fedora core 3, using Mat-
lab 6.5 release 13 including the optimization toolbox.
The Matlab routine linprog was used to solve LP
problems; its default solution method is a primal-dual
interior point method, but an active set method can
optionally be used too. For larger problems it turned
out to be essential for obtaining reasonable compu-
tation times, that the LP problems were solved by ap-
plication of the active set method on the dual prob-
lem formulation. Therefore this method was adopted
throughout all the experiments. In line with the def-
initions above, we use the parameters N , M , K to
quantify the size and complexity of the input. In ad-
dition, the sparsity of the interaction matrix A is mea-
sured by the number of nonzero entries per row and
denoted by k (which should be much less than N ).
To quantify the quality of the resulting approxima-
tion Aest of A∗ two performance measures are intro-
duced: the number of errors Ne and the CPU-time Tc

as clocked on the same platform.

1. The number of errors Ne.
Errors in the reconstruction are generated by the



failure of the algorithm to identify the true non-
zero elements of the original sparse vector x0.
These errors stem from false positives and false
negatives in the reconstructed vector xd. Their
numbers are added up to produce the total num-
ber of errors Ne.

2. The CPU-time Tc.
Using internal clocking, the time Tc required
to perform the full computation was measured.
As all numerical experiments are executed on
the same platform under similar conditions, this
provides a measure to compare problem in-
stances.

The numerical experiments clearly demonstrate the
range where the approach is effective. For relatively
moderate noise levels and a high degree of sparsity
i.e., a small number k of nonzero elements in the rows
of matrix A - and not too many external stimuli p and
switching times K , the approach allows one to re-
construct a sparse matrix with great accuracy from
a relative small number of observations M � N .
For example, a row of A with 30,000 components
of which all but 10 are equal to zero, can be effi-
ciently reconstructed from just 150 independent mea-
surements, see Figure 4a. The sparsity property of A
fits in nicely with the technique of L1-minimization,
which automatically will always set many entries of
the solution A∗ to zero, whereas L2-regression would
spread out the error over all components, thus creat-
ing many small components. Reconstruction of large
networks from this approach is straightforward: each
of the rows of the gene-gene interaction matrix can be
computed independently from the same set of micro-
array experiments.
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